ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.hpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.hpp (file contents):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 1983 by gezelter, Tue Apr 15 20:36:19 2014 UTC

# Line 1 | Line 1
1 < #ifndef __SIMINFO_H__
2 < #define __SIMINFO_H__
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file SimInfo.hpp
45 > * @author    tlin
46 > * @date  11/02/2004
47 > * @version 1.0
48 > */
49  
50 < #include <map>
51 < #include <string>
50 > #ifndef BRAINS_SIMMODEL_HPP
51 > #define BRAINS_SIMMODEL_HPP
52 >
53 > #include <iostream>
54 > #include <set>
55 > #include <utility>
56   #include <vector>
57  
58 < #include "Atom.hpp"
59 < #include "RigidBody.hpp"
60 < #include "Molecule.hpp"
61 < #include "Exclude.hpp"
62 < #include "SkipList.hpp"
63 < #include "AbstractClasses.hpp"
64 < #include "MakeStamps.hpp"
65 < #include "SimState.hpp"
66 < #include "Restraints.hpp"
58 > #include "brains/PairList.hpp"
59 > #include "io/Globals.hpp"
60 > #include "math/Vector3.hpp"
61 > #include "math/SquareMatrix3.hpp"
62 > #include "types/MoleculeStamp.hpp"
63 > #include "brains/ForceField.hpp"
64 > #include "utils/PropertyMap.hpp"
65 > #include "utils/LocalIndexManager.hpp"
66 > #include "nonbonded/SwitchingFunction.hpp"
67  
68 < #define __C
69 < #include "fSimulation.h"
70 < #include "fortranWrapDefines.hpp"
71 < #include "GenericData.hpp"
68 > using namespace std;
69 > namespace OpenMD{
70 >  //forward declaration
71 >  class SnapshotManager;
72 >  class Molecule;
73 >  class SelectionManager;
74 >  class StuntDouble;
75  
76 +  /**
77 +   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
78 +   *
79 +   * @brief One of the heavy-weight classes of OpenMD, SimInfo
80 +   * maintains objects and variables relating to the current
81 +   * simulation.  This includes the master list of Molecules.  The
82 +   * Molecule class maintains all of the concrete objects (Atoms,
83 +   * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
84 +   * Constraints). In both the single and parallel versions, Atoms and
85 +   * RigidBodies have both global and local indices.
86 +   */
87 +  class SimInfo {
88 +  public:
89 +    typedef map<int, Molecule*>::iterator  MoleculeIterator;
90 +    
91 +    /**
92 +     * Constructor of SimInfo
93 +     *
94 +     * @param ff pointer to a concrete ForceField instance
95 +     *
96 +     * @param simParams pointer to the simulation parameters in a Globals object
97 +     */
98 +    SimInfo(ForceField* ff, Globals* simParams);
99 +    virtual ~SimInfo();
100  
101 < //#include "Minimizer.hpp"
102 < //#include "OOPSEMinimizer.hpp"
101 >    /**
102 >     * Adds a molecule
103 >     *
104 >     * @return return true if adding successfully, return false if the
105 >     * molecule is already in SimInfo
106 >     *
107 >     * @param mol Molecule to be added
108 >     */
109 >    bool addMolecule(Molecule* mol);
110  
111 +    /**
112 +     * Removes a molecule from SimInfo
113 +     *
114 +     * @return true if removing successfully, return false if molecule
115 +     * is not in this SimInfo
116 +     */
117 +    bool removeMolecule(Molecule* mol);
118  
119 < double roundMe( double x );
120 < class OOPSEMinimizer;
121 < class SimInfo{
119 >    /** Returns the total number of molecules in the system. */
120 >    int getNGlobalMolecules() {
121 >      return nGlobalMols_;
122 >    }
123  
124 < public:
124 >    /** Returns the total number of atoms in the system. */
125 >    int getNGlobalAtoms() {
126 >      return nGlobalAtoms_;
127 >    }
128  
129 <  SimInfo();
130 <  ~SimInfo();
129 >    /** Returns the total number of cutoff groups in the system. */
130 >    int getNGlobalCutoffGroups() {
131 >      return nGlobalCutoffGroups_;
132 >    }
133  
134 <  int n_atoms; // the number of atoms
135 <  Atom **atoms; // the array of atom objects
134 >    /**
135 >     * Returns the total number of integrable objects (total number of
136 >     * rigid bodies plus the total number of atoms which do not belong
137 >     * to the rigid bodies) in the system
138 >     */
139 >    int getNGlobalIntegrableObjects() {
140 >      return nGlobalIntegrableObjects_;
141 >    }
142  
143 <  vector<RigidBody*> rigidBodies;  // A vector of rigid bodies
144 <  vector<StuntDouble*> integrableObjects;
145 <  
146 <  double tau[9]; // the stress tensor
143 >    /**
144 >     * Returns the total number of integrable objects (total number of
145 >     * rigid bodies plus the total number of atoms which do not belong
146 >     * to the rigid bodies) in the system
147 >     */
148 >    int getNGlobalRigidBodies() {
149 >      return nGlobalRigidBodies_;
150 >    }
151  
152 <  int n_bonds;    // number of bends
153 <  int n_bends;    // number of bends
154 <  int n_torsions; // number of torsions
155 <  int n_oriented; // number of of atoms with orientation
49 <  int ndf;        // number of actual degrees of freedom
50 <  int ndfRaw;     // number of settable degrees of freedom
51 <  int ndfTrans;   // number of translational degrees of freedom
52 <  int nZconstraints; // the number of zConstraints
152 >    /** Returns the number of global bonds */        
153 >    unsigned int getNGlobalBonds(){
154 >      return nGlobalBonds_;
155 >    }
156  
157 <  int setTemp;   // boolean to set the temperature at each sampleTime
158 <  int resetIntegrator; // boolean to reset the integrator
157 >    /** Returns the number of global bends */        
158 >    unsigned int getNGlobalBends() {
159 >      return nGlobalBends_;
160 >    }
161  
162 <  int n_dipoles; // number of dipoles
162 >    /** Returns the number of global torsions */        
163 >    unsigned int getNGlobalTorsions() {
164 >      return nGlobalTorsions_;
165 >    }
166  
167 <  int n_exclude;
168 <  Exclude* excludes;  // the exclude list for ignoring pairs in fortran
169 <  int nGlobalExcludes;
170 <  int* globalExcludes; // same as above, but these guys participate in
63 <                       // no long range forces.
167 >    /** Returns the number of global inversions */        
168 >    unsigned int getNGlobalInversions() {
169 >      return nGlobalInversions_;
170 >    }
171  
172 <  int* identArray;     // array of unique identifiers for the atoms
173 <  int* molMembershipArray;  // map of atom numbers onto molecule numbers
172 >    unsigned int getNGlobalConstraints() {
173 >      if (!hasNGlobalConstraints_) calcNConstraints();
174 >      return nGlobalConstraints_;
175 >    }
176 >    /**
177 >     * Returns the number of local molecules.
178 >     * @return the number of local molecules
179 >     */
180 >    int getNMolecules() {
181 >      return molecules_.size();
182 >    }
183  
184 <  int n_constraints; // the number of constraints on the system
184 >    /** Returns the number of local atoms */
185 >    unsigned int getNAtoms() {
186 >      return nAtoms_;
187 >    }
188  
189 <  int n_SRI;   // the number of short range interactions
189 >    /** Returns the number of effective cutoff groups on local processor */
190 >    unsigned int getNLocalCutoffGroups();
191  
192 <  double lrPot; // the potential energy from the long range calculations.
192 >    /** Returns the number of local bonds */        
193 >    unsigned int getNBonds(){
194 >      return nBonds_;
195 >    }
196  
197 <  double Hmat[3][3];  // the periodic boundry conditions. The Hmat is the
198 <                      // column vectors of the x, y, and z box vectors.
199 <                      //   h1  h2  h3
200 <                      // [ Xx  Yx  Zx ]
78 <                      // [ Xy  Yy  Zy ]
79 <                      // [ Xz  Yz  Zz ]
80 <                      //  
81 <  double HmatInv[3][3];
197 >    /** Returns the number of local bends */        
198 >    unsigned int getNBends() {
199 >      return nBends_;
200 >    }
201  
202 <  double boxL[3]; // The Lengths of the 3 column vectors of Hmat
203 <  double boxVol;
204 <  int orthoRhombic;
205 <  
202 >    /** Returns the number of local torsions */        
203 >    unsigned int getNTorsions() {
204 >      return nTorsions_;
205 >    }
206  
207 <  double dielectric;      // the dielectric of the medium for reaction field
207 >    /** Returns the number of local inversions */        
208 >    unsigned int getNInversions() {
209 >      return nInversions_;
210 >    }
211 >    /** Returns the number of local rigid bodies */        
212 >    unsigned int getNRigidBodies() {
213 >      return nRigidBodies_;
214 >    }
215  
216 <  
217 <  int usePBC; // whether we use periodic boundry conditions.
218 <  int useLJ;
219 <  int useSticky;
94 <  int useCharges;
95 <  int useDipoles;
96 <  int useReactionField;
97 <  int useGB;
98 <  int useEAM;
99 <  bool haveCutoffGroups;
100 <  bool useInitXSstate;
101 <  double orthoTolerance;
216 >    /** Returns the number of local integrable objects */
217 >    unsigned int getNIntegrableObjects() {
218 >      return nIntegrableObjects_;
219 >    }
220  
221 <  double dt, run_time;           // the time step and total time
222 <  double sampleTime, statusTime; // the position and energy dump frequencies
223 <  double target_temp;            // the target temperature of the system
224 <  double thermalTime;            // the temp kick interval
107 <  double currentTime;            // Used primarily for correlation Functions
108 <  double resetTime;              // Use to reset the integrator periodically
109 <  short int have_target_temp;
221 >    /** Returns the number of local cutoff groups */
222 >    unsigned int getNCutoffGroups() {
223 >      return nCutoffGroups_;
224 >    }
225  
226 <  int n_mol;           // n_molecules;
227 <  Molecule* molecules; // the array of molecules
228 <  
229 <  int nComponents;           // the number of components in the system
230 <  int* componentsNmol;       // the number of molecules of each component
231 <  MoleculeStamp** compStamps;// the stamps matching the components
232 <  LinkedMolStamp* headStamp; // list of stamps used in the simulation
233 <  
234 <  
235 <  char ensemble[100]; // the enesemble of the simulation (NVT, NVE, etc. )
236 <  char mixingRule[100]; // the mixing rules for Lennard jones/van der walls
122 <  BaseIntegrator *the_integrator; // the integrator of the simulation
226 >    /** Returns the total number of constraints in this SimInfo */
227 >    unsigned int getNConstraints() {
228 >      return nConstraints_;
229 >    }
230 >        
231 >    /**
232 >     * Returns the first molecule in this SimInfo and intialize the iterator.
233 >     * @return the first molecule, return NULL if there is not molecule in this SimInfo
234 >     * @param i the iterator of molecule array (user shouldn't change it)
235 >     */
236 >    Molecule* beginMolecule(MoleculeIterator& i);
237  
238 <  OOPSEMinimizer* the_minimizer; // the energy minimizer
239 <  Restraints* restraint;
240 <  bool has_minimizer;
238 >    /**
239 >     * Returns the next avaliable Molecule based on the iterator.
240 >     * @return the next avaliable molecule, return NULL if reaching the end of the array
241 >     * @param i the iterator of molecule array
242 >     */
243 >    Molecule* nextMolecule(MoleculeIterator& i);
244  
245 <  string finalName;  // the name of the eor file to be written
246 <  string sampleName; // the name of the dump file to be written
247 <  string statusName; // the name of the stat file to be written
245 >    /** Returns the total number of fluctuating charges that are present */
246 >    int getNFluctuatingCharges() {
247 >      return nGlobalFluctuatingCharges_;
248 >    }
249  
250 <  int seed;                    //seed for random number generator
250 >    /** Returns the number of degrees of freedom */
251 >    int getNdf() {
252 >      return ndf_ - getFdf();
253 >    }
254  
255 <  int useSolidThermInt;  // is solid-state thermodynamic integration being used
256 <  int useLiquidThermInt; // is liquid thermodynamic integration being used
257 <  double thermIntLambda; // lambda for TI
258 <  double thermIntK;      // power of lambda for TI
138 <  double vRaw;           // unperturbed potential for TI
139 <  double vHarm;          // harmonic potential for TI
140 <  int i;                 // just an int
255 >    /** Returns the number of degrees of freedom (LOCAL) */
256 >    int getNdfLocal() {
257 >      return ndfLocal_;
258 >    }
259  
260 <  vector<double> mfact;
261 <  vector<int> FglobalGroupMembership;
262 <  int ngroup;
263 <  int* globalGroupMembership;
260 >    /** Returns the number of raw degrees of freedom */
261 >    int getNdfRaw() {
262 >      return ndfRaw_;
263 >    }
264  
265 <  // refreshes the sim if things get changed (load balanceing, volume
266 <  // adjustment, etc.)
265 >    /** Returns the number of translational degrees of freedom */
266 >    int getNdfTrans() {
267 >      return ndfTrans_;
268 >    }
269  
270 <  void refreshSim( void );
271 <  
270 >    /** sets the current number of frozen degrees of freedom */
271 >    void setFdf(int fdf) {
272 >      fdf_local = fdf;
273 >    }
274  
275 <  // sets the internal function pointer to fortran.
275 >    int getFdf();
276 >    
277 >    //getNZconstraint and setNZconstraint ruin the coherence of
278 >    //SimInfo class, need refactoring
279 >        
280 >    /** Returns the total number of z-constraint molecules in the system */
281 >    int getNZconstraint() {
282 >      return nZconstraint_;
283 >    }
284  
285 <  void setInternal( setFortranSim_TD fSetup,
286 <                    setFortranBox_TD fBox,
287 <                    notifyFortranCutOff_TD fCut){
288 <    setFsimulation = fSetup;
289 <    setFortranBoxSize = fBox;
290 <    notifyFortranCutOffs = fCut;
291 <  }
285 >    /**
286 >     * Sets the number of z-constraint molecules in the system.
287 >     */
288 >    void setNZconstraint(int nZconstraint) {
289 >      nZconstraint_ = nZconstraint;
290 >    }
291 >        
292 >    /** Returns the snapshot manager. */
293 >    SnapshotManager* getSnapshotManager() {
294 >      return sman_;
295 >    }
296 >    /** Returns the storage layout (computed by SimCreator) */
297 >    int getStorageLayout() {
298 >      return storageLayout_;
299 >    }
300 >    /** Sets the storage layout (computed by SimCreator) */
301 >    void setStorageLayout(int sl) {
302 >      storageLayout_ = sl;
303 >    }
304 >    
305 >    /** Sets the snapshot manager. */
306 >    void setSnapshotManager(SnapshotManager* sman);
307 >        
308 >    /** Returns the force field */
309 >    ForceField* getForceField() {
310 >      return forceField_;
311 >    }
312  
313 <  int getNDF();
314 <  int getNDFraw();
315 <  int getNDFtranslational();
166 <  int getTotIntegrableObjects();
167 <  void setBox( double newBox[3] );
168 <  void setBoxM( double newBox[3][3] );
169 <  void getBoxM( double theBox[3][3] );
170 <  void scaleBox( double scale );
171 <  
172 <  void setDefaultRcut( double theRcut );
173 <  void setDefaultRcut( double theRcut, double theRsw );
174 <  void checkCutOffs( void );
313 >    Globals* getSimParams() {
314 >      return simParams_;
315 >    }
316  
317 <  double getRcut( void )  { return rCut; }
318 <  double getRlist( void ) { return rList; }
319 <  double getRsw( void )   { return rSw; }
320 <  double getMaxCutoff( void ) { return maxCutoff; }
321 <  
181 <  void setTime( double theTime ) { currentTime = theTime; }
182 <  void incrTime( double the_dt ) { currentTime += the_dt; }
183 <  void decrTime( double the_dt ) { currentTime -= the_dt; }
184 <  double getTime( void ) { return currentTime; }
317 >    void update();
318 >    /**
319 >     * Do final bookkeeping before Force managers need their data.
320 >     */
321 >    void prepareTopology();
322  
186  void wrapVector( double thePos[3] );
323  
324 <  SimState* getConfiguration( void ) { return myConfiguration; }
325 <  
326 <  void addProperty(GenericData* prop);
327 <  GenericData* getProperty(const string& propName);
192 <  //vector<GenericData*>& getProperties()  {return properties;}    
193 <
194 <  int getSeed(void) {  return seed; }
195 <  void setSeed(int theSeed) {  seed = theSeed;}
324 >    /** Returns the local index manager */
325 >    LocalIndexManager* getLocalIndexManager() {
326 >      return &localIndexMan_;
327 >    }
328  
329 < private:
329 >    int getMoleculeStampId(int globalIndex) {
330 >      //assert(globalIndex < molStampIds_.size())
331 >      return molStampIds_[globalIndex];
332 >    }
333  
334 <  SimState* myConfiguration;
334 >    /** Returns the molecule stamp */
335 >    MoleculeStamp* getMoleculeStamp(int id) {
336 >      return moleculeStamps_[id];
337 >    }
338  
339 <  int boxIsInit, haveRcut, haveRsw;
339 >    /** Return the total number of the molecule stamps */
340 >    int getNMoleculeStamp() {
341 >      return moleculeStamps_.size();
342 >    }
343 >    /**
344 >     * Finds a molecule with a specified global index
345 >     * @return a pointer point to found molecule
346 >     * @param index
347 >     */
348 >    Molecule* getMoleculeByGlobalIndex(int index) {
349 >      MoleculeIterator i;
350 >      i = molecules_.find(index);
351  
352 <  double rList, rCut; // variables for the neighborlist
353 <  double rSw;         // the switching radius
352 >      return i != molecules_.end() ? i->second : NULL;
353 >    }
354  
355 <  double maxCutoff;
355 >    int getGlobalMolMembership(int id){
356 >      return globalMolMembership_[id];
357 >    }
358  
359 <  double distXY;
360 <  double distYZ;
361 <  double distZX;
362 <  
363 <  void calcHmatInv( void );
364 <  void calcBoxL();
214 <  double calcMaxCutOff();
359 >    /**
360 >     * returns a vector which maps the local atom index on this
361 >     * processor to the global atom index.  With only one processor,
362 >     * these should be identical.
363 >     */
364 >    vector<int> getGlobalAtomIndices();
365  
366 <  // private function to initialize the fortran side of the simulation
367 <  setFortranSim_TD setFsimulation;
366 >    /**
367 >     * returns a vector which maps the local cutoff group index on
368 >     * this processor to the global cutoff group index.  With only one
369 >     * processor, these should be identical.
370 >     */
371 >    vector<int> getGlobalGroupIndices();
372  
373 <  setFortranBox_TD setFortranBoxSize;
374 <  
375 <  notifyFortranCutOff_TD notifyFortranCutOffs;
376 <  
223 <  //Addtional Properties of SimInfo
224 <  map<string, GenericData*> properties;
225 <  void getFortranGroupArrays(SimInfo* info,
226 <                             vector<int>& FglobalGroupMembership,
227 <                             vector<double>& mfact);
373 >        
374 >    string getFinalConfigFileName() {
375 >      return finalConfigFileName_;
376 >    }
377  
378 +    void setFinalConfigFileName(const string& fileName) {
379 +      finalConfigFileName_ = fileName;
380 +    }
381  
382 < };
382 >    string getRawMetaData() {
383 >      return rawMetaData_;
384 >    }
385 >    void setRawMetaData(const string& rawMetaData) {
386 >      rawMetaData_ = rawMetaData;
387 >    }
388 >        
389 >    string getDumpFileName() {
390 >      return dumpFileName_;
391 >    }
392 >        
393 >    void setDumpFileName(const string& fileName) {
394 >      dumpFileName_ = fileName;
395 >    }
396  
397 +    string getStatFileName() {
398 +      return statFileName_;
399 +    }
400 +        
401 +    void setStatFileName(const string& fileName) {
402 +      statFileName_ = fileName;
403 +    }
404 +        
405 +    string getRestFileName() {
406 +      return restFileName_;
407 +    }
408 +        
409 +    void setRestFileName(const string& fileName) {
410 +      restFileName_ = fileName;
411 +    }
412  
413 < #endif
413 >    /**
414 >     * Sets GlobalGroupMembership
415 >     */  
416 >    void setGlobalGroupMembership(const vector<int>& ggm) {
417 >      assert(ggm.size() == static_cast<size_t>(nGlobalAtoms_));
418 >      globalGroupMembership_ = ggm;
419 >    }
420 >
421 >    /**
422 >     * Sets GlobalMolMembership
423 >     */        
424 >    void setGlobalMolMembership(const vector<int>& gmm) {
425 >      assert(gmm.size() == (static_cast<size_t>(nGlobalAtoms_ +
426 >                                                nGlobalRigidBodies_)));
427 >      globalMolMembership_ = gmm;
428 >    }
429 >
430 >
431 >    bool isTopologyDone() {
432 >      return topologyDone_;
433 >    }
434 >        
435 >    bool getCalcBoxDipole() {
436 >      return calcBoxDipole_;
437 >    }
438 >
439 >    bool getUseAtomicVirial() {
440 >      return useAtomicVirial_;
441 >    }
442 >
443 >    /**
444 >     * Adds property into property map
445 >     * @param genData GenericData to be added into PropertyMap
446 >     */
447 >    void addProperty(GenericData* genData);
448 >
449 >    /**
450 >     * Removes property from PropertyMap by name
451 >     * @param propName the name of property to be removed
452 >     */
453 >    void removeProperty(const string& propName);
454 >
455 >    /**
456 >     * clear all of the properties
457 >     */
458 >    void clearProperties();
459 >
460 >    /**
461 >     * Returns all names of properties
462 >     * @return all names of properties
463 >     */
464 >    vector<string> getPropertyNames();
465 >
466 >    /**
467 >     * Returns all of the properties in PropertyMap
468 >     * @return all of the properties in PropertyMap
469 >     */      
470 >    vector<GenericData*> getProperties();
471 >
472 >    /**
473 >     * Returns property
474 >     * @param propName name of property
475 >     * @return a pointer point to property with propName. If no property named propName
476 >     * exists, return NULL
477 >     */      
478 >    GenericData* getPropertyByName(const string& propName);
479 >
480 >    /**
481 >     * add all special interaction pairs (including excluded
482 >     * interactions) in a molecule into the appropriate lists.
483 >     */
484 >    void addInteractionPairs(Molecule* mol);
485 >
486 >    /**
487 >     * remove all special interaction pairs which belong to a molecule
488 >     * from the appropriate lists.
489 >     */
490 >    void removeInteractionPairs(Molecule* mol);
491 >
492 >    /** Returns the set of atom types present in this simulation */
493 >    set<AtomType*> getSimulatedAtomTypes();
494 >
495 >    /** Returns the global count of atoms of a particular type */
496 >    int getGlobalCountOfType(AtomType* atype);
497 >        
498 >    friend ostream& operator <<(ostream& o, SimInfo& info);
499 >
500 >    void getCutoff(RealType& rcut, RealType& rsw);
501 >        
502 >  private:
503 >
504 >    /** fill up the simtype struct and other simulation-related variables */
505 >    void setupSimVariables();
506 >
507 >
508 >    /** Determine if we need to accumulate the simulation box dipole */
509 >    void setupAccumulateBoxDipole();
510 >
511 >    /** Calculates the number of degress of freedom in the whole system */
512 >    void calcNdf();
513 >    void calcNdfRaw();
514 >    void calcNdfTrans();
515 >    void calcNConstraints();
516 >
517 >    /**
518 >     * Adds molecule stamp and the total number of the molecule with
519 >     * same molecule stamp in the whole system.
520 >     */
521 >    void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
522 >
523 >    // Other classes holdingn important information
524 >    ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
525 >    Globals* simParams_;     /**< provides access to simulation parameters set by user */
526 >
527 >    ///  Counts of local objects
528 >    int nAtoms_;              /**< number of atoms in local processor */
529 >    int nBonds_;              /**< number of bonds in local processor */
530 >    int nBends_;              /**< number of bends in local processor */
531 >    int nTorsions_;           /**< number of torsions in local processor */
532 >    int nInversions_;         /**< number of inversions in local processor */
533 >    int nRigidBodies_;        /**< number of rigid bodies in local processor */
534 >    int nIntegrableObjects_;  /**< number of integrable objects in local processor */
535 >    int nCutoffGroups_;       /**< number of cutoff groups in local processor */
536 >    int nConstraints_;        /**< number of constraints in local processors */
537 >    int nFluctuatingCharges_; /**< number of fluctuating charges in local processor */
538 >        
539 >    /// Counts of global objects
540 >    int nGlobalMols_;              /**< number of molecules in the system (GLOBAL) */
541 >    int nGlobalAtoms_;             /**< number of atoms in the system (GLOBAL) */
542 >    int nGlobalCutoffGroups_;      /**< number of cutoff groups in this system (GLOBAL) */
543 >    int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
544 >    int nGlobalRigidBodies_;       /**< number of rigid bodies in this system (GLOBAL) */
545 >    int nGlobalFluctuatingCharges_;/**< number of fluctuating charges in this system (GLOBAL) */
546 >    int nGlobalBonds_;              /**< number of bonds in the system */
547 >    int nGlobalBends_;              /**< number of bends in the system */
548 >    int nGlobalTorsions_;           /**< number of torsions in the system */
549 >    int nGlobalInversions_;         /**< number of inversions in the system */
550 >    int nGlobalConstraints_;        /**< number of constraints in the system */
551 >    bool hasNGlobalConstraints_;
552 >
553 >    /// Degress of freedom
554 >    int ndf_;          /**< number of degress of freedom (excludes constraints) (LOCAL) */
555 >    int ndfLocal_;     /**< number of degrees of freedom (LOCAL, excludes constraints) */
556 >    int fdf_local;     /**< number of frozen degrees of freedom (LOCAL) */
557 >    int fdf_;          /**< number of frozen degrees of freedom (GLOBAL) */
558 >    int ndfRaw_;       /**< number of degress of freedom (includes constraints),  (LOCAL) */
559 >    int ndfTrans_;     /**< number of translation degress of freedom, (LOCAL) */
560 >    int nZconstraint_; /**< number of  z-constraint molecules (GLOBAL) */
561 >
562 >    /// logicals
563 >    bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
564 >    bool usesDirectionalAtoms_;   /**< are there atoms with position AND orientation? */
565 >    bool usesMetallicAtoms_;      /**< are there transition metal atoms? */
566 >    bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
567 >    bool usesFluctuatingCharges_; /**< are there fluctuating charges? */
568 >    bool usesAtomicVirial_;       /**< are we computing atomic virials? */
569 >    bool requiresPrepair_;        /**< does this simulation require a pre-pair loop? */
570 >    bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
571 >    bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
572 >
573 >  public:
574 >    bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
575 >    bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
576 >    bool usesFluctuatingCharges() { return usesFluctuatingCharges_; }
577 >    bool usesAtomicVirial() { return usesAtomicVirial_; }
578 >    bool requiresPrepair() { return requiresPrepair_; }
579 >    bool requiresSkipCorrection() { return requiresSkipCorrection_;}
580 >    bool requiresSelfCorrection() { return requiresSelfCorrection_;}
581 >
582 >  private:
583 >    /// Data structures holding primary simulation objects
584 >    map<int, Molecule*>  molecules_;  /**< map holding pointers to LOCAL molecules */
585 >
586 >    /// Stamps are templates for objects that are then used to create
587 >    /// groups of objects.  For example, a molecule stamp contains
588 >    /// information on how to build that molecule (i.e. the topology,
589 >    /// the atoms, the bonds, etc.)  Once the system is built, the
590 >    /// stamps are no longer useful.
591 >    vector<int> molStampIds_;                /**< stamp id for molecules in the system */
592 >    vector<MoleculeStamp*> moleculeStamps_;  /**< molecule stamps array */        
593 >
594 >    /**
595 >     * A vector that maps between the global index of an atom, and the
596 >     * global index of cutoff group the atom belong to.  It is filled
597 >     * by SimCreator once and only once, since it never changed during
598 >     * the simulation.  It should be nGlobalAtoms_ in size.
599 >     */
600 >    vector<int> globalGroupMembership_;
601 >  public:
602 >    vector<int> getGlobalGroupMembership() { return globalGroupMembership_; }
603 >  private:
604 >
605 >    /**
606 >     * A vector that maps between the global index of an atom and the
607 >     * global index of the molecule the atom belongs to.  It is filled
608 >     * by SimCreator once and only once, since it is never changed
609 >     * during the simulation. It shoudl be nGlobalAtoms_ in size.
610 >     */
611 >    vector<int> globalMolMembership_;
612 >
613 >    /**
614 >     * A vector that maps between the local index of an atom and the
615 >     * index of the AtomType.
616 >     */
617 >    vector<int> identArray_;
618 >  public:
619 >    vector<int> getIdentArray() { return identArray_; }
620 >
621 >    /**
622 >     * A vector that contains information about the local region of an
623 >     * atom (used for fluctuating charges, etc.)
624 >     */
625 >  private:
626 >    vector<int> regions_;
627 >  public:
628 >    vector<int> getRegions() { return regions_; }
629 >  private:
630 >    /**
631 >     * A vector which contains the fractional contribution of an
632 >     * atom's mass to the total mass of the cutoffGroup that atom
633 >     * belongs to.  In the case of single atom cutoff groups, the mass
634 >     * factor for that atom is 1.  For massless atoms, the factor is
635 >     * also 1.
636 >     */
637 >    vector<RealType> massFactors_;
638 >  public:
639 >    vector<RealType> getMassFactors() { return massFactors_; }
640 >
641 >    PairList* getExcludedInteractions() { return &excludedInteractions_; }
642 >    PairList* getOneTwoInteractions() { return &oneTwoInteractions_; }
643 >    PairList* getOneThreeInteractions() { return &oneThreeInteractions_; }
644 >    PairList* getOneFourInteractions() { return &oneFourInteractions_; }
645 >
646 >  private:
647 >              
648 >    /// lists to handle atoms needing special treatment in the non-bonded interactions
649 >    PairList excludedInteractions_;  /**< atoms excluded from interacting with each other */
650 >    PairList oneTwoInteractions_;    /**< atoms that are directly Bonded */
651 >    PairList oneThreeInteractions_;  /**< atoms sharing a Bend */    
652 >    PairList oneFourInteractions_;   /**< atoms sharing a Torsion */
653 >
654 >    PropertyMap properties_;       /**< Generic Properties can be added */
655 >    SnapshotManager* sman_;        /**< SnapshotManager (handles particle positions, etc.) */
656 >    int storageLayout_;            /**< Bits to tell how much data to store on each object */
657 >
658 >    /**
659 >     * The reason to have a local index manager is that when molecule
660 >     * is migrating to other processors, the atoms and the
661 >     * rigid-bodies will release their local indices to
662 >     * LocalIndexManager. Combining the information of molecule
663 >     * migrating to current processor, Migrator class can query the
664 >     * LocalIndexManager to make a efficient data moving plan.
665 >     */        
666 >    LocalIndexManager localIndexMan_;
667 >
668 >    // unparsed MetaData block for storing in Dump and EOR files:
669 >    string rawMetaData_;
670 >
671 >    // file names
672 >    string finalConfigFileName_;
673 >    string dumpFileName_;
674 >    string statFileName_;
675 >    string restFileName_;
676 >
677 >    bool topologyDone_;  /** flag to indicate whether the topology has
678 >                             been scanned and all the relevant
679 >                             bookkeeping has been done*/
680 >    
681 >    bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
682 >                            the simulation box dipole moment */
683 >    
684 >    bool useAtomicVirial_; /**< flag to indicate whether or not we use
685 >                              Atomic Virials to calculate the pressure */
686 >    
687 >  public:
688 >    /**
689 >     * return an integral objects by its global index. In MPI
690 >     * version, if the StuntDouble with specified global index does
691 >      * not belong to local processor, a NULL will be return.
692 >      */
693 >    StuntDouble* getIOIndexToIntegrableObject(int index);
694 >    void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
695 >    
696 >  private:
697 >    vector<StuntDouble*> IOIndexToIntegrableObject;
698 >    
699 >  public:
700 >                
701 >    /**
702 >     * Finds the processor where a molecule resides
703 >     * @return the id of the processor which contains the molecule
704 >     * @param globalIndex global Index of the molecule
705 >     */
706 >    int getMolToProc(int globalIndex) {
707 >      //assert(globalIndex < molToProcMap_.size());
708 >      return molToProcMap_[globalIndex];
709 >    }
710 >    
711 >    /**
712 >     * Set MolToProcMap array
713 >     */
714 >    void setMolToProcMap(const vector<int>& molToProcMap) {
715 >      molToProcMap_ = molToProcMap;
716 >    }
717 >        
718 >  private:
719 >        
720 >    /**
721 >     * The size of molToProcMap_ is equal to total number of molecules
722 >     * in the system.  It maps a molecule to the processor on which it
723 >     * resides. it is filled by SimCreator once and only once.
724 >     */        
725 >    vector<int> molToProcMap_;
726 >
727 >  };
728 >
729 > } //namespace OpenMD
730 > #endif //BRAINS_SIMMODEL_HPP
731 >

Comparing trunk/src/brains/SimInfo.hpp (property svn:keywords):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 1983 by gezelter, Tue Apr 15 20:36:19 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines