ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 2071 by gezelter, Sat Mar 7 21:41:51 2015 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file SimInfo.cpp
45 > * @author    tlin
46 > * @date  11/02/2004
47 > * @version 1.0
48 > */
49  
5 #include <iostream>
6 using namespace std;
7
8 #include "SimInfo.hpp"
9 #define __C
10 #include "fSimulation.h"
11 #include "simError.h"
12
13 #include "fortranWrappers.hpp"
14
15 #include "MatVec3.h"
16
50   #ifdef IS_MPI
51 < #include "mpiSimulation.hpp"
51 > #include <mpi.h>
52   #endif
53 + #include <algorithm>
54 + #include <set>
55 + #include <map>
56  
57 < inline double roundMe( double x ){
58 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
59 < }
60 <          
61 < inline double min( double a, double b ){
62 <  return (a < b ) ? a : b;
63 < }
57 > #include "brains/SimInfo.hpp"
58 > #include "math/Vector3.hpp"
59 > #include "primitives/Molecule.hpp"
60 > #include "primitives/StuntDouble.hpp"
61 > #include "utils/MemoryUtils.hpp"
62 > #include "utils/simError.h"
63 > #include "selection/SelectionManager.hpp"
64 > #include "io/ForceFieldOptions.hpp"
65 > #include "brains/ForceField.hpp"
66 > #include "nonbonded/SwitchingFunction.hpp"
67  
68 < SimInfo* currentInfo;
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
74 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
75 >    nConstraints_(0), nFluctuatingCharges_(0),    
76 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
77 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
78 >    nGlobalFluctuatingCharges_(0), nGlobalBonds_(0), nGlobalBends_(0),
79 >    nGlobalTorsions_(0), nGlobalInversions_(0), nGlobalConstraints_(0),
80 >    hasNGlobalConstraints_(false),
81 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
82 >    sman_(NULL), topologyDone_(false), calcBoxDipole_(false),
83 >    calcBoxQuadrupole_(false), useAtomicVirial_(true) {    
84 >    
85 >    MoleculeStamp* molStamp;
86 >    int nMolWithSameStamp;
87 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
88 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
89 >    CutoffGroupStamp* cgStamp;    
90 >    RigidBodyStamp* rbStamp;
91 >    int nRigidAtoms = 0;
92 >    
93 >    vector<Component*> components = simParams->getComponents();
94 >    
95 >    for (vector<Component*>::iterator i = components.begin();
96 >         i !=components.end(); ++i) {
97 >      molStamp = (*i)->getMoleculeStamp();
98 >      if ( (*i)->haveRegion() ) {        
99 >        molStamp->setRegion( (*i)->getRegion() );
100 >      } else {
101 >        // set the region to a disallowed value:
102 >        molStamp->setRegion( -1 );
103 >      }
104  
105 < SimInfo::SimInfo(){
105 >      nMolWithSameStamp = (*i)->getNMol();
106 >      
107 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
108 >      
109 >      //calculate atoms in molecules
110 >      nGlobalAtoms_ += molStamp->getNAtoms() * nMolWithSameStamp;
111 >      nGlobalBonds_ += molStamp->getNBonds() * nMolWithSameStamp;
112 >      nGlobalBends_ += molStamp->getNBends() * nMolWithSameStamp;
113 >      nGlobalTorsions_ += molStamp->getNTorsions() * nMolWithSameStamp;
114 >      nGlobalInversions_ += molStamp->getNInversions() * nMolWithSameStamp;
115 >      
116 >      //calculate atoms in cutoff groups
117 >      int nAtomsInGroups = 0;
118 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119 >      
120 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 >        cgStamp = molStamp->getCutoffGroupStamp(j);
122 >        nAtomsInGroups += cgStamp->getNMembers();
123 >      }
124 >      
125 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
126 >      
127 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
128 >      
129 >      //calculate atoms in rigid bodies
130 >      int nAtomsInRigidBodies = 0;
131 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
132 >      
133 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
134 >        rbStamp = molStamp->getRigidBodyStamp(j);
135 >        nAtomsInRigidBodies += rbStamp->getNMembers();
136 >      }
137 >      
138 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
139 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
140 >      
141 >    }
142 >    
143 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
144 >    //group therefore the total number of cutoff groups in the system is
145 >    //equal to the total number of atoms minus number of atoms belong to
146 >    //cutoff group defined in meta-data file plus the number of cutoff
147 >    //groups defined in meta-data file
148  
149 <  n_constraints = 0;
150 <  nZconstraints = 0;
151 <  n_oriented = 0;
152 <  n_dipoles = 0;
153 <  ndf = 0;
154 <  ndfRaw = 0;
155 <  nZconstraints = 0;
156 <  the_integrator = NULL;
157 <  setTemp = 0;
158 <  thermalTime = 0.0;
159 <  currentTime = 0.0;
160 <  rCut = 0.0;
161 <  rSw = 0.0;
46 <
47 <  haveRcut = 0;
48 <  haveRsw = 0;
49 <  boxIsInit = 0;
149 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
150 >    
151 >    //every free atom (atom does not belong to rigid bodies) is an
152 >    //integrable object therefore the total number of integrable objects
153 >    //in the system is equal to the total number of atoms minus number of
154 >    //atoms belong to rigid body defined in meta-data file plus the number
155 >    //of rigid bodies defined in meta-data file
156 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
157 >      + nGlobalRigidBodies_;
158 >    
159 >    nGlobalMols_ = molStampIds_.size();
160 >    molToProcMap_.resize(nGlobalMols_);
161 >  }
162    
163 <  resetTime = 1e99;
163 >  SimInfo::~SimInfo() {
164 >    map<int, Molecule*>::iterator i;
165 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
166 >      delete i->second;
167 >    }
168 >    molecules_.clear();
169 >      
170 >    delete sman_;
171 >    delete simParams_;
172 >    delete forceField_;
173 >  }
174  
53  orthoRhombic = 0;
54  orthoTolerance = 1E-6;
55  useInitXSstate = true;
175  
176 <  usePBC = 0;
177 <  useLJ = 0;
178 <  useSticky = 0;
179 <  useCharges = 0;
180 <  useDipoles = 0;
181 <  useReactionField = 0;
182 <  useGB = 0;
183 <  useEAM = 0;
184 <  useSolidThermInt = 0;
185 <  useLiquidThermInt = 0;
176 >  bool SimInfo::addMolecule(Molecule* mol) {
177 >    MoleculeIterator i;
178 >    
179 >    i = molecules_.find(mol->getGlobalIndex());
180 >    if (i == molecules_.end() ) {
181 >      
182 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
183 >      
184 >      nAtoms_ += mol->getNAtoms();
185 >      nBonds_ += mol->getNBonds();
186 >      nBends_ += mol->getNBends();
187 >      nTorsions_ += mol->getNTorsions();
188 >      nInversions_ += mol->getNInversions();
189 >      nRigidBodies_ += mol->getNRigidBodies();
190 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
191 >      nCutoffGroups_ += mol->getNCutoffGroups();
192 >      nConstraints_ += mol->getNConstraintPairs();
193 >      
194 >      addInteractionPairs(mol);
195 >      
196 >      return true;
197 >    } else {
198 >      return false;
199 >    }
200 >  }
201 >  
202 >  bool SimInfo::removeMolecule(Molecule* mol) {
203 >    MoleculeIterator i;
204 >    i = molecules_.find(mol->getGlobalIndex());
205  
206 <  haveCutoffGroups = false;
206 >    if (i != molecules_.end() ) {
207  
208 <  excludes = Exclude::Instance();
208 >      assert(mol == i->second);
209 >        
210 >      nAtoms_ -= mol->getNAtoms();
211 >      nBonds_ -= mol->getNBonds();
212 >      nBends_ -= mol->getNBends();
213 >      nTorsions_ -= mol->getNTorsions();
214 >      nInversions_ -= mol->getNInversions();
215 >      nRigidBodies_ -= mol->getNRigidBodies();
216 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
217 >      nCutoffGroups_ -= mol->getNCutoffGroups();
218 >      nConstraints_ -= mol->getNConstraintPairs();
219  
220 <  myConfiguration = new SimState();
220 >      removeInteractionPairs(mol);
221 >      molecules_.erase(mol->getGlobalIndex());
222  
223 <  has_minimizer = false;
224 <  the_minimizer =NULL;
223 >      delete mol;
224 >        
225 >      return true;
226 >    } else {
227 >      return false;
228 >    }
229 >  }    
230  
231 <  ngroup = 0;
231 >        
232 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
233 >    i = molecules_.begin();
234 >    return i == molecules_.end() ? NULL : i->second;
235 >  }    
236  
237 <  wrapMeSimInfo( this );
238 < }
237 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
238 >    ++i;
239 >    return i == molecules_.end() ? NULL : i->second;    
240 >  }
241  
242  
243 < SimInfo::~SimInfo(){
243 >  void SimInfo::calcNdf() {
244 >    int ndf_local, nfq_local;
245 >    MoleculeIterator i;
246 >    vector<StuntDouble*>::iterator j;
247 >    vector<Atom*>::iterator k;
248  
249 <  delete myConfiguration;
249 >    Molecule* mol;
250 >    StuntDouble* sd;
251 >    Atom* atom;
252  
253 <  map<string, GenericData*>::iterator i;
254 <  
255 <  for(i = properties.begin(); i != properties.end(); i++)
256 <    delete (*i).second;
253 >    ndf_local = 0;
254 >    nfq_local = 0;
255 >    
256 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
257  
258 < }
258 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
259 >           sd = mol->nextIntegrableObject(j)) {
260  
261 < void SimInfo::setBox(double newBox[3]) {
95 <  
96 <  int i, j;
97 <  double tempMat[3][3];
261 >        ndf_local += 3;
262  
263 <  for(i=0; i<3; i++)
264 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
263 >        if (sd->isDirectional()) {
264 >          if (sd->isLinear()) {
265 >            ndf_local += 2;
266 >          } else {
267 >            ndf_local += 3;
268 >          }
269 >        }
270 >      }
271  
272 <  tempMat[0][0] = newBox[0];
273 <  tempMat[1][1] = newBox[1];
274 <  tempMat[2][2] = newBox[2];
272 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
273 >           atom = mol->nextFluctuatingCharge(k)) {
274 >        if (atom->isFluctuatingCharge()) {
275 >          nfq_local++;
276 >        }
277 >      }
278 >    }
279 >    
280 >    ndfLocal_ = ndf_local;
281  
282 <  setBoxM( tempMat );
282 >    // n_constraints is local, so subtract them on each processor
283 >    ndf_local -= nConstraints_;
284  
285 < }
285 > #ifdef IS_MPI
286 >    MPI_Allreduce(&ndf_local, &ndf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
287 >    MPI_Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
288 >      MPI_INT, MPI_SUM, MPI_COMM_WORLD);
289 > #else
290 >    ndf_ = ndf_local;
291 >    nGlobalFluctuatingCharges_ = nfq_local;
292 > #endif
293  
294 < void SimInfo::setBoxM( double theBox[3][3] ){
295 <  
296 <  int i, j;
113 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
114 <                         // ordering in the array is as follows:
115 <                         // [ 0 3 6 ]
116 <                         // [ 1 4 7 ]
117 <                         // [ 2 5 8 ]
118 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
294 >    // nZconstraints_ is global, as are the 3 COM translations for the
295 >    // entire system:
296 >    ndf_ = ndf_ - 3 - nZconstraint_;
297  
298 <  if( !boxIsInit ) boxIsInit = 1;
298 >  }
299  
300 <  for(i=0; i < 3; i++)
301 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
300 >  int SimInfo::getFdf() {
301 > #ifdef IS_MPI
302 >    MPI_Allreduce(&fdf_local, &fdf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
303 > #else
304 >    fdf_ = fdf_local;
305 > #endif
306 >    return fdf_;
307 >  }
308    
309 <  calcBoxL();
310 <  calcHmatInv();
311 <
312 <  for(i=0; i < 3; i++) {
313 <    for (j=0; j < 3; j++) {
314 <      FortranHmat[3*j + i] = Hmat[i][j];
315 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
309 >  unsigned int SimInfo::getNLocalCutoffGroups(){
310 >    int nLocalCutoffAtoms = 0;
311 >    Molecule* mol;
312 >    MoleculeIterator mi;
313 >    CutoffGroup* cg;
314 >    Molecule::CutoffGroupIterator ci;
315 >    
316 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
317 >      
318 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
319 >           cg = mol->nextCutoffGroup(ci)) {
320 >        nLocalCutoffAtoms += cg->getNumAtom();
321 >        
322 >      }        
323      }
324 +    
325 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
326    }
327 +    
328 +  void SimInfo::calcNdfRaw() {
329 +    int ndfRaw_local;
330  
331 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
332 <
333 < }
334 <
331 >    MoleculeIterator i;
332 >    vector<StuntDouble*>::iterator j;
333 >    Molecule* mol;
334 >    StuntDouble* sd;
335  
336 < void SimInfo::getBoxM (double theBox[3][3]) {
336 >    // Raw degrees of freedom that we have to set
337 >    ndfRaw_local = 0;
338 >    
339 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
340  
341 <  int i, j;
342 <  for(i=0; i<3; i++)
144 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
145 < }
341 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
342 >           sd = mol->nextIntegrableObject(j)) {
343  
344 +        ndfRaw_local += 3;
345  
346 < void SimInfo::scaleBox(double scale) {
347 <  double theBox[3][3];
348 <  int i, j;
346 >        if (sd->isDirectional()) {
347 >          if (sd->isLinear()) {
348 >            ndfRaw_local += 2;
349 >          } else {
350 >            ndfRaw_local += 3;
351 >          }
352 >        }
353 >            
354 >      }
355 >    }
356 >    
357 > #ifdef IS_MPI
358 >    MPI_Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
359 > #else
360 >    ndfRaw_ = ndfRaw_local;
361 > #endif
362 >  }
363  
364 <  // cerr << "Scaling box by " << scale << "\n";
364 >  void SimInfo::calcNdfTrans() {
365 >    int ndfTrans_local;
366  
367 <  for(i=0; i<3; i++)
155 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
367 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
368  
369 <  setBoxM(theBox);
369 > #ifdef IS_MPI
370 >    MPI_Allreduce(&ndfTrans_local, &ndfTrans_, 1, MPI_INT, MPI_SUM,
371 >                  MPI_COMM_WORLD);
372 > #else
373 >    ndfTrans_ = ndfTrans_local;
374 > #endif
375  
376 < }
376 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
377 >  }
378  
379 < void SimInfo::calcHmatInv( void ) {
380 <  
381 <  int oldOrtho;
382 <  int i,j;
383 <  double smallDiag;
384 <  double tol;
385 <  double sanity[3][3];
379 >  void SimInfo::addInteractionPairs(Molecule* mol) {
380 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
381 >    vector<Bond*>::iterator bondIter;
382 >    vector<Bend*>::iterator bendIter;
383 >    vector<Torsion*>::iterator torsionIter;
384 >    vector<Inversion*>::iterator inversionIter;
385 >    Bond* bond;
386 >    Bend* bend;
387 >    Torsion* torsion;
388 >    Inversion* inversion;
389 >    int a;
390 >    int b;
391 >    int c;
392 >    int d;
393  
394 <  invertMat3( Hmat, HmatInv );
394 >    // atomGroups can be used to add special interaction maps between
395 >    // groups of atoms that are in two separate rigid bodies.
396 >    // However, most site-site interactions between two rigid bodies
397 >    // are probably not special, just the ones between the physically
398 >    // bonded atoms.  Interactions *within* a single rigid body should
399 >    // always be excluded.  These are done at the bottom of this
400 >    // function.
401  
402 <  // check to see if Hmat is orthorhombic
403 <  
404 <  oldOrtho = orthoRhombic;
402 >    map<int, set<int> > atomGroups;
403 >    Molecule::RigidBodyIterator rbIter;
404 >    RigidBody* rb;
405 >    Molecule::IntegrableObjectIterator ii;
406 >    StuntDouble* sd;
407 >    
408 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
409 >         sd = mol->nextIntegrableObject(ii)) {
410 >      
411 >      if (sd->isRigidBody()) {
412 >        rb = static_cast<RigidBody*>(sd);
413 >        vector<Atom*> atoms = rb->getAtoms();
414 >        set<int> rigidAtoms;
415 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
416 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
417 >        }
418 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
419 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
420 >        }      
421 >      } else {
422 >        set<int> oneAtomSet;
423 >        oneAtomSet.insert(sd->getGlobalIndex());
424 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
425 >      }
426 >    }  
427  
428 <  smallDiag = fabs(Hmat[0][0]);
429 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
430 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
428 >          
429 >    for (bond= mol->beginBond(bondIter); bond != NULL;
430 >         bond = mol->nextBond(bondIter)) {
431  
432 <  orthoRhombic = 1;
433 <  
434 <  for (i = 0; i < 3; i++ ) {
435 <    for (j = 0 ; j < 3; j++) {
436 <      if (i != j) {
437 <        if (orthoRhombic) {
438 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
187 <        }        
432 >      a = bond->getAtomA()->getGlobalIndex();
433 >      b = bond->getAtomB()->getGlobalIndex();  
434 >
435 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
436 >        oneTwoInteractions_.addPair(a, b);
437 >      } else {
438 >        excludedInteractions_.addPair(a, b);
439        }
440      }
190  }
441  
442 <  if( oldOrtho != orthoRhombic ){
443 <    
194 <    if( orthoRhombic ) {
195 <      sprintf( painCave.errMsg,
196 <               "OOPSE is switching from the default Non-Orthorhombic\n"
197 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
198 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
217 <  }
218 < }
442 >    for (bend= mol->beginBend(bendIter); bend != NULL;
443 >         bend = mol->nextBend(bendIter)) {
444  
445 < void SimInfo::calcBoxL( void ){
445 >      a = bend->getAtomA()->getGlobalIndex();
446 >      b = bend->getAtomB()->getGlobalIndex();        
447 >      c = bend->getAtomC()->getGlobalIndex();
448 >      
449 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
450 >        oneTwoInteractions_.addPair(a, b);      
451 >        oneTwoInteractions_.addPair(b, c);
452 >      } else {
453 >        excludedInteractions_.addPair(a, b);
454 >        excludedInteractions_.addPair(b, c);
455 >      }
456  
457 <  double dx, dy, dz, dsq;
457 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
458 >        oneThreeInteractions_.addPair(a, c);      
459 >      } else {
460 >        excludedInteractions_.addPair(a, c);
461 >      }
462 >    }
463  
464 <  // boxVol = Determinant of Hmat
464 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
465 >         torsion = mol->nextTorsion(torsionIter)) {
466  
467 <  boxVol = matDet3( Hmat );
467 >      a = torsion->getAtomA()->getGlobalIndex();
468 >      b = torsion->getAtomB()->getGlobalIndex();        
469 >      c = torsion->getAtomC()->getGlobalIndex();        
470 >      d = torsion->getAtomD()->getGlobalIndex();      
471  
472 <  // boxLx
473 <  
474 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
475 <  dsq = dx*dx + dy*dy + dz*dz;
476 <  boxL[0] = sqrt( dsq );
477 <  //maxCutoff = 0.5 * boxL[0];
472 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
473 >        oneTwoInteractions_.addPair(a, b);      
474 >        oneTwoInteractions_.addPair(b, c);
475 >        oneTwoInteractions_.addPair(c, d);
476 >      } else {
477 >        excludedInteractions_.addPair(a, b);
478 >        excludedInteractions_.addPair(b, c);
479 >        excludedInteractions_.addPair(c, d);
480 >      }
481  
