ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 998 by chrisfen, Mon Jul 3 13:18:43 2006 UTC vs.
Revision 2071 by gezelter, Sat Mar 7 21:41:51 2015 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 46 | Line 47
47   * @version 1.0
48   */
49  
50 + #ifdef IS_MPI
51 + #include <mpi.h>
52 + #endif
53   #include <algorithm>
54   #include <set>
55   #include <map>
# Line 53 | Line 57
57   #include "brains/SimInfo.hpp"
58   #include "math/Vector3.hpp"
59   #include "primitives/Molecule.hpp"
60 < #include "UseTheForce/fCutoffPolicy.h"
57 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 < #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 < #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 < #include "UseTheForce/doForces_interface.h"
61 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 < #include "UseTheForce/DarkSide/switcheroo_interface.h"
60 > #include "primitives/StuntDouble.hpp"
61   #include "utils/MemoryUtils.hpp"
62   #include "utils/simError.h"
63   #include "selection/SelectionManager.hpp"
64   #include "io/ForceFieldOptions.hpp"
65 < #include "UseTheForce/ForceField.hpp"
65 > #include "brains/ForceField.hpp"
66 > #include "nonbonded/SwitchingFunction.hpp"
67  
68 < #ifdef IS_MPI
69 < #include "UseTheForce/mpiComponentPlan.h"
71 < #include "UseTheForce/DarkSide/simParallel_interface.h"
72 < #endif
73 <
74 < namespace oopse {
75 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 <    std::map<int, std::set<int> >::iterator i = container.find(index);
77 <    std::set<int> result;
78 <    if (i != container.end()) {
79 <        result = i->second;
80 <    }
81 <
82 <    return result;
83 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73 <    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
73 >    nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
74 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
75 >    nConstraints_(0), nFluctuatingCharges_(0),    
76      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
77 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
78 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
79 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
80 <    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
77 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
78 >    nGlobalFluctuatingCharges_(0), nGlobalBonds_(0), nGlobalBends_(0),
79 >    nGlobalTorsions_(0), nGlobalInversions_(0), nGlobalConstraints_(0),
80 >    hasNGlobalConstraints_(false),
81 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
82 >    sman_(NULL), topologyDone_(false), calcBoxDipole_(false),
83 >    calcBoxQuadrupole_(false), useAtomicVirial_(true) {    
84 >    
85 >    MoleculeStamp* molStamp;
86 >    int nMolWithSameStamp;
87 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
88 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
89 >    CutoffGroupStamp* cgStamp;    
90 >    RigidBodyStamp* rbStamp;
91 >    int nRigidAtoms = 0;
92 >    
93 >    vector<Component*> components = simParams->getComponents();
94 >    
95 >    for (vector<Component*>::iterator i = components.begin();
96 >         i !=components.end(); ++i) {
97 >      molStamp = (*i)->getMoleculeStamp();
98 >      if ( (*i)->haveRegion() ) {        
99 >        molStamp->setRegion( (*i)->getRegion() );
100 >      } else {
101 >        // set the region to a disallowed value:
102 >        molStamp->setRegion( -1 );
103 >      }
104  
105 <      MoleculeStamp* molStamp;
95 <      int nMolWithSameStamp;
96 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
97 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
98 <      CutoffGroupStamp* cgStamp;    
99 <      RigidBodyStamp* rbStamp;
100 <      int nRigidAtoms = 0;
101 <      std::vector<Component*> components = simParams->getComponents();
105 >      nMolWithSameStamp = (*i)->getNMol();
106        
107 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
108 <        molStamp = (*i)->getMoleculeStamp();
109 <        nMolWithSameStamp = (*i)->getNMol();
110 <        
111 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
112 <
113 <        //calculate atoms in molecules
114 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
115 <
116 <        //calculate atoms in cutoff groups
117 <        int nAtomsInGroups = 0;
118 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119 <        
120 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 <          cgStamp = molStamp->getCutoffGroupStamp(j);
122 <          nAtomsInGroups += cgStamp->getNMembers();
119 <        }
120 <
121 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
122 <
123 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
124 <
125 <        //calculate atoms in rigid bodies
126 <        int nAtomsInRigidBodies = 0;
127 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
128 <        
129 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
130 <          rbStamp = molStamp->getRigidBodyStamp(j);
131 <          nAtomsInRigidBodies += rbStamp->getNMembers();
132 <        }
133 <
134 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
135 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
136 <        
107 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
108 >      
109 >      //calculate atoms in molecules
110 >      nGlobalAtoms_ += molStamp->getNAtoms() * nMolWithSameStamp;
111 >      nGlobalBonds_ += molStamp->getNBonds() * nMolWithSameStamp;
112 >      nGlobalBends_ += molStamp->getNBends() * nMolWithSameStamp;
113 >      nGlobalTorsions_ += molStamp->getNTorsions() * nMolWithSameStamp;
114 >      nGlobalInversions_ += molStamp->getNInversions() * nMolWithSameStamp;
115 >      
116 >      //calculate atoms in cutoff groups
117 >      int nAtomsInGroups = 0;
118 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119 >      
120 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 >        cgStamp = molStamp->getCutoffGroupStamp(j);
122 >        nAtomsInGroups += cgStamp->getNMembers();
123        }
124 <
125 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
126 <      //group therefore the total number of cutoff groups in the system is
127 <      //equal to the total number of atoms minus number of atoms belong to
128 <      //cutoff group defined in meta-data file plus the number of cutoff
129 <      //groups defined in meta-data file
130 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
131 <
132 <      //every free atom (atom does not belong to rigid bodies) is an
133 <      //integrable object therefore the total number of integrable objects
134 <      //in the system is equal to the total number of atoms minus number of
135 <      //atoms belong to rigid body defined in meta-data file plus the number
136 <      //of rigid bodies defined in meta-data file
137 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
138 <                                                + nGlobalRigidBodies_;
139 <  
140 <      nGlobalMols_ = molStampIds_.size();
155 <
156 < #ifdef IS_MPI    
157 <      molToProcMap_.resize(nGlobalMols_);
158 < #endif
159 <
124 >      
125 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
126 >      
127 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
128 >      
129 >      //calculate atoms in rigid bodies
130 >      int nAtomsInRigidBodies = 0;
131 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
132 >      
133 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
134 >        rbStamp = molStamp->getRigidBodyStamp(j);
135 >        nAtomsInRigidBodies += rbStamp->getNMembers();
136 >      }
137 >      
138 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
139 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
140 >      
141      }
142 +    
143 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
144 +    //group therefore the total number of cutoff groups in the system is
145 +    //equal to the total number of atoms minus number of atoms belong to
146 +    //cutoff group defined in meta-data file plus the number of cutoff
147 +    //groups defined in meta-data file
148  
149 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
150 +    
151 +    //every free atom (atom does not belong to rigid bodies) is an
152 +    //integrable object therefore the total number of integrable objects
153 +    //in the system is equal to the total number of atoms minus number of
154 +    //atoms belong to rigid body defined in meta-data file plus the number
155 +    //of rigid bodies defined in meta-data file
156 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
157 +      + nGlobalRigidBodies_;
158 +    
159 +    nGlobalMols_ = molStampIds_.size();
160 +    molToProcMap_.resize(nGlobalMols_);
161 +  }
162 +  
163    SimInfo::~SimInfo() {
164 <    std::map<int, Molecule*>::iterator i;
164 >    map<int, Molecule*>::iterator i;
165      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
166        delete i->second;
167      }
# Line 171 | Line 172 | namespace oopse {
172      delete forceField_;
173    }
174  
174  int SimInfo::getNGlobalConstraints() {
175    int nGlobalConstraints;
176 #ifdef IS_MPI
177    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178                  MPI_COMM_WORLD);    
179 #else
180    nGlobalConstraints =  nConstraints_;
181 #endif
182    return nGlobalConstraints;
183  }
175  
176    bool SimInfo::addMolecule(Molecule* mol) {
177      MoleculeIterator i;
178 <
178 >    
179      i = molecules_.find(mol->getGlobalIndex());
180      if (i == molecules_.end() ) {
181 <
182 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
183 <        
181 >      
182 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
183 >      
184        nAtoms_ += mol->getNAtoms();
185        nBonds_ += mol->getNBonds();
186        nBends_ += mol->getNBends();
187        nTorsions_ += mol->getNTorsions();
188 +      nInversions_ += mol->getNInversions();
189        nRigidBodies_ += mol->getNRigidBodies();
190        nIntegrableObjects_ += mol->getNIntegrableObjects();
191        nCutoffGroups_ += mol->getNCutoffGroups();
192        nConstraints_ += mol->getNConstraintPairs();
193 <
194 <      addExcludePairs(mol);
195 <        
193 >      
194 >      addInteractionPairs(mol);
195 >      
196        return true;
197      } else {
198        return false;
199      }
200    }
201 <
201 >  
202    bool SimInfo::removeMolecule(Molecule* mol) {
203      MoleculeIterator i;
204      i = molecules_.find(mol->getGlobalIndex());
# Line 219 | Line 211 | namespace oopse {
211        nBonds_ -= mol->getNBonds();
212        nBends_ -= mol->getNBends();
213        nTorsions_ -= mol->getNTorsions();
214 +      nInversions_ -= mol->getNInversions();
215        nRigidBodies_ -= mol->getNRigidBodies();
216        nIntegrableObjects_ -= mol->getNIntegrableObjects();
217        nCutoffGroups_ -= mol->getNCutoffGroups();
218        nConstraints_ -= mol->getNConstraintPairs();
219  
220 <      removeExcludePairs(mol);
220 >      removeInteractionPairs(mol);
221        molecules_.erase(mol->getGlobalIndex());
222  
223        delete mol;
# Line 233 | Line 226 | namespace oopse {
226      } else {
227        return false;
228      }
236
237
229    }    
230  
231          
# Line 250 | Line 241 | namespace oopse {
241  
242  
243    void SimInfo::calcNdf() {
244 <    int ndf_local;
244 >    int ndf_local, nfq_local;
245      MoleculeIterator i;
246 <    std::vector<StuntDouble*>::iterator j;
246 >    vector<StuntDouble*>::iterator j;
247 >    vector<Atom*>::iterator k;
248 >
249      Molecule* mol;
250 <    StuntDouble* integrableObject;
250 >    StuntDouble* sd;
251 >    Atom* atom;
252  
253      ndf_local = 0;
254 +    nfq_local = 0;
255      
256      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
262      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263           integrableObject = mol->nextIntegrableObject(j)) {
257  
258 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
259 +           sd = mol->nextIntegrableObject(j)) {
260 +
261          ndf_local += 3;
262  
263 <        if (integrableObject->isDirectional()) {
264 <          if (integrableObject->isLinear()) {
263 >        if (sd->isDirectional()) {
264 >          if (sd->isLinear()) {
265              ndf_local += 2;
266            } else {
267              ndf_local += 3;
268            }
269          }
274            
270        }
271 +
272 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
273 +           atom = mol->nextFluctuatingCharge(k)) {
274 +        if (atom->isFluctuatingCharge()) {
275 +          nfq_local++;
276 +        }
277 +      }
278      }
279      
280 +    ndfLocal_ = ndf_local;
281 +
282      // n_constraints is local, so subtract them on each processor
283      ndf_local -= nConstraints_;
284  
285   #ifdef IS_MPI
286 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
286 >    MPI_Allreduce(&ndf_local, &ndf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
287 >    MPI_Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
288 >      MPI_INT, MPI_SUM, MPI_COMM_WORLD);
289   #else
290      ndf_ = ndf_local;
291 +    nGlobalFluctuatingCharges_ = nfq_local;
292   #endif
293  
294      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 292 | Line 299 | namespace oopse {
299  
300    int SimInfo::getFdf() {
301   #ifdef IS_MPI
302 <    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
302 >    MPI_Allreduce(&fdf_local, &fdf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
303   #else
304      fdf_ = fdf_local;
305   #endif
306      return fdf_;
307    }
308 +  
309 +  unsigned int SimInfo::getNLocalCutoffGroups(){
310 +    int nLocalCutoffAtoms = 0;
311 +    Molecule* mol;
312 +    MoleculeIterator mi;
313 +    CutoffGroup* cg;
314 +    Molecule::CutoffGroupIterator ci;
315      
316 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
317 +      
318 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
319 +           cg = mol->nextCutoffGroup(ci)) {
320 +        nLocalCutoffAtoms += cg->getNumAtom();
321 +        
322 +      }        
323 +    }
324 +    
325 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
326 +  }
327 +    
328    void SimInfo::calcNdfRaw() {
329      int ndfRaw_local;
330  
331      MoleculeIterator i;
332 <    std::vector<StuntDouble*>::iterator j;
332 >    vector<StuntDouble*>::iterator j;
333      Molecule* mol;
334 <    StuntDouble* integrableObject;
334 >    StuntDouble* sd;
335  
336      // Raw degrees of freedom that we have to set
337      ndfRaw_local = 0;
338      
339      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
314      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
315           integrableObject = mol->nextIntegrableObject(j)) {
340  
341 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
342 +           sd = mol->nextIntegrableObject(j)) {
343 +
344          ndfRaw_local += 3;
345  
346 <        if (integrableObject->isDirectional()) {
347 <          if (integrableObject->isLinear()) {
346 >        if (sd->isDirectional()) {
347 >          if (sd->isLinear()) {
348              ndfRaw_local += 2;
349            } else {
350              ndfRaw_local += 3;
# Line 328 | Line 355 | namespace oopse {
355      }
356      
357   #ifdef IS_MPI
358 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
358 >    MPI_Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
359   #else
360      ndfRaw_ = ndfRaw_local;
361   #endif
# Line 339 | Line 366 | namespace oopse {
366  
367      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
368  
342
369   #ifdef IS_MPI
370 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
370 >    MPI_Allreduce(&ndfTrans_local, &ndfTrans_, 1, MPI_INT, MPI_SUM,
371 >                  MPI_COMM_WORLD);
372   #else
373      ndfTrans_ = ndfTrans_local;
374   #endif
375  
376      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
350
377    }
378  
379 <  void SimInfo::addExcludePairs(Molecule* mol) {
380 <    std::vector<Bond*>::iterator bondIter;
381 <    std::vector<Bend*>::iterator bendIter;
382 <    std::vector<Torsion*>::iterator torsionIter;
379 >  void SimInfo::addInteractionPairs(Molecule* mol) {
380 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
381 >    vector<Bond*>::iterator bondIter;
382 >    vector<Bend*>::iterator bendIter;
383 >    vector<Torsion*>::iterator torsionIter;
384 >    vector<Inversion*>::iterator inversionIter;
385      Bond* bond;
386      Bend* bend;
387      Torsion* torsion;
388 +    Inversion* inversion;
389      int a;
390      int b;
391      int c;
392      int d;
393  
394 <    std::map<int, std::set<int> > atomGroups;
394 >    // atomGroups can be used to add special interaction maps between
395 >    // groups of atoms that are in two separate rigid bodies.
396 >    // However, most site-site interactions between two rigid bodies
397 >    // are probably not special, just the ones between the physically
398 >    // bonded atoms.  Interactions *within* a single rigid body should
399 >    // always be excluded.  These are done at the bottom of this
400 >    // function.
401  
402 +    map<int, set<int> > atomGroups;
403      Molecule::RigidBodyIterator rbIter;
404      RigidBody* rb;
405      Molecule::IntegrableObjectIterator ii;
406 <    StuntDouble* integrableObject;
406 >    StuntDouble* sd;
407      
408 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
409 <           integrableObject = mol->nextIntegrableObject(ii)) {
410 <
411 <      if (integrableObject->isRigidBody()) {
412 <          rb = static_cast<RigidBody*>(integrableObject);
413 <          std::vector<Atom*> atoms = rb->getAtoms();
414 <          std::set<int> rigidAtoms;
415 <          for (int i = 0; i < atoms.size(); ++i) {
416 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
417 <          }
418 <          for (int i = 0; i < atoms.size(); ++i) {
419 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
420 <          }      
408 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
409 >         sd = mol->nextIntegrableObject(ii)) {
410 >      
411 >      if (sd->isRigidBody()) {
412 >        rb = static_cast<RigidBody*>(sd);
413 >        vector<Atom*> atoms = rb->getAtoms();
414 >        set<int> rigidAtoms;
415 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
416 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
417 >        }
418 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
419 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
420 >        }      
421        } else {
422 <        std::set<int> oneAtomSet;
423 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
424 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
422 >        set<int> oneAtomSet;
423 >        oneAtomSet.insert(sd->getGlobalIndex());
424 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
425        }
426      }  
427  
428 <    
429 <    
430 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
428 >          
429 >    for (bond= mol->beginBond(bondIter); bond != NULL;
430 >         bond = mol->nextBond(bondIter)) {
431 >
432        a = bond->getAtomA()->getGlobalIndex();
433 <      b = bond->getAtomB()->getGlobalIndex();        
434 <      exclude_.addPair(a, b);
433 >      b = bond->getAtomB()->getGlobalIndex();  
434 >
435 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
436 >        oneTwoInteractions_.addPair(a, b);
437 >      } else {
438 >        excludedInteractions_.addPair(a, b);
439 >      }
440      }
441  
442 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
442 >    for (bend= mol->beginBend(bendIter); bend != NULL;
443 >         bend = mol->nextBend(bendIter)) {
444 >
445        a = bend->getAtomA()->getGlobalIndex();
446        b = bend->getAtomB()->getGlobalIndex();        
447        c = bend->getAtomC()->getGlobalIndex();
404      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
405      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
406      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
407
408      exclude_.addPairs(rigidSetA, rigidSetB);
409      exclude_.addPairs(rigidSetA, rigidSetC);
410      exclude_.addPairs(rigidSetB, rigidSetC);
448        
449 <      //exclude_.addPair(a, b);
450 <      //exclude_.addPair(a, c);
451 <      //exclude_.addPair(b, c);        
449 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
450 >        oneTwoInteractions_.addPair(a, b);      
451 >        oneTwoInteractions_.addPair(b, c);
452 >      } else {
453 >        excludedInteractions_.addPair(a, b);
454 >        excludedInteractions_.addPair(b, c);
455 >      }
456 >
457 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
458 >        oneThreeInteractions_.addPair(a, c);      
459 >      } else {
460 >        excludedInteractions_.addPair(a, c);
461 >      }
462      }
463  
464 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
464 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
465 >         torsion = mol->nextTorsion(torsionIter)) {
466 >
467        a = torsion->getAtomA()->getGlobalIndex();
468        b = torsion->getAtomB()->getGlobalIndex();        
469        c = torsion->getAtomC()->getGlobalIndex();        
470 <      d = torsion->getAtomD()->getGlobalIndex();        
422 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
423 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
424 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
425 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
470 >      d = torsion->getAtomD()->getGlobalIndex();      
471  
472 <      exclude_.addPairs(rigidSetA, rigidSetB);
473 <      exclude_.addPairs(rigidSetA, rigidSetC);
474 <      exclude_.addPairs(rigidSetA, rigidSetD);
475 <      exclude_.addPairs(rigidSetB, rigidSetC);
476 <      exclude_.addPairs(rigidSetB, rigidSetD);
477 <      exclude_.addPairs(rigidSetC, rigidSetD);
472 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
473 >        oneTwoInteractions_.addPair(a, b);      
474 >        oneTwoInteractions_.addPair(b, c);
475 >        oneTwoInteractions_.addPair(c, d);
476 >      } else {
477 >        excludedInteractions_.addPair(a, b);
478 >        excludedInteractions_.addPair(b, c);
479 >        excludedInteractions_.addPair(c, d);
480 >      }
481  
482 <      /*
483 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
484 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
485 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
486 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
487 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
488 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
489 <        
490 <      
491 <      exclude_.addPair(a, b);
492 <      exclude_.addPair(a, c);
493 <      exclude_.addPair(a, d);
494 <      exclude_.addPair(b, c);
447 <      exclude_.addPair(b, d);
448 <      exclude_.addPair(c, d);        
449 <      */
482 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
483 >        oneThreeInteractions_.addPair(a, c);      
484 >        oneThreeInteractions_.addPair(b, d);      
485 >      } else {
486 >        excludedInteractions_.addPair(a, c);
487 >        excludedInteractions_.addPair(b, d);
488 >      }
489 >
490 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
491 >        oneFourInteractions_.addPair(a, d);      
492 >      } else {
493 >        excludedInteractions_.addPair(a, d);
494 >      }
495      }
496  
497 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
498 <      std::vector<Atom*> atoms = rb->getAtoms();
499 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
500 <        for (int j = i + 1; j < atoms.size(); ++j) {
497 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
498 >         inversion = mol->nextInversion(inversionIter)) {
499 >
500 >      a = inversion->getAtomA()->getGlobalIndex();
501 >      b = inversion->getAtomB()->getGlobalIndex();        
502 >      c = inversion->getAtomC()->getGlobalIndex();        
503 >      d = inversion->getAtomD()->getGlobalIndex();        
504 >
505 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
506 >        oneTwoInteractions_.addPair(a, b);      
507 >        oneTwoInteractions_.addPair(a, c);
508 >        oneTwoInteractions_.addPair(a, d);
509 >      } else {
510 >        excludedInteractions_.addPair(a, b);
511 >        excludedInteractions_.addPair(a, c);
512 >        excludedInteractions_.addPair(a, d);
513 >      }
514 >
515 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
516 >        oneThreeInteractions_.addPair(b, c);    
517 >        oneThreeInteractions_.addPair(b, d);    
518 >        oneThreeInteractions_.addPair(c, d);      
519 >      } else {
520 >        excludedInteractions_.addPair(b, c);
521 >        excludedInteractions_.addPair(b, d);
522 >        excludedInteractions_.addPair(c, d);
523 >      }
524 >    }
525 >
526 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
527 >         rb = mol->nextRigidBody(rbIter)) {
528 >      vector<Atom*> atoms = rb->getAtoms();
529 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
530 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
531            a = atoms[i]->getGlobalIndex();
532            b = atoms[j]->getGlobalIndex();
533 <          exclude_.addPair(a, b);
533 >          excludedInteractions_.addPair(a, b);
534          }
535        }
536      }        
537  
538    }
539  
540 <  void SimInfo::removeExcludePairs(Molecule* mol) {
541 <    std::vector<Bond*>::iterator bondIter;
542 <    std::vector<Bend*>::iterator bendIter;
543 <    std::vector<Torsion*>::iterator torsionIter;
540 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
541 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
542 >    vector<Bond*>::iterator bondIter;
543 >    vector<Bend*>::iterator bendIter;
544 >    vector<Torsion*>::iterator torsionIter;
545 >    vector<Inversion*>::iterator inversionIter;
546      Bond* bond;
547      Bend* bend;
548      Torsion* torsion;
549 +    Inversion* inversion;
550      int a;
551      int b;
552      int c;
553      int d;
554  
555 <    std::map<int, std::set<int> > atomGroups;
478 <
555 >    map<int, set<int> > atomGroups;
556      Molecule::RigidBodyIterator rbIter;
557      RigidBody* rb;
558      Molecule::IntegrableObjectIterator ii;
559 <    StuntDouble* integrableObject;
559 >    StuntDouble* sd;
560      
561 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
562 <           integrableObject = mol->nextIntegrableObject(ii)) {
563 <
564 <      if (integrableObject->isRigidBody()) {
565 <          rb = static_cast<RigidBody*>(integrableObject);
566 <          std::vector<Atom*> atoms = rb->getAtoms();
567 <          std::set<int> rigidAtoms;
568 <          for (int i = 0; i < atoms.size(); ++i) {
569 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
570 <          }
571 <          for (int i = 0; i < atoms.size(); ++i) {
572 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
573 <          }      
561 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
562 >         sd = mol->nextIntegrableObject(ii)) {
563 >      
564 >      if (sd->isRigidBody()) {
565 >        rb = static_cast<RigidBody*>(sd);
566 >        vector<Atom*> atoms = rb->getAtoms();
567 >        set<int> rigidAtoms;
568 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
569 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
570 >        }
571 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
572 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
573 >        }      
574        } else {
575 <        std::set<int> oneAtomSet;
576 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
577 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
575 >        set<int> oneAtomSet;
576 >        oneAtomSet.insert(sd->getGlobalIndex());
577 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
578        }
579      }  
580  
581 <    
582 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
581 >    for (bond= mol->beginBond(bondIter); bond != NULL;
582 >         bond = mol->nextBond(bondIter)) {
583 >      
584        a = bond->getAtomA()->getGlobalIndex();
585 <      b = bond->getAtomB()->getGlobalIndex();        
586 <      exclude_.removePair(a, b);
585 >      b = bond->getAtomB()->getGlobalIndex();  
586 >    
587 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
588 >        oneTwoInteractions_.removePair(a, b);
589 >      } else {
590 >        excludedInteractions_.removePair(a, b);
591 >      }
592      }
593  
594 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
594 >    for (bend= mol->beginBend(bendIter); bend != NULL;
595 >         bend = mol->nextBend(bendIter)) {
596 >
597        a = bend->getAtomA()->getGlobalIndex();
598        b = bend->getAtomB()->getGlobalIndex();        
599        c = bend->getAtomC()->getGlobalIndex();
515
516      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
517      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
518      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
519
520      exclude_.removePairs(rigidSetA, rigidSetB);
521      exclude_.removePairs(rigidSetA, rigidSetC);
522      exclude_.removePairs(rigidSetB, rigidSetC);
600        
601 <      //exclude_.removePair(a, b);
602 <      //exclude_.removePair(a, c);
603 <      //exclude_.removePair(b, c);        
601 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
602 >        oneTwoInteractions_.removePair(a, b);      
603 >        oneTwoInteractions_.removePair(b, c);
604 >      } else {
605 >        excludedInteractions_.removePair(a, b);
606 >        excludedInteractions_.removePair(b, c);
607 >      }
608 >
609 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
610 >        oneThreeInteractions_.removePair(a, c);      
611 >      } else {
612 >        excludedInteractions_.removePair(a, c);
613 >      }
614      }
615  
616 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
616 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
617 >         torsion = mol->nextTorsion(torsionIter)) {
618 >
619        a = torsion->getAtomA()->getGlobalIndex();
620        b = torsion->getAtomB()->getGlobalIndex();        
621        c = torsion->getAtomC()->getGlobalIndex();        
622 <      d = torsion->getAtomD()->getGlobalIndex();        
622 >      d = torsion->getAtomD()->getGlobalIndex();      
623 >  
624 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
625 >        oneTwoInteractions_.removePair(a, b);      
626 >        oneTwoInteractions_.removePair(b, c);
627 >        oneTwoInteractions_.removePair(c, d);
628 >      } else {
629 >        excludedInteractions_.removePair(a, b);
630 >        excludedInteractions_.removePair(b, c);
631 >        excludedInteractions_.removePair(c, d);
632 >      }
633  
634 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
635 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
636 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
637 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
634 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
635 >        oneThreeInteractions_.removePair(a, c);      
636 >        oneThreeInteractions_.removePair(b, d);      
637 >      } else {
638 >        excludedInteractions_.removePair(a, c);
639 >        excludedInteractions_.removePair(b, d);
640 >      }
641  
642 <      exclude_.removePairs(rigidSetA, rigidSetB);
643 <      exclude_.removePairs(rigidSetA, rigidSetC);
644 <      exclude_.removePairs(rigidSetA, rigidSetD);
645 <      exclude_.removePairs(rigidSetB, rigidSetC);
646 <      exclude_.removePairs(rigidSetB, rigidSetD);
647 <      exclude_.removePairs(rigidSetC, rigidSetD);
642 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
643 >        oneFourInteractions_.removePair(a, d);      
644 >      } else {
645 >        excludedInteractions_.removePair(a, d);
646 >      }
647 >    }
648  
649 <      /*
650 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
549 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
550 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
551 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
552 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
553 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
649 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
650 >         inversion = mol->nextInversion(inversionIter)) {
651  
652 <      
653 <      exclude_.removePair(a, b);
654 <      exclude_.removePair(a, c);
655 <      exclude_.removePair(a, d);
656 <      exclude_.removePair(b, c);
657 <      exclude_.removePair(b, d);
658 <      exclude_.removePair(c, d);        
659 <      */
652 >      a = inversion->getAtomA()->getGlobalIndex();
653 >      b = inversion->getAtomB()->getGlobalIndex();        
654 >      c = inversion->getAtomC()->getGlobalIndex();        
655 >      d = inversion->getAtomD()->getGlobalIndex();        
656 >
657 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
658 >        oneTwoInteractions_.removePair(a, b);      
659 >        oneTwoInteractions_.removePair(a, c);
660 >        oneTwoInteractions_.removePair(a, d);
661 >      } else {
662 >        excludedInteractions_.removePair(a, b);
663 >        excludedInteractions_.removePair(a, c);
664 >        excludedInteractions_.removePair(a, d);
665 >      }
666 >
667 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
668 >        oneThreeInteractions_.removePair(b, c);    
669 >        oneThreeInteractions_.removePair(b, d);    
670 >        oneThreeInteractions_.removePair(c, d);      
671 >      } else {
672 >        excludedInteractions_.removePair(b, c);
673 >        excludedInteractions_.removePair(b, d);
674 >        excludedInteractions_.removePair(c, d);
675 >      }
676      }
677  
678 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
679 <      std::vector<Atom*> atoms = rb->getAtoms();
680 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
681 <        for (int j = i + 1; j < atoms.size(); ++j) {
678 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
679 >         rb = mol->nextRigidBody(rbIter)) {
680 >      vector<Atom*> atoms = rb->getAtoms();
681 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
682 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
683            a = atoms[i]->getGlobalIndex();
684            b = atoms[j]->getGlobalIndex();
685 <          exclude_.removePair(a, b);
685 >          excludedInteractions_.removePair(a, b);
686          }
687        }
688      }        
689 <
689 >    
690    }
691 <
692 <
691 >  
692 >  
693    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
694      int curStampId;
695 <
695 >    
696      //index from 0
697      curStampId = moleculeStamps_.size();
698  
# Line 586 | Line 700 | namespace oopse {
700      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
701    }
702  
589  void SimInfo::update() {
703  
704 <    setupSimType();
705 <
706 < #ifdef IS_MPI
707 <    setupFortranParallel();
708 < #endif
709 <
710 <    setupFortranSim();
711 <
712 <    //setup fortran force field
713 <    /** @deprecate */    
601 <    int isError = 0;
602 <    
603 <    setupElectrostaticSummationMethod( isError );
604 <    setupSwitchingFunction();
605 <    setupAccumulateBoxDipole();
606 <
607 <    if(isError){
608 <      sprintf( painCave.errMsg,
609 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
610 <      painCave.isFatal = 1;
611 <      simError();
612 <    }
613 <  
614 <    
615 <    setupCutoff();
616 <
704 >  /**
705 >   * update
706 >   *
707 >   *  Performs the global checks and variable settings after the
708 >   *  objects have been created.
709 >   *
710 >   */
711 >  void SimInfo::update() {  
712 >    setupSimVariables();
713 >    calcNConstraints();
714      calcNdf();
715      calcNdfRaw();
716      calcNdfTrans();
620
621    fortranInitialized_ = true;
717    }
718 <
719 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
718 >  
719 >  /**
720 >   * getSimulatedAtomTypes
721 >   *
722 >   * Returns an STL set of AtomType* that are actually present in this
723 >   * simulation.  Must query all processors to assemble this information.
724 >   *
725 >   */
726 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
727      SimInfo::MoleculeIterator mi;
728      Molecule* mol;
729      Molecule::AtomIterator ai;
730      Atom* atom;
731 <    std::set<AtomType*> atomTypes;
732 <
731 >    set<AtomType*> atomTypes;
732 >    
733      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
734 <
735 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
734 >      for(atom = mol->beginAtom(ai); atom != NULL;
735 >          atom = mol->nextAtom(ai)) {
736          atomTypes.insert(atom->getAtomType());
737 <      }
738 <        
737 >      }      
738 >    }    
739 >    
740 > #ifdef IS_MPI
741 >
742 >    // loop over the found atom types on this processor, and add their
743 >    // numerical idents to a vector:
744 >    
745 >    vector<int> foundTypes;
746 >    set<AtomType*>::iterator i;
747 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
748 >      foundTypes.push_back( (*i)->getIdent() );
749 >
750 >    // count_local holds the number of found types on this processor
751 >    int count_local = foundTypes.size();
752 >
753 >    int nproc;
754 >    MPI_Comm_size( MPI_COMM_WORLD, &nproc);
755 >
756 >    // we need arrays to hold the counts and displacement vectors for
757 >    // all processors
758 >    vector<int> counts(nproc, 0);
759 >    vector<int> disps(nproc, 0);
760 >
761 >    // fill the counts array
762 >    MPI_Allgather(&count_local, 1, MPI_INT, &counts[0],
763 >                  1, MPI_INT, MPI_COMM_WORLD);
764 >  
765 >    // use the processor counts to compute the displacement array
766 >    disps[0] = 0;    
767 >    int totalCount = counts[0];
768 >    for (int iproc = 1; iproc < nproc; iproc++) {
769 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
770 >      totalCount += counts[iproc];
771      }
772  
773 +    // we need a (possibly redundant) set of all found types:
774 +    vector<int> ftGlobal(totalCount);
775 +    
776 +    // now spray out the foundTypes to all the other processors:    
777 +    MPI_Allgatherv(&foundTypes[0], count_local, MPI_INT,
778 +                   &ftGlobal[0], &counts[0], &disps[0],
779 +                   MPI_INT, MPI_COMM_WORLD);
780 +
781 +    vector<int>::iterator j;
782 +
783 +    // foundIdents is a stl set, so inserting an already found ident
784 +    // will have no effect.
785 +    set<int> foundIdents;
786 +
787 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
788 +      foundIdents.insert((*j));
789 +    
790 +    // now iterate over the foundIdents and get the actual atom types
791 +    // that correspond to these:
792 +    set<int>::iterator it;
793 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
794 +      atomTypes.insert( forceField_->getAtomType((*it)) );
795 +
796 + #endif
797 +
798      return atomTypes;        
799    }
800  
642  void SimInfo::setupSimType() {
643    std::set<AtomType*>::iterator i;
644    std::set<AtomType*> atomTypes;
645    atomTypes = getUniqueAtomTypes();
646    
647    int useLennardJones = 0;
648    int useElectrostatic = 0;
649    int useEAM = 0;
650    int useSC = 0;
651    int useCharge = 0;
652    int useDirectional = 0;
653    int useDipole = 0;
654    int useGayBerne = 0;
655    int useSticky = 0;
656    int useStickyPower = 0;
657    int useShape = 0;
658    int useFLARB = 0; //it is not in AtomType yet
659    int useDirectionalAtom = 0;    
660    int useElectrostatics = 0;
661    //usePBC and useRF are from simParams
662    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
663    int useRF;
664    int useSF;
665    int useSP;
666    int useBoxDipole;
667    std::string myMethod;
801  
802 <    // set the useRF logical
803 <    useRF = 0;
804 <    useSF = 0;
802 >  int getGlobalCountOfType(AtomType* atype) {
803 >    /*
804 >    set<AtomType*> atypes = getSimulatedAtomTypes();
805 >    map<AtomType*, int> counts_;
806  
807 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
808 +      for(atom = mol->beginAtom(ai); atom != NULL;
809 +          atom = mol->nextAtom(ai)) {
810 +        atom->getAtomType();
811 +      }      
812 +    }    
813 +    */
814 +    return 0;
815 +  }
816  
817 <    if (simParams_->haveElectrostaticSummationMethod()) {
818 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
819 <      toUpper(myMethod);
820 <      if (myMethod == "REACTION_FIELD"){
821 <        useRF=1;
822 <      } else if (myMethod == "SHIFTED_FORCE"){
823 <        useSF = 1;
824 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
825 <        useSP = 1;
826 <      }
827 <    }
817 >  void SimInfo::setupSimVariables() {
818 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
819 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
820 >    // parameter is true
821 >    calcBoxDipole_ = false;
822 >    if ( simParams_->haveAccumulateBoxDipole() )
823 >      if ( simParams_->getAccumulateBoxDipole() ) {
824 >        calcBoxDipole_ = true;      
825 >      }
826 >    // we only call setAccumulateBoxQuadrupole if the accumulateBoxQuadrupole
827 >    // parameter is true
828 >    calcBoxQuadrupole_ = false;
829 >    if ( simParams_->haveAccumulateBoxQuadrupole() )
830 >      if ( simParams_->getAccumulateBoxQuadrupole() ) {
831 >        calcBoxQuadrupole_ = true;      
832 >      }
833      
834 <    if (simParams_->haveAccumulateBoxDipole())
835 <      if (simParams_->getAccumulateBoxDipole())
836 <        useBoxDipole = 1;
837 <
834 >    set<AtomType*>::iterator i;
835 >    set<AtomType*> atomTypes;
836 >    atomTypes = getSimulatedAtomTypes();    
837 >    bool usesElectrostatic = false;
838 >    bool usesMetallic = false;
839 >    bool usesDirectional = false;
840 >    bool usesFluctuatingCharges =  false;
841      //loop over all of the atom types
842      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
843 <      useLennardJones |= (*i)->isLennardJones();
844 <      useElectrostatic |= (*i)->isElectrostatic();
845 <      useEAM |= (*i)->isEAM();
846 <      useSC |= (*i)->isSC();
696 <      useCharge |= (*i)->isCharge();
697 <      useDirectional |= (*i)->isDirectional();
698 <      useDipole |= (*i)->isDipole();
699 <      useGayBerne |= (*i)->isGayBerne();
700 <      useSticky |= (*i)->isSticky();
701 <      useStickyPower |= (*i)->isStickyPower();
702 <      useShape |= (*i)->isShape();
843 >      usesElectrostatic |= (*i)->isElectrostatic();
844 >      usesMetallic |= (*i)->isMetal();
845 >      usesDirectional |= (*i)->isDirectional();
846 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
847      }
848  
849 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
706 <      useDirectionalAtom = 1;
707 <    }
708 <
709 <    if (useCharge || useDipole) {
710 <      useElectrostatics = 1;
711 <    }
712 <
713 < #ifdef IS_MPI    
849 > #ifdef IS_MPI
850      int temp;
851  
852 <    temp = usePBC;
853 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
852 >    temp = usesDirectional;
853 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
854 >    usesDirectionalAtoms_ = (temp == 0) ? false : true;
855 >    
856 >    temp = usesMetallic;
857 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
858 >    usesMetallicAtoms_ = (temp == 0) ? false : true;
859  
860 <    temp = useDirectionalAtom;
861 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
860 >    temp = usesElectrostatic;
861 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
862 >    usesElectrostaticAtoms_ = (temp == 0) ? false : true;
863  
864 <    temp = useLennardJones;
865 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
864 >    temp = usesFluctuatingCharges;
865 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
866 >    usesFluctuatingCharges_ = (temp == 0) ? false : true;
867 > #else
868  
869 <    temp = useElectrostatics;
870 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
869 >    usesDirectionalAtoms_ = usesDirectional;
870 >    usesMetallicAtoms_ = usesMetallic;
871 >    usesElectrostaticAtoms_ = usesElectrostatic;
872 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
873  
874 <    temp = useCharge;
875 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
874 > #endif
875 >    
876 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
877 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
878 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
879 >  }
880  
731    temp = useDipole;
732    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
881  
882 <    temp = useSticky;
883 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
882 >  vector<int> SimInfo::getGlobalAtomIndices() {
883 >    SimInfo::MoleculeIterator mi;
884 >    Molecule* mol;
885 >    Molecule::AtomIterator ai;
886 >    Atom* atom;
887  
888 <    temp = useStickyPower;
738 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
888 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
889      
890 <    temp = useGayBerne;
891 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
890 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
891 >      
892 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
893 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
894 >      }
895 >    }
896 >    return GlobalAtomIndices;
897 >  }
898  
743    temp = useEAM;
744    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
899  
900 <    temp = useSC;
901 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
902 <    
903 <    temp = useShape;
904 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
900 >  vector<int> SimInfo::getGlobalGroupIndices() {
901 >    SimInfo::MoleculeIterator mi;
902 >    Molecule* mol;
903 >    Molecule::CutoffGroupIterator ci;
904 >    CutoffGroup* cg;
905  
906 <    temp = useFLARB;
907 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
908 <
755 <    temp = useRF;
756 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
757 <
758 <    temp = useSF;
759 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
760 <
761 <    temp = useSP;
762 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
763 <
764 <    temp = useBoxDipole;
765 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 <
767 < #endif
768 <
769 <    fInfo_.SIM_uses_PBC = usePBC;    
770 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
771 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
772 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
773 <    fInfo_.SIM_uses_Charges = useCharge;
774 <    fInfo_.SIM_uses_Dipoles = useDipole;
775 <    fInfo_.SIM_uses_Sticky = useSticky;
776 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
777 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
778 <    fInfo_.SIM_uses_EAM = useEAM;
779 <    fInfo_.SIM_uses_SC = useSC;
780 <    fInfo_.SIM_uses_Shapes = useShape;
781 <    fInfo_.SIM_uses_FLARB = useFLARB;
782 <    fInfo_.SIM_uses_RF = useRF;
783 <    fInfo_.SIM_uses_SF = useSF;
784 <    fInfo_.SIM_uses_SP = useSP;
785 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
786 <
787 <    if( myMethod == "REACTION_FIELD") {
906 >    vector<int> GlobalGroupIndices;
907 >    
908 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
909        
910 <      if (simParams_->haveDielectric()) {
911 <        fInfo_.dielect = simParams_->getDielectric();
912 <      } else {
913 <        sprintf(painCave.errMsg,
914 <                "SimSetup Error: No Dielectric constant was set.\n"
915 <                "\tYou are trying to use Reaction Field without"
795 <                "\tsetting a dielectric constant!\n");
796 <        painCave.isFatal = 1;
797 <        simError();
798 <      }      
910 >      //local index of cutoff group is trivial, it only depends on the
911 >      //order of travesing
912 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
913 >           cg = mol->nextCutoffGroup(ci)) {
914 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
915 >      }        
916      }
917 <
917 >    return GlobalGroupIndices;
918    }
919  
803  void SimInfo::setupFortranSim() {
804    int isError;
805    int nExclude;
806    std::vector<int> fortranGlobalGroupMembership;
807    
808    nExclude = exclude_.getSize();
809    isError = 0;
920  
921 <    //globalGroupMembership_ is filled by SimCreator    
812 <    for (int i = 0; i < nGlobalAtoms_; i++) {
813 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
814 <    }
921 >  void SimInfo::prepareTopology() {
922  
923      //calculate mass ratio of cutoff group
817    std::vector<RealType> mfact;
924      SimInfo::MoleculeIterator mi;
925      Molecule* mol;
926      Molecule::CutoffGroupIterator ci;
# Line 823 | Line 929 | namespace oopse {
929      Atom* atom;
930      RealType totalMass;
931  
932 <    //to avoid memory reallocation, reserve enough space for mfact
933 <    mfact.reserve(getNCutoffGroups());
932 >    /**
933 >     * The mass factor is the relative mass of an atom to the total
934 >     * mass of the cutoff group it belongs to.  By default, all atoms
935 >     * are their own cutoff groups, and therefore have mass factors of
936 >     * 1.  We need some special handling for massless atoms, which
937 >     * will be treated as carrying the entire mass of the cutoff
938 >     * group.
939 >     */
940 >    massFactors_.clear();
941 >    massFactors_.resize(getNAtoms(), 1.0);
942      
943      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
944 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
944 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
945 >           cg = mol->nextCutoffGroup(ci)) {
946  
947          totalMass = cg->getMass();
948          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
949            // Check for massless groups - set mfact to 1 if true
950 <          if (totalMass != 0)
951 <            mfact.push_back(atom->getMass()/totalMass);
950 >          if (totalMass != 0)
951 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
952            else
953 <            mfact.push_back( 1.0 );
953 >            massFactors_[atom->getLocalIndex()] = 1.0;
954          }
840
955        }      
956      }
957  
958 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
959 <    std::vector<int> identArray;
960 <
961 <    //to avoid memory reallocation, reserve enough space identArray
962 <    identArray.reserve(getNAtoms());
963 <    
964 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
958 >    // Build the identArray_ and regions_
959 >
960 >    identArray_.clear();
961 >    identArray_.reserve(getNAtoms());  
962 >    regions_.clear();
963 >    regions_.reserve(getNAtoms());
964 >
965 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
966 >      int reg = mol->getRegion();      
967        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
968 <        identArray.push_back(atom->getIdent());
968 >        identArray_.push_back(atom->getIdent());
969 >        regions_.push_back(reg);
970        }
971      }    
972 <
973 <    //fill molMembershipArray
857 <    //molMembershipArray is filled by SimCreator    
858 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
859 <    for (int i = 0; i < nGlobalAtoms_; i++) {
860 <      molMembershipArray[i] = globalMolMembership_[i] + 1;
861 <    }
862 <    
863 <    //setup fortran simulation
864 <    int nGlobalExcludes = 0;
865 <    int* globalExcludes = NULL;
866 <    int* excludeList = exclude_.getExcludeList();
867 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
868 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
869 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
870 <
871 <    if( isError ){
872 <
873 <      sprintf( painCave.errMsg,
874 <               "There was an error setting the simulation information in fortran.\n" );
875 <      painCave.isFatal = 1;
876 <      painCave.severity = OOPSE_ERROR;
877 <      simError();
878 <    }
879 <
880 < #ifdef IS_MPI
881 <    sprintf( checkPointMsg,
882 <             "succesfully sent the simulation information to fortran.\n");
883 <    MPIcheckPoint();
884 < #endif // is_mpi
885 <  }
886 <
887 <
888 < #ifdef IS_MPI
889 <  void SimInfo::setupFortranParallel() {
890 <    
891 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
892 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
893 <    std::vector<int> localToGlobalCutoffGroupIndex;
894 <    SimInfo::MoleculeIterator mi;
895 <    Molecule::AtomIterator ai;
896 <    Molecule::CutoffGroupIterator ci;
897 <    Molecule* mol;
898 <    Atom* atom;
899 <    CutoffGroup* cg;
900 <    mpiSimData parallelData;
901 <    int isError;
902 <
903 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
904 <
905 <      //local index(index in DataStorge) of atom is important
906 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
907 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
908 <      }
909 <
910 <      //local index of cutoff group is trivial, it only depends on the order of travesing
911 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
912 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
913 <      }        
914 <        
915 <    }
916 <
917 <    //fill up mpiSimData struct
918 <    parallelData.nMolGlobal = getNGlobalMolecules();
919 <    parallelData.nMolLocal = getNMolecules();
920 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
921 <    parallelData.nAtomsLocal = getNAtoms();
922 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
923 <    parallelData.nGroupsLocal = getNCutoffGroups();
924 <    parallelData.myNode = worldRank;
925 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
926 <
927 <    //pass mpiSimData struct and index arrays to fortran
928 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
929 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
930 <                    &localToGlobalCutoffGroupIndex[0], &isError);
931 <
932 <    if (isError) {
933 <      sprintf(painCave.errMsg,
934 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
935 <      painCave.isFatal = 1;
936 <      simError();
937 <    }
938 <
939 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
940 <    MPIcheckPoint();
941 <
942 <
943 <  }
944 <
945 < #endif
946 <
947 <  void SimInfo::setupCutoff() {          
948 <    
949 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
950 <
951 <    // Check the cutoff policy
952 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
953 <
954 <    std::string myPolicy;
955 <    if (forceFieldOptions_.haveCutoffPolicy()){
956 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
957 <    }else if (simParams_->haveCutoffPolicy()) {
958 <      myPolicy = simParams_->getCutoffPolicy();
959 <    }
960 <
961 <    if (!myPolicy.empty()){
962 <      toUpper(myPolicy);
963 <      if (myPolicy == "MIX") {
964 <        cp = MIX_CUTOFF_POLICY;
965 <      } else {
966 <        if (myPolicy == "MAX") {
967 <          cp = MAX_CUTOFF_POLICY;
968 <        } else {
969 <          if (myPolicy == "TRADITIONAL") {            
970 <            cp = TRADITIONAL_CUTOFF_POLICY;
971 <          } else {
972 <            // throw error        
973 <            sprintf( painCave.errMsg,
974 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
975 <            painCave.isFatal = 1;
976 <            simError();
977 <          }    
978 <        }          
979 <      }
980 <    }          
981 <    notifyFortranCutoffPolicy(&cp);
982 <
983 <    // Check the Skin Thickness for neighborlists
984 <    RealType skin;
985 <    if (simParams_->haveSkinThickness()) {
986 <      skin = simParams_->getSkinThickness();
987 <      notifyFortranSkinThickness(&skin);
988 <    }            
989 <        
990 <    // Check if the cutoff was set explicitly:
991 <    if (simParams_->haveCutoffRadius()) {
992 <      rcut_ = simParams_->getCutoffRadius();
993 <      if (simParams_->haveSwitchingRadius()) {
994 <        rsw_  = simParams_->getSwitchingRadius();
995 <      } else {
996 <        if (fInfo_.SIM_uses_Charges |
997 <            fInfo_.SIM_uses_Dipoles |
998 <            fInfo_.SIM_uses_RF) {
999 <          
1000 <          rsw_ = 0.85 * rcut_;
1001 <          sprintf(painCave.errMsg,
1002 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1003 <                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1004 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1005 <        painCave.isFatal = 0;
1006 <        simError();
1007 <        } else {
1008 <          rsw_ = rcut_;
1009 <          sprintf(painCave.errMsg,
1010 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1011 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1012 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1013 <          painCave.isFatal = 0;
1014 <          simError();
1015 <        }
1016 <      }
1017 <      
1018 <      notifyFortranCutoffs(&rcut_, &rsw_);
1019 <      
1020 <    } else {
1021 <      
1022 <      // For electrostatic atoms, we'll assume a large safe value:
1023 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1024 <        sprintf(painCave.errMsg,
1025 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1026 <                "\tOOPSE will use a default value of 15.0 angstroms"
1027 <                "\tfor the cutoffRadius.\n");
1028 <        painCave.isFatal = 0;
1029 <        simError();
1030 <        rcut_ = 15.0;
1031 <      
1032 <        if (simParams_->haveElectrostaticSummationMethod()) {
1033 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1034 <          toUpper(myMethod);
1035 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1036 <            if (simParams_->haveSwitchingRadius()){
1037 <              sprintf(painCave.errMsg,
1038 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1039 <                      "\teven though the electrostaticSummationMethod was\n"
1040 <                      "\tset to %s\n", myMethod.c_str());
1041 <              painCave.isFatal = 1;
1042 <              simError();            
1043 <            }
1044 <          }
1045 <        }
1046 <      
1047 <        if (simParams_->haveSwitchingRadius()){
1048 <          rsw_ = simParams_->getSwitchingRadius();
1049 <        } else {        
1050 <          sprintf(painCave.errMsg,
1051 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1052 <                  "\tOOPSE will use a default value of\n"
1053 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1054 <          painCave.isFatal = 0;
1055 <          simError();
1056 <          rsw_ = 0.85 * rcut_;
1057 <        }
1058 <        notifyFortranCutoffs(&rcut_, &rsw_);
1059 <      } else {
1060 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1061 <        // We'll punt and let fortran figure out the cutoffs later.
1062 <        
1063 <        notifyFortranYouAreOnYourOwn();
1064 <
1065 <      }
1066 <    }
972 >      
973 >    topologyDone_ = true;
974    }
975  
1069  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1070    
1071    int errorOut;
1072    int esm =  NONE;
1073    int sm = UNDAMPED;
1074    RealType alphaVal;
1075    RealType dielectric;
1076
1077    errorOut = isError;
1078    alphaVal = simParams_->getDampingAlpha();
1079    dielectric = simParams_->getDielectric();
1080
1081    if (simParams_->haveElectrostaticSummationMethod()) {
1082      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1083      toUpper(myMethod);
1084      if (myMethod == "NONE") {
1085        esm = NONE;
1086      } else {
1087        if (myMethod == "SWITCHING_FUNCTION") {
1088          esm = SWITCHING_FUNCTION;
1089        } else {
1090          if (myMethod == "SHIFTED_POTENTIAL") {
1091            esm = SHIFTED_POTENTIAL;
1092          } else {
1093            if (myMethod == "SHIFTED_FORCE") {            
1094              esm = SHIFTED_FORCE;
1095            } else {
1096              if (myMethod == "REACTION_FIELD") {            
1097                esm = REACTION_FIELD;
1098              } else {
1099                // throw error        
1100                sprintf( painCave.errMsg,
1101                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1102                         "\t(Input file specified %s .)\n"
1103                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1104                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1105                         "\t\"reaction_field\".\n", myMethod.c_str() );
1106                painCave.isFatal = 1;
1107                simError();
1108              }    
1109            }          
1110          }
1111        }
1112      }
1113    }
1114    
1115    if (simParams_->haveElectrostaticScreeningMethod()) {
1116      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1117      toUpper(myScreen);
1118      if (myScreen == "UNDAMPED") {
1119        sm = UNDAMPED;
1120      } else {
1121        if (myScreen == "DAMPED") {
1122          sm = DAMPED;
1123          if (!simParams_->haveDampingAlpha()) {
1124            //throw error
1125            sprintf( painCave.errMsg,
1126                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1127                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1128            painCave.isFatal = 0;
1129            simError();
1130          }
1131        } else {
1132          // throw error        
1133          sprintf( painCave.errMsg,
1134                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1135                   "\t(Input file specified %s .)\n"
1136                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1137                   "or \"damped\".\n", myScreen.c_str() );
1138          painCave.isFatal = 1;
1139          simError();
1140        }
1141      }
1142    }
1143    
1144    // let's pass some summation method variables to fortran
1145    setElectrostaticSummationMethod( &esm );
1146    setFortranElectrostaticMethod( &esm );
1147    setScreeningMethod( &sm );
1148    setDampingAlpha( &alphaVal );
1149    setReactionFieldDielectric( &dielectric );
1150    initFortranFF( &errorOut );
1151  }
1152
1153  void SimInfo::setupSwitchingFunction() {    
1154    int ft = CUBIC;
1155
1156    if (simParams_->haveSwitchingFunctionType()) {
1157      std::string funcType = simParams_->getSwitchingFunctionType();
1158      toUpper(funcType);
1159      if (funcType == "CUBIC") {
1160        ft = CUBIC;
1161      } else {
1162        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1163          ft = FIFTH_ORDER_POLY;
1164        } else {
1165          // throw error        
1166          sprintf( painCave.errMsg,
1167                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1168          painCave.isFatal = 1;
1169          simError();
1170        }          
1171      }
1172    }
1173
1174    // send switching function notification to switcheroo
1175    setFunctionType(&ft);
1176
1177  }
1178
1179  void SimInfo::setupAccumulateBoxDipole() {    
1180
1181    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1182    if ( simParams_->haveAccumulateBoxDipole() )
1183      if ( simParams_->getAccumulateBoxDipole() ) {
1184        setAccumulateBoxDipole();
1185        calcBoxDipole_ = true;
1186      }
1187
1188  }
1189
976    void SimInfo::addProperty(GenericData* genData) {
977      properties_.addProperty(genData);  
978    }
979  
980 <  void SimInfo::removeProperty(const std::string& propName) {
980 >  void SimInfo::removeProperty(const string& propName) {
981      properties_.removeProperty(propName);  
982    }
983  
# Line 1199 | Line 985 | namespace oopse {
985      properties_.clearProperties();
986    }
987  
988 <  std::vector<std::string> SimInfo::getPropertyNames() {
988 >  vector<string> SimInfo::getPropertyNames() {
989      return properties_.getPropertyNames();  
990    }
991        
992 <  std::vector<GenericData*> SimInfo::getProperties() {
992 >  vector<GenericData*> SimInfo::getProperties() {
993      return properties_.getProperties();
994    }
995  
996 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
996 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
997      return properties_.getPropertyByName(propName);
998    }
999  
# Line 1218 | Line 1004 | namespace oopse {
1004      delete sman_;
1005      sman_ = sman;
1006  
1221    Molecule* mol;
1222    RigidBody* rb;
1223    Atom* atom;
1007      SimInfo::MoleculeIterator mi;
1008 +    Molecule::AtomIterator ai;
1009      Molecule::RigidBodyIterator rbIter;
1010 <    Molecule::AtomIterator atomIter;;
1010 >    Molecule::CutoffGroupIterator cgIter;
1011 >    Molecule::BondIterator bondIter;
1012 >    Molecule::BendIterator bendIter;
1013 >    Molecule::TorsionIterator torsionIter;
1014 >    Molecule::InversionIterator inversionIter;
1015  
1016 +    Molecule* mol;
1017 +    Atom* atom;
1018 +    RigidBody* rb;
1019 +    CutoffGroup* cg;
1020 +    Bond* bond;
1021 +    Bend* bend;
1022 +    Torsion* torsion;
1023 +    Inversion* inversion;    
1024 +
1025      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1026          
1027 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1027 >      for (atom = mol->beginAtom(ai); atom != NULL;
1028 >           atom = mol->nextAtom(ai)) {
1029          atom->setSnapshotManager(sman_);
1030 <      }
1031 <        
1032 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1030 >      }        
1031 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1032 >           rb = mol->nextRigidBody(rbIter)) {
1033          rb->setSnapshotManager(sman_);
1034        }
1035 <    }    
1036 <    
1035 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1036 >           cg = mol->nextCutoffGroup(cgIter)) {
1037 >        cg->setSnapshotManager(sman_);
1038 >      }
1039 >      for (bond = mol->beginBond(bondIter); bond != NULL;
1040 >           bond = mol->nextBond(bondIter)) {
1041 >        bond->setSnapshotManager(sman_);
1042 >      }
1043 >      for (bend = mol->beginBend(bendIter); bend != NULL;
1044 >           bend = mol->nextBend(bendIter)) {
1045 >        bend->setSnapshotManager(sman_);
1046 >      }
1047 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
1048 >           torsion = mol->nextTorsion(torsionIter)) {
1049 >        torsion->setSnapshotManager(sman_);
1050 >      }
1051 >      for (inversion = mol->beginInversion(inversionIter); inversion != NULL;
1052 >           inversion = mol->nextInversion(inversionIter)) {
1053 >        inversion->setSnapshotManager(sman_);
1054 >      }
1055 >    }
1056    }
1057  
1241  Vector3d SimInfo::getComVel(){
1242    SimInfo::MoleculeIterator i;
1243    Molecule* mol;
1058  
1059 <    Vector3d comVel(0.0);
1246 <    RealType totalMass = 0.0;
1247 <    
1248 <
1249 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1250 <      RealType mass = mol->getMass();
1251 <      totalMass += mass;
1252 <      comVel += mass * mol->getComVel();
1253 <    }  
1059 >  ostream& operator <<(ostream& o, SimInfo& info) {
1060  
1255 #ifdef IS_MPI
1256    RealType tmpMass = totalMass;
1257    Vector3d tmpComVel(comVel);    
1258    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1259    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1260 #endif
1261
1262    comVel /= totalMass;
1263
1264    return comVel;
1265  }
1266
1267  Vector3d SimInfo::getCom(){
1268    SimInfo::MoleculeIterator i;
1269    Molecule* mol;
1270
1271    Vector3d com(0.0);
1272    RealType totalMass = 0.0;
1273    
1274    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1275      RealType mass = mol->getMass();
1276      totalMass += mass;
1277      com += mass * mol->getCom();
1278    }  
1279
1280 #ifdef IS_MPI
1281    RealType tmpMass = totalMass;
1282    Vector3d tmpCom(com);    
1283    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1284    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1285 #endif
1286
1287    com /= totalMass;
1288
1289    return com;
1290
1291  }        
1292
1293  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1294
1061      return o;
1062    }
1063    
1064 <  
1065 <   /*
1066 <   Returns center of mass and center of mass velocity in one function call.
1067 <   */
1068 <  
1069 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1070 <      SimInfo::MoleculeIterator i;
1071 <      Molecule* mol;
1072 <      
1073 <    
1074 <      RealType totalMass = 0.0;
1075 <    
1064 >  
1065 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1066 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1067 >      sprintf(painCave.errMsg,
1068 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1069 >              "\tindex exceeds number of known objects!\n");
1070 >      painCave.isFatal = 1;
1071 >      simError();
1072 >      return NULL;
1073 >    } else
1074 >      return IOIndexToIntegrableObject.at(index);
1075 >  }
1076 >  
1077 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1078 >    IOIndexToIntegrableObject= v;
1079 >  }
1080  
1081 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1312 <         RealType mass = mol->getMass();
1313 <         totalMass += mass;
1314 <         com += mass * mol->getCom();
1315 <         comVel += mass * mol->getComVel();          
1316 <      }  
1317 <      
1081 >  void SimInfo::calcNConstraints() {
1082   #ifdef IS_MPI
1083 <      RealType tmpMass = totalMass;
1084 <      Vector3d tmpCom(com);  
1085 <      Vector3d tmpComVel(comVel);
1086 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1323 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1324 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1083 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints_, 1,  
1084 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
1085 > #else
1086 >    nGlobalConstraints_ =  nConstraints_;
1087   #endif
1088 <      
1327 <      com /= totalMass;
1328 <      comVel /= totalMass;
1329 <   }        
1330 <  
1331 <   /*
1332 <   Return intertia tensor for entire system and angular momentum Vector.
1088 >  }
1089  
1090 + }//end namespace OpenMD
1091  
1335       [  Ixx -Ixy  -Ixz ]
1336  J =| -Iyx  Iyy  -Iyz |
1337       [ -Izx -Iyz   Izz ]
1338    */
1339
1340   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1341      
1342
1343      RealType xx = 0.0;
1344      RealType yy = 0.0;
1345      RealType zz = 0.0;
1346      RealType xy = 0.0;
1347      RealType xz = 0.0;
1348      RealType yz = 0.0;
1349      Vector3d com(0.0);
1350      Vector3d comVel(0.0);
1351      
1352      getComAll(com, comVel);
1353      
1354      SimInfo::MoleculeIterator i;
1355      Molecule* mol;
1356      
1357      Vector3d thisq(0.0);
1358      Vector3d thisv(0.0);
1359
1360      RealType thisMass = 0.0;
1361    
1362      
1363      
1364  
1365      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1366        
1367         thisq = mol->getCom()-com;
1368         thisv = mol->getComVel()-comVel;
1369         thisMass = mol->getMass();
1370         // Compute moment of intertia coefficients.
1371         xx += thisq[0]*thisq[0]*thisMass;
1372         yy += thisq[1]*thisq[1]*thisMass;
1373         zz += thisq[2]*thisq[2]*thisMass;
1374        
1375         // compute products of intertia
1376         xy += thisq[0]*thisq[1]*thisMass;
1377         xz += thisq[0]*thisq[2]*thisMass;
1378         yz += thisq[1]*thisq[2]*thisMass;
1379            
1380         angularMomentum += cross( thisq, thisv ) * thisMass;
1381            
1382      }  
1383      
1384      
1385      inertiaTensor(0,0) = yy + zz;
1386      inertiaTensor(0,1) = -xy;
1387      inertiaTensor(0,2) = -xz;
1388      inertiaTensor(1,0) = -xy;
1389      inertiaTensor(1,1) = xx + zz;
1390      inertiaTensor(1,2) = -yz;
1391      inertiaTensor(2,0) = -xz;
1392      inertiaTensor(2,1) = -yz;
1393      inertiaTensor(2,2) = xx + yy;
1394      
1395 #ifdef IS_MPI
1396      Mat3x3d tmpI(inertiaTensor);
1397      Vector3d tmpAngMom;
1398      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1399      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1400 #endif
1401              
1402      return;
1403   }
1404
1405   //Returns the angular momentum of the system
1406   Vector3d SimInfo::getAngularMomentum(){
1407      
1408      Vector3d com(0.0);
1409      Vector3d comVel(0.0);
1410      Vector3d angularMomentum(0.0);
1411      
1412      getComAll(com,comVel);
1413      
1414      SimInfo::MoleculeIterator i;
1415      Molecule* mol;
1416      
1417      Vector3d thisr(0.0);
1418      Vector3d thisp(0.0);
1419      
1420      RealType thisMass;
1421      
1422      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1423        thisMass = mol->getMass();
1424        thisr = mol->getCom()-com;
1425        thisp = (mol->getComVel()-comVel)*thisMass;
1426        
1427        angularMomentum += cross( thisr, thisp );
1428        
1429      }  
1430      
1431 #ifdef IS_MPI
1432      Vector3d tmpAngMom;
1433      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1434 #endif
1435      
1436      return angularMomentum;
1437   }
1438  
1439  
1440 }//end namespace oopse
1441

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 998 by chrisfen, Mon Jul 3 13:18:43 2006 UTC vs.
Revision 2071 by gezelter, Sat Mar 7 21:41:51 2015 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines