ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.hpp
Revision: 2022
Committed: Fri Sep 26 22:22:28 2014 UTC (10 years, 7 months ago) by gezelter
File size: 24707 byte(s)
Log Message:
Added support for accumulateBoxQuadrupole flag

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 /**
44 * @file SimInfo.hpp
45 * @author tlin
46 * @date 11/02/2004
47 * @version 1.0
48 */
49
50 #ifndef BRAINS_SIMMODEL_HPP
51 #define BRAINS_SIMMODEL_HPP
52
53 #include <iostream>
54 #include <set>
55 #include <utility>
56 #include <vector>
57
58 #include "brains/PairList.hpp"
59 #include "io/Globals.hpp"
60 #include "math/Vector3.hpp"
61 #include "math/SquareMatrix3.hpp"
62 #include "types/MoleculeStamp.hpp"
63 #include "brains/ForceField.hpp"
64 #include "utils/PropertyMap.hpp"
65 #include "utils/LocalIndexManager.hpp"
66 #include "nonbonded/SwitchingFunction.hpp"
67
68 using namespace std;
69 namespace OpenMD{
70 //forward declaration
71 class SnapshotManager;
72 class Molecule;
73 class SelectionManager;
74 class StuntDouble;
75
76 /**
77 * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
78 *
79 * @brief One of the heavy-weight classes of OpenMD, SimInfo
80 * maintains objects and variables relating to the current
81 * simulation. This includes the master list of Molecules. The
82 * Molecule class maintains all of the concrete objects (Atoms,
83 * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
84 * Constraints). In both the single and parallel versions, Atoms and
85 * RigidBodies have both global and local indices.
86 */
87 class SimInfo {
88 public:
89 typedef map<int, Molecule*>::iterator MoleculeIterator;
90
91 /**
92 * Constructor of SimInfo
93 *
94 * @param ff pointer to a concrete ForceField instance
95 *
96 * @param simParams pointer to the simulation parameters in a Globals object
97 */
98 SimInfo(ForceField* ff, Globals* simParams);
99 virtual ~SimInfo();
100
101 /**
102 * Adds a molecule
103 *
104 * @return return true if adding successfully, return false if the
105 * molecule is already in SimInfo
106 *
107 * @param mol Molecule to be added
108 */
109 bool addMolecule(Molecule* mol);
110
111 /**
112 * Removes a molecule from SimInfo
113 *
114 * @return true if removing successfully, return false if molecule
115 * is not in this SimInfo
116 */
117 bool removeMolecule(Molecule* mol);
118
119 /** Returns the total number of molecules in the system. */
120 int getNGlobalMolecules() {
121 return nGlobalMols_;
122 }
123
124 /** Returns the total number of atoms in the system. */
125 int getNGlobalAtoms() {
126 return nGlobalAtoms_;
127 }
128
129 /** Returns the total number of cutoff groups in the system. */
130 int getNGlobalCutoffGroups() {
131 return nGlobalCutoffGroups_;
132 }
133
134 /**
135 * Returns the total number of integrable objects (total number of
136 * rigid bodies plus the total number of atoms which do not belong
137 * to the rigid bodies) in the system
138 */
139 int getNGlobalIntegrableObjects() {
140 return nGlobalIntegrableObjects_;
141 }
142
143 /**
144 * Returns the total number of integrable objects (total number of
145 * rigid bodies plus the total number of atoms which do not belong
146 * to the rigid bodies) in the system
147 */
148 int getNGlobalRigidBodies() {
149 return nGlobalRigidBodies_;
150 }
151
152 /** Returns the number of global bonds */
153 unsigned int getNGlobalBonds(){
154 return nGlobalBonds_;
155 }
156
157 /** Returns the number of global bends */
158 unsigned int getNGlobalBends() {
159 return nGlobalBends_;
160 }
161
162 /** Returns the number of global torsions */
163 unsigned int getNGlobalTorsions() {
164 return nGlobalTorsions_;
165 }
166
167 /** Returns the number of global inversions */
168 unsigned int getNGlobalInversions() {
169 return nGlobalInversions_;
170 }
171
172 unsigned int getNGlobalConstraints() {
173 if (!hasNGlobalConstraints_) calcNConstraints();
174 return nGlobalConstraints_;
175 }
176 /**
177 * Returns the number of local molecules.
