ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 764 by gezelter, Mon Nov 21 22:59:21 2005 UTC vs.
Revision 2071 by gezelter, Sat Mar 7 21:41:51 2015 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 46 | Line 47
47   * @version 1.0
48   */
49  
50 + #ifdef IS_MPI
51 + #include <mpi.h>
52 + #endif
53   #include <algorithm>
54   #include <set>
55   #include <map>
# Line 53 | Line 57
57   #include "brains/SimInfo.hpp"
58   #include "math/Vector3.hpp"
59   #include "primitives/Molecule.hpp"
60 < #include "UseTheForce/fCutoffPolicy.h"
57 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 < #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 < #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 < #include "UseTheForce/doForces_interface.h"
61 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 < #include "UseTheForce/DarkSide/switcheroo_interface.h"
60 > #include "primitives/StuntDouble.hpp"
61   #include "utils/MemoryUtils.hpp"
62   #include "utils/simError.h"
63   #include "selection/SelectionManager.hpp"
64 + #include "io/ForceFieldOptions.hpp"
65 + #include "brains/ForceField.hpp"
66 + #include "nonbonded/SwitchingFunction.hpp"
67  
68 < #ifdef IS_MPI
69 < #include "UseTheForce/mpiComponentPlan.h"
69 < #include "UseTheForce/DarkSide/simParallel_interface.h"
70 < #endif
71 <
72 < namespace oopse {
73 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
74 <    std::map<int, std::set<int> >::iterator i = container.find(index);
75 <    std::set<int> result;
76 <    if (i != container.end()) {
77 <        result = i->second;
78 <    }
79 <
80 <    return result;
81 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 <                   ForceField* ff, Globals* simParams) :
73 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
74 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
74 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
75 >    nConstraints_(0), nFluctuatingCharges_(0),    
76      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
77 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
78 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
79 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
80 <    sman_(NULL), fortranInitialized_(false) {
81 <
82 <            
83 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
95 <      MoleculeStamp* molStamp;
96 <      int nMolWithSameStamp;
97 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
98 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
99 <      CutoffGroupStamp* cgStamp;    
100 <      RigidBodyStamp* rbStamp;
101 <      int nRigidAtoms = 0;
77 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
78 >    nGlobalFluctuatingCharges_(0), nGlobalBonds_(0), nGlobalBends_(0),
79 >    nGlobalTorsions_(0), nGlobalInversions_(0), nGlobalConstraints_(0),
80 >    hasNGlobalConstraints_(false),
81 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
82 >    sman_(NULL), topologyDone_(false), calcBoxDipole_(false),
83 >    calcBoxQuadrupole_(false), useAtomicVirial_(true) {    
84      
85 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
86 <        molStamp = i->first;
87 <        nMolWithSameStamp = i->second;
88 <        
89 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
90 <
91 <        //calculate atoms in molecules
92 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
93 <
94 <
95 <        //calculate atoms in cutoff groups
96 <        int nAtomsInGroups = 0;
97 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
98 <        
99 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
100 <          cgStamp = molStamp->getCutoffGroup(j);
101 <          nAtomsInGroups += cgStamp->getNMembers();
102 <        }
121 <
122 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
123 <
124 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
125 <
126 <        //calculate atoms in rigid bodies
127 <        int nAtomsInRigidBodies = 0;
128 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
129 <        
130 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
131 <          rbStamp = molStamp->getRigidBody(j);
132 <          nAtomsInRigidBodies += rbStamp->getNMembers();
133 <        }
134 <
135 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
136 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
137 <        
85 >    MoleculeStamp* molStamp;
86 >    int nMolWithSameStamp;
87 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
88 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
89 >    CutoffGroupStamp* cgStamp;    
90 >    RigidBodyStamp* rbStamp;
91 >    int nRigidAtoms = 0;
92 >    
93 >    vector<Component*> components = simParams->getComponents();
94 >    
95 >    for (vector<Component*>::iterator i = components.begin();
96 >         i !=components.end(); ++i) {
97 >      molStamp = (*i)->getMoleculeStamp();
98 >      if ( (*i)->haveRegion() ) {        
99 >        molStamp->setRegion( (*i)->getRegion() );
100 >      } else {
101 >        // set the region to a disallowed value:
102 >        molStamp->setRegion( -1 );
103        }
104  
105 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
106 <      //group therefore the total number of cutoff groups in the system is
107 <      //equal to the total number of atoms minus number of atoms belong to
108 <      //cutoff group defined in meta-data file plus the number of cutoff
109 <      //groups defined in meta-data file
110 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
111 <
112 <      //every free atom (atom does not belong to rigid bodies) is an
113 <      //integrable object therefore the total number of integrable objects
114 <      //in the system is equal to the total number of atoms minus number of
115 <      //atoms belong to rigid body defined in meta-data file plus the number
116 <      //of rigid bodies defined in meta-data file
117 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
118 <                                                + nGlobalRigidBodies_;
119 <  
120 <      nGlobalMols_ = molStampIds_.size();
121 <
122 < #ifdef IS_MPI    
123 <      molToProcMap_.resize(nGlobalMols_);
124 < #endif
125 <
105 >      nMolWithSameStamp = (*i)->getNMol();
106 >      
107 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
108 >      
109 >      //calculate atoms in molecules
110 >      nGlobalAtoms_ += molStamp->getNAtoms() * nMolWithSameStamp;
111 >      nGlobalBonds_ += molStamp->getNBonds() * nMolWithSameStamp;
112 >      nGlobalBends_ += molStamp->getNBends() * nMolWithSameStamp;
113 >      nGlobalTorsions_ += molStamp->getNTorsions() * nMolWithSameStamp;
114 >      nGlobalInversions_ += molStamp->getNInversions() * nMolWithSameStamp;
115 >      
116 >      //calculate atoms in cutoff groups
117 >      int nAtomsInGroups = 0;
118 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119 >      
120 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 >        cgStamp = molStamp->getCutoffGroupStamp(j);
122 >        nAtomsInGroups += cgStamp->getNMembers();
123 >      }
124 >      
125 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
126 >      
127 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
128 >      
129 >      //calculate atoms in rigid bodies
130 >      int nAtomsInRigidBodies = 0;
131 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
132 >      
133 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
134 >        rbStamp = molStamp->getRigidBodyStamp(j);
135 >        nAtomsInRigidBodies += rbStamp->getNMembers();
136 >      }
137 >      
138 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
139 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
140 >      
141      }
142 +    
143 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
144 +    //group therefore the total number of cutoff groups in the system is
145 +    //equal to the total number of atoms minus number of atoms belong to
146 +    //cutoff group defined in meta-data file plus the number of cutoff
147 +    //groups defined in meta-data file
148  
149 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
150 +    
151 +    //every free atom (atom does not belong to rigid bodies) is an
152 +    //integrable object therefore the total number of integrable objects
153 +    //in the system is equal to the total number of atoms minus number of
154 +    //atoms belong to rigid body defined in meta-data file plus the number
155 +    //of rigid bodies defined in meta-data file
156 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
157 +      + nGlobalRigidBodies_;
158 +    
159 +    nGlobalMols_ = molStampIds_.size();
160 +    molToProcMap_.resize(nGlobalMols_);
161 +  }
162 +  
163    SimInfo::~SimInfo() {
164 <    std::map<int, Molecule*>::iterator i;
164 >    map<int, Molecule*>::iterator i;
165      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
166        delete i->second;
167      }
168      molecules_.clear();
169        
170    delete stamps_;
170      delete sman_;
171      delete simParams_;
172      delete forceField_;
173    }
174  
176  int SimInfo::getNGlobalConstraints() {
177    int nGlobalConstraints;
178 #ifdef IS_MPI
179    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180                  MPI_COMM_WORLD);    
181 #else
182    nGlobalConstraints =  nConstraints_;
183 #endif
184    return nGlobalConstraints;
185  }
175  
176    bool SimInfo::addMolecule(Molecule* mol) {
177      MoleculeIterator i;
178 <
178 >    
179      i = molecules_.find(mol->getGlobalIndex());
180      if (i == molecules_.end() ) {
181 <
182 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
183 <        
181 >      
182 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
183 >      
184        nAtoms_ += mol->getNAtoms();
185        nBonds_ += mol->getNBonds();
186        nBends_ += mol->getNBends();
187        nTorsions_ += mol->getNTorsions();
188 +      nInversions_ += mol->getNInversions();
189        nRigidBodies_ += mol->getNRigidBodies();
190        nIntegrableObjects_ += mol->getNIntegrableObjects();
191        nCutoffGroups_ += mol->getNCutoffGroups();
192        nConstraints_ += mol->getNConstraintPairs();
193 <
194 <      addExcludePairs(mol);
195 <        
193 >      
194 >      addInteractionPairs(mol);
195 >      
196        return true;
197      } else {
198        return false;
199      }
200    }
201 <
201 >  
202    bool SimInfo::removeMolecule(Molecule* mol) {
203      MoleculeIterator i;
204      i = molecules_.find(mol->getGlobalIndex());
# Line 221 | Line 211 | namespace oopse {
211        nBonds_ -= mol->getNBonds();
212        nBends_ -= mol->getNBends();
213        nTorsions_ -= mol->getNTorsions();
214 +      nInversions_ -= mol->getNInversions();
215        nRigidBodies_ -= mol->getNRigidBodies();
216        nIntegrableObjects_ -= mol->getNIntegrableObjects();
217        nCutoffGroups_ -= mol->getNCutoffGroups();
218        nConstraints_ -= mol->getNConstraintPairs();
219  
220 <      removeExcludePairs(mol);
220 >      removeInteractionPairs(mol);
221        molecules_.erase(mol->getGlobalIndex());
222  
223        delete mol;
# Line 235 | Line 226 | namespace oopse {
226      } else {
227        return false;
228      }
238
239
229    }    
230  
231          
# Line 252 | Line 241 | namespace oopse {
241  
242  
243    void SimInfo::calcNdf() {
244 <    int ndf_local;
244 >    int ndf_local, nfq_local;
245      MoleculeIterator i;
246 <    std::vector<StuntDouble*>::iterator j;
246 >    vector<StuntDouble*>::iterator j;
247 >    vector<Atom*>::iterator k;
248 >
249      Molecule* mol;
250 <    StuntDouble* integrableObject;
250 >    StuntDouble* sd;
251 >    Atom* atom;
252  
253      ndf_local = 0;
254 +    nfq_local = 0;
255      
256      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
264      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
265           integrableObject = mol->nextIntegrableObject(j)) {
257  
258 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
259 +           sd = mol->nextIntegrableObject(j)) {
260 +
261          ndf_local += 3;
262  
263 <        if (integrableObject->isDirectional()) {
264 <          if (integrableObject->isLinear()) {
263 >        if (sd->isDirectional()) {
264 >          if (sd->isLinear()) {
265              ndf_local += 2;
266            } else {
267              ndf_local += 3;
268            }
269          }
270 <            
271 <      }//end for (integrableObject)
272 <    }// end for (mol)
270 >      }
271 >
272 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
273 >           atom = mol->nextFluctuatingCharge(k)) {
274 >        if (atom->isFluctuatingCharge()) {
275 >          nfq_local++;
276 >        }
277 >      }
278 >    }
279      
280 +    ndfLocal_ = ndf_local;
281 +
282      // n_constraints is local, so subtract them on each processor
283      ndf_local -= nConstraints_;
284  
285   #ifdef IS_MPI
286 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
286 >    MPI_Allreduce(&ndf_local, &ndf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
287 >    MPI_Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
288 >      MPI_INT, MPI_SUM, MPI_COMM_WORLD);
289   #else
290      ndf_ = ndf_local;
291 +    nGlobalFluctuatingCharges_ = nfq_local;
292   #endif
293  
294      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 292 | Line 297 | namespace oopse {
297  
298    }
299  
300 +  int SimInfo::getFdf() {
301 + #ifdef IS_MPI
302 +    MPI_Allreduce(&fdf_local, &fdf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
303 + #else
304 +    fdf_ = fdf_local;
305 + #endif
306 +    return fdf_;
307 +  }
308 +  
309 +  unsigned int SimInfo::getNLocalCutoffGroups(){
310 +    int nLocalCutoffAtoms = 0;
311 +    Molecule* mol;
312 +    MoleculeIterator mi;
313 +    CutoffGroup* cg;
314 +    Molecule::CutoffGroupIterator ci;
315 +    
316 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
317 +      
318 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
319 +           cg = mol->nextCutoffGroup(ci)) {
320 +        nLocalCutoffAtoms += cg->getNumAtom();
321 +        
322 +      }        
323 +    }
324 +    
325 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
326 +  }
327 +    
328    void SimInfo::calcNdfRaw() {
329      int ndfRaw_local;
330  
331      MoleculeIterator i;
332 <    std::vector<StuntDouble*>::iterator j;
332 >    vector<StuntDouble*>::iterator j;
333      Molecule* mol;
334 <    StuntDouble* integrableObject;
334 >    StuntDouble* sd;
335  
336      // Raw degrees of freedom that we have to set
337      ndfRaw_local = 0;
338      
339      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
307      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
308           integrableObject = mol->nextIntegrableObject(j)) {
340  
341 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
342 +           sd = mol->nextIntegrableObject(j)) {
343 +
344          ndfRaw_local += 3;
345  
346 <        if (integrableObject->isDirectional()) {
347 <          if (integrableObject->isLinear()) {
346 >        if (sd->isDirectional()) {
347 >          if (sd->isLinear()) {
348              ndfRaw_local += 2;
349            } else {
350              ndfRaw_local += 3;
# Line 321 | Line 355 | namespace oopse {
355      }
356      
357   #ifdef IS_MPI
358 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
358 >    MPI_Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
359   #else
360      ndfRaw_ = ndfRaw_local;
361   #endif
# Line 332 | Line 366 | namespace oopse {
366  
367      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
368  
335
369   #ifdef IS_MPI
370 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
370 >    MPI_Allreduce(&ndfTrans_local, &ndfTrans_, 1, MPI_INT, MPI_SUM,
371 >                  MPI_COMM_WORLD);
372   #else
373      ndfTrans_ = ndfTrans_local;
374   #endif
375  
376      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
343
377    }
378  
379 <  void SimInfo::addExcludePairs(Molecule* mol) {
380 <    std::vector<Bond*>::iterator bondIter;
381 <    std::vector<Bend*>::iterator bendIter;
382 <    std::vector<Torsion*>::iterator torsionIter;
379 >  void SimInfo::addInteractionPairs(Molecule* mol) {
380 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
381 >    vector<Bond*>::iterator bondIter;
382 >    vector<Bend*>::iterator bendIter;
383 >    vector<Torsion*>::iterator torsionIter;
384 >    vector<Inversion*>::iterator inversionIter;
385      Bond* bond;
386      Bend* bend;
387      Torsion* torsion;
388 +    Inversion* inversion;
389      int a;
390      int b;
391      int c;
392      int d;
393  
394 <    std::map<int, std::set<int> > atomGroups;
394 >    // atomGroups can be used to add special interaction maps between
395 >    // groups of atoms that are in two separate rigid bodies.
396 >    // However, most site-site interactions between two rigid bodies
397 >    // are probably not special, just the ones between the physically
398 >    // bonded atoms.  Interactions *within* a single rigid body should
399 >    // always be excluded.  These are done at the bottom of this
400 >    // function.
401  
402 +    map<int, set<int> > atomGroups;
403      Molecule::RigidBodyIterator rbIter;
404      RigidBody* rb;
405      Molecule::IntegrableObjectIterator ii;
406 <    StuntDouble* integrableObject;
406 >    StuntDouble* sd;
407      
408 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
409 <           integrableObject = mol->nextIntegrableObject(ii)) {
410 <
411 <      if (integrableObject->isRigidBody()) {
412 <          rb = static_cast<RigidBody*>(integrableObject);
413 <          std::vector<Atom*> atoms = rb->getAtoms();
414 <          std::set<int> rigidAtoms;
415 <          for (int i = 0; i < atoms.size(); ++i) {
416 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
417 <          }
418 <          for (int i = 0; i < atoms.size(); ++i) {
419 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
420 <          }      
408 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
409 >         sd = mol->nextIntegrableObject(ii)) {
410 >      
411 >      if (sd->isRigidBody()) {
412 >        rb = static_cast<RigidBody*>(sd);
413 >        vector<Atom*> atoms = rb->getAtoms();
414 >        set<int> rigidAtoms;
415 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
416 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
417 >        }
418 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
419 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
420 >        }      
421        } else {
422 <        std::set<int> oneAtomSet;
423 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
424 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
422 >        set<int> oneAtomSet;
423 >        oneAtomSet.insert(sd->getGlobalIndex());
424 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
425        }
426      }  
427  
428 <    
429 <    
430 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
428 >          
429 >    for (bond= mol->beginBond(bondIter); bond != NULL;
430 >         bond = mol->nextBond(bondIter)) {
431 >
432        a = bond->getAtomA()->getGlobalIndex();
433 <      b = bond->getAtomB()->getGlobalIndex();        
434 <      exclude_.addPair(a, b);
433 >      b = bond->getAtomB()->getGlobalIndex();  
434 >
435 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
436 >        oneTwoInteractions_.addPair(a, b);
437 >      } else {
438 >        excludedInteractions_.addPair(a, b);
439 >      }
440      }
441  
442 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
442 >    for (bend= mol->beginBend(bendIter); bend != NULL;
443 >         bend = mol->nextBend(bendIter)) {
444 >
445        a = bend->getAtomA()->getGlobalIndex();
446        b = bend->getAtomB()->getGlobalIndex();        
447        c = bend->getAtomC()->getGlobalIndex();
397      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
398      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
399      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
400
401      exclude_.addPairs(rigidSetA, rigidSetB);
402      exclude_.addPairs(rigidSetA, rigidSetC);
403      exclude_.addPairs(rigidSetB, rigidSetC);
448        
449 <      //exclude_.addPair(a, b);
450 <      //exclude_.addPair(a, c);
451 <      //exclude_.addPair(b, c);        
449 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
450 >        oneTwoInteractions_.addPair(a, b);      
451 >        oneTwoInteractions_.addPair(b, c);
452 >      } else {
453 >        excludedInteractions_.addPair(a, b);
454 >        excludedInteractions_.addPair(b, c);
455 >      }
456 >
457 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
458 >        oneThreeInteractions_.addPair(a, c);      
459 >      } else {
460 >        excludedInteractions_.addPair(a, c);
461 >      }
462      }
463  
464 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
464 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
465 >         torsion = mol->nextTorsion(torsionIter)) {
466 >
467        a = torsion->getAtomA()->getGlobalIndex();
468        b = torsion->getAtomB()->getGlobalIndex();        
469        c = torsion->getAtomC()->getGlobalIndex();        
470 <      d = torsion->getAtomD()->getGlobalIndex();        
415 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
416 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
417 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
418 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
419 <
420 <      exclude_.addPairs(rigidSetA, rigidSetB);
421 <      exclude_.addPairs(rigidSetA, rigidSetC);
422 <      exclude_.addPairs(rigidSetA, rigidSetD);
423 <      exclude_.addPairs(rigidSetB, rigidSetC);
424 <      exclude_.addPairs(rigidSetB, rigidSetD);
425 <      exclude_.addPairs(rigidSetC, rigidSetD);
470 >      d = torsion->getAtomD()->getGlobalIndex();      
471  
472 <      /*
473 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
474 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
475 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
476 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
477 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
478 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
479 <        
480 <      
481 <      exclude_.addPair(a, b);
482 <      exclude_.addPair(a, c);
483 <      exclude_.addPair(a, d);
484 <      exclude_.addPair(b, c);
485 <      exclude_.addPair(b, d);
486 <      exclude_.addPair(c, d);        
487 <      */
472 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
473 >        oneTwoInteractions_.addPair(a, b);      
474 >        oneTwoInteractions_.addPair(b, c);
475 >        oneTwoInteractions_.addPair(c, d);
476 >      } else {
477 >        excludedInteractions_.addPair(a, b);
478 >        excludedInteractions_.addPair(b, c);
479 >        excludedInteractions_.addPair(c, d);
480 >      }
481 >
482 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
483 >        oneThreeInteractions_.addPair(a, c);      
484 >        oneThreeInteractions_.addPair(b, d);      
485 >      } else {
486 >        excludedInteractions_.addPair(a, c);
487 >        excludedInteractions_.addPair(b, d);
488 >      }
489 >
490 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
491 >        oneFourInteractions_.addPair(a, d);      
492 >      } else {
493 >        excludedInteractions_.addPair(a, d);
494 >      }
495      }
496  
497 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
498 <      std::vector<Atom*> atoms = rb->getAtoms();
499 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
500 <        for (int j = i + 1; j < atoms.size(); ++j) {
497 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
498 >         inversion = mol->nextInversion(inversionIter)) {
499 >
500 >      a = inversion->getAtomA()->getGlobalIndex();
501 >      b = inversion->getAtomB()->getGlobalIndex();        
502 >      c = inversion->getAtomC()->getGlobalIndex();        
503 >      d = inversion->getAtomD()->getGlobalIndex();        
504 >
505 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
506 >        oneTwoInteractions_.addPair(a, b);      
507 >        oneTwoInteractions_.addPair(a, c);
508 >        oneTwoInteractions_.addPair(a, d);
509 >      } else {
510 >        excludedInteractions_.addPair(a, b);
511 >        excludedInteractions_.addPair(a, c);
512 >        excludedInteractions_.addPair(a, d);
513 >      }
514 >
515 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
516 >        oneThreeInteractions_.addPair(b, c);    
517 >        oneThreeInteractions_.addPair(b, d);    
518 >        oneThreeInteractions_.addPair(c, d);      
519 >      } else {
520 >        excludedInteractions_.addPair(b, c);
521 >        excludedInteractions_.addPair(b, d);
522 >        excludedInteractions_.addPair(c, d);
523 >      }
524 >    }
525 >
526 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
527 >         rb = mol->nextRigidBody(rbIter)) {
528 >      vector<Atom*> atoms = rb->getAtoms();
529 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
530 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
531            a = atoms[i]->getGlobalIndex();
532            b = atoms[j]->getGlobalIndex();
533 <          exclude_.addPair(a, b);
533 >          excludedInteractions_.addPair(a, b);
534          }
535        }
536      }        
537  
538    }
539  
540 <  void SimInfo::removeExcludePairs(Molecule* mol) {
541 <    std::vector<Bond*>::iterator bondIter;
542 <    std::vector<Bend*>::iterator bendIter;
543 <    std::vector<Torsion*>::iterator torsionIter;
540 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
541 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
542 >    vector<Bond*>::iterator bondIter;
543 >    vector<Bend*>::iterator bendIter;
544 >    vector<Torsion*>::iterator torsionIter;
545 >    vector<Inversion*>::iterator inversionIter;
546      Bond* bond;
547      Bend* bend;
548      Torsion* torsion;
549 +    Inversion* inversion;
550      int a;
551      int b;
552      int c;
553      int d;
554  
555 <    std::map<int, std::set<int> > atomGroups;
471 <
555 >    map<int, set<int> > atomGroups;
556      Molecule::RigidBodyIterator rbIter;
557      RigidBody* rb;
558      Molecule::IntegrableObjectIterator ii;
559 <    StuntDouble* integrableObject;
559 >    StuntDouble* sd;
560      
561 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
562 <           integrableObject = mol->nextIntegrableObject(ii)) {
563 <
564 <      if (integrableObject->isRigidBody()) {
565 <          rb = static_cast<RigidBody*>(integrableObject);
566 <          std::vector<Atom*> atoms = rb->getAtoms();
567 <          std::set<int> rigidAtoms;
568 <          for (int i = 0; i < atoms.size(); ++i) {
569 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
570 <          }
571 <          for (int i = 0; i < atoms.size(); ++i) {
572 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
573 <          }      
561 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
562 >         sd = mol->nextIntegrableObject(ii)) {
563 >      
564 >      if (sd->isRigidBody()) {
565 >        rb = static_cast<RigidBody*>(sd);
566 >        vector<Atom*> atoms = rb->getAtoms();
567 >        set<int> rigidAtoms;
568 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
569 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
570 >        }
571 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
572 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
573 >        }      
574        } else {
575 <        std::set<int> oneAtomSet;
576 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
577 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
575 >        set<int> oneAtomSet;
576 >        oneAtomSet.insert(sd->getGlobalIndex());
577 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
578        }
579      }  
580  
581 <    
582 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
581 >    for (bond= mol->beginBond(bondIter); bond != NULL;
582 >         bond = mol->nextBond(bondIter)) {
583 >      
584        a = bond->getAtomA()->getGlobalIndex();
585 <      b = bond->getAtomB()->getGlobalIndex();        
586 <      exclude_.removePair(a, b);
585 >      b = bond->getAtomB()->getGlobalIndex();  
586 >    
587 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
588 >        oneTwoInteractions_.removePair(a, b);
589 >      } else {
590 >        excludedInteractions_.removePair(a, b);
591 >      }
592      }
593  
594 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
594 >    for (bend= mol->beginBend(bendIter); bend != NULL;
595 >         bend = mol->nextBend(bendIter)) {
596 >
597        a = bend->getAtomA()->getGlobalIndex();
598        b = bend->getAtomB()->getGlobalIndex();        
599        c = bend->getAtomC()->getGlobalIndex();
508
509      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
510      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
511      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
512
513      exclude_.removePairs(rigidSetA, rigidSetB);
514      exclude_.removePairs(rigidSetA, rigidSetC);
515      exclude_.removePairs(rigidSetB, rigidSetC);
600        
601 <      //exclude_.removePair(a, b);
602 <      //exclude_.removePair(a, c);
603 <      //exclude_.removePair(b, c);        
601 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
602 >        oneTwoInteractions_.removePair(a, b);      
603 >        oneTwoInteractions_.removePair(b, c);
604 >      } else {
605 >        excludedInteractions_.removePair(a, b);
606 >        excludedInteractions_.removePair(b, c);
607 >      }
608 >
609 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
610 >        oneThreeInteractions_.removePair(a, c);      
611 >      } else {
612 >        excludedInteractions_.removePair(a, c);
613 >      }
614      }
615  
616 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
616 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
617 >         torsion = mol->nextTorsion(torsionIter)) {
618 >
619        a = torsion->getAtomA()->getGlobalIndex();
620        b = torsion->getAtomB()->getGlobalIndex();        
621        c = torsion->getAtomC()->getGlobalIndex();        
622 <      d = torsion->getAtomD()->getGlobalIndex();        
622 >      d = torsion->getAtomD()->getGlobalIndex();      
623 >  
624 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
625 >        oneTwoInteractions_.removePair(a, b);      
626 >        oneTwoInteractions_.removePair(b, c);
627 >        oneTwoInteractions_.removePair(c, d);
628 >      } else {
629 >        excludedInteractions_.removePair(a, b);
630 >        excludedInteractions_.removePair(b, c);
631 >        excludedInteractions_.removePair(c, d);
632 >      }
633  
634 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
635 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
636 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
637 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
634 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
635 >        oneThreeInteractions_.removePair(a, c);      
636 >        oneThreeInteractions_.removePair(b, d);      
637 >      } else {
638 >        excludedInteractions_.removePair(a, c);
639 >        excludedInteractions_.removePair(b, d);
640 >      }
641  
642 <      exclude_.removePairs(rigidSetA, rigidSetB);
643 <      exclude_.removePairs(rigidSetA, rigidSetC);
644 <      exclude_.removePairs(rigidSetA, rigidSetD);
645 <      exclude_.removePairs(rigidSetB, rigidSetC);
646 <      exclude_.removePairs(rigidSetB, rigidSetD);
647 <      exclude_.removePairs(rigidSetC, rigidSetD);
539 <
540 <      /*
541 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
542 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
543 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
544 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
545 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
546 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
642 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
643 >        oneFourInteractions_.removePair(a, d);      
644 >      } else {
645 >        excludedInteractions_.removePair(a, d);
646 >      }
647 >    }
648  
649 <      
650 <      exclude_.removePair(a, b);
651 <      exclude_.removePair(a, c);
652 <      exclude_.removePair(a, d);
653 <      exclude_.removePair(b, c);
654 <      exclude_.removePair(b, d);
655 <      exclude_.removePair(c, d);        
656 <      */
649 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
650 >         inversion = mol->nextInversion(inversionIter)) {
651 >
652 >      a = inversion->getAtomA()->getGlobalIndex();
653 >      b = inversion->getAtomB()->getGlobalIndex();        
654 >      c = inversion->getAtomC()->getGlobalIndex();        
655 >      d = inversion->getAtomD()->getGlobalIndex();        
656 >
657 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
658 >        oneTwoInteractions_.removePair(a, b);      
659 >        oneTwoInteractions_.removePair(a, c);
660 >        oneTwoInteractions_.removePair(a, d);
661 >      } else {
662 >        excludedInteractions_.removePair(a, b);
663 >        excludedInteractions_.removePair(a, c);
664 >        excludedInteractions_.removePair(a, d);
665 >      }
666 >
667 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
668 >        oneThreeInteractions_.removePair(b, c);    
669 >        oneThreeInteractions_.removePair(b, d);    
670 >        oneThreeInteractions_.removePair(c, d);      
671 >      } else {
672 >        excludedInteractions_.removePair(b, c);
673 >        excludedInteractions_.removePair(b, d);
674 >        excludedInteractions_.removePair(c, d);
675 >      }
676      }
677  
678 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
679 <      std::vector<Atom*> atoms = rb->getAtoms();
680 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
681 <        for (int j = i + 1; j < atoms.size(); ++j) {
678 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
679 >         rb = mol->nextRigidBody(rbIter)) {
680 >      vector<Atom*> atoms = rb->getAtoms();
681 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
682 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
683            a = atoms[i]->getGlobalIndex();
684            b = atoms[j]->getGlobalIndex();
685 <          exclude_.removePair(a, b);
685 >          excludedInteractions_.removePair(a, b);
686          }
687        }
688      }        
689 <
689 >    
690    }
691 <
692 <
691 >  
692 >  
693    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
694      int curStampId;
695 <
695 >    
696      //index from 0
697      curStampId = moleculeStamps_.size();
698  
# Line 579 | Line 700 | namespace oopse {
700      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
701    }
702  
582  void SimInfo::update() {
703  
704 <    setupSimType();
705 <
706 < #ifdef IS_MPI
707 <    setupFortranParallel();
708 < #endif
709 <
710 <    setupFortranSim();
711 <
712 <    //setup fortran force field
713 <    /** @deprecate */    
594 <    int isError = 0;
595 <    
596 <    setupElectrostaticSummationMethod( isError );
597 <    setupSwitchingFunction();
598 <
599 <    if(isError){
600 <      sprintf( painCave.errMsg,
601 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
602 <      painCave.isFatal = 1;
603 <      simError();
604 <    }
605 <  
606 <    
607 <    setupCutoff();
608 <
704 >  /**
705 >   * update
706 >   *
707 >   *  Performs the global checks and variable settings after the
708 >   *  objects have been created.
709 >   *
710 >   */
711 >  void SimInfo::update() {  
712 >    setupSimVariables();
713 >    calcNConstraints();
714      calcNdf();
715      calcNdfRaw();
716      calcNdfTrans();
612
613    fortranInitialized_ = true;
717    }
718 <
719 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
718 >  
719 >  /**
720 >   * getSimulatedAtomTypes
721 >   *
722 >   * Returns an STL set of AtomType* that are actually present in this
723 >   * simulation.  Must query all processors to assemble this information.
724 >   *
725 >   */
726 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
727      SimInfo::MoleculeIterator mi;
728      Molecule* mol;
729      Molecule::AtomIterator ai;
730      Atom* atom;
731 <    std::set<AtomType*> atomTypes;
732 <
731 >    set<AtomType*> atomTypes;
732 >    
733      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
734 <
735 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
734 >      for(atom = mol->beginAtom(ai); atom != NULL;
735 >          atom = mol->nextAtom(ai)) {
736          atomTypes.insert(atom->getAtomType());
737 <      }
738 <        
739 <    }
737 >      }      
738 >    }    
739 >    
740 > #ifdef IS_MPI
741  
742 <    return atomTypes;        
743 <  }
633 <
634 <  void SimInfo::setupSimType() {
635 <    std::set<AtomType*>::iterator i;
636 <    std::set<AtomType*> atomTypes;
637 <    atomTypes = getUniqueAtomTypes();
742 >    // loop over the found atom types on this processor, and add their
743 >    // numerical idents to a vector:
744      
745 <    int useLennardJones = 0;
746 <    int useElectrostatic = 0;
747 <    int useEAM = 0;
748 <    int useSC = 0;
643 <    int useCharge = 0;
644 <    int useDirectional = 0;
645 <    int useDipole = 0;
646 <    int useGayBerne = 0;
647 <    int useSticky = 0;
648 <    int useStickyPower = 0;
649 <    int useShape = 0;
650 <    int useFLARB = 0; //it is not in AtomType yet
651 <    int useDirectionalAtom = 0;    
652 <    int useElectrostatics = 0;
653 <    //usePBC and useRF are from simParams
654 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
655 <    int useRF;
656 <    int useSF;
657 <    std::string myMethod;
745 >    vector<int> foundTypes;
746 >    set<AtomType*>::iterator i;
747 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
748 >      foundTypes.push_back( (*i)->getIdent() );
749  
750 <    // set the useRF logical
751 <    useRF = 0;
661 <    useSF = 0;
750 >    // count_local holds the number of found types on this processor
751 >    int count_local = foundTypes.size();
752  
753 +    int nproc;
754 +    MPI_Comm_size( MPI_COMM_WORLD, &nproc);
755  
756 <    if (simParams_->haveElectrostaticSummationMethod()) {
757 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
758 <      toUpper(myMethod);
759 <      if (myMethod == "REACTION_FIELD") {
760 <        useRF=1;
761 <      } else {
762 <        if (myMethod == "SHIFTED_FORCE") {
763 <          useSF = 1;
764 <        }
765 <      }
756 >    // we need arrays to hold the counts and displacement vectors for
757 >    // all processors
758 >    vector<int> counts(nproc, 0);
759 >    vector<int> disps(nproc, 0);
760 >
761 >    // fill the counts array
762 >    MPI_Allgather(&count_local, 1, MPI_INT, &counts[0],
763 >                  1, MPI_INT, MPI_COMM_WORLD);
764 >  
765 >    // use the processor counts to compute the displacement array
766 >    disps[0] = 0;    
767 >    int totalCount = counts[0];
768 >    for (int iproc = 1; iproc < nproc; iproc++) {
769 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
770 >      totalCount += counts[iproc];
771      }
772 +
773 +    // we need a (possibly redundant) set of all found types:
774 +    vector<int> ftGlobal(totalCount);
775 +    
776 +    // now spray out the foundTypes to all the other processors:    
777 +    MPI_Allgatherv(&foundTypes[0], count_local, MPI_INT,
778 +                   &ftGlobal[0], &counts[0], &disps[0],
779 +                   MPI_INT, MPI_COMM_WORLD);
780 +
781 +    vector<int>::iterator j;
782 +
783 +    // foundIdents is a stl set, so inserting an already found ident
784 +    // will have no effect.
785 +    set<int> foundIdents;
786 +
787 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
788 +      foundIdents.insert((*j));
789 +    
790 +    // now iterate over the foundIdents and get the actual atom types
791 +    // that correspond to these:
792 +    set<int>::iterator it;
793 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
794 +      atomTypes.insert( forceField_->getAtomType((*it)) );
795 +
796 + #endif
797  
798 +    return atomTypes;        
799 +  }
800 +
801 +
802 +  int getGlobalCountOfType(AtomType* atype) {
803 +    /*
804 +    set<AtomType*> atypes = getSimulatedAtomTypes();
805 +    map<AtomType*, int> counts_;
806 +
807 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
808 +      for(atom = mol->beginAtom(ai); atom != NULL;
809 +          atom = mol->nextAtom(ai)) {
810 +        atom->getAtomType();
811 +      }      
812 +    }    
813 +    */
814 +    return 0;
815 +  }
816 +
817 +  void SimInfo::setupSimVariables() {
818 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
819 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
820 +    // parameter is true
821 +    calcBoxDipole_ = false;
822 +    if ( simParams_->haveAccumulateBoxDipole() )
823 +      if ( simParams_->getAccumulateBoxDipole() ) {
824 +        calcBoxDipole_ = true;      
825 +      }
826 +    // we only call setAccumulateBoxQuadrupole if the accumulateBoxQuadrupole
827 +    // parameter is true
828 +    calcBoxQuadrupole_ = false;
829 +    if ( simParams_->haveAccumulateBoxQuadrupole() )
830 +      if ( simParams_->getAccumulateBoxQuadrupole() ) {
831 +        calcBoxQuadrupole_ = true;      
832 +      }
833 +    
834 +    set<AtomType*>::iterator i;
835 +    set<AtomType*> atomTypes;
836 +    atomTypes = getSimulatedAtomTypes();    
837 +    bool usesElectrostatic = false;
838 +    bool usesMetallic = false;
839 +    bool usesDirectional = false;
840 +    bool usesFluctuatingCharges =  false;
841      //loop over all of the atom types
842      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
843 <      useLennardJones |= (*i)->isLennardJones();
844 <      useElectrostatic |= (*i)->isElectrostatic();
845 <      useEAM |= (*i)->isEAM();
846 <      useSC |= (*i)->isSC();
682 <      useCharge |= (*i)->isCharge();
683 <      useDirectional |= (*i)->isDirectional();
684 <      useDipole |= (*i)->isDipole();
685 <      useGayBerne |= (*i)->isGayBerne();
686 <      useSticky |= (*i)->isSticky();
687 <      useStickyPower |= (*i)->isStickyPower();
688 <      useShape |= (*i)->isShape();
843 >      usesElectrostatic |= (*i)->isElectrostatic();
844 >      usesMetallic |= (*i)->isMetal();
845 >      usesDirectional |= (*i)->isDirectional();
846 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
847      }
848  
849 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
692 <      useDirectionalAtom = 1;
693 <    }
694 <
695 <    if (useCharge || useDipole) {
696 <      useElectrostatics = 1;
697 <    }
698 <
699 < #ifdef IS_MPI    
849 > #ifdef IS_MPI
850      int temp;
851  
852 <    temp = usePBC;
853 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
852 >    temp = usesDirectional;
853 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
854 >    usesDirectionalAtoms_ = (temp == 0) ? false : true;
855 >    
856 >    temp = usesMetallic;
857 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
858 >    usesMetallicAtoms_ = (temp == 0) ? false : true;
859  
860 <    temp = useDirectionalAtom;
861 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
860 >    temp = usesElectrostatic;
861 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
862 >    usesElectrostaticAtoms_ = (temp == 0) ? false : true;
863  
864 <    temp = useLennardJones;
865 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
864 >    temp = usesFluctuatingCharges;
865 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
866 >    usesFluctuatingCharges_ = (temp == 0) ? false : true;
867 > #else
868  
869 <    temp = useElectrostatics;
870 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
869 >    usesDirectionalAtoms_ = usesDirectional;
870 >    usesMetallicAtoms_ = usesMetallic;
871 >    usesElectrostaticAtoms_ = usesElectrostatic;
872 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
873  
874 <    temp = useCharge;
875 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
874 > #endif
875 >    
876 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
877 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
878 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
879 >  }
880  
717    temp = useDipole;
718    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
881  
882 <    temp = useSticky;
883 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
882 >  vector<int> SimInfo::getGlobalAtomIndices() {
883 >    SimInfo::MoleculeIterator mi;
884 >    Molecule* mol;
885 >    Molecule::AtomIterator ai;
886 >    Atom* atom;
887  
888 <    temp = useStickyPower;
724 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
888 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
889      
890 <    temp = useGayBerne;
891 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
