ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.hpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.hpp (file contents):
Revision 413 by tim, Wed Mar 9 17:30:29 2005 UTC vs.
Revision 1953 by gezelter, Thu Dec 5 18:19:26 2013 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include <utility>
56   #include <vector>
57  
58 < #include "brains/Exclude.hpp"
58 > #include "brains/PairList.hpp"
59   #include "io/Globals.hpp"
60   #include "math/Vector3.hpp"
61 + #include "math/SquareMatrix3.hpp"
62   #include "types/MoleculeStamp.hpp"
63 < #include "UseTheForce/ForceField.hpp"
63 > #include "brains/ForceField.hpp"
64   #include "utils/PropertyMap.hpp"
65   #include "utils/LocalIndexManager.hpp"
66 + #include "nonbonded/SwitchingFunction.hpp"
67  
68 < //another nonsense macro declaration
69 < #define __C
70 < #include "brains/fSimulation.h"
68 > using namespace std;
69 > namespace OpenMD{
70 >  //forward declaration
71 >  class SnapshotManager;
72 >  class Molecule;
73 >  class SelectionManager;
74 >  class StuntDouble;
75  
76 < namespace oopse{
76 >  /**
77 >   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
78 >   *
79 >   * @brief One of the heavy-weight classes of OpenMD, SimInfo
80 >   * maintains objects and variables relating to the current
81 >   * simulation.  This includes the master list of Molecules.  The
82 >   * Molecule class maintains all of the concrete objects (Atoms,
83 >   * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
84 >   * Constraints). In both the single and parallel versions, Atoms and
85 >   * RigidBodies have both global and local indices.
86 >   */
87 >  class SimInfo {
88 >  public:
89 >    typedef map<int, Molecule*>::iterator  MoleculeIterator;
90 >    
91 >    /**
92 >     * Constructor of SimInfo
93 >     *
94 >     * @param ff pointer to a concrete ForceField instance
95 >     *
96 >     * @param simParams pointer to the simulation parameters in a Globals object
97 >     */
98 >    SimInfo(ForceField* ff, Globals* simParams);
99 >    virtual ~SimInfo();
100  
101 < //forward decalration
102 < class SnapshotManager;
103 < class Molecule;
104 < class SelectionManager;
105 < /**
106 < * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
107 < * @brief As one of the heavy weight class of OOPSE, SimInfo
108 < * One of the major changes in SimInfo class is the data struct. It only maintains a list of molecules.
109 < * And the Molecule class will maintain all of the concrete objects (atoms, bond, bend, torsions, rigid bodies,
80 < * cutoff groups, constrains).
81 < * Another major change is the index. No matter single version or parallel version,  atoms and
82 < * rigid bodies have both global index and local index. Local index is not important to molecule as well as
83 < * cutoff group.
84 < */
85 < class SimInfo {
86 <    public:
87 <        typedef std::map<int, Molecule*>::iterator  MoleculeIterator;
101 >    /**
102 >     * Adds a molecule
103 >     *
104 >     * @return return true if adding successfully, return false if the
105 >     * molecule is already in SimInfo
106 >     *
107 >     * @param mol Molecule to be added
108 >     */
109 >    bool addMolecule(Molecule* mol);
110  
111 <        /**
112 <         * Constructor of SimInfo
113 <         * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
114 <         * second element is the total number of molecules with the same molecule stamp in the system
115 <         * @param ff pointer of a concrete ForceField instance
116 <         * @param simParams
117 <         * @note
96 <         */
97 <        SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, ForceField* ff, Globals* simParams);
98 <        virtual ~SimInfo();
111 >    /**
112 >     * Removes a molecule from SimInfo
113 >     *
114 >     * @return true if removing successfully, return false if molecule
115 >     * is not in this SimInfo
116 >     */
117 >    bool removeMolecule(Molecule* mol);
118  
119 <        /**
120 <         * Adds a molecule
121 <         * @return return true if adding successfully, return false if the molecule is already in SimInfo
122 <         * @param mol molecule to be added
104 <         */
105 <        bool addMolecule(Molecule* mol);
119 >    /** Returns the total number of molecules in the system. */
120 >    int getNGlobalMolecules() {
121 >      return nGlobalMols_;
122 >    }
123  
124 <        /**
125 <         * Removes a molecule from SimInfo
126 <         * @return true if removing successfully, return false if molecule is not in this SimInfo
127 <         */
111 <        bool removeMolecule(Molecule* mol);
124 >    /** Returns the total number of atoms in the system. */
125 >    int getNGlobalAtoms() {
126 >      return nGlobalAtoms_;
127 >    }
128  
129 <        /** Returns the total number of molecules in the system. */
130 <        int getNGlobalMolecules() {
131 <            return nGlobalMols_;
132 <        }
129 >    /** Returns the total number of cutoff groups in the system. */
130 >    int getNGlobalCutoffGroups() {
131 >      return nGlobalCutoffGroups_;
132 >    }
133  
134 <        /** Returns the total number of atoms in the system. */
135 <        int getNGlobalAtoms() {
136 <            return nGlobalAtoms_;
137 <        }
134 >    /**
135 >     * Returns the total number of integrable objects (total number of
136 >     * rigid bodies plus the total number of atoms which do not belong
137 >     * to the rigid bodies) in the system
138 >     */
139 >    int getNGlobalIntegrableObjects() {
140 >      return nGlobalIntegrableObjects_;
141 >    }
142  
143 <        /** Returns the total number of cutoff groups in the system. */
144 <        int getNGlobalCutoffGroups() {
145 <            return nGlobalCutoffGroups_;
146 <        }
143 >    /**
144 >     * Returns the total number of integrable objects (total number of
145 >     * rigid bodies plus the total number of atoms which do not belong
146 >     * to the rigid bodies) in the system
147 >     */
148 >    int getNGlobalRigidBodies() {
149 >      return nGlobalRigidBodies_;
150 >    }
151  
152 <        /**
153 <         * Returns the total number of integrable objects (total number of rigid bodies plus the total number
154 <         * of atoms which do not belong to the rigid bodies) in the system
155 <         */
132 <        int getNGlobalIntegrableObjects() {
133 <            return nGlobalIntegrableObjects_;
134 <        }
152 >    /** Returns the number of global bonds */        
153 >    unsigned int getNGlobalBonds(){
154 >      return nGlobalBonds_;
155 >    }
156  
157 <        /**
158 <         * Returns the total number of integrable objects (total number of rigid bodies plus the total number
159 <         * of atoms which do not belong to the rigid bodies) in the system
160 <         */
140 <        int getNGlobalRigidBodies() {
141 <            return nGlobalRigidBodies_;
142 <        }
157 >    /** Returns the number of global bends */        
158 >    unsigned int getNGlobalBends() {
159 >      return nGlobalBends_;
160 >    }
161  
162 <        int getNGlobalConstraints();
163 <        /**
164 <         * Returns the number of local molecules.
165 <         * @return the number of local molecules
148 <         */
149 <        int getNMolecules() {
150 <            return molecules_.size();
151 <        }
162 >    /** Returns the number of global torsions */        
163 >    unsigned int getNGlobalTorsions() {
164 >      return nGlobalTorsions_;
165 >    }
166  
167 <        /** Returns the number of local atoms */
168 <        unsigned int getNAtoms() {
169 <            return nAtoms_;
170 <        }
167 >    /** Returns the number of global inversions */        
168 >    unsigned int getNGlobalInversions() {
169 >      return nGlobalInversions_;
170 >    }
171  
172 <        /** Returns the number of local bonds */        
173 <        unsigned int getNBonds(){
174 <            return nBonds_;
175 <        }
172 >    int getNGlobalConstraints();
173 >    /**
174 >     * Returns the number of local molecules.
175 >     * @return the number of local molecules
176 >     */
177 >    int getNMolecules() {
178 >      return molecules_.size();
179 >    }
180  
181 <        /** Returns the number of local bends */        
182 <        unsigned int getNBends() {
183 <            return nBends_;
184 <        }
181 >    /** Returns the number of local atoms */
182 >    unsigned int getNAtoms() {
183 >      return nAtoms_;
184 >    }
185  
186 <        /** Returns the number of local torsions */        
187 <        unsigned int getNTorsions() {
170 <            return nTorsions_;
171 <        }
186 >    /** Returns the number of effective cutoff groups on local processor */
187 >    unsigned int getNLocalCutoffGroups();
188  
189 <        /** Returns the number of local rigid bodies */        
190 <        unsigned int getNRigidBodies() {
191 <            return nRigidBodies_;
192 <        }
189 >    /** Returns the number of local bonds */        
190 >    unsigned int getNBonds(){
191 >      return nBonds_;
192 >    }
193  
194 <        /** Returns the number of local integrable objects */
195 <        unsigned int getNIntegrableObjects() {
196 <            return nIntegrableObjects_;
197 <        }
194 >    /** Returns the number of local bends */        
195 >    unsigned int getNBends() {
196 >      return nBends_;
197 >    }
198  
199 <        /** Returns the number of local cutoff groups */
200 <        unsigned int getNCutoffGroups() {
201 <            return nCutoffGroups_;
202 <        }
199 >    /** Returns the number of local torsions */        
200 >    unsigned int getNTorsions() {
201 >      return nTorsions_;
202 >    }
203  
204 <        /** Returns the total number of constraints in this SimInfo */
205 <        unsigned int getNConstraints() {
206 <            return nConstraints_;
207 <        }
208 <        
209 <        /**
210 <         * Returns the first molecule in this SimInfo and intialize the iterator.
211 <         * @return the first molecule, return NULL if there is not molecule in this SimInfo
196 <         * @param i the iterator of molecule array (user shouldn't change it)
197 <         */
198 <        Molecule* beginMolecule(MoleculeIterator& i);
204 >    /** Returns the number of local inversions */        
205 >    unsigned int getNInversions() {
206 >      return nInversions_;
207 >    }
208 >    /** Returns the number of local rigid bodies */        
209 >    unsigned int getNRigidBodies() {
210 >      return nRigidBodies_;
211 >    }
212  
213 <        /**
214 <          * Returns the next avaliable Molecule based on the iterator.
215 <          * @return the next avaliable molecule, return NULL if reaching the end of the array
216 <          * @param i the iterator of molecule array
204 <          */
205 <        Molecule* nextMolecule(MoleculeIterator& i);
213 >    /** Returns the number of local integrable objects */
214 >    unsigned int getNIntegrableObjects() {
215 >      return nIntegrableObjects_;
216 >    }
217  
218 <        /** Returns the number of degrees of freedom */
219 <        int getNdf() {
220 <            return ndf_;
221 <        }
211 <
212 <        /** Returns the number of raw degrees of freedom */
213 <        int getNdfRaw() {
214 <            return ndfRaw_;
215 <        }
218 >    /** Returns the number of local cutoff groups */
219 >    unsigned int getNCutoffGroups() {
220 >      return nCutoffGroups_;
221 >    }
222  
223 <        /** Returns the number of translational degrees of freedom */
224 <        int getNdfTrans() {
225 <            return ndfTrans_;
226 <        }
221 <
222 <        //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
223 >    /** Returns the total number of constraints in this SimInfo */
224 >    unsigned int getNConstraints() {
225 >      return nConstraints_;
226 >    }
227          
228 <        /** Returns the total number of z-constraint molecules in the system */
229 <        int getNZconstraint() {
230 <            return nZconstraint_;
231 <        }
228 >    /**
229 >     * Returns the first molecule in this SimInfo and intialize the iterator.
230 >     * @return the first molecule, return NULL if there is not molecule in this SimInfo
231 >     * @param i the iterator of molecule array (user shouldn't change it)
232 >     */
233 >    Molecule* beginMolecule(MoleculeIterator& i);
234  
235 <        /**
236 <         * Sets the number of z-constraint molecules in the system.
237 <         */
238 <        void setNZconstraint(int nZconstraint) {
239 <            nZconstraint_ = nZconstraint;
240 <        }
235 >    /**
236 >     * Returns the next avaliable Molecule based on the iterator.
237 >     * @return the next avaliable molecule, return NULL if reaching the end of the array
238 >     * @param i the iterator of molecule array
239 >     */
240 >    Molecule* nextMolecule(MoleculeIterator& i);
241 >
242 >    /** Returns the total number of fluctuating charges that are present */
243 >    int getNFluctuatingCharges() {
244 >      return nGlobalFluctuatingCharges_;
245 >    }
246 >
247 >    /** Returns the number of degrees of freedom */
248 >    int getNdf() {
249 >      return ndf_ - getFdf();
250 >    }
251 >
252 >    /** Returns the number of degrees of freedom (LOCAL) */
253 >    int getNdfLocal() {
254 >      return ndfLocal_;
255 >    }
256 >
257 >    /** Returns the number of raw degrees of freedom */
258 >    int getNdfRaw() {
259 >      return ndfRaw_;
260 >    }
261 >
262 >    /** Returns the number of translational degrees of freedom */
263 >    int getNdfTrans() {
264 >      return ndfTrans_;
265 >    }
266 >
267 >    /** sets the current number of frozen degrees of freedom */
268 >    void setFdf(int fdf) {
269 >      fdf_local = fdf;
270 >    }
271 >
272 >    int getFdf();
273 >    
274 >    //getNZconstraint and setNZconstraint ruin the coherence of
275 >    //SimInfo class, need refactoring
276          
277 <        /** Returns the snapshot manager. */
278 <        SnapshotManager* getSnapshotManager() {
279 <            return sman_;
280 <        }
277 >    /** Returns the total number of z-constraint molecules in the system */
278 >    int getNZconstraint() {
279 >      return nZconstraint_;
280 >    }
281  
282 <        /** Sets the snapshot manager. */
283 <        void setSnapshotManager(SnapshotManager* sman);
282 >    /**
283 >     * Sets the number of z-constraint molecules in the system.
284 >     */
285 >    void setNZconstraint(int nZconstraint) {
286 >      nZconstraint_ = nZconstraint;
287 >    }
288          
289 <        /** Returns the force field */
290 <        ForceField* getForceField() {
291 <            return forceField_;
292 <        }
289 >    /** Returns the snapshot manager. */
290 >    SnapshotManager* getSnapshotManager() {
291 >      return sman_;
292 >    }
293 >    /** Returns the storage layout (computed by SimCreator) */
294 >    int getStorageLayout() {
295 >      return storageLayout_;
296 >    }
297 >    /** Sets the storage layout (computed by SimCreator) */
298 >    void setStorageLayout(int sl) {
299 >      storageLayout_ = sl;
300 >    }
301 >    
302 >    /** Sets the snapshot manager. */
303 >    void setSnapshotManager(SnapshotManager* sman);
304 >        
305 >    /** Returns the force field */
306 >    ForceField* getForceField() {
307 >      return forceField_;
308 >    }
309  
310 <        Globals* getSimParams() {
311 <            return simParams_;
312 <        }
310 >    Globals* getSimParams() {
311 >      return simParams_;
312 >    }
313  
314 <        /** Returns the velocity of center of mass of the whole system.*/
315 <        Vector3d getComVel();
314 >    void update();
315 >    /**
316 >     * Do final bookkeeping before Force managers need their data.
317 >     */
318 >    void prepareTopology();
319  
256        /** Returns the center of the mass of the whole system.*/
257        Vector3d getCom();
320  
321 <        /** main driver function to interact with fortran during the initialization and molecule migration */
322 <        void update();
321 >    /** Returns the local index manager */
322 >    LocalIndexManager* getLocalIndexManager() {
323 >      return &localIndexMan_;
324 >    }
325  
326 <        /** Returns the local index manager */
327 <        LocalIndexManager* getLocalIndexManager() {
328 <            return &localIndexMan_;
329 <        }
326 >    int getMoleculeStampId(int globalIndex) {
327 >      //assert(globalIndex < molStampIds_.size())
328 >      return molStampIds_[globalIndex];
329 >    }
330  
331 <        int getMoleculeStampId(int globalIndex) {
332 <            //assert(globalIndex < molStampIds_.size())
333 <            return molStampIds_[globalIndex];
334 <        }
331 >    /** Returns the molecule stamp */
332 >    MoleculeStamp* getMoleculeStamp(int id) {
333 >      return moleculeStamps_[id];
334 >    }
335  
336 <        /** Returns the molecule stamp */
337 <        MoleculeStamp* getMoleculeStamp(int id) {
338 <            return moleculeStamps_[id];
339 <        }
336 >    /** Return the total number of the molecule stamps */
337 >    int getNMoleculeStamp() {
338 >      return moleculeStamps_.size();
339 >    }
340 >    /**
341 >     * Finds a molecule with a specified global index
342 >     * @return a pointer point to found molecule
343 >     * @param index
344 >     */
345 >    Molecule* getMoleculeByGlobalIndex(int index) {
346 >      MoleculeIterator i;
347 >      i = molecules_.find(index);
348  
349 <        /** Return the total number of the molecule stamps */
350 <        int getNMoleculeStamp() {
279 <            return moleculeStamps_.size();
280 <        }
281 <        /**
282 <         * Finds a molecule with a specified global index
283 <         * @return a pointer point to found molecule
284 <         * @param index
285 <         */
286 <        Molecule* getMoleculeByGlobalIndex(int index) {
287 <            MoleculeIterator i;
288 <            i = molecules_.find(index);
349 >      return i != molecules_.end() ? i->second : NULL;
350 >    }
351  
352 <            return i != molecules_.end() ? i->second : NULL;
353 <        }
352 >    int getGlobalMolMembership(int id){
353 >      return globalMolMembership_[id];
354 >    }
355  
356 <        /** Calculate the maximum cutoff radius based on the atom types */
357 <        double calcMaxCutoffRadius();
356 >    /**
357 >     * returns a vector which maps the local atom index on this
358 >     * processor to the global atom index.  With only one processor,
359 >     * these should be identical.
360 >     */
361 >    vector<int> getGlobalAtomIndices();
362  
363 <        double getRcut() {
364 <            return rcut_;
365 <        }
363 >    /**
364 >     * returns a vector which maps the local cutoff group index on
365 >     * this processor to the global cutoff group index.  With only one
366 >     * processor, these should be identical.
367 >     */
368 >    vector<int> getGlobalGroupIndices();
369  
300        double getRsw() {
301            return rsw_;
302        }
370          
371 <        std::string getFinalConfigFileName() {
372 <            return finalConfigFileName_;
373 <        }
307 <        
308 <        void setFinalConfigFileName(const std::string& fileName) {
309 <            finalConfigFileName_ = fileName;
310 <        }
371 >    string getFinalConfigFileName() {
372 >      return finalConfigFileName_;
373 >    }
374  
375 <        std::string getDumpFileName() {
376 <            return dumpFileName_;
377 <        }
375 >    void setFinalConfigFileName(const string& fileName) {
376 >      finalConfigFileName_ = fileName;
377 >    }
378 >
379 >    string getRawMetaData() {
380 >      return rawMetaData_;
381 >    }
382 >    void setRawMetaData(const string& rawMetaData) {
383 >      rawMetaData_ = rawMetaData;
384 >    }
385          
386 <        void setDumpFileName(const std::string& fileName) {
387 <            dumpFileName_ = fileName;
388 <        }
386 >    string getDumpFileName() {
387 >      return dumpFileName_;
388 >    }
389 >        
390 >    void setDumpFileName(const string& fileName) {
391 >      dumpFileName_ = fileName;
392 >    }
393  
394 <        std::string getStatFileName() {
395 <            return statFileName_;
396 <        }
394 >    string getStatFileName() {
395 >      return statFileName_;
396 >    }
397          
398 <        void setStatFileName(const std::string& fileName) {
399 <            statFileName_ = fileName;
400 <        }
398 >    void setStatFileName(const string& fileName) {
399 >      statFileName_ = fileName;
400 >    }
401 >        
402 >    string getRestFileName() {
403 >      return restFileName_;
404 >    }
405 >        
406 >    void setRestFileName(const string& fileName) {
407 >      restFileName_ = fileName;
408 >    }
409  
410 <        /**
411 <         * Sets GlobalGroupMembership
412 <         * @see #SimCreator::setGlobalIndex
413 <         */  
414 <        void setGlobalGroupMembership(const std::vector<int>& globalGroupMembership) {
415 <            assert(globalGroupMembership.size() == nGlobalAtoms_);
416 <            globalGroupMembership_ = globalGroupMembership;
335 <        }
410 >    /**
411 >     * Sets GlobalGroupMembership
412 >     */  
413 >    void setGlobalGroupMembership(const vector<int>& ggm) {
414 >      assert(ggm.size() == static_cast<size_t>(nGlobalAtoms_));
415 >      globalGroupMembership_ = ggm;
416 >    }
417  
418 <        /**
419 <         * Sets GlobalMolMembership
420 <         * @see #SimCreator::setGlobalIndex
421 <         */        
422 <        void setGlobalMolMembership(const std::vector<int>& globalMolMembership) {
423 <            assert(globalMolMembership.size() == nGlobalAtoms_);
424 <            globalMolMembership_ = globalMolMembership;
425 <        }
418 >    /**
419 >     * Sets GlobalMolMembership
420 >     */        
421 >    void setGlobalMolMembership(const vector<int>& gmm) {
422 >      assert(gmm.size() == (static_cast<size_t>(nGlobalAtoms_ +
423 >                                                nGlobalRigidBodies_)));
424 >      globalMolMembership_ = gmm;
425 >    }
426  
427  
428 <        bool isFortranInitialized() {
429 <            return fortranInitialized_;
430 <        }
428 >    bool isTopologyDone() {
429 >      return topologyDone_;
430 >    }
431          
432 <        //below functions are just forward functions
433 <        //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
434 <        //the other hand, has-a relation need composing.
354 <        /**
355 <         * Adds property into property map
356 <         * @param genData GenericData to be added into PropertyMap
357 <         */
358 <        void addProperty(GenericData* genData);
432 >    bool getCalcBoxDipole() {
433 >      return calcBoxDipole_;
434 >    }
435  
436 <        /**
437 <         * Removes property from PropertyMap by name
438 <         * @param propName the name of property to be removed
363 <         */
364 <        void removeProperty(const std::string& propName);
436 >    bool getUseAtomicVirial() {
437 >      return useAtomicVirial_;
438 >    }
439  
440 <        /**
441 <         * clear all of the properties
442 <         */
443 <        void clearProperties();
440 >    /**
441 >     * Adds property into property map
442 >     * @param genData GenericData to be added into PropertyMap
443 >     */
444 >    void addProperty(GenericData* genData);
445  
446 <        /**
447 <         * Returns all names of properties
448 <         * @return all names of properties
449 <         */
450 <        std::vector<std::string> getPropertyNames();
446 >    /**
447 >     * Removes property from PropertyMap by name
448 >     * @param propName the name of property to be removed
449 >     */
450 >    void removeProperty(const string& propName);
451  
452 <        /**
453 <         * Returns all of the properties in PropertyMap
454 <         * @return all of the properties in PropertyMap
455 <         */      
381 <        std::vector<GenericData*> getProperties();
452 >    /**
453 >     * clear all of the properties
454 >     */
455 >    void clearProperties();
456  
457 <        /**
458 <         * Returns property
459 <         * @param propName name of property
460 <         * @return a pointer point to property with propName. If no property named propName
461 <         * exists, return NULL
388 <         */      
389 <        GenericData* getPropertyByName(const std::string& propName);
457 >    /**
458 >     * Returns all names of properties
459 >     * @return all names of properties
460 >     */
461 >    vector<string> getPropertyNames();
462  
463 <        /**
464 <         * add all exclude pairs of a molecule into exclude list.
465 <         */
466 <        void addExcludePairs(Molecule* mol);
463 >    /**
464 >     * Returns all of the properties in PropertyMap
465 >     * @return all of the properties in PropertyMap
466 >     */      
467 >    vector<GenericData*> getProperties();
468  
469 <        /**
470 <         * remove all exclude pairs which belong to a molecule from exclude list
471 <         */
469 >    /**
470 >     * Returns property
471 >     * @param propName name of property
472 >     * @return a pointer point to property with propName. If no property named propName
473 >     * exists, return NULL
474 >     */      
475 >    GenericData* getPropertyByName(const string& propName);
476  
477 <        void removeExcludePairs(Molecule* mol);
477 >    /**
478 >     * add all special interaction pairs (including excluded
479 >     * interactions) in a molecule into the appropriate lists.
480 >     */
481 >    void addInteractionPairs(Molecule* mol);
482  
483 +    /**
484 +     * remove all special interaction pairs which belong to a molecule
485 +     * from the appropriate lists.
486 +     */
487 +    void removeInteractionPairs(Molecule* mol);
488  
489 <        /** Returns the unique atom types of local processor in an array */
490 <        std::set<AtomType*> getUniqueAtomTypes();
489 >    /** Returns the set of atom types present in this simulation */
490 >    set<AtomType*> getSimulatedAtomTypes();
491 >
492 >    /** Returns the global count of atoms of a particular type */
493 >    int getGlobalCountOfType(AtomType* atype);
494          
495 <        friend std::ostream& operator <<(std::ostream& o, SimInfo& info);
495 >    friend ostream& operator <<(ostream& o, SimInfo& info);
496  
497 <        void getCutoff(double& rcut, double& rsw);
497 >    void getCutoff(RealType& rcut, RealType& rsw);
498          
499 <    private:
499 >  private:
500  
501 <        /** fill up the simtype struct*/
502 <        void setupSimType();
501 >    /** fill up the simtype struct and other simulation-related variables */
502 >    void setupSimVariables();
503  
415        /**
416         * Setup Fortran Simulation
417         * @see #setupFortranParallel
418         */
419        void setupFortranSim();
504  
505 <        /** Figure out the radius of cutoff, radius of switching function and pass them to fortran */
506 <        void setupCutoff();
505 >    /** Determine if we need to accumulate the simulation box dipole */
506 >    void setupAccumulateBoxDipole();
507  
508 <        /** Calculates the number of degress of freedom in the whole system */
509 <        void calcNdf();
510 <        void calcNdfRaw();
511 <        void calcNdfTrans();
508 >    /** Calculates the number of degress of freedom in the whole system */
509 >    void calcNdf();
510 >    void calcNdfRaw();
511 >    void calcNdfTrans();
512  
513 <        /**
514 <         * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
515 <         * system.
516 <         */
517 <        void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
513 >    /**
514 >     * Adds molecule stamp and the total number of the molecule with
515 >     * same molecule stamp in the whole system.
516 >     */
517 >    void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
518  
519 <        ForceField* forceField_;      
520 <        Globals* simParams_;
519 >    // Other classes holdingn important information
520 >    ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
521 >    Globals* simParams_;     /**< provides access to simulation parameters set by user */
522  
523 <        std::map<int, Molecule*>  molecules_; /**< Molecule array */
523 >    ///  Counts of local objects
524 >    int nAtoms_;              /**< number of atoms in local processor */
525 >    int nBonds_;              /**< number of bonds in local processor */
526 >    int nBends_;              /**< number of bends in local processor */
527 >    int nTorsions_;           /**< number of torsions in local processor */
528 >    int nInversions_;         /**< number of inversions in local processor */
529 >    int nRigidBodies_;        /**< number of rigid bodies in local processor */
530 >    int nIntegrableObjects_;  /**< number of integrable objects in local processor */
531 >    int nCutoffGroups_;       /**< number of cutoff groups in local processor */
532 >    int nConstraints_;        /**< number of constraints in local processors */
533 >    int nFluctuatingCharges_; /**< number of fluctuating charges in local processor */
534          
535 <        //degress of freedom
536 <        int ndf_;           /**< number of degress of freedom (excludes constraints),  ndf_ is local */
537 <        int ndfRaw_;    /**< number of degress of freedom (includes constraints),  ndfRaw_ is local */
538 <        int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
539 <        int nZconstraint_; /** number of  z-constraint molecules, nZconstraint_ is global */
540 <        
541 <        //number of global objects
542 <        int nGlobalMols_;       /**< number of molecules in the system */
543 <        int nGlobalAtoms_;   /**< number of atoms in the system */
544 <        int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
545 <        int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
546 <        int nGlobalRigidBodies_; /**< number of rigid bodies in this system */
547 <        /**
548 <         * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
549 <         * corresponding content is the global index of cutoff group this atom belong to.
550 <         * It is filled by SimCreator once and only once, since it never changed during the simulation.
551 <         */
552 <        std::vector<int> globalGroupMembership_;
535 >    /// Counts of global objects
536 >    int nGlobalMols_;              /**< number of molecules in the system (GLOBAL) */
537 >    int nGlobalAtoms_;             /**< number of atoms in the system (GLOBAL) */
538 >    int nGlobalCutoffGroups_;      /**< number of cutoff groups in this system (GLOBAL) */
539 >    int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
540 >    int nGlobalRigidBodies_;       /**< number of rigid bodies in this system (GLOBAL) */
541 >    int nGlobalFluctuatingCharges_;/**< number of fluctuating charges in this system (GLOBAL) */
542 >    int nGlobalBonds_;              /**< number of bonds in the system */
543 >    int nGlobalBends_;              /**< number of bends in the system */
544 >    int nGlobalTorsions_;           /**< number of torsions in the system */
545 >    int nGlobalInversions_;         /**< number of inversions in the system */
546 >      
547 >    /// Degress of freedom
548 >    int ndf_;          /**< number of degress of freedom (excludes constraints) (LOCAL) */
549 >    int ndfLocal_;     /**< number of degrees of freedom (LOCAL, excludes constraints) */
550 >    int fdf_local;     /**< number of frozen degrees of freedom (LOCAL) */
551 >    int fdf_;          /**< number of frozen degrees of freedom (GLOBAL) */
552 >    int ndfRaw_;       /**< number of degress of freedom (includes constraints),  (LOCAL) */
553 >    int ndfTrans_;     /**< number of translation degress of freedom, (LOCAL) */
554 >    int nZconstraint_; /**< number of  z-constraint molecules (GLOBAL) */
555  
556 <        /**
557 <         * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
558 <         * corresponding content is the global index of molecule this atom belong to.
559 <         * It is filled by SimCreator once and only once, since it is never changed during the simulation.
560 <         */
561 <        std::vector<int> globalMolMembership_;        
556 >    /// logicals
557 >    bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
558 >    bool usesDirectionalAtoms_;   /**< are there atoms with position AND orientation? */
559 >    bool usesMetallicAtoms_;      /**< are there transition metal atoms? */
560 >    bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
561 >    bool usesFluctuatingCharges_; /**< are there fluctuating charges? */
562 >    bool usesAtomicVirial_;       /**< are we computing atomic virials? */
563 >    bool requiresPrepair_;        /**< does this simulation require a pre-pair loop? */
564 >    bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
565 >    bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
566  
567 <        
568 <        std::vector<int> molStampIds_;                                /**< stamp id array of all molecules in the system */
569 <        std::vector<MoleculeStamp*> moleculeStamps_;      /**< molecule stamps array */        
570 <        
571 <        //number of local objects
572 <        int nAtoms_;                        /**< number of atoms in local processor */
573 <        int nBonds_;                        /**< number of bonds in local processor */
574 <        int nBends_;                        /**< number of bends in local processor */
474 <        int nTorsions_;                    /**< number of torsions in local processor */
475 <        int nRigidBodies_;              /**< number of rigid bodies in local processor */
476 <        int nIntegrableObjects_;    /**< number of integrable objects in local processor */
477 <        int nCutoffGroups_;             /**< number of cutoff groups in local processor */
478 <        int nConstraints_;              /**< number of constraints in local processors */
567 >  public:
568 >    bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
569 >    bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
570 >    bool usesFluctuatingCharges() { return usesFluctuatingCharges_; }
571 >    bool usesAtomicVirial() { return usesAtomicVirial_; }
572 >    bool requiresPrepair() { return requiresPrepair_; }
573 >    bool requiresSkipCorrection() { return requiresSkipCorrection_;}
574 >    bool requiresSelfCorrection() { return requiresSelfCorrection_;}
575  
576 <        simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
577 <        Exclude exclude_;      
578 <        PropertyMap properties_;                  /**< Generic Property */
483 <        SnapshotManager* sman_;               /**< SnapshotManager */
576 >  private:
577 >    /// Data structures holding primary simulation objects
578 >    map<int, Molecule*>  molecules_;  /**< map holding pointers to LOCAL molecules */
579  
580 <        /**
581 <         * The reason to have a local index manager is that when molecule is migrating to other processors,
582 <         * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
583 <         * information of molecule migrating to current processor, Migrator class can query  the LocalIndexManager
584 <         * to make a efficient data moving plan.
585 <         */        
586 <        LocalIndexManager localIndexMan_;
580 >    /// Stamps are templates for objects that are then used to create
581 >    /// groups of objects.  For example, a molecule stamp contains
582 >    /// information on how to build that molecule (i.e. the topology,
583 >    /// the atoms, the bonds, etc.)  Once the system is built, the
584 >    /// stamps are no longer useful.
585 >    vector<int> molStampIds_;                /**< stamp id for molecules in the system */
586 >    vector<MoleculeStamp*> moleculeStamps_;  /**< molecule stamps array */        
587  
588 <        //file names
589 <        std::string finalConfigFileName_;
590 <        std::string dumpFileName_;
591 <        std::string statFileName_;
588 >    /**
589 >     * A vector that maps between the global index of an atom, and the
590 >     * global index of cutoff group the atom belong to.  It is filled
591 >     * by SimCreator once and only once, since it never changed during
592 >     * the simulation.  It should be nGlobalAtoms_ in size.
593 >     */
594 >    vector<int> globalGroupMembership_;
595 >  public:
596 >    vector<int> getGlobalGroupMembership() { return globalGroupMembership_; }
597 >  private:
598  
599 <        double rcut_;       /**< cutoff radius*/
600 <        double rsw_;        /**< radius of switching function*/
599 >    /**
600 >     * A vector that maps between the global index of an atom and the
601 >     * global index of the molecule the atom belongs to.  It is filled
602 >     * by SimCreator once and only once, since it is never changed
603 >     * during the simulation. It shoudl be nGlobalAtoms_ in size.
604 >     */
605 >    vector<int> globalMolMembership_;
606  
607 <        bool fortranInitialized_; /**< flag indicate whether fortran side is initialized */
607 >    /**
608 >     * A vector that maps between the local index of an atom and the
609 >     * index of the AtomType.
610 >     */
611 >    vector<int> identArray_;
612 >  public:
613 >    vector<int> getIdentArray() { return identArray_; }
614  
615 < #ifdef IS_MPI
616 <    //in Parallel version, we need MolToProc
617 <    public:
618 <                
619 <        /**
620 <         * Finds the processor where a molecule resides
621 <         * @return the id of the processor which contains the molecule
622 <         * @param globalIndex global Index of the molecule
623 <         */
624 <        int getMolToProc(int globalIndex) {
625 <            //assert(globalIndex < molToProcMap_.size());
626 <            return molToProcMap_[globalIndex];
627 <        }
615 >    /**
616 >     * A vector that contains information about the local region of an
617 >     * atom (used for fluctuating charges, etc.)
618 >     */
619 >  private:
620 >    vector<int> regions_;
621 >  public:
622 >    vector<int> getRegions() { return regions_; }
623 >  private:
624 >    /**
625 >     * A vector which contains the fractional contribution of an
626 >     * atom's mass to the total mass of the cutoffGroup that atom
627 >     * belongs to.  In the case of single atom cutoff groups, the mass
628 >     * factor for that atom is 1.  For massless atoms, the factor is
629 >     * also 1.
630 >     */
631 >    vector<RealType> massFactors_;
632 >  public:
633 >    vector<RealType> getMassFactors() { return massFactors_; }
634  
635 <        /**
636 <         * Set MolToProcMap array
637 <         * @see #SimCreator::divideMolecules
638 <         */
521 <        void setMolToProcMap(const std::vector<int>& molToProcMap) {
522 <            molToProcMap_ = molToProcMap;
523 <        }
524 <        
525 <    private:
635 >    PairList* getExcludedInteractions() { return &excludedInteractions_; }
636 >    PairList* getOneTwoInteractions() { return &oneTwoInteractions_; }
637 >    PairList* getOneThreeInteractions() { return &oneThreeInteractions_; }
638 >    PairList* getOneFourInteractions() { return &oneFourInteractions_; }
639  
640 <        void setupFortranParallel();
641 <        
642 <        /**
643 <         * The size of molToProcMap_ is equal to total number of molecules in the system.
644 <         *  It maps a molecule to the processor on which it resides. it is filled by SimCreator once and only
645 <         * once.
646 <         */        
534 <        std::vector<int> molToProcMap_;
640 >  private:
641 >              
642 >    /// lists to handle atoms needing special treatment in the non-bonded interactions
643 >    PairList excludedInteractions_;  /**< atoms excluded from interacting with each other */
644 >    PairList oneTwoInteractions_;    /**< atoms that are directly Bonded */
645 >    PairList oneThreeInteractions_;  /**< atoms sharing a Bend */    
646 >    PairList oneFourInteractions_;   /**< atoms sharing a Torsion */
647  
648 < #endif
648 >    PropertyMap properties_;       /**< Generic Properties can be added */
649 >    SnapshotManager* sman_;        /**< SnapshotManager (handles particle positions, etc.) */
650 >    int storageLayout_;            /**< Bits to tell how much data to store on each object */
651  
652 < };
652 >    /**
653 >     * The reason to have a local index manager is that when molecule
654 >     * is migrating to other processors, the atoms and the
655 >     * rigid-bodies will release their local indices to
656 >     * LocalIndexManager. Combining the information of molecule
657 >     * migrating to current processor, Migrator class can query the
658 >     * LocalIndexManager to make a efficient data moving plan.
659 >     */        
660 >    LocalIndexManager localIndexMan_;
661  
662 < } //namespace oopse
662 >    // unparsed MetaData block for storing in Dump and EOR files:
663 >    string rawMetaData_;
664 >
665 >    // file names
666 >    string finalConfigFileName_;
667 >    string dumpFileName_;
668 >    string statFileName_;
669 >    string restFileName_;
670 >
671 >    bool topologyDone_;  /** flag to indicate whether the topology has
672 >                             been scanned and all the relevant
673 >                             bookkeeping has been done*/
674 >    
675 >    bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
676 >                            the simulation box dipole moment */
677 >    
678 >    bool useAtomicVirial_; /**< flag to indicate whether or not we use
679 >                              Atomic Virials to calculate the pressure */
680 >    
681 >  public:
682 >    /**
683 >     * return an integral objects by its global index. In MPI
684 >     * version, if the StuntDouble with specified global index does
685 >      * not belong to local processor, a NULL will be return.
686 >      */
687 >    StuntDouble* getIOIndexToIntegrableObject(int index);
688 >    void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
689 >    
690 >  private:
691 >    vector<StuntDouble*> IOIndexToIntegrableObject;
692 >    
693 >  public:
694 >                
695 >    /**
696 >     * Finds the processor where a molecule resides
697 >     * @return the id of the processor which contains the molecule
698 >     * @param globalIndex global Index of the molecule
699 >     */
700 >    int getMolToProc(int globalIndex) {
701 >      //assert(globalIndex < molToProcMap_.size());
702 >      return molToProcMap_[globalIndex];
703 >    }
704 >    
705 >    /**
706 >     * Set MolToProcMap array
707 >     */
708 >    void setMolToProcMap(const vector<int>& molToProcMap) {
709 >      molToProcMap_ = molToProcMap;
710 >    }
711 >        
712 >  private:
713 >        
714 >    /**
715 >     * The size of molToProcMap_ is equal to total number of molecules
716 >     * in the system.  It maps a molecule to the processor on which it
717 >     * resides. it is filled by SimCreator once and only once.
718 >     */        
719 >    vector<int> molToProcMap_;
720 >
721 >  };
722 >
723 > } //namespace OpenMD
724   #endif //BRAINS_SIMMODEL_HPP
725  

Comparing trunk/src/brains/SimInfo.hpp (property svn:keywords):
Revision 413 by tim, Wed Mar 9 17:30:29 2005 UTC vs.
Revision 1953 by gezelter, Thu Dec 5 18:19:26 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines