ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 598 by chrisfen, Thu Sep 15 00:14:35 2005 UTC vs.
Revision 2071 by gezelter, Sat Mar 7 21:41:51 2015 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 46 | Line 47
47   * @version 1.0
48   */
49  
50 + #ifdef IS_MPI
51 + #include <mpi.h>
52 + #endif
53   #include <algorithm>
54   #include <set>
55 + #include <map>
56  
57   #include "brains/SimInfo.hpp"
58   #include "math/Vector3.hpp"
59   #include "primitives/Molecule.hpp"
60 < #include "UseTheForce/fCutoffPolicy.h"
56 < #include "UseTheForce/fCoulombicCorrection.h"
57 < #include "UseTheForce/doForces_interface.h"
58 < #include "UseTheForce/notifyCutoffs_interface.h"
60 > #include "primitives/StuntDouble.hpp"
61   #include "utils/MemoryUtils.hpp"
62   #include "utils/simError.h"
63   #include "selection/SelectionManager.hpp"
64 + #include "io/ForceFieldOptions.hpp"
65 + #include "brains/ForceField.hpp"
66 + #include "nonbonded/SwitchingFunction.hpp"
67  
68 < #ifdef IS_MPI
69 < #include "UseTheForce/mpiComponentPlan.h"
70 < #include "UseTheForce/DarkSide/simParallel_interface.h"
71 < #endif
72 <
73 < namespace oopse {
74 <
75 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
71 <                   ForceField* ff, Globals* simParams) :
72 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
73 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
74 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
75 >    nConstraints_(0), nFluctuatingCharges_(0),    
76      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
77 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
78 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
79 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
80 <    sman_(NULL), fortranInitialized_(false) {
81 <
82 <            
83 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
82 <      MoleculeStamp* molStamp;
83 <      int nMolWithSameStamp;
84 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
85 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
86 <      CutoffGroupStamp* cgStamp;    
87 <      RigidBodyStamp* rbStamp;
88 <      int nRigidAtoms = 0;
77 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
78 >    nGlobalFluctuatingCharges_(0), nGlobalBonds_(0), nGlobalBends_(0),
79 >    nGlobalTorsions_(0), nGlobalInversions_(0), nGlobalConstraints_(0),
80 >    hasNGlobalConstraints_(false),
81 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
82 >    sman_(NULL), topologyDone_(false), calcBoxDipole_(false),
83 >    calcBoxQuadrupole_(false), useAtomicVirial_(true) {    
84      
85 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
86 <        molStamp = i->first;
87 <        nMolWithSameStamp = i->second;
88 <        
89 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
90 <
91 <        //calculate atoms in molecules
92 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
93 <
94 <
95 <        //calculate atoms in cutoff groups
96 <        int nAtomsInGroups = 0;
97 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
98 <        
99 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
100 <          cgStamp = molStamp->getCutoffGroup(j);
101 <          nAtomsInGroups += cgStamp->getNMembers();
102 <        }
108 <
109 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
111 <
112 <        //calculate atoms in rigid bodies
113 <        int nAtomsInRigidBodies = 0;
114 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
115 <        
116 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
117 <          rbStamp = molStamp->getRigidBody(j);
118 <          nAtomsInRigidBodies += rbStamp->getNMembers();
119 <        }
120 <
121 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
122 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
123 <        
85 >    MoleculeStamp* molStamp;
86 >    int nMolWithSameStamp;
87 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
88 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
89 >    CutoffGroupStamp* cgStamp;    
90 >    RigidBodyStamp* rbStamp;
91 >    int nRigidAtoms = 0;
92 >    
93 >    vector<Component*> components = simParams->getComponents();
94 >    
95 >    for (vector<Component*>::iterator i = components.begin();
96 >         i !=components.end(); ++i) {
97 >      molStamp = (*i)->getMoleculeStamp();
98 >      if ( (*i)->haveRegion() ) {        
99 >        molStamp->setRegion( (*i)->getRegion() );
100 >      } else {
101 >        // set the region to a disallowed value:
102 >        molStamp->setRegion( -1 );
103        }
104  
105 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
106 <      //therefore the total number of cutoff groups in the system is equal to
107 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
108 <      //file plus the number of cutoff groups defined in meta-data file
109 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
110 <
111 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
112 <      //therefore the total number of  integrable objects in the system is equal to
113 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
114 <      //file plus the number of  rigid bodies defined in meta-data file
115 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
116 <
117 <      nGlobalMols_ = molStampIds_.size();
118 <
119 < #ifdef IS_MPI    
120 <      molToProcMap_.resize(nGlobalMols_);
121 < #endif
122 <
105 >      nMolWithSameStamp = (*i)->getNMol();
106 >      
107 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
108 >      
109 >      //calculate atoms in molecules
110 >      nGlobalAtoms_ += molStamp->getNAtoms() * nMolWithSameStamp;
111 >      nGlobalBonds_ += molStamp->getNBonds() * nMolWithSameStamp;
112 >      nGlobalBends_ += molStamp->getNBends() * nMolWithSameStamp;
113 >      nGlobalTorsions_ += molStamp->getNTorsions() * nMolWithSameStamp;
114 >      nGlobalInversions_ += molStamp->getNInversions() * nMolWithSameStamp;
115 >      
116 >      //calculate atoms in cutoff groups
117 >      int nAtomsInGroups = 0;
118 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119 >      
120 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 >        cgStamp = molStamp->getCutoffGroupStamp(j);
122 >        nAtomsInGroups += cgStamp->getNMembers();
123 >      }
124 >      
125 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
126 >      
127 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
128 >      
129 >      //calculate atoms in rigid bodies
130 >      int nAtomsInRigidBodies = 0;
131 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
132 >      
133 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
134 >        rbStamp = molStamp->getRigidBodyStamp(j);
135 >        nAtomsInRigidBodies += rbStamp->getNMembers();
136 >      }
137 >      
138 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
139 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
140 >      
141      }
142 +    
143 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
144 +    //group therefore the total number of cutoff groups in the system is
145 +    //equal to the total number of atoms minus number of atoms belong to
146 +    //cutoff group defined in meta-data file plus the number of cutoff
147 +    //groups defined in meta-data file
148  
149 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
150 +    
151 +    //every free atom (atom does not belong to rigid bodies) is an
152 +    //integrable object therefore the total number of integrable objects
153 +    //in the system is equal to the total number of atoms minus number of
154 +    //atoms belong to rigid body defined in meta-data file plus the number
155 +    //of rigid bodies defined in meta-data file
156 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
157 +      + nGlobalRigidBodies_;
158 +    
159 +    nGlobalMols_ = molStampIds_.size();
160 +    molToProcMap_.resize(nGlobalMols_);
161 +  }
162 +  
163    SimInfo::~SimInfo() {
164 <    std::map<int, Molecule*>::iterator i;
164 >    map<int, Molecule*>::iterator i;
165      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
166        delete i->second;
167      }
168      molecules_.clear();
169        
153    delete stamps_;
170      delete sman_;
171      delete simParams_;
172      delete forceField_;
173    }
174  
159  int SimInfo::getNGlobalConstraints() {
160    int nGlobalConstraints;
161 #ifdef IS_MPI
162    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
163                  MPI_COMM_WORLD);    
164 #else
165    nGlobalConstraints =  nConstraints_;
166 #endif
167    return nGlobalConstraints;
168  }
175  
176    bool SimInfo::addMolecule(Molecule* mol) {
177      MoleculeIterator i;
178 <
178 >    
179      i = molecules_.find(mol->getGlobalIndex());
180      if (i == molecules_.end() ) {
181 <
182 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
183 <        
181 >      
182 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
183 >      
184        nAtoms_ += mol->getNAtoms();
185        nBonds_ += mol->getNBonds();
186        nBends_ += mol->getNBends();
187        nTorsions_ += mol->getNTorsions();
188 +      nInversions_ += mol->getNInversions();
189        nRigidBodies_ += mol->getNRigidBodies();
190        nIntegrableObjects_ += mol->getNIntegrableObjects();
191        nCutoffGroups_ += mol->getNCutoffGroups();
192        nConstraints_ += mol->getNConstraintPairs();
193 <
194 <      addExcludePairs(mol);
195 <        
193 >      
194 >      addInteractionPairs(mol);
195 >      
196        return true;
197      } else {
198        return false;
199      }
200    }
201 <
201 >  
202    bool SimInfo::removeMolecule(Molecule* mol) {
203      MoleculeIterator i;
204      i = molecules_.find(mol->getGlobalIndex());
# Line 204 | Line 211 | namespace oopse {
211        nBonds_ -= mol->getNBonds();
212        nBends_ -= mol->getNBends();
213        nTorsions_ -= mol->getNTorsions();
214 +      nInversions_ -= mol->getNInversions();
215        nRigidBodies_ -= mol->getNRigidBodies();
216        nIntegrableObjects_ -= mol->getNIntegrableObjects();
217        nCutoffGroups_ -= mol->getNCutoffGroups();
218        nConstraints_ -= mol->getNConstraintPairs();
219  
220 <      removeExcludePairs(mol);
220 >      removeInteractionPairs(mol);
221        molecules_.erase(mol->getGlobalIndex());
222  
223        delete mol;
# Line 218 | Line 226 | namespace oopse {
226      } else {
227        return false;
228      }
221
222
229    }    
230  
231          
# Line 235 | Line 241 | namespace oopse {
241  
242  
243    void SimInfo::calcNdf() {
244 <    int ndf_local;
244 >    int ndf_local, nfq_local;
245      MoleculeIterator i;
246 <    std::vector<StuntDouble*>::iterator j;
246 >    vector<StuntDouble*>::iterator j;
247 >    vector<Atom*>::iterator k;
248 >
249      Molecule* mol;
250 <    StuntDouble* integrableObject;
250 >    StuntDouble* sd;
251 >    Atom* atom;
252  
253      ndf_local = 0;
254 +    nfq_local = 0;
255      
256      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
247      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
248           integrableObject = mol->nextIntegrableObject(j)) {
257  
258 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
259 +           sd = mol->nextIntegrableObject(j)) {
260 +
261          ndf_local += 3;
262  
263 <        if (integrableObject->isDirectional()) {
264 <          if (integrableObject->isLinear()) {
263 >        if (sd->isDirectional()) {
264 >          if (sd->isLinear()) {
265              ndf_local += 2;
266            } else {
267              ndf_local += 3;
268            }
269          }
270 <            
271 <      }//end for (integrableObject)
272 <    }// end for (mol)
270 >      }
271 >
272 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
273 >           atom = mol->nextFluctuatingCharge(k)) {
274 >        if (atom->isFluctuatingCharge()) {
275 >          nfq_local++;
276 >        }
277 >      }
278 >    }
279      
280 +    ndfLocal_ = ndf_local;
281 +
282      // n_constraints is local, so subtract them on each processor
283      ndf_local -= nConstraints_;
284  
285   #ifdef IS_MPI
286 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
286 >    MPI_Allreduce(&ndf_local, &ndf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
287 >    MPI_Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
288 >      MPI_INT, MPI_SUM, MPI_COMM_WORLD);
289   #else
290      ndf_ = ndf_local;
291 +    nGlobalFluctuatingCharges_ = nfq_local;
292   #endif
293  
294      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 275 | Line 297 | namespace oopse {
297  
298    }
299  
300 +  int SimInfo::getFdf() {
301 + #ifdef IS_MPI
302 +    MPI_Allreduce(&fdf_local, &fdf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
303 + #else
304 +    fdf_ = fdf_local;
305 + #endif
306 +    return fdf_;
307 +  }
308 +  
309 +  unsigned int SimInfo::getNLocalCutoffGroups(){
310 +    int nLocalCutoffAtoms = 0;
311 +    Molecule* mol;
312 +    MoleculeIterator mi;
313 +    CutoffGroup* cg;
314 +    Molecule::CutoffGroupIterator ci;
315 +    
316 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
317 +      
318 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
319 +           cg = mol->nextCutoffGroup(ci)) {
320 +        nLocalCutoffAtoms += cg->getNumAtom();
321 +        
322 +      }        
323 +    }
324 +    
325 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
326 +  }
327 +    
328    void SimInfo::calcNdfRaw() {
329      int ndfRaw_local;
330  
331      MoleculeIterator i;
332 <    std::vector<StuntDouble*>::iterator j;
332 >    vector<StuntDouble*>::iterator j;
333      Molecule* mol;
334 <    StuntDouble* integrableObject;
334 >    StuntDouble* sd;
335  
336      // Raw degrees of freedom that we have to set
337      ndfRaw_local = 0;
338      
339      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
290      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
291           integrableObject = mol->nextIntegrableObject(j)) {
340  
341 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
342 +           sd = mol->nextIntegrableObject(j)) {
343 +
344          ndfRaw_local += 3;
345  
346 <        if (integrableObject->isDirectional()) {
347 <          if (integrableObject->isLinear()) {
346 >        if (sd->isDirectional()) {
347 >          if (sd->isLinear()) {
348              ndfRaw_local += 2;
349            } else {
350              ndfRaw_local += 3;
# Line 304 | Line 355 | namespace oopse {
355      }
356      
357   #ifdef IS_MPI
358 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
358 >    MPI_Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
359   #else
360      ndfRaw_ = ndfRaw_local;
361   #endif
# Line 315 | Line 366 | namespace oopse {
366  
367      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
368  
318
369   #ifdef IS_MPI
370 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
370 >    MPI_Allreduce(&ndfTrans_local, &ndfTrans_, 1, MPI_INT, MPI_SUM,
371 >                  MPI_COMM_WORLD);
372   #else
373      ndfTrans_ = ndfTrans_local;
374   #endif
375  
376      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
326
377    }
378  
379 <  void SimInfo::addExcludePairs(Molecule* mol) {
380 <    std::vector<Bond*>::iterator bondIter;
381 <    std::vector<Bend*>::iterator bendIter;
382 <    std::vector<Torsion*>::iterator torsionIter;
379 >  void SimInfo::addInteractionPairs(Molecule* mol) {
380 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
381 >    vector<Bond*>::iterator bondIter;
382 >    vector<Bend*>::iterator bendIter;
383 >    vector<Torsion*>::iterator torsionIter;
384 >    vector<Inversion*>::iterator inversionIter;
385      Bond* bond;
386      Bend* bend;
387      Torsion* torsion;
388 +    Inversion* inversion;
389      int a;
390      int b;
391      int c;
392      int d;
393 +
394 +    // atomGroups can be used to add special interaction maps between
395 +    // groups of atoms that are in two separate rigid bodies.
396 +    // However, most site-site interactions between two rigid bodies
397 +    // are probably not special, just the ones between the physically
398 +    // bonded atoms.  Interactions *within* a single rigid body should
399 +    // always be excluded.  These are done at the bottom of this
400 +    // function.
401 +
402 +    map<int, set<int> > atomGroups;
403 +    Molecule::RigidBodyIterator rbIter;
404 +    RigidBody* rb;
405 +    Molecule::IntegrableObjectIterator ii;
406 +    StuntDouble* sd;
407      
408 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
408 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
409 >         sd = mol->nextIntegrableObject(ii)) {
410 >      
411 >      if (sd->isRigidBody()) {
412 >        rb = static_cast<RigidBody*>(sd);
413 >        vector<Atom*> atoms = rb->getAtoms();
414 >        set<int> rigidAtoms;
415 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
416 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
417 >        }
418 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
419 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
420 >        }      
421 >      } else {
422 >        set<int> oneAtomSet;
423 >        oneAtomSet.insert(sd->getGlobalIndex());
424 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
425 >      }
426 >    }  
427 >
428 >          
429 >    for (bond= mol->beginBond(bondIter); bond != NULL;
430 >         bond = mol->nextBond(bondIter)) {
431 >
432        a = bond->getAtomA()->getGlobalIndex();
433 <      b = bond->getAtomB()->getGlobalIndex();        
434 <      exclude_.addPair(a, b);
433 >      b = bond->getAtomB()->getGlobalIndex();  
434 >
435 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
436 >        oneTwoInteractions_.addPair(a, b);
437 >      } else {
438 >        excludedInteractions_.addPair(a, b);
439 >      }
440      }
441  
442 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
442 >    for (bend= mol->beginBend(bendIter); bend != NULL;
443 >         bend = mol->nextBend(bendIter)) {
444 >
445        a = bend->getAtomA()->getGlobalIndex();
446        b = bend->getAtomB()->getGlobalIndex();        
447        c = bend->getAtomC()->getGlobalIndex();
448 +      
449 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
450 +        oneTwoInteractions_.addPair(a, b);      
451 +        oneTwoInteractions_.addPair(b, c);
452 +      } else {
453 +        excludedInteractions_.addPair(a, b);
454 +        excludedInteractions_.addPair(b, c);
455 +      }
456  
457 <      exclude_.addPair(a, b);
458 <      exclude_.addPair(a, c);
459 <      exclude_.addPair(b, c);        
457 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
458 >        oneThreeInteractions_.addPair(a, c);      
459 >      } else {
460 >        excludedInteractions_.addPair(a, c);
461 >      }
462      }
463  
464 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
464 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
465 >         torsion = mol->nextTorsion(torsionIter)) {
466 >
467        a = torsion->getAtomA()->getGlobalIndex();
468        b = torsion->getAtomB()->getGlobalIndex();        
469        c = torsion->getAtomC()->getGlobalIndex();        
470 <      d = torsion->getAtomD()->getGlobalIndex();        
470 >      d = torsion->getAtomD()->getGlobalIndex();      
471  
472 <      exclude_.addPair(a, b);
473 <      exclude_.addPair(a, c);
474 <      exclude_.addPair(a, d);
475 <      exclude_.addPair(b, c);
476 <      exclude_.addPair(b, d);
477 <      exclude_.addPair(c, d);        
472 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
473 >        oneTwoInteractions_.addPair(a, b);      
474 >        oneTwoInteractions_.addPair(b, c);
475 >        oneTwoInteractions_.addPair(c, d);
476 >      } else {
477 >        excludedInteractions_.addPair(a, b);
478 >        excludedInteractions_.addPair(b, c);
479 >        excludedInteractions_.addPair(c, d);
480 >      }
481 >
482 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
483 >        oneThreeInteractions_.addPair(a, c);      
484 >        oneThreeInteractions_.addPair(b, d);      
485 >      } else {
486 >        excludedInteractions_.addPair(a, c);
487 >        excludedInteractions_.addPair(b, d);
488 >      }
489 >
490 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
491 >        oneFourInteractions_.addPair(a, d);      
492 >      } else {
493 >        excludedInteractions_.addPair(a, d);
494 >      }
495      }
496  
497 <    Molecule::RigidBodyIterator rbIter;
498 <    RigidBody* rb;
499 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
500 <      std::vector<Atom*> atoms = rb->getAtoms();
501 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
502 <        for (int j = i + 1; j < atoms.size(); ++j) {
497 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
498 >         inversion = mol->nextInversion(inversionIter)) {
499 >
500 >      a = inversion->getAtomA()->getGlobalIndex();
501 >      b = inversion->getAtomB()->getGlobalIndex();        
502 >      c = inversion->getAtomC()->getGlobalIndex();        
503 >      d = inversion->getAtomD()->getGlobalIndex();        
504 >
505 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
506 >        oneTwoInteractions_.addPair(a, b);      
507 >        oneTwoInteractions_.addPair(a, c);
508 >        oneTwoInteractions_.addPair(a, d);
509 >      } else {
510 >        excludedInteractions_.addPair(a, b);
511 >        excludedInteractions_.addPair(a, c);
512 >        excludedInteractions_.addPair(a, d);
513 >      }
514 >
515 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
516 >        oneThreeInteractions_.addPair(b, c);    
517 >        oneThreeInteractions_.addPair(b, d);    
518 >        oneThreeInteractions_.addPair(c, d);      
519 >      } else {
520 >        excludedInteractions_.addPair(b, c);
521 >        excludedInteractions_.addPair(b, d);
522 >        excludedInteractions_.addPair(c, d);
523 >      }
524 >    }
525 >
526 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
527 >         rb = mol->nextRigidBody(rbIter)) {
528 >      vector<Atom*> atoms = rb->getAtoms();
529 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
530 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
531            a = atoms[i]->getGlobalIndex();
532            b = atoms[j]->getGlobalIndex();
533 <          exclude_.addPair(a, b);
533 >          excludedInteractions_.addPair(a, b);
534          }
535        }
536      }        
537  
538    }
539  
540 <  void SimInfo::removeExcludePairs(Molecule* mol) {
541 <    std::vector<Bond*>::iterator bondIter;
542 <    std::vector<Bend*>::iterator bendIter;
543 <    std::vector<Torsion*>::iterator torsionIter;
540 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
541 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
542 >    vector<Bond*>::iterator bondIter;
543 >    vector<Bend*>::iterator bendIter;
544 >    vector<Torsion*>::iterator torsionIter;
545 >    vector<Inversion*>::iterator inversionIter;
546      Bond* bond;
547      Bend* bend;
548      Torsion* torsion;
549 +    Inversion* inversion;
550      int a;
551      int b;
552      int c;
553      int d;
554 +
555 +    map<int, set<int> > atomGroups;
556 +    Molecule::RigidBodyIterator rbIter;
557 +    RigidBody* rb;
558 +    Molecule::IntegrableObjectIterator ii;
559 +    StuntDouble* sd;
560      
561 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
561 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
562 >         sd = mol->nextIntegrableObject(ii)) {
563 >      
564 >      if (sd->isRigidBody()) {
565 >        rb = static_cast<RigidBody*>(sd);
566 >        vector<Atom*> atoms = rb->getAtoms();
567 >        set<int> rigidAtoms;
568 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
569 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
570 >        }
571 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
572 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
573 >        }      
574 >      } else {
575 >        set<int> oneAtomSet;
576 >        oneAtomSet.insert(sd->getGlobalIndex());
577 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
578 >      }
579 >    }  
580 >
581 >    for (bond= mol->beginBond(bondIter); bond != NULL;
582 >         bond = mol->nextBond(bondIter)) {
583 >      
584        a = bond->getAtomA()->getGlobalIndex();
585 <      b = bond->getAtomB()->getGlobalIndex();        
586 <      exclude_.removePair(a, b);
585 >      b = bond->getAtomB()->getGlobalIndex();  
586 >    
587 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
588 >        oneTwoInteractions_.removePair(a, b);
589 >      } else {
590 >        excludedInteractions_.removePair(a, b);
591 >      }
592      }
593  
594 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
594 >    for (bend= mol->beginBend(bendIter); bend != NULL;
595 >         bend = mol->nextBend(bendIter)) {
596 >
597        a = bend->getAtomA()->getGlobalIndex();
598        b = bend->getAtomB()->getGlobalIndex();        
599        c = bend->getAtomC()->getGlobalIndex();
600 +      
601 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
602 +        oneTwoInteractions_.removePair(a, b);      
603 +        oneTwoInteractions_.removePair(b, c);
604 +      } else {
605 +        excludedInteractions_.removePair(a, b);
606 +        excludedInteractions_.removePair(b, c);
607 +      }
608  
609 <      exclude_.removePair(a, b);
610 <      exclude_.removePair(a, c);
611 <      exclude_.removePair(b, c);        
609 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
610 >        oneThreeInteractions_.removePair(a, c);      
611 >      } else {
612 >        excludedInteractions_.removePair(a, c);
613 >      }
614      }
615  
616 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
616 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
617 >         torsion = mol->nextTorsion(torsionIter)) {
618 >
619        a = torsion->getAtomA()->getGlobalIndex();
620        b = torsion->getAtomB()->getGlobalIndex();        
621        c = torsion->getAtomC()->getGlobalIndex();        
622 <      d = torsion->getAtomD()->getGlobalIndex();        
622 >      d = torsion->getAtomD()->getGlobalIndex();      
623 >  
624 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
625 >        oneTwoInteractions_.removePair(a, b);      
626 >        oneTwoInteractions_.removePair(b, c);
627 >        oneTwoInteractions_.removePair(c, d);
628 >      } else {
629 >        excludedInteractions_.removePair(a, b);
630 >        excludedInteractions_.removePair(b, c);
631 >        excludedInteractions_.removePair(c, d);
632 >      }
633  
634 <      exclude_.removePair(a, b);
635 <      exclude_.removePair(a, c);
636 <      exclude_.removePair(a, d);
637 <      exclude_.removePair(b, c);
638 <      exclude_.removePair(b, d);
639 <      exclude_.removePair(c, d);        
634 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
635 >        oneThreeInteractions_.removePair(a, c);      
636 >        oneThreeInteractions_.removePair(b, d);      
637 >      } else {
638 >        excludedInteractions_.removePair(a, c);
639 >        excludedInteractions_.removePair(b, d);
640 >      }
641 >
642 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
643 >        oneFourInteractions_.removePair(a, d);      
644 >      } else {
645 >        excludedInteractions_.removePair(a, d);
646 >      }
647      }
648  
649 <    Molecule::RigidBodyIterator rbIter;
650 <    RigidBody* rb;
651 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
652 <      std::vector<Atom*> atoms = rb->getAtoms();
653 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
654 <        for (int j = i + 1; j < atoms.size(); ++j) {
649 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
650 >         inversion = mol->nextInversion(inversionIter)) {
651 >
652 >      a = inversion->getAtomA()->getGlobalIndex();
653 >      b = inversion->getAtomB()->getGlobalIndex();        
654 >      c = inversion->getAtomC()->getGlobalIndex();        
655 >      d = inversion->getAtomD()->getGlobalIndex();        
656 >
657 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
658 >        oneTwoInteractions_.removePair(a, b);      
659 >        oneTwoInteractions_.removePair(a, c);
660 >        oneTwoInteractions_.removePair(a, d);
661 >      } else {
662 >        excludedInteractions_.removePair(a, b);
663 >        excludedInteractions_.removePair(a, c);
664 >        excludedInteractions_.removePair(a, d);
665 >      }
666 >
667 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
668 >        oneThreeInteractions_.removePair(b, c);    
669 >        oneThreeInteractions_.removePair(b, d);    
670 >        oneThreeInteractions_.removePair(c, d);      
671 >      } else {
672 >        excludedInteractions_.removePair(b, c);
673 >        excludedInteractions_.removePair(b, d);
674 >        excludedInteractions_.removePair(c, d);
675 >      }
676 >    }
677 >
678 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
679 >         rb = mol->nextRigidBody(rbIter)) {
680 >      vector<Atom*> atoms = rb->getAtoms();
681 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
682 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
683            a = atoms[i]->getGlobalIndex();
684            b = atoms[j]->getGlobalIndex();
685 <          exclude_.removePair(a, b);
685 >          excludedInteractions_.removePair(a, b);
686          }
687        }
688      }        
689 <
689 >    
690    }
691 <
692 <
691 >  
692 >  
693    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
694      int curStampId;
695 <
695 >    
696      //index from 0
697      curStampId = moleculeStamps_.size();
698  
# Line 451 | Line 700 | namespace oopse {
700      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
701    }
702  
454  void SimInfo::update() {
703  
704 <    setupSimType();
705 <
706 < #ifdef IS_MPI
707 <    setupFortranParallel();
708 < #endif
709 <
710 <    setupFortranSim();
711 <
712 <    //setup fortran force field
713 <    /** @deprecate */    
466 <    int isError = 0;
467 <    
468 <    setupCoulombicCorrection( isError );
469 <
470 <    if(isError){
471 <      sprintf( painCave.errMsg,
472 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
473 <      painCave.isFatal = 1;
474 <      simError();
475 <    }
476 <  
477 <    
478 <    setupCutoff();
479 <
704 >  /**
705 >   * update
706 >   *
707 >   *  Performs the global checks and variable settings after the
708 >   *  objects have been created.
709 >   *
710 >   */
711 >  void SimInfo::update() {  
712 >    setupSimVariables();
713 >    calcNConstraints();
714      calcNdf();
715      calcNdfRaw();
716      calcNdfTrans();
483
484    fortranInitialized_ = true;
717    }
718 <
719 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
718 >  
719 >  /**
720 >   * getSimulatedAtomTypes
721 >   *
722 >   * Returns an STL set of AtomType* that are actually present in this
723 >   * simulation.  Must query all processors to assemble this information.
724 >   *
725 >   */
726 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
727      SimInfo::MoleculeIterator mi;
728      Molecule* mol;
729      Molecule::AtomIterator ai;
730      Atom* atom;
731 <    std::set<AtomType*> atomTypes;
732 <
731 >    set<AtomType*> atomTypes;
732 >    
733      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
734 <
735 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
734 >      for(atom = mol->beginAtom(ai); atom != NULL;
735 >          atom = mol->nextAtom(ai)) {
736          atomTypes.insert(atom->getAtomType());
737 <      }
738 <        
737 >      }      
738 >    }    
739 >    
740 > #ifdef IS_MPI
741 >
742 >    // loop over the found atom types on this processor, and add their
743 >    // numerical idents to a vector:
744 >    
745 >    vector<int> foundTypes;
746 >    set<AtomType*>::iterator i;
747 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
748 >      foundTypes.push_back( (*i)->getIdent() );
749 >
750 >    // count_local holds the number of found types on this processor
751 >    int count_local = foundTypes.size();
752 >
753 >    int nproc;
754 >    MPI_Comm_size( MPI_COMM_WORLD, &nproc);
755 >
756 >    // we need arrays to hold the counts and displacement vectors for
757 >    // all processors
758 >    vector<int> counts(nproc, 0);
759 >    vector<int> disps(nproc, 0);
760 >
761 >    // fill the counts array
762 >    MPI_Allgather(&count_local, 1, MPI_INT, &counts[0],
763 >                  1, MPI_INT, MPI_COMM_WORLD);
764 >  
765 >    // use the processor counts to compute the displacement array
766 >    disps[0] = 0;    
767 >    int totalCount = counts[0];
768 >    for (int iproc = 1; iproc < nproc; iproc++) {
769 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
770 >      totalCount += counts[iproc];
771      }
772  
773 +    // we need a (possibly redundant) set of all found types:
774 +    vector<int> ftGlobal(totalCount);
775 +    
776 +    // now spray out the foundTypes to all the other processors:    
777 +    MPI_Allgatherv(&foundTypes[0], count_local, MPI_INT,
778 +                   &ftGlobal[0], &counts[0], &disps[0],
779 +                   MPI_INT, MPI_COMM_WORLD);
780 +
781 +    vector<int>::iterator j;
782 +
783 +    // foundIdents is a stl set, so inserting an already found ident
784 +    // will have no effect.
785 +    set<int> foundIdents;
786 +
787 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
788 +      foundIdents.insert((*j));
789 +    
790 +    // now iterate over the foundIdents and get the actual atom types
791 +    // that correspond to these:
792 +    set<int>::iterator it;
793 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
794 +      atomTypes.insert( forceField_->getAtomType((*it)) );
795 +
796 + #endif
797 +
798      return atomTypes;        
799    }
800  
801 <  void SimInfo::setupSimType() {
802 <    std::set<AtomType*>::iterator i;
803 <    std::set<AtomType*> atomTypes;
804 <    atomTypes = getUniqueAtomTypes();
805 <    
806 <    int useLennardJones = 0;
807 <    int useElectrostatic = 0;
808 <    int useEAM = 0;
809 <    int useCharge = 0;
810 <    int useDirectional = 0;
811 <    int useDipole = 0;
812 <    int useGayBerne = 0;
813 <    int useSticky = 0;
814 <    int useStickyPower = 0;
815 <    int useShape = 0;
520 <    int useFLARB = 0; //it is not in AtomType yet
521 <    int useDirectionalAtom = 0;    
522 <    int useElectrostatics = 0;
523 <    //usePBC and useRF are from simParams
524 <    int usePBC = simParams_->getPBC();
525 <    int useRF = simParams_->getUseRF();
801 >
802 >  int getGlobalCountOfType(AtomType* atype) {
803 >    /*
804 >    set<AtomType*> atypes = getSimulatedAtomTypes();
805 >    map<AtomType*, int> counts_;
806 >
807 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
808 >      for(atom = mol->beginAtom(ai); atom != NULL;
809 >          atom = mol->nextAtom(ai)) {
810 >        atom->getAtomType();
811 >      }      
812 >    }    
813 >    */
814 >    return 0;
815 >  }
816  
817 +  void SimInfo::setupSimVariables() {
818 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
819 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
820 +    // parameter is true
821 +    calcBoxDipole_ = false;
822 +    if ( simParams_->haveAccumulateBoxDipole() )
823 +      if ( simParams_->getAccumulateBoxDipole() ) {
824 +        calcBoxDipole_ = true;      
825 +      }
826 +    // we only call setAccumulateBoxQuadrupole if the accumulateBoxQuadrupole
827 +    // parameter is true
828 +    calcBoxQuadrupole_ = false;
829 +    if ( simParams_->haveAccumulateBoxQuadrupole() )
830 +      if ( simParams_->getAccumulateBoxQuadrupole() ) {
831 +        calcBoxQuadrupole_ = true;      
832 +      }
833 +    
834 +    set<AtomType*>::iterator i;
835 +    set<AtomType*> atomTypes;
836 +    atomTypes = getSimulatedAtomTypes();    
837 +    bool usesElectrostatic = false;
838 +    bool usesMetallic = false;
839 +    bool usesDirectional = false;
840 +    bool usesFluctuatingCharges =  false;
841      //loop over all of the atom types
842      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
843 <      useLennardJones |= (*i)->isLennardJones();
844 <      useElectrostatic |= (*i)->isElectrostatic();
845 <      useEAM |= (*i)->isEAM();
846 <      useCharge |= (*i)->isCharge();
533 <      useDirectional |= (*i)->isDirectional();
534 <      useDipole |= (*i)->isDipole();
535 <      useGayBerne |= (*i)->isGayBerne();
536 <      useSticky |= (*i)->isSticky();
537 <      useStickyPower |= (*i)->isStickyPower();
538 <      useShape |= (*i)->isShape();
843 >      usesElectrostatic |= (*i)->isElectrostatic();
844 >      usesMetallic |= (*i)->isMetal();
845 >      usesDirectional |= (*i)->isDirectional();
846 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
847      }
848  
849 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
542 <      useDirectionalAtom = 1;
543 <    }
544 <
545 <    if (useCharge || useDipole) {
546 <      useElectrostatics = 1;
547 <    }
548 <
549 < #ifdef IS_MPI    
849 > #ifdef IS_MPI
850      int temp;
851  
852 <    temp = usePBC;
853 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
852 >    temp = usesDirectional;
853 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
854 >    usesDirectionalAtoms_ = (temp == 0) ? false : true;
855 >    
856 >    temp = usesMetallic;
857 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
858 >    usesMetallicAtoms_ = (temp == 0) ? false : true;
859  
860 <    temp = useDirectionalAtom;
861 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
860 >    temp = usesElectrostatic;
861 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
862 >    usesElectrostaticAtoms_ = (temp == 0) ? false : true;
863  
864 <    temp = useLennardJones;
865 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
864 >    temp = usesFluctuatingCharges;
865 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
866 >    usesFluctuatingCharges_ = (temp == 0) ? false : true;
867 > #else
868  
869 <    temp = useElectrostatics;
870 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
869 >    usesDirectionalAtoms_ = usesDirectional;
870 >    usesMetallicAtoms_ = usesMetallic;
871 >    usesElectrostaticAtoms_ = usesElectrostatic;
872 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
873  
874 <    temp = useCharge;
565 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
566 <
567 <    temp = useDipole;
568 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
569 <
570 <    temp = useSticky;
571 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
572 <
573 <    temp = useStickyPower;
574 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
874 > #endif
875      
876 <    temp = useGayBerne;
877 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
876 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
877 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
878 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
879 >  }
880  
579    temp = useEAM;
580    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
881  
882 <    temp = useShape;
883 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
882 >  vector<int> SimInfo::getGlobalAtomIndices() {
883 >    SimInfo::MoleculeIterator mi;
884 >    Molecule* mol;
885 >    Molecule::AtomIterator ai;
886 >    Atom* atom;
887  
888 <    temp = useFLARB;
586 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
587 <
588 <    temp = useRF;
589 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
590 <
591 <    temp = useUW;
592 <    MPI_Allreduce(&temp, &useUW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
593 <
594 <    temp = useDW;
595 <    MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
888 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
889      
890 < #endif
890 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
891 >      
892 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
893 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
894 >      }
895 >    }
896 >    return GlobalAtomIndices;
897 >  }
898  
599    fInfo_.SIM_uses_PBC = usePBC;    
600    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
601    fInfo_.SIM_uses_LennardJones = useLennardJones;
602    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
603    fInfo_.SIM_uses_Charges = useCharge;
604    fInfo_.SIM_uses_Dipoles = useDipole;
605    fInfo_.SIM_uses_Sticky = useSticky;
606    fInfo_.SIM_uses_StickyPower = useStickyPower;
607    fInfo_.SIM_uses_GayBerne = useGayBerne;
608    fInfo_.SIM_uses_EAM = useEAM;
609    fInfo_.SIM_uses_Shapes = useShape;
610    fInfo_.SIM_uses_FLARB = useFLARB;
611    fInfo_.SIM_uses_RF = useRF;
899  
900 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
900 >  vector<int> SimInfo::getGlobalGroupIndices() {
901 >    SimInfo::MoleculeIterator mi;
902 >    Molecule* mol;
903 >    Molecule::CutoffGroupIterator ci;
904 >    CutoffGroup* cg;
905  
906 <      if (simParams_->haveDielectric()) {
907 <        fInfo_.dielect = simParams_->getDielectric();
908 <      } else {
909 <        sprintf(painCave.errMsg,
910 <                "SimSetup Error: No Dielectric constant was set.\n"
911 <                "\tYou are trying to use Reaction Field without"
912 <                "\tsetting a dielectric constant!\n");
913 <        painCave.isFatal = 1;
914 <        simError();
915 <      }
625 <        
626 <    } else {
627 <      fInfo_.dielect = 0.0;
906 >    vector<int> GlobalGroupIndices;
907 >    
908 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
909 >      
910 >      //local index of cutoff group is trivial, it only depends on the
911 >      //order of travesing
912 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
913 >           cg = mol->nextCutoffGroup(ci)) {
914 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
915 >      }        
916      }
917 <
917 >    return GlobalGroupIndices;
918    }
919  
632  void SimInfo::setupFortranSim() {
633    int isError;
634    int nExclude;
635    std::vector<int> fortranGlobalGroupMembership;
636    
637    nExclude = exclude_.getSize();
638    isError = 0;
920  
921 <    //globalGroupMembership_ is filled by SimCreator    
641 <    for (int i = 0; i < nGlobalAtoms_; i++) {
642 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
643 <    }
921 >  void SimInfo::prepareTopology() {
922  
923      //calculate mass ratio of cutoff group
646    std::vector<double> mfact;
924      SimInfo::MoleculeIterator mi;
925      Molecule* mol;
926      Molecule::CutoffGroupIterator ci;
927      CutoffGroup* cg;
928      Molecule::AtomIterator ai;
929      Atom* atom;
930 <    double totalMass;
930 >    RealType totalMass;
931  
932 <    //to avoid memory reallocation, reserve enough space for mfact
933 <    mfact.reserve(getNCutoffGroups());
932 >    /**
933 >     * The mass factor is the relative mass of an atom to the total
934 >     * mass of the cutoff group it belongs to.  By default, all atoms
935 >     * are their own cutoff groups, and therefore have mass factors of
936 >     * 1.  We need some special handling for massless atoms, which
937 >     * will be treated as carrying the entire mass of the cutoff
938 >     * group.
939 >     */
940 >    massFactors_.clear();
941 >    massFactors_.resize(getNAtoms(), 1.0);
942      
943      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
944 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
944 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
945 >           cg = mol->nextCutoffGroup(ci)) {
946  
947          totalMass = cg->getMass();
948          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
949 <          mfact.push_back(atom->getMass()/totalMass);
949 >          // Check for massless groups - set mfact to 1 if true
950 >          if (totalMass != 0)
951 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
952 >          else
953 >            massFactors_[atom->getLocalIndex()] = 1.0;
954          }
665
955        }      
956      }
957  
958 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
670 <    std::vector<int> identArray;
958 >    // Build the identArray_ and regions_
959  
960 <    //to avoid memory reallocation, reserve enough space identArray
961 <    identArray.reserve(getNAtoms());
962 <    
963 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
960 >    identArray_.clear();
961 >    identArray_.reserve(getNAtoms());  
962 >    regions_.clear();
963 >    regions_.reserve(getNAtoms());
964 >
965 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
966 >      int reg = mol->getRegion();      
967        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
968 <        identArray.push_back(atom->getIdent());
968 >        identArray_.push_back(atom->getIdent());
969 >        regions_.push_back(reg);
970        }
971      }    
972 <
973 <    //fill molMembershipArray
682 <    //molMembershipArray is filled by SimCreator    
683 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
684 <    for (int i = 0; i < nGlobalAtoms_; i++) {
685 <      molMembershipArray[i] = globalMolMembership_[i] + 1;
686 <    }
687 <    
688 <    //setup fortran simulation
689 <    int nGlobalExcludes = 0;
690 <    int* globalExcludes = NULL;
691 <    int* excludeList = exclude_.getExcludeList();
692 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
693 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
694 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
695 <
696 <    if( isError ){
697 <
698 <      sprintf( painCave.errMsg,
699 <               "There was an error setting the simulation information in fortran.\n" );
700 <      painCave.isFatal = 1;
701 <      painCave.severity = OOPSE_ERROR;
702 <      simError();
703 <    }
704 <
705 < #ifdef IS_MPI
706 <    sprintf( checkPointMsg,
707 <             "succesfully sent the simulation information to fortran.\n");
708 <    MPIcheckPoint();
709 < #endif // is_mpi
710 <  }
711 <
712 <
713 < #ifdef IS_MPI
714 <  void SimInfo::setupFortranParallel() {
715 <    
716 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
717 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
718 <    std::vector<int> localToGlobalCutoffGroupIndex;
719 <    SimInfo::MoleculeIterator mi;
720 <    Molecule::AtomIterator ai;
721 <    Molecule::CutoffGroupIterator ci;
722 <    Molecule* mol;
723 <    Atom* atom;
724 <    CutoffGroup* cg;
725 <    mpiSimData parallelData;
726 <    int isError;
727 <
728 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
729 <
730 <      //local index(index in DataStorge) of atom is important
731 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
732 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
733 <      }
734 <
735 <      //local index of cutoff group is trivial, it only depends on the order of travesing
736 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
737 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
738 <      }        
739 <        
740 <    }
741 <
742 <    //fill up mpiSimData struct
743 <    parallelData.nMolGlobal = getNGlobalMolecules();
744 <    parallelData.nMolLocal = getNMolecules();
745 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
746 <    parallelData.nAtomsLocal = getNAtoms();
747 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
748 <    parallelData.nGroupsLocal = getNCutoffGroups();
749 <    parallelData.myNode = worldRank;
750 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
751 <
752 <    //pass mpiSimData struct and index arrays to fortran
753 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
754 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
755 <                    &localToGlobalCutoffGroupIndex[0], &isError);
756 <
757 <    if (isError) {
758 <      sprintf(painCave.errMsg,
759 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
760 <      painCave.isFatal = 1;
761 <      simError();
762 <    }
763 <
764 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
765 <    MPIcheckPoint();
766 <
767 <
768 <  }
769 <
770 < #endif
771 <
772 <  double SimInfo::calcMaxCutoffRadius() {
773 <
774 <
775 <    std::set<AtomType*> atomTypes;
776 <    std::set<AtomType*>::iterator i;
777 <    std::vector<double> cutoffRadius;
778 <
779 <    //get the unique atom types
780 <    atomTypes = getUniqueAtomTypes();
781 <
782 <    //query the max cutoff radius among these atom types
783 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
784 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
785 <    }
786 <
787 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
788 < #ifdef IS_MPI
789 <    //pick the max cutoff radius among the processors
790 < #endif
791 <
792 <    return maxCutoffRadius;
793 <  }
794 <
795 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
796 <    
797 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
798 <        
799 <      if (!simParams_->haveRcut()){
800 <        sprintf(painCave.errMsg,
801 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
802 <                "\tOOPSE will use a default value of 15.0 angstroms"
803 <                "\tfor the cutoffRadius.\n");
804 <        painCave.isFatal = 0;
805 <        simError();
806 <        rcut = 15.0;
807 <      } else{
808 <        rcut = simParams_->getRcut();
809 <      }
810 <
811 <      if (!simParams_->haveRsw()){
812 <        sprintf(painCave.errMsg,
813 <                "SimCreator Warning: No value was set for switchingRadius.\n"
814 <                "\tOOPSE will use a default value of\n"
815 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
816 <        painCave.isFatal = 0;
817 <        simError();
818 <        rsw = 0.95 * rcut;
819 <      } else{
820 <        rsw = simParams_->getRsw();
821 <      }
822 <
823 <    } else {
824 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
825 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
826 <        
827 <      if (simParams_->haveRcut()) {
828 <        rcut = simParams_->getRcut();
829 <      } else {
830 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
831 <        rcut = calcMaxCutoffRadius();
832 <      }
833 <
834 <      if (simParams_->haveRsw()) {
835 <        rsw  = simParams_->getRsw();
836 <      } else {
837 <        rsw = rcut;
838 <      }
839 <    
840 <    }
972 >      
973 >    topologyDone_ = true;
974    }
975  
843  void SimInfo::setupCutoff() {    
844    getCutoff(rcut_, rsw_);    
845    double rnblist = rcut_ + 1; // skin of neighbor list
846
847    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
848    
849    int cp =  TRADITIONAL_CUTOFF_POLICY;
850    if (simParams_->haveCutoffPolicy()) {
851      std::string myPolicy = simParams_->getCutoffPolicy();
852      if (myPolicy == "MIX") {
853        cp = MIX_CUTOFF_POLICY;
854      } else {
855        if (myPolicy == "MAX") {
856          cp = MAX_CUTOFF_POLICY;
857        } else {
858          if (myPolicy == "TRADITIONAL") {            
859            cp = TRADITIONAL_CUTOFF_POLICY;
860          } else {
861            // throw error        
862            sprintf( painCave.errMsg,
863                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
864            painCave.isFatal = 1;
865            simError();
866          }    
867        }          
868      }
869    }
870    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
871  }
872
873  void SimInfo::setupCoulombicCorrection( int isError ) {    
874    
875    int errorOut;
876    int cc =  NONE;
877    double alphaVal;
878
879    errorOut = isError;
880
881    if (simParams_->haveCoulombicCorrection()) {
882      std::string myCorrection = simParams_->getCoulombicCorrection();
883      if (myCorrection == "NONE") {
884        cc = NONE;
885      } else {
886        if (myCorrection == "UNDAMPED_WOLF") {
887          cc = UNDAMPED_WOLF;
888        } else {
889          if (myCorrection == "WOLF") {            
890            cc = WOLF;
891            if (!simParams_->haveDampingAlpha()) {
892              //throw error
893              sprintf( painCave.errMsg,
894                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Wolf Coulombic Correction.", simParams_->getDampingAlpha());
895              painCave.isFatal = 0;
896              simError();
897            }
898            alphaVal = simParams_->getDampingAlpha();
899          } else {
900            if (myCorrection == "REACTION_FIELD") {
901              cc = REACTION_FIELD;
902            } else {
903              // throw error        
904              sprintf( painCave.errMsg,
905                       "SimInfo error: Unknown coulombicCorrection. (Input file specified %s .)\n\tcoulombicCorrection must be one of: \"none\", \"undamped_wolf\", \"wolf\", or \"reaction_field\".", myCorrection.c_str() );
906              painCave.isFatal = 1;
907              simError();
908            }    
909          }          
910        }
911      }
912    }
913    initFortranFF( &fInfo_.SIM_uses_RF, &cc, &alphaVal, &errorOut );
914  }
915
976    void SimInfo::addProperty(GenericData* genData) {
977      properties_.addProperty(genData);  
978    }
979  
980 <  void SimInfo::removeProperty(const std::string& propName) {
980 >  void SimInfo::removeProperty(const string& propName) {
981      properties_.removeProperty(propName);  
982    }
983  
# Line 925 | Line 985 | namespace oopse {
985      properties_.clearProperties();
986    }
987  
988 <  std::vector<std::string> SimInfo::getPropertyNames() {
988 >  vector<string> SimInfo::getPropertyNames() {
989      return properties_.getPropertyNames();  
990    }
991        
992 <  std::vector<GenericData*> SimInfo::getProperties() {
992 >  vector<GenericData*> SimInfo::getProperties() {
993      return properties_.getProperties();
994    }
995  
996 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
996 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
997      return properties_.getPropertyByName(propName);
998    }
999  
# Line 944 | Line 1004 | namespace oopse {
1004      delete sman_;
1005      sman_ = sman;
1006  
947    Molecule* mol;
948    RigidBody* rb;
949    Atom* atom;
1007      SimInfo::MoleculeIterator mi;
1008 +    Molecule::AtomIterator ai;
1009      Molecule::RigidBodyIterator rbIter;
1010 <    Molecule::AtomIterator atomIter;;
1010 >    Molecule::CutoffGroupIterator cgIter;
1011 >    Molecule::BondIterator bondIter;
1012 >    Molecule::BendIterator bendIter;
1013 >    Molecule::TorsionIterator torsionIter;
1014 >    Molecule::InversionIterator inversionIter;
1015  
1016 +    Molecule* mol;
1017 +    Atom* atom;
1018 +    RigidBody* rb;
1019 +    CutoffGroup* cg;
1020 +    Bond* bond;
1021 +    Bend* bend;
1022 +    Torsion* torsion;
1023 +    Inversion* inversion;    
1024 +
1025      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1026          
1027 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1027 >      for (atom = mol->beginAtom(ai); atom != NULL;
1028 >           atom = mol->nextAtom(ai)) {
1029          atom->setSnapshotManager(sman_);
1030 <      }
1031 <        
1032 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1030 >      }        
1031 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1032 >           rb = mol->nextRigidBody(rbIter)) {
1033          rb->setSnapshotManager(sman_);
1034        }
1035 <    }    
1036 <    
1035 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1036 >           cg = mol->nextCutoffGroup(cgIter)) {
1037 >        cg->setSnapshotManager(sman_);
1038 >      }
1039 >      for (bond = mol->beginBond(bondIter); bond != NULL;
1040 >           bond = mol->nextBond(bondIter)) {
1041 >        bond->setSnapshotManager(sman_);
1042 >      }
1043 >      for (bend = mol->beginBend(bendIter); bend != NULL;
1044 >           bend = mol->nextBend(bendIter)) {
1045 >        bend->setSnapshotManager(sman_);
1046 >      }
1047 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
1048 >           torsion = mol->nextTorsion(torsionIter)) {
1049 >        torsion->setSnapshotManager(sman_);
1050 >      }
1051 >      for (inversion = mol->beginInversion(inversionIter); inversion != NULL;
1052 >           inversion = mol->nextInversion(inversionIter)) {
1053 >        inversion->setSnapshotManager(sman_);
1054 >      }
1055 >    }
1056    }
1057  
967  Vector3d SimInfo::getComVel(){
968    SimInfo::MoleculeIterator i;
969    Molecule* mol;
1058  
1059 <    Vector3d comVel(0.0);
972 <    double totalMass = 0.0;
973 <    
974 <
975 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
976 <      double mass = mol->getMass();
977 <      totalMass += mass;
978 <      comVel += mass * mol->getComVel();
979 <    }  
1059 >  ostream& operator <<(ostream& o, SimInfo& info) {
1060  
981 #ifdef IS_MPI
982    double tmpMass = totalMass;
983    Vector3d tmpComVel(comVel);    
984    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
985    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
986 #endif
987
988    comVel /= totalMass;
989
990    return comVel;
991  }
992
993  Vector3d SimInfo::getCom(){
994    SimInfo::MoleculeIterator i;
995    Molecule* mol;
996
997    Vector3d com(0.0);
998    double totalMass = 0.0;
999    
1000    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1001      double mass = mol->getMass();
1002      totalMass += mass;
1003      com += mass * mol->getCom();
1004    }  
1005
1006 #ifdef IS_MPI
1007    double tmpMass = totalMass;
1008    Vector3d tmpCom(com);    
1009    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1010    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1011 #endif
1012
1013    com /= totalMass;
1014
1015    return com;
1016
1017  }        
1018
1019  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1020
1061      return o;
1062    }
1063    
1064 <  
1065 <   /*
1066 <   Returns center of mass and center of mass velocity in one function call.
1067 <   */
1068 <  
1069 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1070 <      SimInfo::MoleculeIterator i;
1071 <      Molecule* mol;
1072 <      
1073 <    
1074 <      double totalMass = 0.0;
1075 <    
1064 >  
1065 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1066 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1067 >      sprintf(painCave.errMsg,
1068 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1069 >              "\tindex exceeds number of known objects!\n");
1070 >      painCave.isFatal = 1;
1071 >      simError();
1072 >      return NULL;
1073 >    } else
1074 >      return IOIndexToIntegrableObject.at(index);
1075 >  }
1076 >  
1077 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1078 >    IOIndexToIntegrableObject= v;
1079 >  }
1080  
1081 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1038 <         double mass = mol->getMass();
1039 <         totalMass += mass;
1040 <         com += mass * mol->getCom();
1041 <         comVel += mass * mol->getComVel();          
1042 <      }  
1043 <      
1081 >  void SimInfo::calcNConstraints() {
1082   #ifdef IS_MPI
1083 <      double tmpMass = totalMass;
1084 <      Vector3d tmpCom(com);  
1085 <      Vector3d tmpComVel(comVel);
1086 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1049 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1050 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1083 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints_, 1,  
1084 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
1085 > #else
1086 >    nGlobalConstraints_ =  nConstraints_;
1087   #endif
1088 <      
1053 <      com /= totalMass;
1054 <      comVel /= totalMass;
1055 <   }        
1056 <  
1057 <   /*
1058 <   Return intertia tensor for entire system and angular momentum Vector.
1088 >  }
1089  
1090 + }//end namespace OpenMD
1091  
1061       [  Ixx -Ixy  -Ixz ]
1062  J =| -Iyx  Iyy  -Iyz |
1063       [ -Izx -Iyz   Izz ]
1064    */
1065
1066   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1067      
1068
1069      double xx = 0.0;
1070      double yy = 0.0;
1071      double zz = 0.0;
1072      double xy = 0.0;
1073      double xz = 0.0;
1074      double yz = 0.0;
1075      Vector3d com(0.0);
1076      Vector3d comVel(0.0);
1077      
1078      getComAll(com, comVel);
1079      
1080      SimInfo::MoleculeIterator i;
1081      Molecule* mol;
1082      
1083      Vector3d thisq(0.0);
1084      Vector3d thisv(0.0);
1085
1086      double thisMass = 0.0;
1087    
1088      
1089      
1090  
1091      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1092        
1093         thisq = mol->getCom()-com;
1094         thisv = mol->getComVel()-comVel;
1095         thisMass = mol->getMass();
1096         // Compute moment of intertia coefficients.
1097         xx += thisq[0]*thisq[0]*thisMass;
1098         yy += thisq[1]*thisq[1]*thisMass;
1099         zz += thisq[2]*thisq[2]*thisMass;
1100        
1101         // compute products of intertia
1102         xy += thisq[0]*thisq[1]*thisMass;
1103         xz += thisq[0]*thisq[2]*thisMass;
1104         yz += thisq[1]*thisq[2]*thisMass;
1105            
1106         angularMomentum += cross( thisq, thisv ) * thisMass;
1107            
1108      }  
1109      
1110      
1111      inertiaTensor(0,0) = yy + zz;
1112      inertiaTensor(0,1) = -xy;
1113      inertiaTensor(0,2) = -xz;
1114      inertiaTensor(1,0) = -xy;
1115      inertiaTensor(1,1) = xx + zz;
1116      inertiaTensor(1,2) = -yz;
1117      inertiaTensor(2,0) = -xz;
1118      inertiaTensor(2,1) = -yz;
1119      inertiaTensor(2,2) = xx + yy;
1120      
1121 #ifdef IS_MPI
1122      Mat3x3d tmpI(inertiaTensor);
1123      Vector3d tmpAngMom;
1124      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1125      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1126 #endif
1127              
1128      return;
1129   }
1130
1131   //Returns the angular momentum of the system
1132   Vector3d SimInfo::getAngularMomentum(){
1133      
1134      Vector3d com(0.0);
1135      Vector3d comVel(0.0);
1136      Vector3d angularMomentum(0.0);
1137      
1138      getComAll(com,comVel);
1139      
1140      SimInfo::MoleculeIterator i;
1141      Molecule* mol;
1142      
1143      Vector3d thisr(0.0);
1144      Vector3d thisp(0.0);
1145      
1146      double thisMass;
1147      
1148      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1149        thisMass = mol->getMass();
1150        thisr = mol->getCom()-com;
1151        thisp = (mol->getComVel()-comVel)*thisMass;
1152        
1153        angularMomentum += cross( thisr, thisp );
1154        
1155      }  
1156      
1157 #ifdef IS_MPI
1158      Vector3d tmpAngMom;
1159      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1160 #endif
1161      
1162      return angularMomentum;
1163   }
1164  
1165  
1166 }//end namespace oopse
1167

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 598 by chrisfen, Thu Sep 15 00:14:35 2005 UTC vs.
Revision 2071 by gezelter, Sat Mar 7 21:41:51 2015 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines