ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.hpp
Revision: 1929
Committed: Mon Aug 19 13:12:00 2013 UTC (11 years, 8 months ago) by gezelter
File size: 23524 byte(s)
Log Message:
Backing out fluc-rho and putting back the Electrostatic fluctuating
charge with coulomb integrals for atoms within a region.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 /**
44 * @file SimInfo.hpp
45 * @author tlin
46 * @date 11/02/2004
47 * @version 1.0
48 */
49
50 #ifndef BRAINS_SIMMODEL_HPP
51 #define BRAINS_SIMMODEL_HPP
52
53 #include <iostream>
54 #include <set>
55 #include <utility>
56 #include <vector>
57
58 #include "brains/PairList.hpp"
59 #include "io/Globals.hpp"
60 #include "math/Vector3.hpp"
61 #include "math/SquareMatrix3.hpp"
62 #include "types/MoleculeStamp.hpp"
63 #include "brains/ForceField.hpp"
64 #include "utils/PropertyMap.hpp"
65 #include "utils/LocalIndexManager.hpp"
66 #include "nonbonded/SwitchingFunction.hpp"
67
68 using namespace std;
69 namespace OpenMD{
70 //forward declaration
71 class SnapshotManager;
72 class Molecule;
73 class SelectionManager;
74 class StuntDouble;
75
76 /**
77 * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
78 *
79 * @brief One of the heavy-weight classes of OpenMD, SimInfo
80 * maintains objects and variables relating to the current
81 * simulation. This includes the master list of Molecules. The
82 * Molecule class maintains all of the concrete objects (Atoms,
83 * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
84 * Constraints). In both the single and parallel versions, Atoms and
85 * RigidBodies have both global and local indices.
86 */
87 class SimInfo {
88 public:
89 typedef map<int, Molecule*>::iterator MoleculeIterator;
90
91 /**
92 * Constructor of SimInfo
93 *
94 * @param ff pointer to a concrete ForceField instance
95 *
96 * @param simParams pointer to the simulation parameters in a Globals object
97 */
98 SimInfo(ForceField* ff, Globals* simParams);
99 virtual ~SimInfo();
100
101 /**
102 * Adds a molecule
103 *
104 * @return return true if adding successfully, return false if the
105 * molecule is already in SimInfo
106 *
107 * @param mol Molecule to be added
108 */
109 bool addMolecule(Molecule* mol);
110
111 /**
112 * Removes a molecule from SimInfo
113 *
114 * @return true if removing successfully, return false if molecule
115 * is not in this SimInfo
116 */
117 bool removeMolecule(Molecule* mol);
118
119 /** Returns the total number of molecules in the system. */
120 int getNGlobalMolecules() {
121 return nGlobalMols_;
122 }
123
124 /** Returns the total number of atoms in the system. */
125 int getNGlobalAtoms() {
126 return nGlobalAtoms_;
127 }
128
129 /** Returns the total number of cutoff groups in the system. */
130 int getNGlobalCutoffGroups() {
131 return nGlobalCutoffGroups_;
132 }
133
134 /**
135 * Returns the total number of integrable objects (total number of
136 * rigid bodies plus the total number of atoms which do not belong
137 * to the rigid bodies) in the system
138 */
139 int getNGlobalIntegrableObjects() {
140 return nGlobalIntegrableObjects_;
141 }
142
143 /**
144 * Returns the total number of integrable objects (total number of
145 * rigid bodies plus the total number of atoms which do not belong
146 * to the rigid bodies) in the system
147 */
148 int getNGlobalRigidBodies() {
149 return nGlobalRigidBodies_;
150 }
151
152 int getNGlobalConstraints();
153 /**
154 * Returns the number of local molecules.
155 * @return the number of local molecules
156 */
157 int getNMolecules() {
158 return molecules_.size();
159 }
160
161 /** Returns the number of local atoms */
162 unsigned int getNAtoms() {
163 return nAtoms_;
164 }
165
166 /** Returns the number of effective cutoff groups on local processor */
167 unsigned int getNLocalCutoffGroups();
168
169 /** Returns the number of local bonds */
170 unsigned int getNBonds(){
171 return nBonds_;
172 }
173
174 /** Returns the number of local bends */
175 unsigned int getNBends() {
176 return nBends_;
177 }
178
179 /** Returns the number of local torsions */
180 unsigned int getNTorsions() {
181 return nTorsions_;
182 }
183
184 /** Returns the number of local torsions */
185 unsigned int getNInversions() {
186 return nInversions_;
187 }
188 /** Returns the number of local rigid bodies */
189 unsigned int getNRigidBodies() {
190 return nRigidBodies_;
191 }
192
193 /** Returns the number of local integrable objects */
194 unsigned int getNIntegrableObjects() {
195 return nIntegrableObjects_;
196 }
197
198 /** Returns the number of local cutoff groups */
199 unsigned int getNCutoffGroups() {
200 return nCutoffGroups_;
201 }
202
203 /** Returns the total number of constraints in this SimInfo */
204 unsigned int getNConstraints() {
205 return nConstraints_;
206 }
207
208 /**
209 * Returns the first molecule in this SimInfo and intialize the iterator.
210 * @return the first molecule, return NULL if there is not molecule in this SimInfo
211 * @param i the iterator of molecule array (user shouldn't change it)
212 */
213 Molecule* beginMolecule(MoleculeIterator& i);
214
215 /**
216 * Returns the next avaliable Molecule based on the iterator.
217 * @return the next avaliable molecule, return NULL if reaching the end of the array
218 * @param i the iterator of molecule array
219 */
220 Molecule* nextMolecule(MoleculeIterator& i);
221
222 /** Returns the total number of fluctuating charges that are present */
223 int getNFluctuatingCharges() {
224 return nGlobalFluctuatingCharges_;
225 }
226
227 /** Returns the number of degrees of freedom */
228 int getNdf() {
229 return ndf_ - getFdf();
230 }
231
232 /** Returns the number of degrees of freedom (LOCAL) */
233 int getNdfLocal() {
234 return ndfLocal_;
235 }
236
237 /** Returns the number of raw degrees of freedom */
238 int getNdfRaw() {
239 return ndfRaw_;
240 }
241
242 /** Returns the number of translational degrees of freedom */
243 int getNdfTrans() {
244 return ndfTrans_;
245 }
246
247 /** sets the current number of frozen degrees of freedom */
248 void setFdf(int fdf) {
249 fdf_local = fdf;
250 }
251
252 int getFdf();
253
254 //getNZconstraint and setNZconstraint ruin the coherence of
255 //SimInfo class, need refactoring
256
257 /** Returns the total number of z-constraint molecules in the system */
258 int getNZconstraint() {
259 return nZconstraint_;
260 }
261
262 /**
263 * Sets the number of z-constraint molecules in the system.
264 */
265 void setNZconstraint(int nZconstraint) {
266 nZconstraint_ = nZconstraint;
267 }
268
269 /** Returns the snapshot manager. */
270 SnapshotManager* getSnapshotManager() {
271 return sman_;
272 }
273 /** Returns the storage layout (computed by SimCreator) */
274 int getStorageLayout() {
275 return storageLayout_;
276 }
277 /** Sets the storage layout (computed by SimCreator) */
278 void setStorageLayout(int sl) {
279 storageLayout_ = sl;
280 }
281
282 /** Sets the snapshot manager. */
283 void setSnapshotManager(SnapshotManager* sman);
284
285 /** Returns the force field */
286 ForceField* getForceField() {
287 return forceField_;
288 }
289
290 Globals* getSimParams() {
291 return simParams_;
292 }
293
294 void update();
295 /**
296 * Do final bookkeeping before Force managers need their data.
297 */
298 void prepareTopology();
299
300
301 /** Returns the local index manager */
302 LocalIndexManager* getLocalIndexManager() {
303 return &localIndexMan_;
304 }
305
306 int getMoleculeStampId(int globalIndex) {
307 //assert(globalIndex < molStampIds_.size())
308 return molStampIds_[globalIndex];
309 }
310
311 /** Returns the molecule stamp */
312 MoleculeStamp* getMoleculeStamp(int id) {
313 return moleculeStamps_[id];
314 }
315
316 /** Return the total number of the molecule stamps */
317 int getNMoleculeStamp() {
318 return moleculeStamps_.size();
319 }
320 /**
321 * Finds a molecule with a specified global index
322 * @return a pointer point to found molecule
323 * @param index
324 */
325 Molecule* getMoleculeByGlobalIndex(int index) {
326 MoleculeIterator i;
327 i = molecules_.find(index);
328
329 return i != molecules_.end() ? i->second : NULL;
330 }
331
332 int getGlobalMolMembership(int id){
333 return globalMolMembership_[id];
334 }
335
336 /**
337 * returns a vector which maps the local atom index on this
338 * processor to the global atom index. With only one processor,
339 * these should be identical.
340 */
341 vector<int> getGlobalAtomIndices();
342
343 /**
344 * returns a vector which maps the local cutoff group index on
345 * this processor to the global cutoff group index. With only one
346 * processor, these should be identical.
347 */
348 vector<int> getGlobalGroupIndices();
349
350
351 string getFinalConfigFileName() {
352 return finalConfigFileName_;
353 }
354
355 void setFinalConfigFileName(const string& fileName) {
356 finalConfigFileName_ = fileName;
357 }
358
359 string getRawMetaData() {
360 return rawMetaData_;
361 }
362 void setRawMetaData(const string& rawMetaData) {
363 rawMetaData_ = rawMetaData;
364 }
365
366 string getDumpFileName() {
367 return dumpFileName_;
368 }
369
370 void setDumpFileName(const string& fileName) {
371 dumpFileName_ = fileName;
372 }
373
374 string getStatFileName() {
375 return statFileName_;
376 }
377
378 void setStatFileName(const string& fileName) {
379 statFileName_ = fileName;
380 }
381
382 string getRestFileName() {
383 return restFileName_;
384 }
385
386 void setRestFileName(const string& fileName) {
387 restFileName_ = fileName;
388 }
389
390 /**
391 * Sets GlobalGroupMembership
392 */
393 void setGlobalGroupMembership(const vector<int>& ggm) {
394 assert(ggm.size() == static_cast<size_t>(nGlobalAtoms_));
395 globalGroupMembership_ = ggm;
396 }
397
398 /**
399 * Sets GlobalMolMembership
400 */
401 void setGlobalMolMembership(const vector<int>& gmm) {
402 assert(gmm.size() == (static_cast<size_t>(nGlobalAtoms_ +
403 nGlobalRigidBodies_)));
404 globalMolMembership_ = gmm;
405 }
406
407
408 bool isTopologyDone() {
409 return topologyDone_;
410 }
411
412 bool getCalcBoxDipole() {
413 return calcBoxDipole_;
414 }
415
416 bool getUseAtomicVirial() {
417 return useAtomicVirial_;
418 }
419
420 /**
421 * Adds property into property map
422 * @param genData GenericData to be added into PropertyMap
423 */
424 void addProperty(GenericData* genData);
425
426 /**
427 * Removes property from PropertyMap by name
428 * @param propName the name of property to be removed
429 */
430 void removeProperty(const string& propName);
431
432 /**
433 * clear all of the properties
434 */
435 void clearProperties();
436
437 /**
438 * Returns all names of properties
439 * @return all names of properties
440 */
441 vector<string> getPropertyNames();
442
443 /**
444 * Returns all of the properties in PropertyMap
445 * @return all of the properties in PropertyMap
446 */
447 vector<GenericData*> getProperties();
448
449 /**
450 * Returns property
451 * @param propName name of property
452 * @return a pointer point to property with propName. If no property named propName
453 * exists, return NULL
454 */
455 GenericData* getPropertyByName(const string& propName);
456
457 /**
458 * add all special interaction pairs (including excluded
459 * interactions) in a molecule into the appropriate lists.
460 */
461 void addInteractionPairs(Molecule* mol);
462
463 /**
464 * remove all special interaction pairs which belong to a molecule
465 * from the appropriate lists.
466 */
467 void removeInteractionPairs(Molecule* mol);
468
469 /** Returns the set of atom types present in this simulation */
470 set<AtomType*> getSimulatedAtomTypes();
471
472 /** Returns the global count of atoms of a particular type */
473 int getGlobalCountOfType(AtomType* atype);
474
475 friend ostream& operator <<(ostream& o, SimInfo& info);
476
477 void getCutoff(RealType& rcut, RealType& rsw);
478
479 private:
480
481 /** fill up the simtype struct and other simulation-related variables */
482 void setupSimVariables();
483
484
485 /** Determine if we need to accumulate the simulation box dipole */
486 void setupAccumulateBoxDipole();
487
488 /** Calculates the number of degress of freedom in the whole system */
489 void calcNdf();
490 void calcNdfRaw();
491 void calcNdfTrans();
492
493 /**
494 * Adds molecule stamp and the total number of the molecule with
495 * same molecule stamp in the whole system.
496 */
497 void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
498
499 // Other classes holdingn important information
500 ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
501 Globals* simParams_; /**< provides access to simulation parameters set by user */
502
503 /// Counts of local objects
504 int nAtoms_; /**< number of atoms in local processor */
505 int nBonds_; /**< number of bonds in local processor */
506 int nBends_; /**< number of bends in local processor */
507 int nTorsions_; /**< number of torsions in local processor */
508 int nInversions_; /**< number of inversions in local processor */
509 int nRigidBodies_; /**< number of rigid bodies in local processor */
510 int nIntegrableObjects_; /**< number of integrable objects in local processor */
511 int nCutoffGroups_; /**< number of cutoff groups in local processor */
512 int nConstraints_; /**< number of constraints in local processors */
513 int nFluctuatingCharges_; /**< number of fluctuating charges in local processor */
514
515 /// Counts of global objects
516 int nGlobalMols_; /**< number of molecules in the system (GLOBAL) */
517 int nGlobalAtoms_; /**< number of atoms in the system (GLOBAL) */
518 int nGlobalCutoffGroups_; /**< number of cutoff groups in this system (GLOBAL) */
519 int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
520 int nGlobalRigidBodies_; /**< number of rigid bodies in this system (GLOBAL) */
521 int nGlobalFluctuatingCharges_;/**< number of fluctuating charges in this system (GLOBAL) */
522
523
524 /// Degress of freedom
525 int ndf_; /**< number of degress of freedom (excludes constraints) (LOCAL) */
526 int ndfLocal_; /**< number of degrees of freedom (LOCAL, excludes constraints) */
527 int fdf_local; /**< number of frozen degrees of freedom (LOCAL) */
528 int fdf_; /**< number of frozen degrees of freedom (GLOBAL) */
529 int ndfRaw_; /**< number of degress of freedom (includes constraints), (LOCAL) */
530 int ndfTrans_; /**< number of translation degress of freedom, (LOCAL) */
531 int nZconstraint_; /**< number of z-constraint molecules (GLOBAL) */
532
533 /// logicals
534 bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
535 bool usesDirectionalAtoms_; /**< are there atoms with position AND orientation? */
536 bool usesMetallicAtoms_; /**< are there transition metal atoms? */
537 bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
538 bool usesFluctuatingCharges_; /**< are there fluctuating charges? */
539 bool usesAtomicVirial_; /**< are we computing atomic virials? */
540 bool requiresPrepair_; /**< does this simulation require a pre-pair loop? */
541 bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
542 bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
543
544 public:
545 bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
546 bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
547 bool usesFluctuatingCharges() { return usesFluctuatingCharges_; }
548 bool usesAtomicVirial() { return usesAtomicVirial_; }
549 bool requiresPrepair() { return requiresPrepair_; }
550 bool requiresSkipCorrection() { return requiresSkipCorrection_;}
551 bool requiresSelfCorrection() { return requiresSelfCorrection_;}
552
553 private:
554 /// Data structures holding primary simulation objects
555 map<int, Molecule*> molecules_; /**< map holding pointers to LOCAL molecules */
556
557 /// Stamps are templates for objects that are then used to create
558 /// groups of objects. For example, a molecule stamp contains
559 /// information on how to build that molecule (i.e. the topology,
560 /// the atoms, the bonds, etc.) Once the system is built, the
561 /// stamps are no longer useful.
562 vector<int> molStampIds_; /**< stamp id for molecules in the system */
563 vector<MoleculeStamp*> moleculeStamps_; /**< molecule stamps array */
564
565 /**
566 * A vector that maps between the global index of an atom, and the
567 * global index of cutoff group the atom belong to. It is filled
568 * by SimCreator once and only once, since it never changed during
569 * the simulation. It should be nGlobalAtoms_ in size.
570 */
571 vector<int> globalGroupMembership_;
572 public:
573 vector<int> getGlobalGroupMembership() { return globalGroupMembership_; }
574 private:
575
576 /**
577 * A vector that maps between the global index of an atom and the
578 * global index of the molecule the atom belongs to. It is filled
579 * by SimCreator once and only once, since it is never changed
580 * during the simulation. It shoudl be nGlobalAtoms_ in size.
581 */
582 vector<int> globalMolMembership_;
583
584 /**
585 * A vector that maps between the local index of an atom and the
586 * index of the AtomType.
587 */
588 vector<int> identArray_;
589 public:
590 vector<int> getIdentArray() { return identArray_; }
591
592 /**
593 * A vector that contains information about the local region of an
594 * atom (used for fluctuating charges, etc.)
595 */
596 private:
597 vector<int> regions_;
598 public:
599 vector<int> getRegions() { return regions_; }
600 private:
601 /**
602 * A vector which contains the fractional contribution of an
603 * atom's mass to the total mass of the cutoffGroup that atom
604 * belongs to. In the case of single atom cutoff groups, the mass
605 * factor for that atom is 1. For massless atoms, the factor is
606 * also 1.
607 */
608 vector<RealType> massFactors_;
609 public:
610 vector<RealType> getMassFactors() { return massFactors_; }
611
612 PairList* getExcludedInteractions() { return &excludedInteractions_; }
613 PairList* getOneTwoInteractions() { return &oneTwoInteractions_; }
614 PairList* getOneThreeInteractions() { return &oneThreeInteractions_; }
615 PairList* getOneFourInteractions() { return &oneFourInteractions_; }
616
617 private:
618
619 /// lists to handle atoms needing special treatment in the non-bonded interactions
620 PairList excludedInteractions_; /**< atoms excluded from interacting with each other */
621 PairList oneTwoInteractions_; /**< atoms that are directly Bonded */
622 PairList oneThreeInteractions_; /**< atoms sharing a Bend */
623 PairList oneFourInteractions_; /**< atoms sharing a Torsion */
624
625 PropertyMap properties_; /**< Generic Properties can be added */
626 SnapshotManager* sman_; /**< SnapshotManager (handles particle positions, etc.) */
627 int storageLayout_; /**< Bits to tell how much data to store on each object */
628
629 /**
630 * The reason to have a local index manager is that when molecule
631 * is migrating to other processors, the atoms and the
632 * rigid-bodies will release their local indices to
633 * LocalIndexManager. Combining the information of molecule
634 * migrating to current processor, Migrator class can query the
635 * LocalIndexManager to make a efficient data moving plan.
636 */
637 LocalIndexManager localIndexMan_;
638
639 // unparsed MetaData block for storing in Dump and EOR files:
640 string rawMetaData_;
641
642 // file names
643 string finalConfigFileName_;
644 string dumpFileName_;
645 string statFileName_;
646 string restFileName_;
647
648 bool topologyDone_; /** flag to indicate whether the topology has
649 been scanned and all the relevant
650 bookkeeping has been done*/
651
652 bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
653 the simulation box dipole moment */
654
655 bool useAtomicVirial_; /**< flag to indicate whether or not we use
656 Atomic Virials to calculate the pressure */
657
658 public:
659 /**
660 * return an integral objects by its global index. In MPI
661 * version, if the StuntDouble with specified global index does
662 * not belong to local processor, a NULL will be return.
663 */
664 StuntDouble* getIOIndexToIntegrableObject(int index);
665 void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
666
667 private:
668 vector<StuntDouble*> IOIndexToIntegrableObject;
669
670 public:
671
672 /**
673 * Finds the processor where a molecule resides
674 * @return the id of the processor which contains the molecule
675 * @param globalIndex global Index of the molecule
676 */
677 int getMolToProc(int globalIndex) {
678 //assert(globalIndex < molToProcMap_.size());
679 return molToProcMap_[globalIndex];
680 }
681
682 /**
683 * Set MolToProcMap array
684 */
685 void setMolToProcMap(const vector<int>& molToProcMap) {
686 molToProcMap_ = molToProcMap;
687 }
688
689 private:
690
691 /**
692 * The size of molToProcMap_ is equal to total number of molecules
693 * in the system. It maps a molecule to the processor on which it
694 * resides. it is filled by SimCreator once and only once.
695 */
696 vector<int> molToProcMap_;
697
698 };
699
700 } //namespace OpenMD
701 #endif //BRAINS_SIMMODEL_HPP
702

Properties

Name Value
svn:keywords Author Id Revision Date