482 <  // boxLy
483 <  
484 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
485 <  dsq = dx*dx + dy*dy + dz*dz;
486 <  boxL[1] = sqrt( dsq );
487 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
482 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
483 >        oneThreeInteractions_.addPair(a, c);      
484 >        oneThreeInteractions_.addPair(b, d);      
485 >      } else {
486 >        excludedInteractions_.addPair(a, c);
487 >        excludedInteractions_.addPair(b, d);
488 >      }
489  
490 +      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
491 +        oneFourInteractions_.addPair(a, d);      
492 +      } else {
493 +        excludedInteractions_.addPair(a, d);
494 +      }
495 +    }
496  
497 <  // boxLz
498 <  
245 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
246 <  dsq = dx*dx + dy*dy + dz*dz;
247 <  boxL[2] = sqrt( dsq );
248 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
497 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
498 >         inversion = mol->nextInversion(inversionIter)) {
499  
500 <  //calculate the max cutoff
501 <  maxCutoff =  calcMaxCutOff();
502 <  
503 <  checkCutOffs();
500 >      a = inversion->getAtomA()->getGlobalIndex();
501 >      b = inversion->getAtomB()->getGlobalIndex();        
502 >      c = inversion->getAtomC()->getGlobalIndex();        
503 >      d = inversion->getAtomD()->getGlobalIndex();        
504  
505 < }
505 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
506 >        oneTwoInteractions_.addPair(a, b);      
507 >        oneTwoInteractions_.addPair(a, c);
508 >        oneTwoInteractions_.addPair(a, d);
509 >      } else {
510 >        excludedInteractions_.addPair(a, b);
511 >        excludedInteractions_.addPair(a, c);
512 >        excludedInteractions_.addPair(a, d);
513 >      }
514  
515 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
516 +        oneThreeInteractions_.addPair(b, c);    
517 +        oneThreeInteractions_.addPair(b, d);    
518 +        oneThreeInteractions_.addPair(c, d);      
519 +      } else {
520 +        excludedInteractions_.addPair(b, c);
521 +        excludedInteractions_.addPair(b, d);
522 +        excludedInteractions_.addPair(c, d);
523 +      }
524 +    }
525  
526 < double SimInfo::calcMaxCutOff(){
526 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
527 >         rb = mol->nextRigidBody(rbIter)) {
528 >      vector<Atom*> atoms = rb->getAtoms();
529 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
530 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
531 >          a = atoms[i]->getGlobalIndex();
532 >          b = atoms[j]->getGlobalIndex();
533 >          excludedInteractions_.addPair(a, b);
534 >        }
535 >      }
536 >    }        
537  
538 <  double ri[3], rj[3], rk[3];
261 <  double rij[3], rjk[3], rki[3];
262 <  double minDist;
538 >  }
539  
540 <  ri[0] = Hmat[0][0];
541 <  ri[1] = Hmat[1][0];
542 <  ri[2] = Hmat[2][0];
540 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
541 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
542 >    vector<Bond*>::iterator bondIter;
543 >    vector<Bend*>::iterator bendIter;
544 >    vector<Torsion*>::iterator torsionIter;
545 >    vector<Inversion*>::iterator inversionIter;
546 >    Bond* bond;
547 >    Bend* bend;
548 >    Torsion* torsion;
549 >    Inversion* inversion;
550 >    int a;
551 >    int b;
552 >    int c;
553 >    int d;
554  
555 <  rj[0] = Hmat[0][1];
556 <  rj[1] = Hmat[1][1];
557 <  rj[2] = Hmat[2][1];
555 >    map<int, set<int> > atomGroups;
556 >    Molecule::RigidBodyIterator rbIter;
557 >    RigidBody* rb;
558 >    Molecule::IntegrableObjectIterator ii;
559 >    StuntDouble* sd;
560 >    
561 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
562 >         sd = mol->nextIntegrableObject(ii)) {
563 >      
564 >      if (sd->isRigidBody()) {
565 >        rb = static_cast<RigidBody*>(sd);
566 >        vector<Atom*> atoms = rb->getAtoms();
567 >        set<int> rigidAtoms;
568 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
569 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
570 >        }
571 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
572 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
573 >        }      
574 >      } else {
575 >        set<int> oneAtomSet;
576 >        oneAtomSet.insert(sd->getGlobalIndex());
577 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
578 >      }
579 >    }  
580  
581 <  rk[0] = Hmat[0][2];
582 <  rk[1] = Hmat[1][2];
583 <  rk[2] = Hmat[2][2];
581 >    for (bond= mol->beginBond(bondIter); bond != NULL;
582 >         bond = mol->nextBond(bondIter)) {
583 >      
584 >      a = bond->getAtomA()->getGlobalIndex();
585 >      b = bond->getAtomB()->getGlobalIndex();  
586      
587 <  crossProduct3(ri, rj, rij);
588 <  distXY = dotProduct3(rk,rij) / norm3(rij);
587 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
588 >        oneTwoInteractions_.removePair(a, b);
589 >      } else {
590 >        excludedInteractions_.removePair(a, b);
591 >      }
592 >    }
593  
594 <  crossProduct3(rj,rk, rjk);
595 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
594 >    for (bend= mol->beginBend(bendIter); bend != NULL;
595 >         bend = mol->nextBend(bendIter)) {
596  
597 <  crossProduct3(rk,ri, rki);
598 <  distZX = dotProduct3(rj,rki) / norm3(rki);
597 >      a = bend->getAtomA()->getGlobalIndex();
598 >      b = bend->getAtomB()->getGlobalIndex();        
599 >      c = bend->getAtomC()->getGlobalIndex();
600 >      
601 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
602 >        oneTwoInteractions_.removePair(a, b);      
603 >        oneTwoInteractions_.removePair(b, c);
604 >      } else {
605 >        excludedInteractions_.removePair(a, b);
606 >        excludedInteractions_.removePair(b, c);
607 >      }
608  
609 <  minDist = min(min(distXY, distYZ), distZX);
610 <  return minDist/2;
611 <  
612 < }
609 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
610 >        oneThreeInteractions_.removePair(a, c);      
611 >      } else {
612 >        excludedInteractions_.removePair(a, c);
613 >      }
614 >    }
615  
616 < void SimInfo::wrapVector( double thePos[3] ){
616 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
617 >         torsion = mol->nextTorsion(torsionIter)) {
618  
619 <  int i;
620 <  double scaled[3];
621 <
622 <  if( !orthoRhombic ){
296 <    // calc the scaled coordinates.
619 >      a = torsion->getAtomA()->getGlobalIndex();
620 >      b = torsion->getAtomB()->getGlobalIndex();        
621 >      c = torsion->getAtomC()->getGlobalIndex();        
622 >      d = torsion->getAtomD()->getGlobalIndex();      
623    
624 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
625 +        oneTwoInteractions_.removePair(a, b);      
626 +        oneTwoInteractions_.removePair(b, c);
627 +        oneTwoInteractions_.removePair(c, d);
628 +      } else {
629 +        excludedInteractions_.removePair(a, b);
630 +        excludedInteractions_.removePair(b, c);
631 +        excludedInteractions_.removePair(c, d);
632 +      }
633  
634 <    matVecMul3(HmatInv, thePos, scaled);
635 <    
636 <    for(i=0; i<3; i++)
637 <      scaled[i] -= roundMe(scaled[i]);
638 <    
639 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
640 <    
306 <    matVecMul3(Hmat, scaled, thePos);
634 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
635 >        oneThreeInteractions_.removePair(a, c);      
636 >        oneThreeInteractions_.removePair(b, d);      
637 >      } else {
638 >        excludedInteractions_.removePair(a, c);
639 >        excludedInteractions_.removePair(b, d);
640 >      }
641  
642 <  }
643 <  else{
644 <    // calc the scaled coordinates.
642 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
643 >        oneFourInteractions_.removePair(a, d);      
644 >      } else {
645 >        excludedInteractions_.removePair(a, d);
646 >      }
647 >    }
648 >
649 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
650 >         inversion = mol->nextInversion(inversionIter)) {
651 >
652 >      a = inversion->getAtomA()->getGlobalIndex();
653 >      b = inversion->getAtomB()->getGlobalIndex();        
654 >      c = inversion->getAtomC()->getGlobalIndex();        
655 >      d = inversion->getAtomD()->getGlobalIndex();        
656 >
657 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
658 >        oneTwoInteractions_.removePair(a, b);      
659 >        oneTwoInteractions_.removePair(a, c);
660 >        oneTwoInteractions_.removePair(a, d);
661 >      } else {
662 >        excludedInteractions_.removePair(a, b);
663 >        excludedInteractions_.removePair(a, c);
664 >        excludedInteractions_.removePair(a, d);
665 >      }
666 >
667 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
668 >        oneThreeInteractions_.removePair(b, c);    
669 >        oneThreeInteractions_.removePair(b, d);    
670 >        oneThreeInteractions_.removePair(c, d);      
671 >      } else {
672 >        excludedInteractions_.removePair(b, c);
673 >        excludedInteractions_.removePair(b, d);
674 >        excludedInteractions_.removePair(c, d);
675 >      }
676 >    }
677 >
678 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
679 >         rb = mol->nextRigidBody(rbIter)) {
680 >      vector<Atom*> atoms = rb->getAtoms();
681 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
682 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
683 >          a = atoms[i]->getGlobalIndex();
684 >          b = atoms[j]->getGlobalIndex();
685 >          excludedInteractions_.removePair(a, b);
686 >        }
687 >      }
688 >    }        
689      
312    for(i=0; i<3; i++)
313      scaled[i] = thePos[i]*HmatInv[i][i];
314    
315    // wrap the scaled coordinates
316    
317    for(i=0; i<3; i++)
318      scaled[i] -= roundMe(scaled[i]);
319    
320    // calc the wrapped real coordinates from the wrapped scaled coordinates
321    
322    for(i=0; i<3; i++)
323      thePos[i] = scaled[i]*Hmat[i][i];
690    }
691 +  
692 +  
693 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
694 +    int curStampId;
695      
696 < }
696 >    //index from 0
697 >    curStampId = moleculeStamps_.size();
698  
699 +    moleculeStamps_.push_back(molStamp);
700 +    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
701 +  }
702  
329 int SimInfo::getNDF(){
330  int ndf_local;
703  
704 <  ndf_local = 0;
705 <  
706 <  for(int i = 0; i < integrableObjects.size(); i++){
707 <    ndf_local += 3;
708 <    if (integrableObjects[i]->isDirectional()) {
709 <      if (integrableObjects[i]->isLinear())
710 <        ndf_local += 2;
711 <      else
712 <        ndf_local += 3;
713 <    }
704 >  /**
705 >   * update
706 >   *
707 >   *  Performs the global checks and variable settings after the
708 >   *  objects have been created.
709 >   *
710 >   */
711 >  void SimInfo::update() {  
712 >    setupSimVariables();
713 >    calcNConstraints();
714 >    calcNdf();
715 >    calcNdfRaw();
716 >    calcNdfTrans();
717    }
718 +  
719 +  /**
720 +   * getSimulatedAtomTypes
721 +   *
722 +   * Returns an STL set of AtomType* that are actually present in this
723 +   * simulation.  Must query all processors to assemble this information.
724 +   *
725 +   */
726 +  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
727 +    SimInfo::MoleculeIterator mi;
728 +    Molecule* mol;
729 +    Molecule::AtomIterator ai;
730 +    Atom* atom;
731 +    set<AtomType*> atomTypes;
732 +    
733 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
734 +      for(atom = mol->beginAtom(ai); atom != NULL;
735 +          atom = mol->nextAtom(ai)) {
736 +        atomTypes.insert(atom->getAtomType());
737 +      }      
738 +    }    
739 +    
740 + #ifdef IS_MPI
741  
742 <  // n_constraints is local, so subtract them on each processor:
742 >    // loop over the found atom types on this processor, and add their
743 >    // numerical idents to a vector:
744 >    
745 >    vector<int> foundTypes;
746 >    set<AtomType*>::iterator i;
747 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
748 >      foundTypes.push_back( (*i)->getIdent() );
749  
750 <  ndf_local -= n_constraints;
750 >    // count_local holds the number of found types on this processor
751 >    int count_local = foundTypes.size();
752  
753 < #ifdef IS_MPI
754 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
350 < #else
351 <  ndf = ndf_local;
352 < #endif
753 >    int nproc;
754 >    MPI_Comm_size( MPI_COMM_WORLD, &nproc);
755  
756 <  // nZconstraints is global, as are the 3 COM translations for the
757 <  // entire system:
756 >    // we need arrays to hold the counts and displacement vectors for
757 >    // all processors
758 >    vector<int> counts(nproc, 0);
759 >    vector<int> disps(nproc, 0);
760  
761 <  ndf = ndf - 3 - nZconstraints;
761 >    // fill the counts array
762 >    MPI_Allgather(&count_local, 1, MPI_INT, &counts[0],
763 >                  1, MPI_INT, MPI_COMM_WORLD);
764 >  
765 >    // use the processor counts to compute the displacement array
766 >    disps[0] = 0;    
767 >    int totalCount = counts[0];
768 >    for (int iproc = 1; iproc < nproc; iproc++) {
769 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
770 >      totalCount += counts[iproc];
771 >    }
772  
773 <  return ndf;
774 < }
773 >    // we need a (possibly redundant) set of all found types:
774 >    vector<int> ftGlobal(totalCount);
775 >    
776 >    // now spray out the foundTypes to all the other processors:    
777 >    MPI_Allgatherv(&foundTypes[0], count_local, MPI_INT,
778 >                   &ftGlobal[0], &counts[0], &disps[0],
779 >                   MPI_INT, MPI_COMM_WORLD);
780  
781 < int SimInfo::getNDFraw() {
363 <  int ndfRaw_local;
781 >    vector<int>::iterator j;
782  
783 <  // Raw degrees of freedom that we have to set
784 <  ndfRaw_local = 0;
783 >    // foundIdents is a stl set, so inserting an already found ident
784 >    // will have no effect.
785 >    set<int> foundIdents;
786  
787 <  for(int i = 0; i < integrableObjects.size(); i++){
788 <    ndfRaw_local += 3;
370 <    if (integrableObjects[i]->isDirectional()) {
371 <       if (integrableObjects[i]->isLinear())
372 <        ndfRaw_local += 2;
373 <      else
374 <        ndfRaw_local += 3;
375 <    }
376 <  }
787 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
788 >      foundIdents.insert((*j));
789      
790 < #ifdef IS_MPI
791 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
792 < #else
793 <  ndfRaw = ndfRaw_local;
790 >    // now iterate over the foundIdents and get the actual atom types
791 >    // that correspond to these:
792 >    set<int>::iterator it;
793 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
794 >      atomTypes.insert( forceField_->getAtomType((*it)) );
795 >
796   #endif
797  
798 <  return ndfRaw;
799 < }
798 >    return atomTypes;        
799 >  }
800  
387 int SimInfo::getNDFtranslational() {
388  int ndfTrans_local;
801  
802 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
802 >  int getGlobalCountOfType(AtomType* atype) {
803 >    /*
804 >    set<AtomType*> atypes = getSimulatedAtomTypes();
805 >    map<AtomType*, int> counts_;
806  
807 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
808 +      for(atom = mol->beginAtom(ai); atom != NULL;
809 +          atom = mol->nextAtom(ai)) {
810 +        atom->getAtomType();
811 +      }      
812 +    }    
813 +    */
814 +    return 0;
815 +  }
816  
817 +  void SimInfo::setupSimVariables() {
818 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
819 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
820 +    // parameter is true
821 +    calcBoxDipole_ = false;
822 +    if ( simParams_->haveAccumulateBoxDipole() )
823 +      if ( simParams_->getAccumulateBoxDipole() ) {
824 +        calcBoxDipole_ = true;      
825 +      }
826 +    // we only call setAccumulateBoxQuadrupole if the accumulateBoxQuadrupole
827 +    // parameter is true
828 +    calcBoxQuadrupole_ = false;
829 +    if ( simParams_->haveAccumulateBoxQuadrupole() )
830 +      if ( simParams_->getAccumulateBoxQuadrupole() ) {
831 +        calcBoxQuadrupole_ = true;      
832 +      }
833 +    
834 +    set<AtomType*>::iterator i;
835 +    set<AtomType*> atomTypes;
836 +    atomTypes = getSimulatedAtomTypes();    
837 +    bool usesElectrostatic = false;
838 +    bool usesMetallic = false;
839 +    bool usesDirectional = false;
840 +    bool usesFluctuatingCharges =  false;
841 +    //loop over all of the atom types
842 +    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
843 +      usesElectrostatic |= (*i)->isElectrostatic();
844 +      usesMetallic |= (*i)->isMetal();
845 +      usesDirectional |= (*i)->isDirectional();
846 +      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
847 +    }
848 +
849   #ifdef IS_MPI
850 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
395 < #else
396 <  ndfTrans = ndfTrans_local;
397 < #endif
850 >    int temp;
851  
852 <  ndfTrans = ndfTrans - 3 - nZconstraints;
852 >    temp = usesDirectional;
853 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
854 >    usesDirectionalAtoms_ = (temp == 0) ? false : true;
855 >    
856 >    temp = usesMetallic;
857 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
858 >    usesMetallicAtoms_ = (temp == 0) ? false : true;
859  
860 <  return ndfTrans;
861 < }
860 >    temp = usesElectrostatic;
861 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
862 >    usesElectrostaticAtoms_ = (temp == 0) ? false : true;
863  
864 < int SimInfo::getTotIntegrableObjects() {
865 <  int nObjs_local;
866 <  int nObjs;
864 >    temp = usesFluctuatingCharges;
865 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
866 >    usesFluctuatingCharges_ = (temp == 0) ? false : true;
867 > #else
868  
869 <  nObjs_local =  integrableObjects.size();
869 >    usesDirectionalAtoms_ = usesDirectional;
870 >    usesMetallicAtoms_ = usesMetallic;
871 >    usesElectrostaticAtoms_ = usesElectrostatic;
872 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
873  
410
411 #ifdef IS_MPI
412  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
413 #else
414  nObjs = nObjs_local;
874   #endif
875 +    
876 +    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
877 +    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
878 +    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
879 +  }
880  
881  
882 <  return nObjs;
883 < }
882 >  vector<int> SimInfo::getGlobalAtomIndices() {
883 >    SimInfo::MoleculeIterator mi;
884 >    Molecule* mol;
885 >    Molecule::AtomIterator ai;
886 >    Atom* atom;
887  
888 < void SimInfo::refreshSim(){
888 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
889 >    
890 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
891 >      
892 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
893 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
894 >      }
895 >    }
896 >    return GlobalAtomIndices;
897 >  }
898  
423  simtype fInfo;
424  int isError;
425  int n_global;
426  int* excl;
899  
900 <  fInfo.dielect = 0.0;
900 >  vector<int> SimInfo::getGlobalGroupIndices() {
901 >    SimInfo::MoleculeIterator mi;
902 >    Molecule* mol;
903 >    Molecule::CutoffGroupIterator ci;
904 >    CutoffGroup* cg;
905  
906 <  if( useDipoles ){
907 <    if( useReactionField )fInfo.dielect = dielectric;
906 >    vector<int> GlobalGroupIndices;
907 >    
908 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
909 >      
910 >      //local index of cutoff group is trivial, it only depends on the
911 >      //order of travesing
912 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
913 >           cg = mol->nextCutoffGroup(ci)) {
914 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
915 >      }        
916 >    }
917 >    return GlobalGroupIndices;
918    }
919  
434  fInfo.SIM_uses_PBC = usePBC;
435  //fInfo.SIM_uses_LJ = 0;
436  fInfo.SIM_uses_LJ = useLJ;
437  fInfo.SIM_uses_sticky = useSticky;
438  //fInfo.SIM_uses_sticky = 0;
439  fInfo.SIM_uses_charges = useCharges;
440  fInfo.SIM_uses_dipoles = useDipoles;
441  //fInfo.SIM_uses_dipoles = 0;
442  fInfo.SIM_uses_RF = useReactionField;
443  //fInfo.SIM_uses_RF = 0;
444  fInfo.SIM_uses_GB = useGB;
445  fInfo.SIM_uses_EAM = useEAM;
920  
921 <  n_exclude = excludes->getSize();
448 <  excl = excludes->getFortranArray();
449 <  
450 < #ifdef IS_MPI
451 <  n_global = mpiSim->getNAtomsGlobal();
452 < #else
453 <  n_global = n_atoms;
454 < #endif
455 <  
456 <  isError = 0;
457 <  
458 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
459 <  //it may not be a good idea to pass the address of first element in vector
460 <  //since c++ standard does not require vector to be stored continuously in meomory
461 <  //Most of the compilers will organize the memory of vector continuously
462 <  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
921 >  void SimInfo::prepareTopology() {
922  
923 <  if( isError ){
923 >    //calculate mass ratio of cutoff group
924 >    SimInfo::MoleculeIterator mi;
925 >    Molecule* mol;
926 >    Molecule::CutoffGroupIterator ci;
927 >    CutoffGroup* cg;
928 >    Molecule::AtomIterator ai;
929 >    Atom* atom;
930 >    RealType totalMass;
931 >
932 >    /**
933 >     * The mass factor is the relative mass of an atom to the total
934 >     * mass of the cutoff group it belongs to.  By default, all atoms
935 >     * are their own cutoff groups, and therefore have mass factors of
936 >     * 1.  We need some special handling for massless atoms, which
937 >     * will be treated as carrying the entire mass of the cutoff
938 >     * group.
939 >     */
940 >    massFactors_.clear();
941 >    massFactors_.resize(getNAtoms(), 1.0);
942      
943 <    sprintf( painCave.errMsg,
944 <             "There was an error setting the simulation information in fortran.\n" );
945 <    painCave.isFatal = 1;
471 <    painCave.severity = OOPSE_ERROR;
472 <    simError();
473 <  }
474 <  
475 < #ifdef IS_MPI
476 <  sprintf( checkPointMsg,
477 <           "succesfully sent the simulation information to fortran.\n");
478 <  MPIcheckPoint();
479 < #endif // is_mpi
480 <  
481 <  this->ndf = this->getNDF();
482 <  this->ndfRaw = this->getNDFraw();
483 <  this->ndfTrans = this->getNDFtranslational();
484 < }
943 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
944 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
945 >           cg = mol->nextCutoffGroup(ci)) {
946  
947 < void SimInfo::setDefaultRcut( double theRcut ){
948 <  
949 <  haveRcut = 1;
950 <  rCut = theRcut;
951 <  rList = rCut + 1.0;
952 <  
953 <  notifyFortranCutOffs( &rCut, &rSw, &rList );
954 < }
947 >        totalMass = cg->getMass();
948 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
949 >          // Check for massless groups - set mfact to 1 if true
950 >          if (totalMass != 0)
951 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
952 >          else
953 >            massFactors_[atom->getLocalIndex()] = 1.0;
954 >        }
955 >      }      
956 >    }
957  
958 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
958 >    // Build the identArray_ and regions_
959  
960 <  rSw = theRsw;
961 <  setDefaultRcut( theRcut );
962 < }
960 >    identArray_.clear();
961 >    identArray_.reserve(getNAtoms());  
962 >    regions_.clear();
963 >    regions_.reserve(getNAtoms());
964 >
965 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
966 >      int reg = mol->getRegion();      
967 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
968 >        identArray_.push_back(atom->getIdent());
969 >        regions_.push_back(reg);
970 >      }
971 >    }    
972 >      
973 >    topologyDone_ = true;
974 >  }
975  
976 +  void SimInfo::addProperty(GenericData* genData) {
977 +    properties_.addProperty(genData);  
978 +  }
979  
980 < void SimInfo::checkCutOffs( void ){
981 <  
504 <  if( boxIsInit ){
505 <    
506 <    //we need to check cutOffs against the box
507 <    
508 <    if( rCut > maxCutoff ){
509 <      sprintf( painCave.errMsg,
510 <               "cutoffRadius is too large for the current periodic box.\n"
511 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 <               "\tThis is larger than half of at least one of the\n"
513 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 <               "\n"
515 <               "\t[ %G %G %G ]\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n",
518 <               rCut, currentTime,
519 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 <      painCave.severity = OOPSE_ERROR;
523 <      painCave.isFatal = 1;
524 <      simError();
525 <    }    
526 <  } else {
527 <    // initialize this stuff before using it, OK?
528 <    sprintf( painCave.errMsg,
529 <             "Trying to check cutoffs without a box.\n"
530 <             "\tOOPSE should have better programmers than that.\n" );
531 <    painCave.severity = OOPSE_ERROR;
532 <    painCave.isFatal = 1;
533 <    simError();      
980 >  void SimInfo::removeProperty(const string& propName) {
981 >    properties_.removeProperty(propName);  
982    }
535  
536 }
983  
984 < void SimInfo::addProperty(GenericData* prop){
984 >  void SimInfo::clearProperties() {
985 >    properties_.clearProperties();
986 >  }
987  
988 <  map<string, GenericData*>::iterator result;
989 <  result = properties.find(prop->getID());
990 <  
543 <  //we can't simply use  properties[prop->getID()] = prop,
544 <  //it will cause memory leak if we already contain a propery which has the same name of prop
545 <  
546 <  if(result != properties.end()){
547 <    
548 <    delete (*result).second;
549 <    (*result).second = prop;
988 >  vector<string> SimInfo::getPropertyNames() {
989 >    return properties_.getPropertyNames();  
990 >  }
991        
992 +  vector<GenericData*> SimInfo::getProperties() {
993 +    return properties_.getProperties();
994    }
552  else{
995  
996 <    properties[prop->getID()] = prop;
997 <
996 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
997 >    return properties_.getPropertyByName(propName);
998    }
557    
558 }
999  
1000 < GenericData* SimInfo::getProperty(const string& propName){
1000 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1001 >    if (sman_ == sman) {
1002 >      return;
1003 >    }    
1004 >    delete sman_;
1005 >    sman_ = sman;
1006 >
1007 >    SimInfo::MoleculeIterator mi;
1008 >    Molecule::AtomIterator ai;
1009 >    Molecule::RigidBodyIterator rbIter;
1010 >    Molecule::CutoffGroupIterator cgIter;
1011 >    Molecule::BondIterator bondIter;
1012 >    Molecule::BendIterator bendIter;
1013 >    Molecule::TorsionIterator torsionIter;
1014 >    Molecule::InversionIterator inversionIter;
1015  
1016 <  map<string, GenericData*>::iterator result;
1017 <  
1018 <  //string lowerCaseName = ();
1019 <  
1020 <  result = properties.find(propName);
1021 <  
1022 <  if(result != properties.end())
1023 <    return (*result).second;  
570 <  else  
571 <    return NULL;  
572 < }
1016 >    Molecule* mol;
1017 >    Atom* atom;
1018 >    RigidBody* rb;
1019 >    CutoffGroup* cg;
1020 >    Bond* bond;
1021 >    Bend* bend;
1022 >    Torsion* torsion;
1023 >    Inversion* inversion;    
1024  
1025 +    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1026 +        
1027 +      for (atom = mol->beginAtom(ai); atom != NULL;
1028 +           atom = mol->nextAtom(ai)) {
1029 +        atom->setSnapshotManager(sman_);
1030 +      }        
1031 +      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1032 +           rb = mol->nextRigidBody(rbIter)) {
1033 +        rb->setSnapshotManager(sman_);
1034 +      }
1035 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1036 +           cg = mol->nextCutoffGroup(cgIter)) {
1037 +        cg->setSnapshotManager(sman_);
1038 +      }
1039 +      for (bond = mol->beginBond(bondIter); bond != NULL;
1040 +           bond = mol->nextBond(bondIter)) {
1041 +        bond->setSnapshotManager(sman_);
1042 +      }
1043 +      for (bend = mol->beginBend(bendIter); bend != NULL;
1044 +           bend = mol->nextBend(bendIter)) {
1045 +        bend->setSnapshotManager(sman_);
1046 +      }
1047 +      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
1048 +           torsion = mol->nextTorsion(torsionIter)) {
1049 +        torsion->setSnapshotManager(sman_);
1050 +      }
1051 +      for (inversion = mol->beginInversion(inversionIter); inversion != NULL;
1052 +           inversion = mol->nextInversion(inversionIter)) {
1053 +        inversion->setSnapshotManager(sman_);
1054 +      }
1055 +    }
1056 +  }
1057  
1058 < void SimInfo::getFortranGroupArrays(SimInfo* info,
1059 <                                    vector<int>& FglobalGroupMembership,
1060 <                                    vector<double>& mfact){
1058 >
1059 >  ostream& operator <<(ostream& o, SimInfo& info) {
1060 >
1061 >    return o;
1062 >  }
1063 >  
1064    
1065 <  Molecule* myMols;
1066 <  Atom** myAtoms;
1067 <  int numAtom;
1068 <  double mtot;
1069 <  int numMol;
1070 <  int numCutoffGroups;
1071 <  CutoffGroup* myCutoffGroup;
1072 <  vector<CutoffGroup*>::iterator iterCutoff;
1073 <  Atom* cutoffAtom;
1074 <  vector<Atom*>::iterator iterAtom;
1075 <  int atomIndex;
590 <  double totalMass;
1065 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1066 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1067 >      sprintf(painCave.errMsg,
1068 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1069 >              "\tindex exceeds number of known objects!\n");
1070 >      painCave.isFatal = 1;
1071 >      simError();
1072 >      return NULL;
1073 >    } else
1074 >      return IOIndexToIntegrableObject.at(index);
1075 >  }
1076    
1077 <  mfact.clear();
1078 <  FglobalGroupMembership.clear();
1079 <  
1077 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1078 >    IOIndexToIntegrableObject= v;
1079 >  }
1080  
1081 <  // Fix the silly fortran indexing problem
1081 >  void SimInfo::calcNConstraints() {
1082   #ifdef IS_MPI
1083 <  numAtom = mpiSim->getNAtomsGlobal();
1083 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints_, 1,  
1084 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
1085   #else
1086 <  numAtom = n_atoms;
1086 >    nGlobalConstraints_ =  nConstraints_;
1087   #endif
602  for (int i = 0; i < numAtom; i++)
603    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604  
605
606  myMols = info->molecules;
607  numMol = info->n_mol;
608  for(int i  = 0; i < numMol; i++){
609    numCutoffGroups = myMols[i].getNCutoffGroups();
610    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611        myCutoffGroup != NULL;
612        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
613
614      totalMass = myCutoffGroup->getMass();
615      
616      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
617          cutoffAtom != NULL;
618          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
619        mfact.push_back(cutoffAtom->getMass()/totalMass);
620      }  
621    }
1088    }
1089  
1090 < }
1090 > }//end namespace OpenMD
1091 >

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 2071 by gezelter, Sat Mar 7 21:41:51 2015 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines