ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.hpp
Revision: 1024
Committed: Wed Aug 30 18:42:29 2006 UTC (18 years, 8 months ago) by tim
File size: 20186 byte(s)
Log Message:
Massive changes preparing for release of OOPSE-4: The main difference
is that the new MD file format (.md, .dump, .eor) now contains meta-data
information along with the configuration information.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SimInfo.hpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #ifndef BRAINS_SIMMODEL_HPP
50 #define BRAINS_SIMMODEL_HPP
51
52 #include <iostream>
53 #include <set>
54 #include <utility>
55 #include <vector>
56
57 #include "brains/Exclude.hpp"
58 #include "io/Globals.hpp"
59 #include "math/Vector3.hpp"
60 #include "math/SquareMatrix3.hpp"
61 #include "types/MoleculeStamp.hpp"
62 #include "UseTheForce/ForceField.hpp"
63 #include "utils/PropertyMap.hpp"
64 #include "utils/LocalIndexManager.hpp"
65
66 //another nonsense macro declaration
67 #define __C
68 #include "brains/fSimulation.h"
69
70 namespace oopse{
71
72 //forward decalration
73 class SnapshotManager;
74 class Molecule;
75 class SelectionManager;
76 class StuntDouble;
77 /**
78 * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
79 * @brief One of the heavy weight classes of OOPSE, SimInfo maintains a list of molecules.
80 * The Molecule class maintains all of the concrete objects
81 * (atoms, bond, bend, torsions, rigid bodies, cutoff groups, constrains).
82 * In both the single and parallel versions, atoms and
83 * rigid bodies have both global and local indices. The local index is
84 * not relevant to molecules or cutoff groups.
85 */
86 class SimInfo {
87 public:
88 typedef std::map<int, Molecule*>::iterator MoleculeIterator;
89
90 /**
91 * Constructor of SimInfo
92 * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
93 * second element is the total number of molecules with the same molecule stamp in the system
94 * @param ff pointer of a concrete ForceField instance
95 * @param simParams
96 * @note
97 */
98 SimInfo(ForceField* ff, Globals* simParams);
99 virtual ~SimInfo();
100
101 /**
102 * Adds a molecule
103 * @return return true if adding successfully, return false if the molecule is already in SimInfo
104 * @param mol molecule to be added
105 */
106 bool addMolecule(Molecule* mol);
107
108 /**
109 * Removes a molecule from SimInfo
110 * @return true if removing successfully, return false if molecule is not in this SimInfo
111 */
112 bool removeMolecule(Molecule* mol);
113
114 /** Returns the total number of molecules in the system. */
115 int getNGlobalMolecules() {
116 return nGlobalMols_;
117 }
118
119 /** Returns the total number of atoms in the system. */
120 int getNGlobalAtoms() {
121 return nGlobalAtoms_;
122 }
123
124 /** Returns the total number of cutoff groups in the system. */
125 int getNGlobalCutoffGroups() {
126 return nGlobalCutoffGroups_;
127 }
128
129 /**
130 * Returns the total number of integrable objects (total number of rigid bodies plus the total number
131 * of atoms which do not belong to the rigid bodies) in the system
132 */
133 int getNGlobalIntegrableObjects() {
134 return nGlobalIntegrableObjects_;
135 }
136
137 /**
138 * Returns the total number of integrable objects (total number of rigid bodies plus the total number
139 * of atoms which do not belong to the rigid bodies) in the system
140 */
141 int getNGlobalRigidBodies() {
142 return nGlobalRigidBodies_;
143 }
144
145 int getNGlobalConstraints();
146 /**
147 * Returns the number of local molecules.
148 * @return the number of local molecules
149 */
150 int getNMolecules() {
151 return molecules_.size();
152 }
153
154 /** Returns the number of local atoms */
155 unsigned int getNAtoms() {
156 return nAtoms_;
157 }
158
159 /** Returns the number of local bonds */
160 unsigned int getNBonds(){
161 return nBonds_;
162 }
163
164 /** Returns the number of local bends */
165 unsigned int getNBends() {
166 return nBends_;
167 }
168
169 /** Returns the number of local torsions */
170 unsigned int getNTorsions() {
171 return nTorsions_;
172 }
173
174 /** Returns the number of local rigid bodies */
175 unsigned int getNRigidBodies() {
176 return nRigidBodies_;
177 }
178
179 /** Returns the number of local integrable objects */
180 unsigned int getNIntegrableObjects() {
181 return nIntegrableObjects_;
182 }
183
184 /** Returns the number of local cutoff groups */
185 unsigned int getNCutoffGroups() {
186 return nCutoffGroups_;
187 }
188
189 /** Returns the total number of constraints in this SimInfo */
190 unsigned int getNConstraints() {
191 return nConstraints_;
192 }
193
194 /**
195 * Returns the first molecule in this SimInfo and intialize the iterator.
196 * @return the first molecule, return NULL if there is not molecule in this SimInfo
197 * @param i the iterator of molecule array (user shouldn't change it)
198 */
199 Molecule* beginMolecule(MoleculeIterator& i);
200
201 /**
202 * Returns the next avaliable Molecule based on the iterator.
203 * @return the next avaliable molecule, return NULL if reaching the end of the array
204 * @param i the iterator of molecule array
205 */
206 Molecule* nextMolecule(MoleculeIterator& i);
207
208 /** Returns the number of degrees of freedom */
209 int getNdf() {
210 return ndf_ - getFdf();
211 }
212
213 /** Returns the number of raw degrees of freedom */
214 int getNdfRaw() {
215 return ndfRaw_;
216 }
217
218 /** Returns the number of translational degrees of freedom */
219 int getNdfTrans() {
220 return ndfTrans_;
221 }
222
223 /** sets the current number of frozen degrees of freedom */
224 void setFdf(int fdf) {
225 fdf_local = fdf;
226 }
227
228 int getFdf();
229
230 //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
231
232 /** Returns the total number of z-constraint molecules in the system */
233 int getNZconstraint() {
234 return nZconstraint_;
235 }
236
237 /**
238 * Sets the number of z-constraint molecules in the system.
239 */
240 void setNZconstraint(int nZconstraint) {
241 nZconstraint_ = nZconstraint;
242 }
243
244 /** Returns the snapshot manager. */
245 SnapshotManager* getSnapshotManager() {
246 return sman_;
247 }
248
249 /** Sets the snapshot manager. */
250 void setSnapshotManager(SnapshotManager* sman);
251
252 /** Returns the force field */
253 ForceField* getForceField() {
254 return forceField_;
255 }
256
257 Globals* getSimParams() {
258 return simParams_;
259 }
260
261 /** Returns the velocity of center of mass of the whole system.*/
262 Vector3d getComVel();
263
264 /** Returns the center of the mass of the whole system.*/
265 Vector3d getCom();
266 /** Returns the center of the mass and Center of Mass velocity of the whole system.*/
267 void getComAll(Vector3d& com,Vector3d& comVel);
268
269 /** Returns intertia tensor for the entire system and system Angular Momentum.*/
270 void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
271
272 /** Returns system angular momentum */
273 Vector3d getAngularMomentum();
274
275 /** main driver function to interact with fortran during the initialization and molecule migration */
276 void update();
277
278 /** Returns the local index manager */
279 LocalIndexManager* getLocalIndexManager() {
280 return &localIndexMan_;
281 }
282
283 int getMoleculeStampId(int globalIndex) {
284 //assert(globalIndex < molStampIds_.size())
285 return molStampIds_[globalIndex];
286 }
287
288 /** Returns the molecule stamp */
289 MoleculeStamp* getMoleculeStamp(int id) {
290 return moleculeStamps_[id];
291 }
292
293 /** Return the total number of the molecule stamps */
294 int getNMoleculeStamp() {
295 return moleculeStamps_.size();
296 }
297 /**
298 * Finds a molecule with a specified global index
299 * @return a pointer point to found molecule
300 * @param index
301 */
302 Molecule* getMoleculeByGlobalIndex(int index) {
303 MoleculeIterator i;
304 i = molecules_.find(index);
305
306 return i != molecules_.end() ? i->second : NULL;
307 }
308
309 RealType getRcut() {
310 return rcut_;
311 }
312
313 RealType getRsw() {
314 return rsw_;
315 }
316
317 RealType getList() {
318 return rlist_;
319 }
320
321 std::string getFinalConfigFileName() {
322 return finalConfigFileName_;
323 }
324
325 void setFinalConfigFileName(const std::string& fileName) {
326 finalConfigFileName_ = fileName;
327 }
328
329 std::string getRawMetaData() {
330 return rawMetaData_;
331 }
332 void setRawMetaData(const std::string& rawMetaData) {
333 rawMetaData_ = rawMetaData;
334 }
335
336 std::string getDumpFileName() {
337 return dumpFileName_;
338 }
339
340 void setDumpFileName(const std::string& fileName) {
341 dumpFileName_ = fileName;
342 }
343
344 std::string getStatFileName() {
345 return statFileName_;
346 }
347
348 void setStatFileName(const std::string& fileName) {
349 statFileName_ = fileName;
350 }
351
352 std::string getRestFileName() {
353 return restFileName_;
354 }
355
356 void setRestFileName(const std::string& fileName) {
357 restFileName_ = fileName;
358 }
359
360 /**
361 * Sets GlobalGroupMembership
362 * @see #SimCreator::setGlobalIndex
363 */
364 void setGlobalGroupMembership(const std::vector<int>& globalGroupMembership) {
365 assert(globalGroupMembership.size() == nGlobalAtoms_);
366 globalGroupMembership_ = globalGroupMembership;
367 }
368
369 /**
370 * Sets GlobalMolMembership
371 * @see #SimCreator::setGlobalIndex
372 */
373 void setGlobalMolMembership(const std::vector<int>& globalMolMembership) {
374 assert(globalMolMembership.size() == nGlobalAtoms_);
375 globalMolMembership_ = globalMolMembership;
376 }
377
378
379 bool isFortranInitialized() {
380 return fortranInitialized_;
381 }
382
383 bool getCalcBoxDipole() {
384 return calcBoxDipole_;
385 }
386
387 //below functions are just forward functions
388 //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
389 //the other hand, has-a relation need composing.
390 /**
391 * Adds property into property map
392 * @param genData GenericData to be added into PropertyMap
393 */
394 void addProperty(GenericData* genData);
395
396 /**
397 * Removes property from PropertyMap by name
398 * @param propName the name of property to be removed
399 */
400 void removeProperty(const std::string& propName);
401
402 /**
403 * clear all of the properties
404 */
405 void clearProperties();
406
407 /**
408 * Returns all names of properties
409 * @return all names of properties
410 */
411 std::vector<std::string> getPropertyNames();
412
413 /**
414 * Returns all of the properties in PropertyMap
415 * @return all of the properties in PropertyMap
416 */
417 std::vector<GenericData*> getProperties();
418
419 /**
420 * Returns property
421 * @param propName name of property
422 * @return a pointer point to property with propName. If no property named propName
423 * exists, return NULL
424 */
425 GenericData* getPropertyByName(const std::string& propName);
426
427 /**
428 * add all exclude pairs of a molecule into exclude list.
429 */
430 void addExcludePairs(Molecule* mol);
431
432 /**
433 * remove all exclude pairs which belong to a molecule from exclude list
434 */
435
436 void removeExcludePairs(Molecule* mol);
437
438
439 /** Returns the unique atom types of local processor in an array */
440 std::set<AtomType*> getUniqueAtomTypes();
441
442 friend std::ostream& operator <<(std::ostream& o, SimInfo& info);
443
444 void getCutoff(RealType& rcut, RealType& rsw);
445
446 private:
447
448 /** fill up the simtype struct*/
449 void setupSimType();
450
451 /**
452 * Setup Fortran Simulation
453 * @see #setupFortranParallel
454 */
455 void setupFortranSim();
456
457 /** Figure out the radius of cutoff, radius of switching function and pass them to fortran */
458 void setupCutoff();
459
460 /** Figure out which coulombic correction method to use and pass to fortran */
461 void setupElectrostaticSummationMethod( int isError );
462
463 /** Figure out which polynomial type to use for the switching function */
464 void setupSwitchingFunction();
465
466 /** Determine if we need to accumulate the simulation box dipole */
467 void setupAccumulateBoxDipole();
468
469 /** Calculates the number of degress of freedom in the whole system */
470 void calcNdf();
471 void calcNdfRaw();
472 void calcNdfTrans();
473
474 ForceField* forceField_;
475 Globals* simParams_;
476
477 std::map<int, Molecule*> molecules_; /**< Molecule array */
478
479 /**
480 * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
481 * system.
482 */
483 void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
484
485 //degress of freedom
486 int ndf_; /**< number of degress of freedom (excludes constraints), ndf_ is local */
487 int fdf_local; /**< number of frozen degrees of freedom */
488 int fdf_; /**< number of frozen degrees of freedom */
489 int ndfRaw_; /**< number of degress of freedom (includes constraints), ndfRaw_ is local */
490 int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
491 int nZconstraint_; /** number of z-constraint molecules, nZconstraint_ is global */
492
493 //number of global objects
494 int nGlobalMols_; /**< number of molecules in the system */
495 int nGlobalAtoms_; /**< number of atoms in the system */
496 int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
497 int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
498 int nGlobalRigidBodies_; /**< number of rigid bodies in this system */
499 /**
500 * the size of globalGroupMembership_ is nGlobalAtoms. Its index is global index of an atom, and the
501 * corresponding content is the global index of cutoff group this atom belong to.
502 * It is filled by SimCreator once and only once, since it never changed during the simulation.
503 */
504 std::vector<int> globalGroupMembership_;
505
506 /**
507 * the size of globalGroupMembership_ is nGlobalAtoms. Its index is global index of an atom, and the
508 * corresponding content is the global index of molecule this atom belong to.
509 * It is filled by SimCreator once and only once, since it is never changed during the simulation.
510 */
511 std::vector<int> globalMolMembership_;
512
513
514 std::vector<int> molStampIds_; /**< stamp id array of all molecules in the system */
515 std::vector<MoleculeStamp*> moleculeStamps_; /**< molecule stamps array */
516
517 //number of local objects
518 int nAtoms_; /**< number of atoms in local processor */
519 int nBonds_; /**< number of bonds in local processor */
520 int nBends_; /**< number of bends in local processor */
521 int nTorsions_; /**< number of torsions in local processor */
522 int nRigidBodies_; /**< number of rigid bodies in local processor */
523 int nIntegrableObjects_; /**< number of integrable objects in local processor */
524 int nCutoffGroups_; /**< number of cutoff groups in local processor */
525 int nConstraints_; /**< number of constraints in local processors */
526
527 simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
528 Exclude exclude_;
529 PropertyMap properties_; /**< Generic Property */
530 SnapshotManager* sman_; /**< SnapshotManager */
531
532 /**
533 * The reason to have a local index manager is that when molecule is migrating to other processors,
534 * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
535 * information of molecule migrating to current processor, Migrator class can query the LocalIndexManager
536 * to make a efficient data moving plan.
537 */
538 LocalIndexManager localIndexMan_;
539
540 // unparsed MetaData block for storing in Dump and EOR files:
541 std::string rawMetaData_;
542
543 //file names
544 std::string finalConfigFileName_;
545 std::string dumpFileName_;
546 std::string statFileName_;
547 std::string restFileName_;
548
549 RealType rcut_; /**< cutoff radius*/
550 RealType rsw_; /**< radius of switching function*/
551 RealType rlist_; /**< neighbor list radius */
552
553 bool fortranInitialized_; /**< flag indicate whether fortran side is initialized */
554
555 bool calcBoxDipole_; /**< flag to indicate whether or not we calculate the simulation box dipole moment */
556
557 public:
558 /**
559 * return an integral objects by its global index. In MPI version, if the StuntDouble with specified
560 * global index does not belong to local processor, a NULL will be return.
561 */
562 StuntDouble* getIOIndexToIntegrableObject(int index);
563 void setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v);
564 private:
565 std::vector<StuntDouble*> IOIndexToIntegrableObject;
566 //public:
567 //void setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v);
568 /**
569 * return a StuntDouble by its global index. In MPI version, if the StuntDouble with specified
570 * global index does not belong to local processor, a NULL will be return.
571 */
572 //StuntDouble* getStuntDoubleFromGlobalIndex(int index);
573 //private:
574 //std::vector<StuntDouble*> sdByGlobalIndex_;
575
576 #ifdef IS_MPI
577 //in Parallel version, we need MolToProc
578 public:
579
580 /**
581 * Finds the processor where a molecule resides
582 * @return the id of the processor which contains the molecule
583 * @param globalIndex global Index of the molecule
584 */
585 int getMolToProc(int globalIndex) {
586 //assert(globalIndex < molToProcMap_.size());
587 return molToProcMap_[globalIndex];
588 }
589
590 /**
591 * Set MolToProcMap array
592 * @see #SimCreator::divideMolecules
593 */
594 void setMolToProcMap(const std::vector<int>& molToProcMap) {
595 molToProcMap_ = molToProcMap;
596 }
597
598
599
600 private:
601
602 void setupFortranParallel();
603
604 /**
605 * The size of molToProcMap_ is equal to total number of molecules in the system.
606 * It maps a molecule to the processor on which it resides. it is filled by SimCreator once and only
607 * once.
608 */
609 std::vector<int> molToProcMap_;
610
611 #endif
612
613 };
614
615 } //namespace oopse
616 #endif //BRAINS_SIMMODEL_HPP
617