890 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
891 >      
892 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
893 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
894 >      }
895 >    }
896 >    return GlobalAtomIndices;
897 >  }
898  
729    temp = useEAM;
730    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
899  
900 <    temp = useSC;
901 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
902 <    
903 <    temp = useShape;
904 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
900 >  vector<int> SimInfo::getGlobalGroupIndices() {
901 >    SimInfo::MoleculeIterator mi;
902 >    Molecule* mol;
903 >    Molecule::CutoffGroupIterator ci;
904 >    CutoffGroup* cg;
905  
906 <    temp = useFLARB;
907 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
908 <
741 <    temp = useRF;
742 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
743 <
744 <    temp = useSF;
745 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
746 <
747 < #endif
748 <
749 <    fInfo_.SIM_uses_PBC = usePBC;    
750 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
751 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
752 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
753 <    fInfo_.SIM_uses_Charges = useCharge;
754 <    fInfo_.SIM_uses_Dipoles = useDipole;
755 <    fInfo_.SIM_uses_Sticky = useSticky;
756 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
757 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
758 <    fInfo_.SIM_uses_EAM = useEAM;
759 <    fInfo_.SIM_uses_SC = useSC;
760 <    fInfo_.SIM_uses_Shapes = useShape;
761 <    fInfo_.SIM_uses_FLARB = useFLARB;
762 <    fInfo_.SIM_uses_RF = useRF;
763 <    fInfo_.SIM_uses_SF = useSF;
764 <
765 <    if( myMethod == "REACTION_FIELD") {
906 >    vector<int> GlobalGroupIndices;
907 >    
908 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
909        
910 <      if (simParams_->haveDielectric()) {
911 <        fInfo_.dielect = simParams_->getDielectric();
912 <      } else {
913 <        sprintf(painCave.errMsg,
914 <                "SimSetup Error: No Dielectric constant was set.\n"
915 <                "\tYou are trying to use Reaction Field without"
773 <                "\tsetting a dielectric constant!\n");
774 <        painCave.isFatal = 1;
775 <        simError();
776 <      }      
910 >      //local index of cutoff group is trivial, it only depends on the
911 >      //order of travesing
912 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
913 >           cg = mol->nextCutoffGroup(ci)) {
914 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
915 >      }        
916      }
917 <
917 >    return GlobalGroupIndices;
918    }
919  
781  void SimInfo::setupFortranSim() {
782    int isError;
783    int nExclude;
784    std::vector<int> fortranGlobalGroupMembership;
785    
786    nExclude = exclude_.getSize();
787    isError = 0;
920  
921 <    //globalGroupMembership_ is filled by SimCreator    
790 <    for (int i = 0; i < nGlobalAtoms_; i++) {
791 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
792 <    }
921 >  void SimInfo::prepareTopology() {
922  
923      //calculate mass ratio of cutoff group
795    std::vector<double> mfact;
924      SimInfo::MoleculeIterator mi;
925      Molecule* mol;
926      Molecule::CutoffGroupIterator ci;
927      CutoffGroup* cg;
928      Molecule::AtomIterator ai;
929      Atom* atom;
930 <    double totalMass;
930 >    RealType totalMass;
931  
932 <    //to avoid memory reallocation, reserve enough space for mfact
933 <    mfact.reserve(getNCutoffGroups());
932 >    /**
933 >     * The mass factor is the relative mass of an atom to the total
934 >     * mass of the cutoff group it belongs to.  By default, all atoms
935 >     * are their own cutoff groups, and therefore have mass factors of
936 >     * 1.  We need some special handling for massless atoms, which
937 >     * will be treated as carrying the entire mass of the cutoff
938 >     * group.
939 >     */
940 >    massFactors_.clear();
941 >    massFactors_.resize(getNAtoms(), 1.0);
942      
943      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
944 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
944 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
945 >           cg = mol->nextCutoffGroup(ci)) {
946  
947          totalMass = cg->getMass();
948          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
949            // Check for massless groups - set mfact to 1 if true
950 <          if (totalMass != 0)
951 <            mfact.push_back(atom->getMass()/totalMass);
950 >          if (totalMass != 0)
951 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
952            else
953 <            mfact.push_back( 1.0 );
953 >            massFactors_[atom->getLocalIndex()] = 1.0;
954          }
818
955        }      
956      }
957  
958 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
823 <    std::vector<int> identArray;
958 >    // Build the identArray_ and regions_
959  
960 <    //to avoid memory reallocation, reserve enough space identArray
961 <    identArray.reserve(getNAtoms());
962 <    
963 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
960 >    identArray_.clear();
961 >    identArray_.reserve(getNAtoms());  
962 >    regions_.clear();
963 >    regions_.reserve(getNAtoms());
964 >
965 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
966 >      int reg = mol->getRegion();      
967        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
968 <        identArray.push_back(atom->getIdent());
968 >        identArray_.push_back(atom->getIdent());
969 >        regions_.push_back(reg);
970        }
971      }    
972 <
973 <    //fill molMembershipArray
835 <    //molMembershipArray is filled by SimCreator    
836 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
837 <    for (int i = 0; i < nGlobalAtoms_; i++) {
838 <      molMembershipArray[i] = globalMolMembership_[i] + 1;
839 <    }
840 <    
841 <    //setup fortran simulation
842 <    int nGlobalExcludes = 0;
843 <    int* globalExcludes = NULL;
844 <    int* excludeList = exclude_.getExcludeList();
845 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
846 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
847 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
848 <
849 <    if( isError ){
850 <
851 <      sprintf( painCave.errMsg,
852 <               "There was an error setting the simulation information in fortran.\n" );
853 <      painCave.isFatal = 1;
854 <      painCave.severity = OOPSE_ERROR;
855 <      simError();
856 <    }
857 <
858 < #ifdef IS_MPI
859 <    sprintf( checkPointMsg,
860 <             "succesfully sent the simulation information to fortran.\n");
861 <    MPIcheckPoint();
862 < #endif // is_mpi
863 <  }
864 <
865 <
866 < #ifdef IS_MPI
867 <  void SimInfo::setupFortranParallel() {
868 <    
869 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
870 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
871 <    std::vector<int> localToGlobalCutoffGroupIndex;
872 <    SimInfo::MoleculeIterator mi;
873 <    Molecule::AtomIterator ai;
874 <    Molecule::CutoffGroupIterator ci;
875 <    Molecule* mol;
876 <    Atom* atom;
877 <    CutoffGroup* cg;
878 <    mpiSimData parallelData;
879 <    int isError;
880 <
881 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
882 <
883 <      //local index(index in DataStorge) of atom is important
884 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
885 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
886 <      }
887 <
888 <      //local index of cutoff group is trivial, it only depends on the order of travesing
889 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
890 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
891 <      }        
892 <        
893 <    }
894 <
895 <    //fill up mpiSimData struct
896 <    parallelData.nMolGlobal = getNGlobalMolecules();
897 <    parallelData.nMolLocal = getNMolecules();
898 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
899 <    parallelData.nAtomsLocal = getNAtoms();
900 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
901 <    parallelData.nGroupsLocal = getNCutoffGroups();
902 <    parallelData.myNode = worldRank;
903 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
904 <
905 <    //pass mpiSimData struct and index arrays to fortran
906 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
907 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
908 <                    &localToGlobalCutoffGroupIndex[0], &isError);
909 <
910 <    if (isError) {
911 <      sprintf(painCave.errMsg,
912 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
913 <      painCave.isFatal = 1;
914 <      simError();
915 <    }
916 <
917 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
918 <    MPIcheckPoint();
919 <
920 <
921 <  }
922 <
923 < #endif
924 <
925 <  void SimInfo::setupCutoff() {          
926 <    
927 <    // Check the cutoff policy
928 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
929 <    if (simParams_->haveCutoffPolicy()) {
930 <      std::string myPolicy = simParams_->getCutoffPolicy();
931 <      toUpper(myPolicy);
932 <      if (myPolicy == "MIX") {
933 <        cp = MIX_CUTOFF_POLICY;
934 <      } else {
935 <        if (myPolicy == "MAX") {
936 <          cp = MAX_CUTOFF_POLICY;
937 <        } else {
938 <          if (myPolicy == "TRADITIONAL") {            
939 <            cp = TRADITIONAL_CUTOFF_POLICY;
940 <          } else {
941 <            // throw error        
942 <            sprintf( painCave.errMsg,
943 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
944 <            painCave.isFatal = 1;
945 <            simError();
946 <          }    
947 <        }          
948 <      }
949 <    }          
950 <    notifyFortranCutoffPolicy(&cp);
951 <
952 <    // Check the Skin Thickness for neighborlists
953 <    double skin;
954 <    if (simParams_->haveSkinThickness()) {
955 <      skin = simParams_->getSkinThickness();
956 <      notifyFortranSkinThickness(&skin);
957 <    }            
958 <        
959 <    // Check if the cutoff was set explicitly:
960 <    if (simParams_->haveCutoffRadius()) {
961 <      rcut_ = simParams_->getCutoffRadius();
962 <      if (simParams_->haveSwitchingRadius()) {
963 <        rsw_  = simParams_->getSwitchingRadius();
964 <      } else {
965 <        rsw_ = rcut_;
966 <      }
967 <      notifyFortranCutoffs(&rcut_, &rsw_);
968 <      
969 <    } else {
970 <      
971 <      // For electrostatic atoms, we'll assume a large safe value:
972 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
973 <        sprintf(painCave.errMsg,
974 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
975 <                "\tOOPSE will use a default value of 15.0 angstroms"
976 <                "\tfor the cutoffRadius.\n");
977 <        painCave.isFatal = 0;
978 <        simError();
979 <        rcut_ = 15.0;
980 <      
981 <        if (simParams_->haveElectrostaticSummationMethod()) {
982 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
983 <          toUpper(myMethod);
984 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
985 <            if (simParams_->haveSwitchingRadius()){
986 <              sprintf(painCave.errMsg,
987 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
988 <                      "\teven though the electrostaticSummationMethod was\n"
989 <                      "\tset to %s\n", myMethod.c_str());
990 <              painCave.isFatal = 1;
991 <              simError();            
992 <            }
993 <          }
994 <        }
995 <      
996 <        if (simParams_->haveSwitchingRadius()){
997 <          rsw_ = simParams_->getSwitchingRadius();
998 <        } else {        
999 <          sprintf(painCave.errMsg,
1000 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1001 <                  "\tOOPSE will use a default value of\n"
1002 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1003 <          painCave.isFatal = 0;
1004 <          simError();
1005 <          rsw_ = 0.85 * rcut_;
1006 <        }
1007 <        notifyFortranCutoffs(&rcut_, &rsw_);
1008 <      } else {
1009 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1010 <        // We'll punt and let fortran figure out the cutoffs later.
1011 <        
1012 <        notifyFortranYouAreOnYourOwn();
1013 <
1014 <      }
1015 <    }
972 >      
973 >    topologyDone_ = true;
974    }
975  
1018  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1019    
1020    int errorOut;
1021    int esm =  NONE;
1022    int sm = UNDAMPED;
1023    double alphaVal;
1024    double dielectric;
1025
1026    errorOut = isError;
1027    alphaVal = simParams_->getDampingAlpha();
1028    dielectric = simParams_->getDielectric();
1029
1030    if (simParams_->haveElectrostaticSummationMethod()) {
1031      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1032      toUpper(myMethod);
1033      if (myMethod == "NONE") {
1034        esm = NONE;
1035      } else {
1036        if (myMethod == "SWITCHING_FUNCTION") {
1037          esm = SWITCHING_FUNCTION;
1038        } else {
1039          if (myMethod == "SHIFTED_POTENTIAL") {
1040            esm = SHIFTED_POTENTIAL;
1041          } else {
1042            if (myMethod == "SHIFTED_FORCE") {            
1043              esm = SHIFTED_FORCE;
1044            } else {
1045              if (myMethod == "REACTION_FIELD") {            
1046                esm = REACTION_FIELD;
1047              } else {
1048                // throw error        
1049                sprintf( painCave.errMsg,
1050                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1051                         "\t(Input file specified %s .)\n"
1052                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1053                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1054                         "\t\"reaction_field\".\n", myMethod.c_str() );
1055                painCave.isFatal = 1;
1056                simError();
1057              }    
1058            }          
1059          }
1060        }
1061      }
1062    }
1063    
1064    if (simParams_->haveElectrostaticScreeningMethod()) {
1065      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1066      toUpper(myScreen);
1067      if (myScreen == "UNDAMPED") {
1068        sm = UNDAMPED;
1069      } else {
1070        if (myScreen == "DAMPED") {
1071          sm = DAMPED;
1072          if (!simParams_->haveDampingAlpha()) {
1073            //throw error
1074            sprintf( painCave.errMsg,
1075                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1076                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1077            painCave.isFatal = 0;
1078            simError();
1079          }
1080        } else {
1081          // throw error        
1082          sprintf( painCave.errMsg,
1083                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1084                   "\t(Input file specified %s .)\n"
1085                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1086                   "or \"damped\".\n", myScreen.c_str() );
1087          painCave.isFatal = 1;
1088          simError();
1089        }
1090      }
1091    }
1092    
1093    // let's pass some summation method variables to fortran
1094    setElectrostaticSummationMethod( &esm );
1095    notifyFortranElectrostaticMethod( &esm );
1096    setScreeningMethod( &sm );
1097    setDampingAlpha( &alphaVal );
1098    setReactionFieldDielectric( &dielectric );
1099    initFortranFF( &errorOut );
1100  }
1101
1102  void SimInfo::setupSwitchingFunction() {    
1103    int ft = CUBIC;
1104
1105    if (simParams_->haveSwitchingFunctionType()) {
1106      std::string funcType = simParams_->getSwitchingFunctionType();
1107      toUpper(funcType);
1108      if (funcType == "CUBIC") {
1109        ft = CUBIC;
1110      } else {
1111        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1112          ft = FIFTH_ORDER_POLY;
1113        } else {
1114          // throw error        
1115          sprintf( painCave.errMsg,
1116                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1117          painCave.isFatal = 1;
1118          simError();
1119        }          
1120      }
1121    }
1122
1123    // send switching function notification to switcheroo
1124    setFunctionType(&ft);
1125
1126  }
1127
976    void SimInfo::addProperty(GenericData* genData) {
977      properties_.addProperty(genData);  
978    }
979  
980 <  void SimInfo::removeProperty(const std::string& propName) {
980 >  void SimInfo::removeProperty(const string& propName) {
981      properties_.removeProperty(propName);  
982    }
983  
# Line 1137 | Line 985 | namespace oopse {
985      properties_.clearProperties();
986    }
987  
988 <  std::vector<std::string> SimInfo::getPropertyNames() {
988 >  vector<string> SimInfo::getPropertyNames() {
989      return properties_.getPropertyNames();  
990    }
991        
992 <  std::vector<GenericData*> SimInfo::getProperties() {
992 >  vector<GenericData*> SimInfo::getProperties() {
993      return properties_.getProperties();
994    }
995  
996 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
996 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
997      return properties_.getPropertyByName(propName);
998    }
999  
# Line 1156 | Line 1004 | namespace oopse {
1004      delete sman_;
1005      sman_ = sman;
1006  
1159    Molecule* mol;
1160    RigidBody* rb;
1161    Atom* atom;
1007      SimInfo::MoleculeIterator mi;
1008 +    Molecule::AtomIterator ai;
1009      Molecule::RigidBodyIterator rbIter;
1010 <    Molecule::AtomIterator atomIter;;
1010 >    Molecule::CutoffGroupIterator cgIter;
1011 >    Molecule::BondIterator bondIter;
1012 >    Molecule::BendIterator bendIter;
1013 >    Molecule::TorsionIterator torsionIter;
1014 >    Molecule::InversionIterator inversionIter;
1015  
1016 +    Molecule* mol;
1017 +    Atom* atom;
1018 +    RigidBody* rb;
1019 +    CutoffGroup* cg;
1020 +    Bond* bond;
1021 +    Bend* bend;
1022 +    Torsion* torsion;
1023 +    Inversion* inversion;    
1024 +
1025      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1026          
1027 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1027 >      for (atom = mol->beginAtom(ai); atom != NULL;
1028 >           atom = mol->nextAtom(ai)) {
1029          atom->setSnapshotManager(sman_);
1030 <      }
1031 <        
1032 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1030 >      }        
1031 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1032 >           rb = mol->nextRigidBody(rbIter)) {
1033          rb->setSnapshotManager(sman_);
1034        }
1035 <    }    
1036 <    
1035 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1036 >           cg = mol->nextCutoffGroup(cgIter)) {
1037 >        cg->setSnapshotManager(sman_);
1038 >      }
1039 >      for (bond = mol->beginBond(bondIter); bond != NULL;
1040 >           bond = mol->nextBond(bondIter)) {
1041 >        bond->setSnapshotManager(sman_);
1042 >      }
1043 >      for (bend = mol->beginBend(bendIter); bend != NULL;
1044 >           bend = mol->nextBend(bendIter)) {
1045 >        bend->setSnapshotManager(sman_);
1046 >      }
1047 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
1048 >           torsion = mol->nextTorsion(torsionIter)) {
1049 >        torsion->setSnapshotManager(sman_);
1050 >      }
1051 >      for (inversion = mol->beginInversion(inversionIter); inversion != NULL;
1052 >           inversion = mol->nextInversion(inversionIter)) {
1053 >        inversion->setSnapshotManager(sman_);
1054 >      }
1055 >    }
1056    }
1057  
1179  Vector3d SimInfo::getComVel(){
1180    SimInfo::MoleculeIterator i;
1181    Molecule* mol;
1058  
1059 <    Vector3d comVel(0.0);
1184 <    double totalMass = 0.0;
1185 <    
1186 <
1187 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1188 <      double mass = mol->getMass();
1189 <      totalMass += mass;
1190 <      comVel += mass * mol->getComVel();
1191 <    }  
1059 >  ostream& operator <<(ostream& o, SimInfo& info) {
1060  
1193 #ifdef IS_MPI
1194    double tmpMass = totalMass;
1195    Vector3d tmpComVel(comVel);    
1196    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1197    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1198 #endif
1199
1200    comVel /= totalMass;
1201
1202    return comVel;
1203  }
1204
1205  Vector3d SimInfo::getCom(){
1206    SimInfo::MoleculeIterator i;
1207    Molecule* mol;
1208
1209    Vector3d com(0.0);
1210    double totalMass = 0.0;
1211    
1212    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1213      double mass = mol->getMass();
1214      totalMass += mass;
1215      com += mass * mol->getCom();
1216    }  
1217
1218 #ifdef IS_MPI
1219    double tmpMass = totalMass;
1220    Vector3d tmpCom(com);    
1221    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1222    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1223 #endif
1224
1225    com /= totalMass;
1226
1227    return com;
1228
1229  }        
1230
1231  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1232
1061      return o;
1062    }
1063    
1064 <  
1065 <   /*
1066 <   Returns center of mass and center of mass velocity in one function call.
1067 <   */
1068 <  
1069 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1070 <      SimInfo::MoleculeIterator i;
1071 <      Molecule* mol;
1072 <      
1073 <    
1074 <      double totalMass = 0.0;
1075 <    
1064 >  
1065 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1066 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1067 >      sprintf(painCave.errMsg,
1068 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1069 >              "\tindex exceeds number of known objects!\n");
1070 >      painCave.isFatal = 1;
1071 >      simError();
1072 >      return NULL;
1073 >    } else
1074 >      return IOIndexToIntegrableObject.at(index);
1075 >  }
1076 >  
1077 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1078 >    IOIndexToIntegrableObject= v;
1079 >  }
1080  
1081 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1250 <         double mass = mol->getMass();
1251 <         totalMass += mass;
1252 <         com += mass * mol->getCom();
1253 <         comVel += mass * mol->getComVel();          
1254 <      }  
1255 <      
1081 >  void SimInfo::calcNConstraints() {
1082   #ifdef IS_MPI
1083 <      double tmpMass = totalMass;
1084 <      Vector3d tmpCom(com);  
1085 <      Vector3d tmpComVel(comVel);
1086 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1261 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1262 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1083 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints_, 1,  
1084 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
1085 > #else
1086 >    nGlobalConstraints_ =  nConstraints_;
1087   #endif
1088 <      
1265 <      com /= totalMass;
1266 <      comVel /= totalMass;
1267 <   }        
1268 <  
1269 <   /*
1270 <   Return intertia tensor for entire system and angular momentum Vector.
1088 >  }
1089  
1090 + }//end namespace OpenMD
1091  
1273       [  Ixx -Ixy  -Ixz ]
1274  J =| -Iyx  Iyy  -Iyz |
1275       [ -Izx -Iyz   Izz ]
1276    */
1277
1278   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1279      
1280
1281      double xx = 0.0;
1282      double yy = 0.0;
1283      double zz = 0.0;
1284      double xy = 0.0;
1285      double xz = 0.0;
1286      double yz = 0.0;
1287      Vector3d com(0.0);
1288      Vector3d comVel(0.0);
1289      
1290      getComAll(com, comVel);
1291      
1292      SimInfo::MoleculeIterator i;
1293      Molecule* mol;
1294      
1295      Vector3d thisq(0.0);
1296      Vector3d thisv(0.0);
1297
1298      double thisMass = 0.0;
1299    
1300      
1301      
1302  
1303      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1304        
1305         thisq = mol->getCom()-com;
1306         thisv = mol->getComVel()-comVel;
1307         thisMass = mol->getMass();
1308         // Compute moment of intertia coefficients.
1309         xx += thisq[0]*thisq[0]*thisMass;
1310         yy += thisq[1]*thisq[1]*thisMass;
1311         zz += thisq[2]*thisq[2]*thisMass;
1312        
1313         // compute products of intertia
1314         xy += thisq[0]*thisq[1]*thisMass;
1315         xz += thisq[0]*thisq[2]*thisMass;
1316         yz += thisq[1]*thisq[2]*thisMass;
1317            
1318         angularMomentum += cross( thisq, thisv ) * thisMass;
1319            
1320      }  
1321      
1322      
1323      inertiaTensor(0,0) = yy + zz;
1324      inertiaTensor(0,1) = -xy;
1325      inertiaTensor(0,2) = -xz;
1326      inertiaTensor(1,0) = -xy;
1327      inertiaTensor(1,1) = xx + zz;
1328      inertiaTensor(1,2) = -yz;
1329      inertiaTensor(2,0) = -xz;
1330      inertiaTensor(2,1) = -yz;
1331      inertiaTensor(2,2) = xx + yy;
1332      
1333 #ifdef IS_MPI
1334      Mat3x3d tmpI(inertiaTensor);
1335      Vector3d tmpAngMom;
1336      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1337      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1338 #endif
1339              
1340      return;
1341   }
1342
1343   //Returns the angular momentum of the system
1344   Vector3d SimInfo::getAngularMomentum(){
1345      
1346      Vector3d com(0.0);
1347      Vector3d comVel(0.0);
1348      Vector3d angularMomentum(0.0);
1349      
1350      getComAll(com,comVel);
1351      
1352      SimInfo::MoleculeIterator i;
1353      Molecule* mol;
1354      
1355      Vector3d thisr(0.0);
1356      Vector3d thisp(0.0);
1357      
1358      double thisMass;
1359      
1360      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1361        thisMass = mol->getMass();
1362        thisr = mol->getCom()-com;
1363        thisp = (mol->getComVel()-comVel)*thisMass;
1364        
1365        angularMomentum += cross( thisr, thisp );
1366        
1367      }  
1368      
1369 #ifdef IS_MPI
1370      Vector3d tmpAngMom;
1371      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1372 #endif
1373      
1374      return angularMomentum;
1375   }
1376  
1377  
1378 }//end namespace oopse
1379

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 764 by gezelter, Mon Nov 21 22:59:21 2005 UTC vs.
Revision 2071 by gezelter, Sat Mar 7 21:41:51 2015 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines