1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file SimInfo.hpp |
45 |
* @author tlin |
46 |
* @date 11/02/2004 |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#ifndef BRAINS_SIMMODEL_HPP |
51 |
#define BRAINS_SIMMODEL_HPP |
52 |
|
53 |
#include <iostream> |
54 |
#include <set> |
55 |
#include <utility> |
56 |
#include <vector> |
57 |
|
58 |
#include "brains/PairList.hpp" |
59 |
#include "io/Globals.hpp" |
60 |
#include "math/Vector3.hpp" |
61 |
#include "math/SquareMatrix3.hpp" |
62 |
#include "types/MoleculeStamp.hpp" |
63 |
#include "brains/ForceField.hpp" |
64 |
#include "utils/PropertyMap.hpp" |
65 |
#include "utils/LocalIndexManager.hpp" |
66 |
#include "nonbonded/SwitchingFunction.hpp" |
67 |
|
68 |
using namespace std; |
69 |
namespace OpenMD{ |
70 |
//forward declaration |
71 |
class SnapshotManager; |
72 |
class Molecule; |
73 |
class SelectionManager; |
74 |
class StuntDouble; |
75 |
|
76 |
/** |
77 |
* @class SimInfo SimInfo.hpp "brains/SimInfo.hpp" |
78 |
* |
79 |
* @brief One of the heavy-weight classes of OpenMD, SimInfo |
80 |
* maintains objects and variables relating to the current |
81 |
* simulation. This includes the master list of Molecules. The |
82 |
* Molecule class maintains all of the concrete objects (Atoms, |
83 |
* Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups, |
84 |
* Constraints). In both the single and parallel versions, Atoms and |
85 |
* RigidBodies have both global and local indices. |
86 |
*/ |
87 |
class SimInfo { |
88 |
public: |
89 |
typedef map<int, Molecule*>::iterator MoleculeIterator; |
90 |
|
91 |
/** |
92 |
* Constructor of SimInfo |
93 |
* |
94 |
* @param ff pointer to a concrete ForceField instance |
95 |
* |
96 |
* @param simParams pointer to the simulation parameters in a Globals object |
97 |
*/ |
98 |
SimInfo(ForceField* ff, Globals* simParams); |
99 |
virtual ~SimInfo(); |
100 |
|
101 |
/** |
102 |
* Adds a molecule |
103 |
* |
104 |
* @return return true if adding successfully, return false if the |
105 |
* molecule is already in SimInfo |
106 |
* |
107 |
* @param mol Molecule to be added |
108 |
*/ |
109 |
bool addMolecule(Molecule* mol); |
110 |
|
111 |
/** |
112 |
* Removes a molecule from SimInfo |
113 |
* |
114 |
* @return true if removing successfully, return false if molecule |
115 |
* is not in this SimInfo |
116 |
*/ |
117 |
bool removeMolecule(Molecule* mol); |
118 |
|
119 |
/** Returns the total number of molecules in the system. */ |
120 |
int getNGlobalMolecules() { |
121 |
return nGlobalMols_; |
122 |
} |
123 |
|
124 |
/** Returns the total number of atoms in the system. */ |
125 |
int getNGlobalAtoms() { |
126 |
return nGlobalAtoms_; |
127 |
} |
128 |
|
129 |
/** Returns the total number of cutoff groups in the system. */ |
130 |
int getNGlobalCutoffGroups() { |
131 |
return nGlobalCutoffGroups_; |
132 |
} |
133 |
|
134 |
/** |
135 |
* Returns the total number of integrable objects (total number of |
136 |
* rigid bodies plus the total number of atoms which do not belong |
137 |
* to the rigid bodies) in the system |
138 |
*/ |
139 |
int getNGlobalIntegrableObjects() { |
140 |
return nGlobalIntegrableObjects_; |
141 |
} |
142 |
|
143 |
/** |
144 |
* Returns the total number of integrable objects (total number of |
145 |
* rigid bodies plus the total number of atoms which do not belong |
146 |
* to the rigid bodies) in the system |
147 |
*/ |
148 |
int getNGlobalRigidBodies() { |
149 |
return nGlobalRigidBodies_; |
150 |
} |
151 |
|
152 |
/** Returns the number of global bonds */ |
153 |
unsigned int getNGlobalBonds(){ |
154 |
return nGlobalBonds_; |
155 |
} |
156 |
|
157 |
/** Returns the number of global bends */ |
158 |
unsigned int getNGlobalBends() { |
159 |
return nGlobalBends_; |
160 |
} |
161 |
|
162 |
/** Returns the number of global torsions */ |
163 |
unsigned int getNGlobalTorsions() { |
164 |
return nGlobalTorsions_; |
165 |
} |
166 |
|
167 |
/** Returns the number of global inversions */ |
168 |
unsigned int getNGlobalInversions() { |
169 |
return nGlobalInversions_; |
170 |
} |
171 |
|
172 |
unsigned int getNGlobalConstraints() { |
173 |
if (!hasNGlobalConstraints_) calcNConstraints(); |
174 |
return nGlobalConstraints_; |
175 |
} |
176 |
/** |
177 |
* Returns the number of local molecules. |
178 |
* @return the number of local molecules |
179 |
*/ |
180 |
int getNMolecules() { |
181 |
return molecules_.size(); |
182 |
} |
183 |
|
184 |
/** Returns the number of local atoms */ |
185 |
unsigned int getNAtoms() { |
186 |
return nAtoms_; |
187 |
} |
188 |
|
189 |
/** Returns the number of effective cutoff groups on local processor */ |
190 |
unsigned int getNLocalCutoffGroups(); |
191 |
|
192 |
/** Returns the number of local bonds */ |
193 |
unsigned int getNBonds(){ |
194 |
return nBonds_; |
195 |
} |
196 |
|
197 |
/** Returns the number of local bends */ |
198 |
unsigned int getNBends() { |
199 |
return nBends_; |
200 |
} |
201 |
|
202 |
/** Returns the number of local torsions */ |
203 |
unsigned int getNTorsions() { |
204 |
return nTorsions_; |
205 |
} |
206 |
|
207 |
/** Returns the number of local inversions */ |
208 |
unsigned int getNInversions() { |
209 |
return nInversions_; |
210 |
} |
211 |
/** Returns the number of local rigid bodies */ |
212 |
unsigned int getNRigidBodies() { |
213 |
return nRigidBodies_; |
214 |
} |
215 |
|
216 |
/** Returns the number of local integrable objects */ |
217 |
unsigned int getNIntegrableObjects() { |
218 |
return nIntegrableObjects_; |
219 |
} |
220 |
|
221 |
/** Returns the number of local cutoff groups */ |
222 |
unsigned int getNCutoffGroups() { |
223 |
return nCutoffGroups_; |
224 |
} |
225 |
|
226 |
/** Returns the total number of constraints in this SimInfo */ |
227 |
unsigned int getNConstraints() { |
228 |
return nConstraints_; |
229 |
} |
230 |
|
231 |
/** |
232 |
* Returns the first molecule in this SimInfo and intialize the iterator. |
233 |
* @return the first molecule, return NULL if there is not molecule in this SimInfo |
234 |
* @param i the iterator of molecule array (user shouldn't change it) |
235 |
*/ |
236 |
Molecule* beginMolecule(MoleculeIterator& i); |
237 |
|
238 |
/** |
239 |
* Returns the next avaliable Molecule based on the iterator. |
240 |
* @return the next avaliable molecule, return NULL if reaching the end of the array |
241 |
* @param i the iterator of molecule array |
242 |
*/ |
243 |
Molecule* nextMolecule(MoleculeIterator& i); |
244 |
|
245 |
/** Returns the total number of fluctuating charges that are present */ |
246 |
int getNFluctuatingCharges() { |
247 |
return nGlobalFluctuatingCharges_; |
248 |
} |
249 |
|
250 |
/** Returns the number of degrees of freedom */ |
251 |
int getNdf() { |
252 |
return ndf_ - getFdf(); |
253 |
} |
254 |
|
255 |
/** Returns the number of degrees of freedom (LOCAL) */ |
256 |
int getNdfLocal() { |
257 |
return ndfLocal_; |
258 |
} |
259 |
|
260 |
/** Returns the number of raw degrees of freedom */ |
261 |
int getNdfRaw() { |
262 |
return ndfRaw_; |
263 |
} |
264 |
|
265 |
/** Returns the number of translational degrees of freedom */ |
266 |
int getNdfTrans() { |
267 |
return ndfTrans_; |
268 |
} |
269 |
|
270 |
/** sets the current number of frozen degrees of freedom */ |
271 |
void setFdf(int fdf) { |
272 |
fdf_local = fdf; |
273 |
} |
274 |
|
275 |
int getFdf(); |
276 |
|
277 |
//getNZconstraint and setNZconstraint ruin the coherence of |
278 |
//SimInfo class, need refactoring |
279 |
|
280 |
/** Returns the total number of z-constraint molecules in the system */ |
281 |
int getNZconstraint() { |
282 |
return nZconstraint_; |
283 |
} |
284 |
|
285 |
/** |
286 |
* Sets the number of z-constraint molecules in the system. |
287 |
*/ |
288 |
void setNZconstraint(int nZconstraint) { |
289 |
nZconstraint_ = nZconstraint; |
290 |
} |
291 |
|
292 |
/** Returns the snapshot manager. */ |
293 |
SnapshotManager* getSnapshotManager() { |
294 |
return sman_; |
295 |
} |
296 |
/** Returns the storage layout (computed by SimCreator) */ |
297 |
int getStorageLayout() { |
298 |
return storageLayout_; |
299 |
} |
300 |
/** Sets the storage layout (computed by SimCreator) */ |
301 |
void setStorageLayout(int sl) { |
302 |
storageLayout_ = sl; |
303 |
} |
304 |
|
305 |
/** Sets the snapshot manager. */ |
306 |
void setSnapshotManager(SnapshotManager* sman); |
307 |
|
308 |
/** Returns the force field */ |
309 |
ForceField* getForceField() { |
310 |
return forceField_; |
311 |
} |
312 |
|
313 |
Globals* getSimParams() { |
314 |
return simParams_; |
315 |
} |
316 |
|
317 |
void update(); |
318 |
/** |
319 |
* Do final bookkeeping before Force managers need their data. |
320 |
*/ |
321 |
void prepareTopology(); |
322 |
|
323 |
|
324 |
/** Returns the local index manager */ |
325 |
LocalIndexManager* getLocalIndexManager() { |
326 |
return &localIndexMan_; |
327 |
} |
328 |
|
329 |
int getMoleculeStampId(int globalIndex) { |
330 |
//assert(globalIndex < molStampIds_.size()) |
331 |
return molStampIds_[globalIndex]; |
332 |
} |
333 |
|
334 |
/** Returns the molecule stamp */ |
335 |
MoleculeStamp* getMoleculeStamp(int id) { |
336 |
return moleculeStamps_[id]; |
337 |
} |
338 |
|
339 |
/** Return the total number of the molecule stamps */ |
340 |
int getNMoleculeStamp() { |
341 |
return moleculeStamps_.size(); |
342 |
} |
343 |
/** |
344 |
* Finds a molecule with a specified global index |
345 |
* @return a pointer point to found molecule |
346 |
* @param index |
347 |
*/ |
348 |
Molecule* getMoleculeByGlobalIndex(int index) { |
349 |
MoleculeIterator i; |
350 |
i = molecules_.find(index); |
351 |
|
352 |
return i != molecules_.end() ? i->second : NULL; |
353 |
} |
354 |
|
355 |
int getGlobalMolMembership(int id){ |
356 |
return globalMolMembership_[id]; |
357 |
} |
358 |
|
359 |
/** |
360 |
* returns a vector which maps the local atom index on this |
361 |
* processor to the global atom index. With only one processor, |
362 |
* these should be identical. |
363 |
*/ |
364 |
vector<int> getGlobalAtomIndices(); |
365 |
|
366 |
/** |
367 |
* returns a vector which maps the local cutoff group index on |
368 |
* this processor to the global cutoff group index. With only one |
369 |
* processor, these should be identical. |
370 |
*/ |
371 |
vector<int> getGlobalGroupIndices(); |
372 |
|
373 |
|
374 |
string getFinalConfigFileName() { |
375 |
return finalConfigFileName_; |
376 |
} |
377 |
|
378 |
void setFinalConfigFileName(const string& fileName) { |
379 |
finalConfigFileName_ = fileName; |
380 |
} |
381 |
|
382 |
string getRawMetaData() { |
383 |
return rawMetaData_; |
384 |
} |
385 |
void setRawMetaData(const string& rawMetaData) { |
386 |
rawMetaData_ = rawMetaData; |
387 |
} |
388 |
|
389 |
string getDumpFileName() { |
390 |
return dumpFileName_; |
391 |
} |
392 |
|
393 |
void setDumpFileName(const string& fileName) { |
394 |
dumpFileName_ = fileName; |
395 |
} |
396 |
|
397 |
string getStatFileName() { |
398 |
return statFileName_; |
399 |
} |
400 |
|
401 |
void setStatFileName(const string& fileName) { |
402 |
statFileName_ = fileName; |
403 |
} |
404 |
|
405 |
string getRestFileName() { |
406 |
return restFileName_; |
407 |
} |
408 |
|
409 |
void setRestFileName(const string& fileName) { |
410 |
restFileName_ = fileName; |
411 |
} |
412 |
|
413 |
/** |
414 |
* Sets GlobalGroupMembership |
415 |
*/ |
416 |
void setGlobalGroupMembership(const vector<int>& ggm) { |
417 |
assert(ggm.size() == static_cast<size_t>(nGlobalAtoms_)); |
418 |
globalGroupMembership_ = ggm; |
419 |
} |
420 |
|
421 |
/** |
422 |
* Sets GlobalMolMembership |
423 |
*/ |
424 |
void setGlobalMolMembership(const vector<int>& gmm) { |
425 |
assert(gmm.size() == (static_cast<size_t>(nGlobalAtoms_ + |
426 |
nGlobalRigidBodies_))); |
427 |
globalMolMembership_ = gmm; |
428 |
} |
429 |
|
430 |
|
431 |
bool isTopologyDone() { |
432 |
return topologyDone_; |
433 |
} |
434 |
|
435 |
bool getCalcBoxDipole() { |
436 |
return calcBoxDipole_; |
437 |
} |
438 |
bool getCalcBoxQuadrupole() { |
439 |
return calcBoxQuadrupole_; |
440 |
} |
441 |
|
442 |
bool getUseAtomicVirial() { |
443 |
return useAtomicVirial_; |
444 |
} |
445 |
|
446 |
/** |
447 |
* Adds property into property map |
448 |
* @param genData GenericData to be added into PropertyMap |
449 |
*/ |
450 |
void addProperty(GenericData* genData); |
451 |
|
452 |
/** |
453 |
* Removes property from PropertyMap by name |
454 |
* @param propName the name of property to be removed |
455 |
*/ |
456 |
void removeProperty(const string& propName); |
457 |
|
458 |
/** |
459 |
* clear all of the properties |
460 |
*/ |
461 |
void clearProperties(); |
462 |
|
463 |
/** |
464 |
* Returns all names of properties |
465 |
* @return all names of properties |
466 |
*/ |
467 |
vector<string> getPropertyNames(); |
468 |
|
469 |
/** |
470 |
* Returns all of the properties in PropertyMap |
471 |
* @return all of the properties in PropertyMap |
472 |
*/ |
473 |
vector<GenericData*> getProperties(); |
474 |
|
475 |
/** |
476 |
* Returns property |
477 |
* @param propName name of property |
478 |
* @return a pointer point to property with propName. If no property named propName |
479 |
* exists, return NULL |
480 |
*/ |
481 |
GenericData* getPropertyByName(const string& propName); |
482 |
|
483 |
/** |
484 |
* add all special interaction pairs (including excluded |
485 |
* interactions) in a molecule into the appropriate lists. |
486 |
*/ |
487 |
void addInteractionPairs(Molecule* mol); |
488 |
|
489 |
/** |
490 |
* remove all special interaction pairs which belong to a molecule |
491 |
* from the appropriate lists. |
492 |
*/ |
493 |
void removeInteractionPairs(Molecule* mol); |
494 |
|
495 |
/** Returns the set of atom types present in this simulation */ |
496 |
set<AtomType*> getSimulatedAtomTypes(); |
497 |
|
498 |
/** Returns the global count of atoms of a particular type */ |
499 |
int getGlobalCountOfType(AtomType* atype); |
500 |
|
501 |
friend ostream& operator <<(ostream& o, SimInfo& info); |
502 |
|
503 |
void getCutoff(RealType& rcut, RealType& rsw); |
504 |
|
505 |
private: |
506 |
|
507 |
/** fill up the simtype struct and other simulation-related variables */ |
508 |
void setupSimVariables(); |
509 |
|
510 |
|
511 |
/** Calculates the number of degress of freedom in the whole system */ |
512 |
void calcNdf(); |
513 |
void calcNdfRaw(); |
514 |
void calcNdfTrans(); |
515 |
void calcNConstraints(); |
516 |
|
517 |
/** |
518 |
* Adds molecule stamp and the total number of the molecule with |
519 |
* same molecule stamp in the whole system. |
520 |
*/ |
521 |
void addMoleculeStamp(MoleculeStamp* molStamp, int nmol); |
522 |
|
523 |
// Other classes holdingn important information |
524 |
ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */ |
525 |
Globals* simParams_; /**< provides access to simulation parameters set by user */ |
526 |
|
527 |
/// Counts of local objects |
528 |
int nAtoms_; /**< number of atoms in local processor */ |
529 |
int nBonds_; /**< number of bonds in local processor */ |
530 |
int nBends_; /**< number of bends in local processor */ |
531 |
int nTorsions_; /**< number of torsions in local processor */ |
532 |
int nInversions_; /**< number of inversions in local processor */ |
533 |
int nRigidBodies_; /**< number of rigid bodies in local processor */ |
534 |
int nIntegrableObjects_; /**< number of integrable objects in local processor */ |
535 |
int nCutoffGroups_; /**< number of cutoff groups in local processor */ |
536 |
int nConstraints_; /**< number of constraints in local processors */ |
537 |
int nFluctuatingCharges_; /**< number of fluctuating charges in local processor */ |
538 |
|
539 |
/// Counts of global objects |
540 |
int nGlobalMols_; /**< number of molecules in the system (GLOBAL) */ |
541 |
int nGlobalAtoms_; /**< number of atoms in the system (GLOBAL) */ |
542 |
int nGlobalCutoffGroups_; /**< number of cutoff groups in this system (GLOBAL) */ |
543 |
int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */ |
544 |
int nGlobalRigidBodies_; /**< number of rigid bodies in this system (GLOBAL) */ |
545 |
int nGlobalFluctuatingCharges_;/**< number of fluctuating charges in this system (GLOBAL) */ |
546 |
int nGlobalBonds_; /**< number of bonds in the system */ |
547 |
int nGlobalBends_; /**< number of bends in the system */ |
548 |
int nGlobalTorsions_; /**< number of torsions in the system */ |
549 |
int nGlobalInversions_; /**< number of inversions in the system */ |
550 |
int nGlobalConstraints_; /**< number of constraints in the system */ |
551 |
bool hasNGlobalConstraints_; |
552 |
|
553 |
/// Degress of freedom |
554 |
int ndf_; /**< number of degress of freedom (excludes constraints) (LOCAL) */ |
555 |
int ndfLocal_; /**< number of degrees of freedom (LOCAL, excludes constraints) */ |
556 |
int fdf_local; /**< number of frozen degrees of freedom (LOCAL) */ |
557 |
int fdf_; /**< number of frozen degrees of freedom (GLOBAL) */ |
558 |
int ndfRaw_; /**< number of degress of freedom (includes constraints), (LOCAL) */ |
559 |
int ndfTrans_; /**< number of translation degress of freedom, (LOCAL) */ |
560 |
int nZconstraint_; /**< number of z-constraint molecules (GLOBAL) */ |
561 |
|
562 |
/// logicals |
563 |
bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */ |
564 |
bool usesDirectionalAtoms_; /**< are there atoms with position AND orientation? */ |
565 |
bool usesMetallicAtoms_; /**< are there transition metal atoms? */ |
566 |
bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */ |
567 |
bool usesFluctuatingCharges_; /**< are there fluctuating charges? */ |
568 |
bool usesAtomicVirial_; /**< are we computing atomic virials? */ |
569 |
bool requiresPrepair_; /**< does this simulation require a pre-pair loop? */ |
570 |
bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */ |
571 |
bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */ |
572 |
|
573 |
public: |
574 |
bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; } |
575 |
bool usesDirectionalAtoms() { return usesDirectionalAtoms_; } |
576 |
bool usesFluctuatingCharges() { return usesFluctuatingCharges_; } |
577 |
bool usesAtomicVirial() { return usesAtomicVirial_; } |
578 |
bool requiresPrepair() { return requiresPrepair_; } |
579 |
bool requiresSkipCorrection() { return requiresSkipCorrection_;} |
580 |
bool requiresSelfCorrection() { return requiresSelfCorrection_;} |
581 |
|
582 |
private: |
583 |
/// Data structures holding primary simulation objects |
584 |
map<int, Molecule*> molecules_; /**< map holding pointers to LOCAL molecules */ |
585 |
|
586 |
/// Stamps are templates for objects that are then used to create |
587 |
/// groups of objects. For example, a molecule stamp contains |
588 |
/// information on how to build that molecule (i.e. the topology, |
589 |
/// the atoms, the bonds, etc.) Once the system is built, the |
590 |
/// stamps are no longer useful. |
591 |
vector<int> molStampIds_; /**< stamp id for molecules in the system */ |
592 |
vector<MoleculeStamp*> moleculeStamps_; /**< molecule stamps array */ |
593 |
|
594 |
/** |
595 |
* A vector that maps between the global index of an atom, and the |
596 |
* global index of cutoff group the atom belong to. It is filled |
597 |
* by SimCreator once and only once, since it never changed during |
598 |
* the simulation. It should be nGlobalAtoms_ in size. |
599 |
*/ |
600 |
vector<int> globalGroupMembership_; |
601 |
public: |
602 |
vector<int> getGlobalGroupMembership() { return globalGroupMembership_; } |
603 |
private: |
604 |
|
605 |
/** |
606 |
* A vector that maps between the global index of an atom and the |
607 |
* global index of the molecule the atom belongs to. It is filled |
608 |
* by SimCreator once and only once, since it is never changed |
609 |
* during the simulation. It shoudl be nGlobalAtoms_ in size. |
610 |
*/ |
611 |
vector<int> globalMolMembership_; |
612 |
|
613 |
/** |
614 |
* A vector that maps between the local index of an atom and the |
615 |
* index of the AtomType. |
616 |
*/ |
617 |
vector<int> identArray_; |
618 |
public: |
619 |
vector<int> getIdentArray() { return identArray_; } |
620 |
|
621 |
/** |
622 |
* A vector that contains information about the local region of an |
623 |
* atom (used for fluctuating charges, etc.) |
624 |
*/ |
625 |
private: |
626 |
vector<int> regions_; |
627 |
public: |
628 |
vector<int> getRegions() { return regions_; } |
629 |
private: |
630 |
/** |
631 |
* A vector which contains the fractional contribution of an |
632 |
* atom's mass to the total mass of the cutoffGroup that atom |
633 |
* belongs to. In the case of single atom cutoff groups, the mass |
634 |
* factor for that atom is 1. For massless atoms, the factor is |
635 |
* also 1. |
636 |
*/ |
637 |
vector<RealType> massFactors_; |
638 |
public: |
639 |
vector<RealType> getMassFactors() { return massFactors_; } |
640 |
|
641 |
PairList* getExcludedInteractions() { return &excludedInteractions_; } |
642 |
PairList* getOneTwoInteractions() { return &oneTwoInteractions_; } |
643 |
PairList* getOneThreeInteractions() { return &oneThreeInteractions_; } |
644 |
PairList* getOneFourInteractions() { return &oneFourInteractions_; } |
645 |
|
646 |
private: |
647 |
|
648 |
/// lists to handle atoms needing special treatment in the non-bonded interactions |
649 |
PairList excludedInteractions_; /**< atoms excluded from interacting with each other */ |
650 |
PairList oneTwoInteractions_; /**< atoms that are directly Bonded */ |
651 |
PairList oneThreeInteractions_; /**< atoms sharing a Bend */ |
652 |
PairList oneFourInteractions_; /**< atoms sharing a Torsion */ |
653 |
|
654 |
PropertyMap properties_; /**< Generic Properties can be added */ |
655 |
SnapshotManager* sman_; /**< SnapshotManager (handles particle positions, etc.) */ |
656 |
int storageLayout_; /**< Bits to tell how much data to store on each object */ |
657 |
|
658 |
/** |
659 |
* The reason to have a local index manager is that when molecule |
660 |
* is migrating to other processors, the atoms and the |
661 |
* rigid-bodies will release their local indices to |
662 |
* LocalIndexManager. Combining the information of molecule |
663 |
* migrating to current processor, Migrator class can query the |
664 |
* LocalIndexManager to make a efficient data moving plan. |
665 |
*/ |
666 |
LocalIndexManager localIndexMan_; |
667 |
|
668 |
// unparsed MetaData block for storing in Dump and EOR files: |
669 |
string rawMetaData_; |
670 |
|
671 |
// file names |
672 |
string finalConfigFileName_; |
673 |
string dumpFileName_; |
674 |
string statFileName_; |
675 |
string restFileName_; |
676 |
|
677 |
bool topologyDone_; /** flag to indicate whether the topology has |
678 |
been scanned and all the relevant |
679 |
bookkeeping has been done*/ |
680 |
|
681 |
bool calcBoxDipole_; /**< flag to indicate whether or not we calculate |
682 |
the simulation box dipole moment */ |
683 |
bool calcBoxQuadrupole_; /**< flag to indicate whether or not we calculate |
684 |
the simulation box quadrupole moment */ |
685 |
|
686 |
bool useAtomicVirial_; /**< flag to indicate whether or not we use |
687 |
Atomic Virials to calculate the pressure */ |
688 |
|
689 |
public: |
690 |
/** |
691 |
* return an integral objects by its global index. In MPI |
692 |
* version, if the StuntDouble with specified global index does |
693 |
* not belong to local processor, a NULL will be return. |
694 |
*/ |
695 |
StuntDouble* getIOIndexToIntegrableObject(int index); |
696 |
void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v); |
697 |
|
698 |
private: |
699 |
vector<StuntDouble*> IOIndexToIntegrableObject; |
700 |
|
701 |
public: |
702 |
|
703 |
/** |
704 |
* Finds the processor where a molecule resides |
705 |
* @return the id of the processor which contains the molecule |
706 |
* @param globalIndex global Index of the molecule |
707 |
*/ |
708 |
int getMolToProc(int globalIndex) { |
709 |
//assert(globalIndex < molToProcMap_.size()); |
710 |
return molToProcMap_[globalIndex]; |
711 |
} |
712 |
|
713 |
/** |
714 |
* Set MolToProcMap array |
715 |
*/ |
716 |
void setMolToProcMap(const vector<int>& molToProcMap) { |
717 |
molToProcMap_ = molToProcMap; |
718 |
} |
719 |
|
720 |
private: |
721 |
|
722 |
/** |
723 |
* The size of molToProcMap_ is equal to total number of molecules |
724 |
* in the system. It maps a molecule to the processor on which it |
725 |
* resides. it is filled by SimCreator once and only once. |
726 |
*/ |
727 |
vector<int> molToProcMap_; |
728 |
|
729 |
}; |
730 |
|
731 |
} //namespace OpenMD |
732 |
#endif //BRAINS_SIMMODEL_HPP |
733 |
|