178 * @return the number of local molecules
179 */
180 int getNMolecules() {
181 return molecules_.size();
182 }
183
184 /** Returns the number of local atoms */
185 unsigned int getNAtoms() {
186 return nAtoms_;
187 }
188
189 /** Returns the number of effective cutoff groups on local processor */
190 unsigned int getNLocalCutoffGroups();
191
192 /** Returns the number of local bonds */
193 unsigned int getNBonds(){
194 return nBonds_;
195 }
196
197 /** Returns the number of local bends */
198 unsigned int getNBends() {
199 return nBends_;
200 }
201
202 /** Returns the number of local torsions */
203 unsigned int getNTorsions() {
204 return nTorsions_;
205 }
206
207 /** Returns the number of local inversions */
208 unsigned int getNInversions() {
209 return nInversions_;
210 }
211 /** Returns the number of local rigid bodies */
212 unsigned int getNRigidBodies() {
213 return nRigidBodies_;
214 }
215
216 /** Returns the number of local integrable objects */
217 unsigned int getNIntegrableObjects() {
218 return nIntegrableObjects_;
219 }
220
221 /** Returns the number of local cutoff groups */
222 unsigned int getNCutoffGroups() {
223 return nCutoffGroups_;
224 }
225
226 /** Returns the total number of constraints in this SimInfo */
227 unsigned int getNConstraints() {
228 return nConstraints_;
229 }
230
231 /**
232 * Returns the first molecule in this SimInfo and intialize the iterator.
233 * @return the first molecule, return NULL if there is not molecule in this SimInfo
234 * @param i the iterator of molecule array (user shouldn't change it)
235 */
236 Molecule* beginMolecule(MoleculeIterator& i);
237
238 /**
239 * Returns the next avaliable Molecule based on the iterator.
240 * @return the next avaliable molecule, return NULL if reaching the end of the array
241 * @param i the iterator of molecule array
242 */
243 Molecule* nextMolecule(MoleculeIterator& i);
244
245 /** Returns the total number of fluctuating charges that are present */
246 int getNFluctuatingCharges() {
247 return nGlobalFluctuatingCharges_;
248 }
249
250 /** Returns the number of degrees of freedom */
251 int getNdf() {
252 return ndf_ - getFdf();
253 }
254
255 /** Returns the number of degrees of freedom (LOCAL) */
256 int getNdfLocal() {
257 return ndfLocal_;
258 }
259
260 /** Returns the number of raw degrees of freedom */
261 int getNdfRaw() {
262 return ndfRaw_;
263 }
264
265 /** Returns the number of translational degrees of freedom */
266 int getNdfTrans() {
267 return ndfTrans_;
268 }
269
270 /** sets the current number of frozen degrees of freedom */
271 void setFdf(int fdf) {
272 fdf_local = fdf;
273 }
274
275 int getFdf();
276
277 //getNZconstraint and setNZconstraint ruin the coherence of
278 //SimInfo class, need refactoring
279
280 /** Returns the total number of z-constraint molecules in the system */
281 int getNZconstraint() {
282 return nZconstraint_;
283 }
284
285 /**
286 * Sets the number of z-constraint molecules in the system.
287 */
288 void setNZconstraint(int nZconstraint) {
289 nZconstraint_ = nZconstraint;
290 }
291
292 /** Returns the snapshot manager. */
293 SnapshotManager* getSnapshotManager() {
294 return sman_;
295 }
296 /** Returns the storage layout (computed by SimCreator) */
297 int getStorageLayout() {
298 return storageLayout_;
299 }
300 /** Sets the storage layout (computed by SimCreator) */
301 void setStorageLayout(int sl) {
302 storageLayout_ = sl;
303 }
304
305 /** Sets the snapshot manager. */
306 void setSnapshotManager(SnapshotManager* sman);
307
308 /** Returns the force field */
309 ForceField* getForceField() {
310 return forceField_;
311 }
312
313 Globals* getSimParams() {
314 return simParams_;
315 }
316
317 void update();
318 /**
319 * Do final bookkeeping before Force managers need their data.
320 */
321 void prepareTopology();
322
323
324 /** Returns the local index manager */
325 LocalIndexManager* getLocalIndexManager() {
326 return &localIndexMan_;
327 }
328
329 int getMoleculeStampId(int globalIndex) {
330 //assert(globalIndex < molStampIds_.size())
331 return molStampIds_[globalIndex];
332 }
333
334 /** Returns the molecule stamp */
335 MoleculeStamp* getMoleculeStamp(int id) {
336 return moleculeStamps_[id];
337 }
338
339 /** Return the total number of the molecule stamps */
340 int getNMoleculeStamp() {
341 return moleculeStamps_.size();
342 }
343 /**
344 * Finds a molecule with a specified global index
345 * @return a pointer point to found molecule
346 * @param index
347 */
348 Molecule* getMoleculeByGlobalIndex(int index) {
349 MoleculeIterator i;
350 i = molecules_.find(index);
351
352 return i != molecules_.end() ? i->second : NULL;
353 }
354
355 int getGlobalMolMembership(int id){
356 return globalMolMembership_[id];
357 }
358
359 /**
360 * returns a vector which maps the local atom index on this
361 * processor to the global atom index. With only one processor,
362 * these should be identical.
363 */
364 vector<int> getGlobalAtomIndices();
365
366 /**
367 * returns a vector which maps the local cutoff group index on
368 * this processor to the global cutoff group index. With only one
369 * processor, these should be identical.
370 */
371 vector<int> getGlobalGroupIndices();
372
373
374 string getFinalConfigFileName() {
375 return finalConfigFileName_;
376 }
377
378 void setFinalConfigFileName(const string& fileName) {
379 finalConfigFileName_ = fileName;
380 }
381
382 string getRawMetaData() {
383 return rawMetaData_;
384 }
385 void setRawMetaData(const string& rawMetaData) {
386 rawMetaData_ = rawMetaData;
387 }
388
389 string getDumpFileName() {
390 return dumpFileName_;
391 }
392
393 void setDumpFileName(const string& fileName) {
394 dumpFileName_ = fileName;
395 }
396
397 string getStatFileName() {
398 return statFileName_;
399 }
400
401 void setStatFileName(const string& fileName) {
402 statFileName_ = fileName;
403 }
404
405 string getRestFileName() {
406 return restFileName_;
407 }
408
409 void setRestFileName(const string& fileName) {
410 restFileName_ = fileName;
411 }
412
413 /**
414 * Sets GlobalGroupMembership
415 */
416 void setGlobalGroupMembership(const vector<int>& ggm) {
417 assert(ggm.size() == static_cast<size_t>(nGlobalAtoms_));
418 globalGroupMembership_ = ggm;
419 }
420
421 /**
422 * Sets GlobalMolMembership
423 */
424 void setGlobalMolMembership(const vector<int>& gmm) {
425 assert(gmm.size() == (static_cast<size_t>(nGlobalAtoms_ +
426 nGlobalRigidBodies_)));
427 globalMolMembership_ = gmm;
428 }
429
430
431 bool isTopologyDone() {
432 return topologyDone_;
433 }
434
435 bool getCalcBoxDipole() {
436 return calcBoxDipole_;
437 }
438 bool getCalcBoxQuadrupole() {
439 return calcBoxQuadrupole_;
440 }
441
442 bool getUseAtomicVirial() {
443 return useAtomicVirial_;
444 }
445
446 /**
447 * Adds property into property map
448 * @param genData GenericData to be added into PropertyMap
449 */
450 void addProperty(GenericData* genData);
451
452 /**
453 * Removes property from PropertyMap by name
454 * @param propName the name of property to be removed
455 */
456 void removeProperty(const string& propName);
457
458 /**
459 * clear all of the properties
460 */
461 void clearProperties();
462
463 /**
464 * Returns all names of properties
465 * @return all names of properties
466 */
467 vector<string> getPropertyNames();
468
469 /**
470 * Returns all of the properties in PropertyMap
471 * @return all of the properties in PropertyMap
472 */
473 vector<GenericData*> getProperties();
474
475 /**
476 * Returns property
477 * @param propName name of property
478 * @return a pointer point to property with propName. If no property named propName
479 * exists, return NULL
480 */
481 GenericData* getPropertyByName(const string& propName);
482
483 /**
484 * add all special interaction pairs (including excluded
485 * interactions) in a molecule into the appropriate lists.
486 */
487 void addInteractionPairs(Molecule* mol);
488
489 /**
490 * remove all special interaction pairs which belong to a molecule
491 * from the appropriate lists.
492 */
493 void removeInteractionPairs(Molecule* mol);
494
495 /** Returns the set of atom types present in this simulation */
496 set<AtomType*> getSimulatedAtomTypes();
497
498 /** Returns the global count of atoms of a particular type */
499 int getGlobalCountOfType(AtomType* atype);
500
501 friend ostream& operator <<(ostream& o, SimInfo& info);
502
503 void getCutoff(RealType& rcut, RealType& rsw);
504
505 private:
506
507 /** fill up the simtype struct and other simulation-related variables */
508 void setupSimVariables();
509
510
511 /** Calculates the number of degress of freedom in the whole system */
512 void calcNdf();
513 void calcNdfRaw();
514 void calcNdfTrans();
515 void calcNConstraints();
516
517 /**
518 * Adds molecule stamp and the total number of the molecule with
519 * same molecule stamp in the whole system.
520 */
521 void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
522
523 // Other classes holdingn important information
524 ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
525 Globals* simParams_; /**< provides access to simulation parameters set by user */
526
527 /// Counts of local objects
528 int nAtoms_; /**< number of atoms in local processor */
529 int nBonds_; /**< number of bonds in local processor */
530 int nBends_; /**< number of bends in local processor */
531 int nTorsions_; /**< number of torsions in local processor */
532 int nInversions_; /**< number of inversions in local processor */
533 int nRigidBodies_; /**< number of rigid bodies in local processor */
534 int nIntegrableObjects_; /**< number of integrable objects in local processor */
535 int nCutoffGroups_; /**< number of cutoff groups in local processor */
536 int nConstraints_; /**< number of constraints in local processors */
537 int nFluctuatingCharges_; /**< number of fluctuating charges in local processor */
538
539 /// Counts of global objects
540 int nGlobalMols_; /**< number of molecules in the system (GLOBAL) */
541 int nGlobalAtoms_; /**< number of atoms in the system (GLOBAL) */
542 int nGlobalCutoffGroups_; /**< number of cutoff groups in this system (GLOBAL) */
543 int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
544 int nGlobalRigidBodies_; /**< number of rigid bodies in this system (GLOBAL) */
545 int nGlobalFluctuatingCharges_;/**< number of fluctuating charges in this system (GLOBAL) */
546 int nGlobalBonds_; /**< number of bonds in the system */
547 int nGlobalBends_; /**< number of bends in the system */
548 int nGlobalTorsions_; /**< number of torsions in the system */
549 int nGlobalInversions_; /**< number of inversions in the system */
550 int nGlobalConstraints_; /**< number of constraints in the system */
551 bool hasNGlobalConstraints_;
552
553 /// Degress of freedom
554 int ndf_; /**< number of degress of freedom (excludes constraints) (LOCAL) */
555 int ndfLocal_; /**< number of degrees of freedom (LOCAL, excludes constraints) */
556 int fdf_local; /**< number of frozen degrees of freedom (LOCAL) */
557 int fdf_; /**< number of frozen degrees of freedom (GLOBAL) */
558 int ndfRaw_; /**< number of degress of freedom (includes constraints), (LOCAL) */
559 int ndfTrans_; /**< number of translation degress of freedom, (LOCAL) */
560 int nZconstraint_; /**< number of z-constraint molecules (GLOBAL) */
561
562 /// logicals
563 bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
564 bool usesDirectionalAtoms_; /**< are there atoms with position AND orientation? */
565 bool usesMetallicAtoms_; /**< are there transition metal atoms? */
566 bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
567 bool usesFluctuatingCharges_; /**< are there fluctuating charges? */
568 bool usesAtomicVirial_; /**< are we computing atomic virials? */
569 bool requiresPrepair_; /**< does this simulation require a pre-pair loop? */
570 bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
571 bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
572
573 public:
574 bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
575 bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
576 bool usesFluctuatingCharges() { return usesFluctuatingCharges_; }
577 bool usesAtomicVirial() { return usesAtomicVirial_; }
578 bool requiresPrepair() { return requiresPrepair_; }
579 bool requiresSkipCorrection() { return requiresSkipCorrection_;}
580 bool requiresSelfCorrection() { return requiresSelfCorrection_;}
581
582 private:
583 /// Data structures holding primary simulation objects
584 map<int, Molecule*> molecules_; /**< map holding pointers to LOCAL molecules */
585
586 /// Stamps are templates for objects that are then used to create
587 /// groups of objects. For example, a molecule stamp contains
588 /// information on how to build that molecule (i.e. the topology,
589 /// the atoms, the bonds, etc.) Once the system is built, the
590 /// stamps are no longer useful.
591 vector<int> molStampIds_; /**< stamp id for molecules in the system */
592 vector<MoleculeStamp*> moleculeStamps_; /**< molecule stamps array */
593
594 /**
595 * A vector that maps between the global index of an atom, and the
596 * global index of cutoff group the atom belong to. It is filled
597 * by SimCreator once and only once, since it never changed during
598 * the simulation. It should be nGlobalAtoms_ in size.
599 */
600 vector<int> globalGroupMembership_;
601 public:
602 vector<int> getGlobalGroupMembership() { return globalGroupMembership_; }
603 private:
604
605 /**
606 * A vector that maps between the global index of an atom and the
607 * global index of the molecule the atom belongs to. It is filled
608 * by SimCreator once and only once, since it is never changed
609 * during the simulation. It shoudl be nGlobalAtoms_ in size.
610 */
611 vector<int> globalMolMembership_;
612
613 /**
614 * A vector that maps between the local index of an atom and the
615 * index of the AtomType.
616 */
617 vector<int> identArray_;
618 public:
619 vector<int> getIdentArray() { return identArray_; }
620
621 /**
622 * A vector that contains information about the local region of an
623 * atom (used for fluctuating charges, etc.)
624 */
625 private:
626 vector<int> regions_;
627 public:
628 vector<int> getRegions() { return regions_; }
629 private:
630 /**
631 * A vector which contains the fractional contribution of an
632 * atom's mass to the total mass of the cutoffGroup that atom
633 * belongs to. In the case of single atom cutoff groups, the mass
634 * factor for that atom is 1. For massless atoms, the factor is
635 * also 1.
636 */
637 vector<RealType> massFactors_;
638 public:
639 vector<RealType> getMassFactors() { return massFactors_; }
640
641 PairList* getExcludedInteractions() { return &excludedInteractions_; }
642 PairList* getOneTwoInteractions() { return &oneTwoInteractions_; }
643 PairList* getOneThreeInteractions() { return &oneThreeInteractions_; }
644 PairList* getOneFourInteractions() { return &oneFourInteractions_; }
645
646 private:
647
648 /// lists to handle atoms needing special treatment in the non-bonded interactions
649 PairList excludedInteractions_; /**< atoms excluded from interacting with each other */
650 PairList oneTwoInteractions_; /**< atoms that are directly Bonded */
651 PairList oneThreeInteractions_; /**< atoms sharing a Bend */
652 PairList oneFourInteractions_; /**< atoms sharing a Torsion */
653
654 PropertyMap properties_; /**< Generic Properties can be added */
655 SnapshotManager* sman_; /**< SnapshotManager (handles particle positions, etc.) */
656 int storageLayout_; /**< Bits to tell how much data to store on each object */
657
658 /**
659 * The reason to have a local index manager is that when molecule
660 * is migrating to other processors, the atoms and the
661 * rigid-bodies will release their local indices to
662 * LocalIndexManager. Combining the information of molecule
663 * migrating to current processor, Migrator class can query the
664 * LocalIndexManager to make a efficient data moving plan.
665 */
666 LocalIndexManager localIndexMan_;
667
668 // unparsed MetaData block for storing in Dump and EOR files:
669 string rawMetaData_;
670
671 // file names
672 string finalConfigFileName_;
673 string dumpFileName_;
674 string statFileName_;
675 string restFileName_;
676
677 bool topologyDone_; /** flag to indicate whether the topology has
678 been scanned and all the relevant
679 bookkeeping has been done*/
680
681 bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
682 the simulation box dipole moment */
683 bool calcBoxQuadrupole_; /**< flag to indicate whether or not we calculate
684 the simulation box quadrupole moment */
685
686 bool useAtomicVirial_; /**< flag to indicate whether or not we use
687 Atomic Virials to calculate the pressure */
688
689 public:
690 /**
691 * return an integral objects by its global index. In MPI
692 * version, if the StuntDouble with specified global index does
693 * not belong to local processor, a NULL will be return.
694 */
695 StuntDouble* getIOIndexToIntegrableObject(int index);
696 void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
697
698 private:
699 vector<StuntDouble*> IOIndexToIntegrableObject;
700
701 public:
702
703 /**
704 * Finds the processor where a molecule resides
705 * @return the id of the processor which contains the molecule
706 * @param globalIndex global Index of the molecule
707 */
708 int getMolToProc(int globalIndex) {
709 //assert(globalIndex < molToProcMap_.size());
710 return molToProcMap_[globalIndex];
711 }
712
713 /**
714 * Set MolToProcMap array
715 */
716 void setMolToProcMap(const vector<int>& molToProcMap) {
717 molToProcMap_ = molToProcMap;
718 }
719
720 private:
721
722 /**
723 * The size of molToProcMap_ is equal to total number of molecules
724 * in the system. It maps a molecule to the processor on which it
725 * resides. it is filled by SimCreator once and only once.
726 */
727 vector<int> molToProcMap_;
728
729 };
730
731 } //namespace OpenMD
732 #endif //BRAINS_SIMMODEL_HPP
733

Properties

Name Value
svn:keywords Author Id Revision Date