ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.hpp
Revision: 1953
Committed: Thu Dec 5 18:19:26 2013 UTC (11 years, 4 months ago) by gezelter
File size: 24351 byte(s)
Log Message:
Rewrote much of selection module, added a bond correlation function

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 /**
44 * @file SimInfo.hpp
45 * @author tlin
46 * @date 11/02/2004
47 * @version 1.0
48 */
49
50 #ifndef BRAINS_SIMMODEL_HPP
51 #define BRAINS_SIMMODEL_HPP
52
53 #include <iostream>
54 #include <set>
55 #include <utility>
56 #include <vector>
57
58 #include "brains/PairList.hpp"
59 #include "io/Globals.hpp"
60 #include "math/Vector3.hpp"
61 #include "math/SquareMatrix3.hpp"
62 #include "types/MoleculeStamp.hpp"
63 #include "brains/ForceField.hpp"
64 #include "utils/PropertyMap.hpp"
65 #include "utils/LocalIndexManager.hpp"
66 #include "nonbonded/SwitchingFunction.hpp"
67
68 using namespace std;
69 namespace OpenMD{
70 //forward declaration
71 class SnapshotManager;
72 class Molecule;
73 class SelectionManager;
74 class StuntDouble;
75
76 /**
77 * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
78 *
79 * @brief One of the heavy-weight classes of OpenMD, SimInfo
80 * maintains objects and variables relating to the current
81 * simulation. This includes the master list of Molecules. The
82 * Molecule class maintains all of the concrete objects (Atoms,
83 * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
84 * Constraints). In both the single and parallel versions, Atoms and
85 * RigidBodies have both global and local indices.
86 */
87 class SimInfo {
88 public:
89 typedef map<int, Molecule*>::iterator MoleculeIterator;
90
91 /**
92 * Constructor of SimInfo
93 *
94 * @param ff pointer to a concrete ForceField instance
95 *
96 * @param simParams pointer to the simulation parameters in a Globals object
97 */
98 SimInfo(ForceField* ff, Globals* simParams);
99 virtual ~SimInfo();
100
101 /**
102 * Adds a molecule
103 *
104 * @return return true if adding successfully, return false if the
105 * molecule is already in SimInfo
106 *
107 * @param mol Molecule to be added
108 */
109 bool addMolecule(Molecule* mol);
110
111 /**
112 * Removes a molecule from SimInfo
113 *
114 * @return true if removing successfully, return false if molecule
115 * is not in this SimInfo
116 */
117 bool removeMolecule(Molecule* mol);
118
119 /** Returns the total number of molecules in the system. */
120 int getNGlobalMolecules() {
121 return nGlobalMols_;
122 }
123
124 /** Returns the total number of atoms in the system. */
125 int getNGlobalAtoms() {
126 return nGlobalAtoms_;
127 }
128
129 /** Returns the total number of cutoff groups in the system. */
130 int getNGlobalCutoffGroups() {
131 return nGlobalCutoffGroups_;
132 }
133
134 /**
135 * Returns the total number of integrable objects (total number of
136 * rigid bodies plus the total number of atoms which do not belong
137 * to the rigid bodies) in the system
138 */
139 int getNGlobalIntegrableObjects() {
140 return nGlobalIntegrableObjects_;
141 }
142
143 /**
144 * Returns the total number of integrable objects (total number of
145 * rigid bodies plus the total number of atoms which do not belong
146 * to the rigid bodies) in the system
147 */
148 int getNGlobalRigidBodies() {
149 return nGlobalRigidBodies_;
150 }
151
152 /** Returns the number of global bonds */
153 unsigned int getNGlobalBonds(){
154 return nGlobalBonds_;
155 }
156
157 /** Returns the number of global bends */
158 unsigned int getNGlobalBends() {
159 return nGlobalBends_;
160 }
161
162 /** Returns the number of global torsions */
163 unsigned int getNGlobalTorsions() {
164 return nGlobalTorsions_;
165 }
166
167 /** Returns the number of global inversions */
168 unsigned int getNGlobalInversions() {
169 return nGlobalInversions_;
170 }
171
172 int getNGlobalConstraints();
173 /**
174 * Returns the number of local molecules.
175 * @return the number of local molecules
176 */
177 int getNMolecules() {
178 return molecules_.size();
179 }
180
181 /** Returns the number of local atoms */
182 unsigned int getNAtoms() {
183 return nAtoms_;
184 }
185
186 /** Returns the number of effective cutoff groups on local processor */
187 unsigned int getNLocalCutoffGroups();
188
189 /** Returns the number of local bonds */
190 unsigned int getNBonds(){
191 return nBonds_;
192 }
193
194 /** Returns the number of local bends */
195 unsigned int getNBends() {
196 return nBends_;
197 }
198
199 /** Returns the number of local torsions */
200 unsigned int getNTorsions() {
201 return nTorsions_;
202 }
203
204 /** Returns the number of local inversions */
205 unsigned int getNInversions() {
206 return nInversions_;
207 }
208 /** Returns the number of local rigid bodies */
209 unsigned int getNRigidBodies() {
210 return nRigidBodies_;
211 }
212
213 /** Returns the number of local integrable objects */
214 unsigned int getNIntegrableObjects() {
215 return nIntegrableObjects_;
216 }
217
218 /** Returns the number of local cutoff groups */
219 unsigned int getNCutoffGroups() {
220 return nCutoffGroups_;
221 }
222
223 /** Returns the total number of constraints in this SimInfo */
224 unsigned int getNConstraints() {
225 return nConstraints_;
226 }
227
228 /**
229 * Returns the first molecule in this SimInfo and intialize the iterator.
230 * @return the first molecule, return NULL if there is not molecule in this SimInfo
231 * @param i the iterator of molecule array (user shouldn't change it)
232 */
233 Molecule* beginMolecule(MoleculeIterator& i);
234
235 /**
236 * Returns the next avaliable Molecule based on the iterator.
237 * @return the next avaliable molecule, return NULL if reaching the end of the array
238 * @param i the iterator of molecule array
239 */
240 Molecule* nextMolecule(MoleculeIterator& i);
241
242 /** Returns the total number of fluctuating charges that are present */
243 int getNFluctuatingCharges() {
244 return nGlobalFluctuatingCharges_;
245 }
246
247 /** Returns the number of degrees of freedom */
248 int getNdf() {
249 return ndf_ - getFdf();
250 }
251
252 /** Returns the number of degrees of freedom (LOCAL) */
253 int getNdfLocal() {
254 return ndfLocal_;
255 }
256
257 /** Returns the number of raw degrees of freedom */
258 int getNdfRaw() {
259 return ndfRaw_;
260 }
261
262 /** Returns the number of translational degrees of freedom */
263 int getNdfTrans() {
264 return ndfTrans_;
265 }
266
267 /** sets the current number of frozen degrees of freedom */
268 void setFdf(int fdf) {
269 fdf_local = fdf;
270 }
271
272 int getFdf();
273
274 //getNZconstraint and setNZconstraint ruin the coherence of
275 //SimInfo class, need refactoring
276
277 /** Returns the total number of z-constraint molecules in the system */
278 int getNZconstraint() {
279 return nZconstraint_;
280 }
281
282 /**
283 * Sets the number of z-constraint molecules in the system.
284 */
285 void setNZconstraint(int nZconstraint) {
286 nZconstraint_ = nZconstraint;
287 }
288
289 /** Returns the snapshot manager. */
290 SnapshotManager* getSnapshotManager() {
291 return sman_;
292 }
293 /** Returns the storage layout (computed by SimCreator) */
294 int getStorageLayout() {
295 return storageLayout_;
296 }
297 /** Sets the storage layout (computed by SimCreator) */
298 void setStorageLayout(int sl) {
299 storageLayout_ = sl;
300 }
301
302 /** Sets the snapshot manager. */
303 void setSnapshotManager(SnapshotManager* sman);
304
305 /** Returns the force field */
306 ForceField* getForceField() {
307 return forceField_;
308 }
309
310 Globals* getSimParams() {
311 return simParams_;
312 }
313
314 void update();
315 /**
316 * Do final bookkeeping before Force managers need their data.
317 */
318 void prepareTopology();
319
320
321 /** Returns the local index manager */
322 LocalIndexManager* getLocalIndexManager() {
323 return &localIndexMan_;
324 }
325
326 int getMoleculeStampId(int globalIndex) {
327 //assert(globalIndex < molStampIds_.size())
328 return molStampIds_[globalIndex];
329 }
330
331 /** Returns the molecule stamp */
332 MoleculeStamp* getMoleculeStamp(int id) {
333 return moleculeStamps_[id];
334 }
335
336 /** Return the total number of the molecule stamps */
337 int getNMoleculeStamp() {
338 return moleculeStamps_.size();
339 }
340 /**
341 * Finds a molecule with a specified global index
342 * @return a pointer point to found molecule
343 * @param index
344 */
345 Molecule* getMoleculeByGlobalIndex(int index) {
346 MoleculeIterator i;
347 i = molecules_.find(index);
348
349 return i != molecules_.end() ? i->second : NULL;
350 }
351
352 int getGlobalMolMembership(int id){
353 return globalMolMembership_[id];
354 }
355
356 /**
357 * returns a vector which maps the local atom index on this
358 * processor to the global atom index. With only one processor,
359 * these should be identical.
360 */
361 vector<int> getGlobalAtomIndices();
362
363 /**
364 * returns a vector which maps the local cutoff group index on
365 * this processor to the global cutoff group index. With only one
366 * processor, these should be identical.
367 */
368 vector<int> getGlobalGroupIndices();
369
370
371 string getFinalConfigFileName() {
372 return finalConfigFileName_;
373 }
374
375 void setFinalConfigFileName(const string& fileName) {
376 finalConfigFileName_ = fileName;
377 }
378
379 string getRawMetaData() {
380 return rawMetaData_;
381 }
382 void setRawMetaData(const string& rawMetaData) {
383 rawMetaData_ = rawMetaData;
384 }
385
386 string getDumpFileName() {
387 return dumpFileName_;
388 }
389
390 void setDumpFileName(const string& fileName) {
391 dumpFileName_ = fileName;
392 }
393
394 string getStatFileName() {
395 return statFileName_;
396 }
397
398 void setStatFileName(const string& fileName) {
399 statFileName_ = fileName;
400 }
401
402 string getRestFileName() {
403 return restFileName_;
404 }
405
406 void setRestFileName(const string& fileName) {
407 restFileName_ = fileName;
408 }
409
410 /**
411 * Sets GlobalGroupMembership
412 */
413 void setGlobalGroupMembership(const vector<int>& ggm) {
414 assert(ggm.size() == static_cast<size_t>(nGlobalAtoms_));
415 globalGroupMembership_ = ggm;
416 }
417
418 /**
419 * Sets GlobalMolMembership
420 */
421 void setGlobalMolMembership(const vector<int>& gmm) {
422 assert(gmm.size() == (static_cast<size_t>(nGlobalAtoms_ +
423 nGlobalRigidBodies_)));
424 globalMolMembership_ = gmm;
425 }
426
427
428 bool isTopologyDone() {
429 return topologyDone_;
430 }
431
432 bool getCalcBoxDipole() {
433 return calcBoxDipole_;
434 }
435
436 bool getUseAtomicVirial() {
437 return useAtomicVirial_;
438 }
439
440 /**
441 * Adds property into property map
442 * @param genData GenericData to be added into PropertyMap
443 */
444 void addProperty(GenericData* genData);
445
446 /**
447 * Removes property from PropertyMap by name
448 * @param propName the name of property to be removed
449 */
450 void removeProperty(const string& propName);
451
452 /**
453 * clear all of the properties
454 */
455 void clearProperties();
456
457 /**
458 * Returns all names of properties
459 * @return all names of properties
460 */
461 vector<string> getPropertyNames();
462
463 /**
464 * Returns all of the properties in PropertyMap
465 * @return all of the properties in PropertyMap
466 */
467 vector<GenericData*> getProperties();
468
469 /**
470 * Returns property
471 * @param propName name of property
472 * @return a pointer point to property with propName. If no property named propName
473 * exists, return NULL
474 */
475 GenericData* getPropertyByName(const string& propName);
476
477 /**
478 * add all special interaction pairs (including excluded
479 * interactions) in a molecule into the appropriate lists.
480 */
481 void addInteractionPairs(Molecule* mol);
482
483 /**
484 * remove all special interaction pairs which belong to a molecule
485 * from the appropriate lists.
486 */
487 void removeInteractionPairs(Molecule* mol);
488
489 /** Returns the set of atom types present in this simulation */
490 set<AtomType*> getSimulatedAtomTypes();
491
492 /** Returns the global count of atoms of a particular type */
493 int getGlobalCountOfType(AtomType* atype);
494
495 friend ostream& operator <<(ostream& o, SimInfo& info);
496
497 void getCutoff(RealType& rcut, RealType& rsw);
498
499 private:
500
501 /** fill up the simtype struct and other simulation-related variables */
502 void setupSimVariables();
503
504
505 /** Determine if we need to accumulate the simulation box dipole */
506 void setupAccumulateBoxDipole();
507
508 /** Calculates the number of degress of freedom in the whole system */
509 void calcNdf();
510 void calcNdfRaw();
511 void calcNdfTrans();
512
513 /**
514 * Adds molecule stamp and the total number of the molecule with
515 * same molecule stamp in the whole system.
516 */
517 void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
518
519 // Other classes holdingn important information
520 ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
521 Globals* simParams_; /**< provides access to simulation parameters set by user */
522
523 /// Counts of local objects
524 int nAtoms_; /**< number of atoms in local processor */
525 int nBonds_; /**< number of bonds in local processor */
526 int nBends_; /**< number of bends in local processor */
527 int nTorsions_; /**< number of torsions in local processor */
528 int nInversions_; /**< number of inversions in local processor */
529 int nRigidBodies_; /**< number of rigid bodies in local processor */
530 int nIntegrableObjects_; /**< number of integrable objects in local processor */
531 int nCutoffGroups_; /**< number of cutoff groups in local processor */
532 int nConstraints_; /**< number of constraints in local processors */
533 int nFluctuatingCharges_; /**< number of fluctuating charges in local processor */
534
535 /// Counts of global objects
536 int nGlobalMols_; /**< number of molecules in the system (GLOBAL) */
537 int nGlobalAtoms_; /**< number of atoms in the system (GLOBAL) */
538 int nGlobalCutoffGroups_; /**< number of cutoff groups in this system (GLOBAL) */
539 int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
540 int nGlobalRigidBodies_; /**< number of rigid bodies in this system (GLOBAL) */
541 int nGlobalFluctuatingCharges_;/**< number of fluctuating charges in this system (GLOBAL) */
542 int nGlobalBonds_; /**< number of bonds in the system */
543 int nGlobalBends_; /**< number of bends in the system */
544 int nGlobalTorsions_; /**< number of torsions in the system */
545 int nGlobalInversions_; /**< number of inversions in the system */
546
547 /// Degress of freedom
548 int ndf_; /**< number of degress of freedom (excludes constraints) (LOCAL) */
549 int ndfLocal_; /**< number of degrees of freedom (LOCAL, excludes constraints) */
550 int fdf_local; /**< number of frozen degrees of freedom (LOCAL) */
551 int fdf_; /**< number of frozen degrees of freedom (GLOBAL) */
552 int ndfRaw_; /**< number of degress of freedom (includes constraints), (LOCAL) */
553 int ndfTrans_; /**< number of translation degress of freedom, (LOCAL) */
554 int nZconstraint_; /**< number of z-constraint molecules (GLOBAL) */
555
556 /// logicals
557 bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
558 bool usesDirectionalAtoms_; /**< are there atoms with position AND orientation? */
559 bool usesMetallicAtoms_; /**< are there transition metal atoms? */
560 bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
561 bool usesFluctuatingCharges_; /**< are there fluctuating charges? */
562 bool usesAtomicVirial_; /**< are we computing atomic virials? */
563 bool requiresPrepair_; /**< does this simulation require a pre-pair loop? */
564 bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
565 bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
566
567 public:
568 bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
569 bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
570 bool usesFluctuatingCharges() { return usesFluctuatingCharges_; }
571 bool usesAtomicVirial() { return usesAtomicVirial_; }
572 bool requiresPrepair() { return requiresPrepair_; }
573 bool requiresSkipCorrection() { return requiresSkipCorrection_;}
574 bool requiresSelfCorrection() { return requiresSelfCorrection_;}
575
576 private:
577 /// Data structures holding primary simulation objects
578 map<int, Molecule*> molecules_; /**< map holding pointers to LOCAL molecules */
579
580 /// Stamps are templates for objects that are then used to create
581 /// groups of objects. For example, a molecule stamp contains
582 /// information on how to build that molecule (i.e. the topology,
583 /// the atoms, the bonds, etc.) Once the system is built, the
584 /// stamps are no longer useful.
585 vector<int> molStampIds_; /**< stamp id for molecules in the system */
586 vector<MoleculeStamp*> moleculeStamps_; /**< molecule stamps array */
587
588 /**
589 * A vector that maps between the global index of an atom, and the
590 * global index of cutoff group the atom belong to. It is filled
591 * by SimCreator once and only once, since it never changed during
592 * the simulation. It should be nGlobalAtoms_ in size.
593 */
594 vector<int> globalGroupMembership_;
595 public:
596 vector<int> getGlobalGroupMembership() { return globalGroupMembership_; }
597 private:
598
599 /**
600 * A vector that maps between the global index of an atom and the
601 * global index of the molecule the atom belongs to. It is filled
602 * by SimCreator once and only once, since it is never changed
603 * during the simulation. It shoudl be nGlobalAtoms_ in size.
604 */
605 vector<int> globalMolMembership_;
606
607 /**
608 * A vector that maps between the local index of an atom and the
609 * index of the AtomType.
610 */
611 vector<int> identArray_;
612 public:
613 vector<int> getIdentArray() { return identArray_; }
614
615 /**
616 * A vector that contains information about the local region of an
617 * atom (used for fluctuating charges, etc.)
618 */
619 private:
620 vector<int> regions_;
621 public:
622 vector<int> getRegions() { return regions_; }
623 private:
624 /**
625 * A vector which contains the fractional contribution of an
626 * atom's mass to the total mass of the cutoffGroup that atom
627 * belongs to. In the case of single atom cutoff groups, the mass
628 * factor for that atom is 1. For massless atoms, the factor is
629 * also 1.
630 */
631 vector<RealType> massFactors_;
632 public:
633 vector<RealType> getMassFactors() { return massFactors_; }
634
635 PairList* getExcludedInteractions() { return &excludedInteractions_; }
636 PairList* getOneTwoInteractions() { return &oneTwoInteractions_; }
637 PairList* getOneThreeInteractions() { return &oneThreeInteractions_; }
638 PairList* getOneFourInteractions() { return &oneFourInteractions_; }
639
640 private:
641
642 /// lists to handle atoms needing special treatment in the non-bonded interactions
643 PairList excludedInteractions_; /**< atoms excluded from interacting with each other */
644 PairList oneTwoInteractions_; /**< atoms that are directly Bonded */
645 PairList oneThreeInteractions_; /**< atoms sharing a Bend */
646 PairList oneFourInteractions_; /**< atoms sharing a Torsion */
647
648 PropertyMap properties_; /**< Generic Properties can be added */
649 SnapshotManager* sman_; /**< SnapshotManager (handles particle positions, etc.) */
650 int storageLayout_; /**< Bits to tell how much data to store on each object */
651
652 /**
653 * The reason to have a local index manager is that when molecule
654 * is migrating to other processors, the atoms and the
655 * rigid-bodies will release their local indices to
656 * LocalIndexManager. Combining the information of molecule
657 * migrating to current processor, Migrator class can query the
658 * LocalIndexManager to make a efficient data moving plan.
659 */
660 LocalIndexManager localIndexMan_;
661
662 // unparsed MetaData block for storing in Dump and EOR files:
663 string rawMetaData_;
664
665 // file names
666 string finalConfigFileName_;
667 string dumpFileName_;
668 string statFileName_;
669 string restFileName_;
670
671 bool topologyDone_; /** flag to indicate whether the topology has
672 been scanned and all the relevant
673 bookkeeping has been done*/
674
675 bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
676 the simulation box dipole moment */
677
678 bool useAtomicVirial_; /**< flag to indicate whether or not we use
679 Atomic Virials to calculate the pressure */
680
681 public:
682 /**
683 * return an integral objects by its global index. In MPI
684 * version, if the StuntDouble with specified global index does
685 * not belong to local processor, a NULL will be return.
686 */
687 StuntDouble* getIOIndexToIntegrableObject(int index);
688 void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
689
690 private:
691 vector<StuntDouble*> IOIndexToIntegrableObject;
692
693 public:
694
695 /**
696 * Finds the processor where a molecule resides
697 * @return the id of the processor which contains the molecule
698 * @param globalIndex global Index of the molecule
699 */
700 int getMolToProc(int globalIndex) {
701 //assert(globalIndex < molToProcMap_.size());
702 return molToProcMap_[globalIndex];
703 }
704
705 /**
706 * Set MolToProcMap array
707 */
708 void setMolToProcMap(const vector<int>& molToProcMap) {
709 molToProcMap_ = molToProcMap;
710 }
711
712 private:
713
714 /**
715 * The size of molToProcMap_ is equal to total number of molecules
716 * in the system. It maps a molecule to the processor on which it
717 * resides. it is filled by SimCreator once and only once.
718 */
719 vector<int> molToProcMap_;
720
721 };
722
723 } //namespace OpenMD
724 #endif //BRAINS_SIMMODEL_HPP
725

Properties

Name Value
svn:keywords Author Id Revision Date