ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 1290 by cli2, Wed Sep 10 19:51:45 2008 UTC vs.
Revision 2071 by gezelter, Sat Mar 7 21:41:51 2015 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 46 | Line 47
47   * @version 1.0
48   */
49  
50 + #ifdef IS_MPI
51 + #include <mpi.h>
52 + #endif
53   #include <algorithm>
54   #include <set>
55   #include <map>
# Line 54 | Line 58
58   #include "math/Vector3.hpp"
59   #include "primitives/Molecule.hpp"
60   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
61   #include "utils/MemoryUtils.hpp"
62   #include "utils/simError.h"
63   #include "selection/SelectionManager.hpp"
64   #include "io/ForceFieldOptions.hpp"
65 < #include "UseTheForce/ForceField.hpp"
65 > #include "brains/ForceField.hpp"
66 > #include "nonbonded/SwitchingFunction.hpp"
67  
68 <
69 < #ifdef IS_MPI
73 < #include "UseTheForce/mpiComponentPlan.h"
74 < #include "UseTheForce/DarkSide/simParallel_interface.h"
75 < #endif
76 <
77 < namespace oopse {
78 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 <    std::map<int, std::set<int> >::iterator i = container.find(index);
80 <    std::set<int> result;
81 <    if (i != container.end()) {
82 <        result = i->second;
83 <    }
84 <
85 <    return result;
86 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73 <    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 <    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
73 >    nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
74      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
75 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
76 <    calcBoxDipole_(false), useAtomicVirial_(true) {
75 >    nConstraints_(0), nFluctuatingCharges_(0),    
76 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
77 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
78 >    nGlobalFluctuatingCharges_(0), nGlobalBonds_(0), nGlobalBends_(0),
79 >    nGlobalTorsions_(0), nGlobalInversions_(0), nGlobalConstraints_(0),
80 >    hasNGlobalConstraints_(false),
81 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
82 >    sman_(NULL), topologyDone_(false), calcBoxDipole_(false),
83 >    calcBoxQuadrupole_(false), useAtomicVirial_(true) {    
84 >    
85 >    MoleculeStamp* molStamp;
86 >    int nMolWithSameStamp;
87 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
88 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
89 >    CutoffGroupStamp* cgStamp;    
90 >    RigidBodyStamp* rbStamp;
91 >    int nRigidAtoms = 0;
92 >    
93 >    vector<Component*> components = simParams->getComponents();
94 >    
95 >    for (vector<Component*>::iterator i = components.begin();
96 >         i !=components.end(); ++i) {
97 >      molStamp = (*i)->getMoleculeStamp();
98 >      if ( (*i)->haveRegion() ) {        
99 >        molStamp->setRegion( (*i)->getRegion() );
100 >      } else {
101 >        // set the region to a disallowed value:
102 >        molStamp->setRegion( -1 );
103 >      }
104  
105 <
99 <      MoleculeStamp* molStamp;
100 <      int nMolWithSameStamp;
101 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
102 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
103 <      CutoffGroupStamp* cgStamp;    
104 <      RigidBodyStamp* rbStamp;
105 <      int nRigidAtoms = 0;
106 <
107 <      std::vector<Component*> components = simParams->getComponents();
105 >      nMolWithSameStamp = (*i)->getNMol();
106        
107 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
108 <        molStamp = (*i)->getMoleculeStamp();
109 <        nMolWithSameStamp = (*i)->getNMol();
110 <        
111 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
112 <
113 <        //calculate atoms in molecules
114 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
115 <
116 <        //calculate atoms in cutoff groups
117 <        int nAtomsInGroups = 0;
118 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119 <        
120 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 <          cgStamp = molStamp->getCutoffGroupStamp(j);
122 <          nAtomsInGroups += cgStamp->getNMembers();
125 <        }
126 <
127 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128 <
129 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
130 <
131 <        //calculate atoms in rigid bodies
132 <        int nAtomsInRigidBodies = 0;
133 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134 <        
135 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
136 <          rbStamp = molStamp->getRigidBodyStamp(j);
137 <          nAtomsInRigidBodies += rbStamp->getNMembers();
138 <        }
139 <
140 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
142 <        
107 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
108 >      
109 >      //calculate atoms in molecules
110 >      nGlobalAtoms_ += molStamp->getNAtoms() * nMolWithSameStamp;
111 >      nGlobalBonds_ += molStamp->getNBonds() * nMolWithSameStamp;
112 >      nGlobalBends_ += molStamp->getNBends() * nMolWithSameStamp;
113 >      nGlobalTorsions_ += molStamp->getNTorsions() * nMolWithSameStamp;
114 >      nGlobalInversions_ += molStamp->getNInversions() * nMolWithSameStamp;
115 >      
116 >      //calculate atoms in cutoff groups
117 >      int nAtomsInGroups = 0;
118 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119 >      
120 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 >        cgStamp = molStamp->getCutoffGroupStamp(j);
122 >        nAtomsInGroups += cgStamp->getNMembers();
123        }
124 <
125 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
126 <      //group therefore the total number of cutoff groups in the system is
127 <      //equal to the total number of atoms minus number of atoms belong to
128 <      //cutoff group defined in meta-data file plus the number of cutoff
129 <      //groups defined in meta-data file
130 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
131 <
132 <      //every free atom (atom does not belong to rigid bodies) is an
133 <      //integrable object therefore the total number of integrable objects
134 <      //in the system is equal to the total number of atoms minus number of
135 <      //atoms belong to rigid body defined in meta-data file plus the number
136 <      //of rigid bodies defined in meta-data file
137 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
138 <                                                + nGlobalRigidBodies_;
139 <  
140 <      nGlobalMols_ = molStampIds_.size();
161 <      molToProcMap_.resize(nGlobalMols_);
124 >      
125 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
126 >      
127 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
128 >      
129 >      //calculate atoms in rigid bodies
130 >      int nAtomsInRigidBodies = 0;
131 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
132 >      
133 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
134 >        rbStamp = molStamp->getRigidBodyStamp(j);
135 >        nAtomsInRigidBodies += rbStamp->getNMembers();
136 >      }
137 >      
138 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
139 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
140 >      
141      }
142 +    
143 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
144 +    //group therefore the total number of cutoff groups in the system is
145 +    //equal to the total number of atoms minus number of atoms belong to
146 +    //cutoff group defined in meta-data file plus the number of cutoff
147 +    //groups defined in meta-data file
148  
149 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
150 +    
151 +    //every free atom (atom does not belong to rigid bodies) is an
152 +    //integrable object therefore the total number of integrable objects
153 +    //in the system is equal to the total number of atoms minus number of
154 +    //atoms belong to rigid body defined in meta-data file plus the number
155 +    //of rigid bodies defined in meta-data file
156 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
157 +      + nGlobalRigidBodies_;
158 +    
159 +    nGlobalMols_ = molStampIds_.size();
160 +    molToProcMap_.resize(nGlobalMols_);
161 +  }
162 +  
163    SimInfo::~SimInfo() {
164 <    std::map<int, Molecule*>::iterator i;
164 >    map<int, Molecule*>::iterator i;
165      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
166        delete i->second;
167      }
# Line 173 | Line 172 | namespace oopse {
172      delete forceField_;
173    }
174  
176  int SimInfo::getNGlobalConstraints() {
177    int nGlobalConstraints;
178 #ifdef IS_MPI
179    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180                  MPI_COMM_WORLD);    
181 #else
182    nGlobalConstraints =  nConstraints_;
183 #endif
184    return nGlobalConstraints;
185  }
175  
176    bool SimInfo::addMolecule(Molecule* mol) {
177      MoleculeIterator i;
178 <
178 >    
179      i = molecules_.find(mol->getGlobalIndex());
180      if (i == molecules_.end() ) {
181 <
182 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
183 <        
181 >      
182 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
183 >      
184        nAtoms_ += mol->getNAtoms();
185        nBonds_ += mol->getNBonds();
186        nBends_ += mol->getNBends();
# Line 201 | Line 190 | namespace oopse {
190        nIntegrableObjects_ += mol->getNIntegrableObjects();
191        nCutoffGroups_ += mol->getNCutoffGroups();
192        nConstraints_ += mol->getNConstraintPairs();
193 <
193 >      
194        addInteractionPairs(mol);
195 <  
195 >      
196        return true;
197      } else {
198        return false;
199      }
200    }
201 <
201 >  
202    bool SimInfo::removeMolecule(Molecule* mol) {
203      MoleculeIterator i;
204      i = molecules_.find(mol->getGlobalIndex());
# Line 237 | Line 226 | namespace oopse {
226      } else {
227        return false;
228      }
240
241
229    }    
230  
231          
# Line 254 | Line 241 | namespace oopse {
241  
242  
243    void SimInfo::calcNdf() {
244 <    int ndf_local;
244 >    int ndf_local, nfq_local;
245      MoleculeIterator i;
246 <    std::vector<StuntDouble*>::iterator j;
246 >    vector<StuntDouble*>::iterator j;
247 >    vector<Atom*>::iterator k;
248 >
249      Molecule* mol;
250 <    StuntDouble* integrableObject;
250 >    StuntDouble* sd;
251 >    Atom* atom;
252  
253      ndf_local = 0;
254 +    nfq_local = 0;
255      
256      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267           integrableObject = mol->nextIntegrableObject(j)) {
257  
258 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
259 +           sd = mol->nextIntegrableObject(j)) {
260 +
261          ndf_local += 3;
262  
263 <        if (integrableObject->isDirectional()) {
264 <          if (integrableObject->isLinear()) {
263 >        if (sd->isDirectional()) {
264 >          if (sd->isLinear()) {
265              ndf_local += 2;
266            } else {
267              ndf_local += 3;
268            }
269          }
278            
270        }
271 +
272 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
273 +           atom = mol->nextFluctuatingCharge(k)) {
274 +        if (atom->isFluctuatingCharge()) {
275 +          nfq_local++;
276 +        }
277 +      }
278      }
279      
280 +    ndfLocal_ = ndf_local;
281 +
282      // n_constraints is local, so subtract them on each processor
283      ndf_local -= nConstraints_;
284  
285   #ifdef IS_MPI
286 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
286 >    MPI_Allreduce(&ndf_local, &ndf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
287 >    MPI_Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
288 >      MPI_INT, MPI_SUM, MPI_COMM_WORLD);
289   #else
290      ndf_ = ndf_local;
291 +    nGlobalFluctuatingCharges_ = nfq_local;
292   #endif
293  
294      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 296 | Line 299 | namespace oopse {
299  
300    int SimInfo::getFdf() {
301   #ifdef IS_MPI
302 <    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
302 >    MPI_Allreduce(&fdf_local, &fdf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
303   #else
304      fdf_ = fdf_local;
305   #endif
306      return fdf_;
307    }
308 +  
309 +  unsigned int SimInfo::getNLocalCutoffGroups(){
310 +    int nLocalCutoffAtoms = 0;
311 +    Molecule* mol;
312 +    MoleculeIterator mi;
313 +    CutoffGroup* cg;
314 +    Molecule::CutoffGroupIterator ci;
315      
316 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
317 +      
318 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
319 +           cg = mol->nextCutoffGroup(ci)) {
320 +        nLocalCutoffAtoms += cg->getNumAtom();
321 +        
322 +      }        
323 +    }
324 +    
325 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
326 +  }
327 +    
328    void SimInfo::calcNdfRaw() {
329      int ndfRaw_local;
330  
331      MoleculeIterator i;
332 <    std::vector<StuntDouble*>::iterator j;
332 >    vector<StuntDouble*>::iterator j;
333      Molecule* mol;
334 <    StuntDouble* integrableObject;
334 >    StuntDouble* sd;
335  
336      // Raw degrees of freedom that we have to set
337      ndfRaw_local = 0;
338      
339      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319           integrableObject = mol->nextIntegrableObject(j)) {
340  
341 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
342 +           sd = mol->nextIntegrableObject(j)) {
343 +
344          ndfRaw_local += 3;
345  
346 <        if (integrableObject->isDirectional()) {
347 <          if (integrableObject->isLinear()) {
346 >        if (sd->isDirectional()) {
347 >          if (sd->isLinear()) {
348              ndfRaw_local += 2;
349            } else {
350              ndfRaw_local += 3;
# Line 332 | Line 355 | namespace oopse {
355      }
356      
357   #ifdef IS_MPI
358 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
358 >    MPI_Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
359   #else
360      ndfRaw_ = ndfRaw_local;
361   #endif
# Line 343 | Line 366 | namespace oopse {
366  
367      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
368  
346
369   #ifdef IS_MPI
370 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
370 >    MPI_Allreduce(&ndfTrans_local, &ndfTrans_, 1, MPI_INT, MPI_SUM,
371 >                  MPI_COMM_WORLD);
372   #else
373      ndfTrans_ = ndfTrans_local;
374   #endif
375  
376      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
354
377    }
378  
379    void SimInfo::addInteractionPairs(Molecule* mol) {
380      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
381 <    std::vector<Bond*>::iterator bondIter;
382 <    std::vector<Bend*>::iterator bendIter;
383 <    std::vector<Torsion*>::iterator torsionIter;
384 <    std::vector<Inversion*>::iterator inversionIter;
381 >    vector<Bond*>::iterator bondIter;
382 >    vector<Bend*>::iterator bendIter;
383 >    vector<Torsion*>::iterator torsionIter;
384 >    vector<Inversion*>::iterator inversionIter;
385      Bond* bond;
386      Bend* bend;
387      Torsion* torsion;
# Line 377 | Line 399 | namespace oopse {
399      // always be excluded.  These are done at the bottom of this
400      // function.
401  
402 <    std::map<int, std::set<int> > atomGroups;
402 >    map<int, set<int> > atomGroups;
403      Molecule::RigidBodyIterator rbIter;
404      RigidBody* rb;
405      Molecule::IntegrableObjectIterator ii;
406 <    StuntDouble* integrableObject;
406 >    StuntDouble* sd;
407      
408 <    for (integrableObject = mol->beginIntegrableObject(ii);
409 <         integrableObject != NULL;
388 <         integrableObject = mol->nextIntegrableObject(ii)) {
408 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
409 >         sd = mol->nextIntegrableObject(ii)) {
410        
411 <      if (integrableObject->isRigidBody()) {
412 <        rb = static_cast<RigidBody*>(integrableObject);
413 <        std::vector<Atom*> atoms = rb->getAtoms();
414 <        std::set<int> rigidAtoms;
411 >      if (sd->isRigidBody()) {
412 >        rb = static_cast<RigidBody*>(sd);
413 >        vector<Atom*> atoms = rb->getAtoms();
414 >        set<int> rigidAtoms;
415          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
416            rigidAtoms.insert(atoms[i]->getGlobalIndex());
417          }
418          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
419 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
419 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
420          }      
421        } else {
422 <        std::set<int> oneAtomSet;
423 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
424 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
422 >        set<int> oneAtomSet;
423 >        oneAtomSet.insert(sd->getGlobalIndex());
424 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
425        }
426      }  
427 +
428            
429      for (bond= mol->beginBond(bondIter); bond != NULL;
430           bond = mol->nextBond(bondIter)) {
431  
432        a = bond->getAtomA()->getGlobalIndex();
433        b = bond->getAtomB()->getGlobalIndex();  
434 <    
434 >
435        if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
436          oneTwoInteractions_.addPair(a, b);
437        } else {
# Line 503 | Line 525 | namespace oopse {
525  
526      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
527           rb = mol->nextRigidBody(rbIter)) {
528 <      std::vector<Atom*> atoms = rb->getAtoms();
528 >      vector<Atom*> atoms = rb->getAtoms();
529        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
530          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
531            a = atoms[i]->getGlobalIndex();
# Line 517 | Line 539 | namespace oopse {
539  
540    void SimInfo::removeInteractionPairs(Molecule* mol) {
541      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
542 <    std::vector<Bond*>::iterator bondIter;
543 <    std::vector<Bend*>::iterator bendIter;
544 <    std::vector<Torsion*>::iterator torsionIter;
545 <    std::vector<Inversion*>::iterator inversionIter;
542 >    vector<Bond*>::iterator bondIter;
543 >    vector<Bend*>::iterator bendIter;
544 >    vector<Torsion*>::iterator torsionIter;
545 >    vector<Inversion*>::iterator inversionIter;
546      Bond* bond;
547      Bend* bend;
548      Torsion* torsion;
# Line 530 | Line 552 | namespace oopse {
552      int c;
553      int d;
554  
555 <    std::map<int, std::set<int> > atomGroups;
555 >    map<int, set<int> > atomGroups;
556      Molecule::RigidBodyIterator rbIter;
557      RigidBody* rb;
558      Molecule::IntegrableObjectIterator ii;
559 <    StuntDouble* integrableObject;
559 >    StuntDouble* sd;
560      
561 <    for (integrableObject = mol->beginIntegrableObject(ii);
562 <         integrableObject != NULL;
541 <         integrableObject = mol->nextIntegrableObject(ii)) {
561 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
562 >         sd = mol->nextIntegrableObject(ii)) {
563        
564 <      if (integrableObject->isRigidBody()) {
565 <        rb = static_cast<RigidBody*>(integrableObject);
566 <        std::vector<Atom*> atoms = rb->getAtoms();
567 <        std::set<int> rigidAtoms;
564 >      if (sd->isRigidBody()) {
565 >        rb = static_cast<RigidBody*>(sd);
566 >        vector<Atom*> atoms = rb->getAtoms();
567 >        set<int> rigidAtoms;
568          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
569            rigidAtoms.insert(atoms[i]->getGlobalIndex());
570          }
571          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
572 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
572 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
573          }      
574        } else {
575 <        std::set<int> oneAtomSet;
576 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
577 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
575 >        set<int> oneAtomSet;
576 >        oneAtomSet.insert(sd->getGlobalIndex());
577 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
578        }
579      }  
580  
# Line 656 | Line 677 | namespace oopse {
677  
678      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
679           rb = mol->nextRigidBody(rbIter)) {
680 <      std::vector<Atom*> atoms = rb->getAtoms();
680 >      vector<Atom*> atoms = rb->getAtoms();
681        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
682          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
683            a = atoms[i]->getGlobalIndex();
# Line 679 | Line 700 | namespace oopse {
700      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
701    }
702  
682  void SimInfo::update() {
703  
704 <    setupSimType();
705 <
706 < #ifdef IS_MPI
707 <    setupFortranParallel();
708 < #endif
709 <
710 <    setupFortranSim();
711 <
712 <    //setup fortran force field
713 <    /** @deprecate */    
694 <    int isError = 0;
695 <    
696 <    setupCutoff();
697 <    
698 <    setupElectrostaticSummationMethod( isError );
699 <    setupSwitchingFunction();
700 <    setupAccumulateBoxDipole();
701 <
702 <    if(isError){
703 <      sprintf( painCave.errMsg,
704 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
705 <      painCave.isFatal = 1;
706 <      simError();
707 <    }
708 <
704 >  /**
705 >   * update
706 >   *
707 >   *  Performs the global checks and variable settings after the
708 >   *  objects have been created.
709 >   *
710 >   */
711 >  void SimInfo::update() {  
712 >    setupSimVariables();
713 >    calcNConstraints();
714      calcNdf();
715      calcNdfRaw();
716      calcNdfTrans();
712
713    fortranInitialized_ = true;
717    }
718 <
719 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
718 >  
719 >  /**
720 >   * getSimulatedAtomTypes
721 >   *
722 >   * Returns an STL set of AtomType* that are actually present in this
723 >   * simulation.  Must query all processors to assemble this information.
724 >   *
725 >   */
726 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
727      SimInfo::MoleculeIterator mi;
728      Molecule* mol;
729      Molecule::AtomIterator ai;
730      Atom* atom;
731 <    std::set<AtomType*> atomTypes;
732 <
731 >    set<AtomType*> atomTypes;
732 >    
733      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
734 <
735 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
734 >      for(atom = mol->beginAtom(ai); atom != NULL;
735 >          atom = mol->nextAtom(ai)) {
736          atomTypes.insert(atom->getAtomType());
737 <      }
738 <        
729 <    }
730 <
731 <    return atomTypes;        
732 <  }
733 <
734 <  void SimInfo::setupSimType() {
735 <    std::set<AtomType*>::iterator i;
736 <    std::set<AtomType*> atomTypes;
737 <    atomTypes = getUniqueAtomTypes();
737 >      }      
738 >    }    
739      
740 <    int useLennardJones = 0;
740 <    int useElectrostatic = 0;
741 <    int useEAM = 0;
742 <    int useSC = 0;
743 <    int useCharge = 0;
744 <    int useDirectional = 0;
745 <    int useDipole = 0;
746 <    int useGayBerne = 0;
747 <    int useSticky = 0;
748 <    int useStickyPower = 0;
749 <    int useShape = 0;
750 <    int useFLARB = 0; //it is not in AtomType yet
751 <    int useDirectionalAtom = 0;    
752 <    int useElectrostatics = 0;
753 <    //usePBC and useRF are from simParams
754 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
755 <    int useRF;
756 <    int useSF;
757 <    int useSP;
758 <    int useBoxDipole;
740 > #ifdef IS_MPI
741  
742 <    std::string myMethod;
743 <
762 <    // set the useRF logical
763 <    useRF = 0;
764 <    useSF = 0;
765 <    useSP = 0;
766 <
767 <
768 <    if (simParams_->haveElectrostaticSummationMethod()) {
769 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
770 <      toUpper(myMethod);
771 <      if (myMethod == "REACTION_FIELD"){
772 <        useRF = 1;
773 <      } else if (myMethod == "SHIFTED_FORCE"){
774 <        useSF = 1;
775 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
776 <        useSP = 1;
777 <      }
778 <    }
742 >    // loop over the found atom types on this processor, and add their
743 >    // numerical idents to a vector:
744      
745 <    if (simParams_->haveAccumulateBoxDipole())
746 <      if (simParams_->getAccumulateBoxDipole())
747 <        useBoxDipole = 1;
745 >    vector<int> foundTypes;
746 >    set<AtomType*>::iterator i;
747 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
748 >      foundTypes.push_back( (*i)->getIdent() );
749  
750 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
750 >    // count_local holds the number of found types on this processor
751 >    int count_local = foundTypes.size();
752  
753 <    //loop over all of the atom types
754 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
788 <      useLennardJones |= (*i)->isLennardJones();
789 <      useElectrostatic |= (*i)->isElectrostatic();
790 <      useEAM |= (*i)->isEAM();
791 <      useSC |= (*i)->isSC();
792 <      useCharge |= (*i)->isCharge();
793 <      useDirectional |= (*i)->isDirectional();
794 <      useDipole |= (*i)->isDipole();
795 <      useGayBerne |= (*i)->isGayBerne();
796 <      useSticky |= (*i)->isSticky();
797 <      useStickyPower |= (*i)->isStickyPower();
798 <      useShape |= (*i)->isShape();
799 <    }
753 >    int nproc;
754 >    MPI_Comm_size( MPI_COMM_WORLD, &nproc);
755  
756 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
757 <      useDirectionalAtom = 1;
758 <    }
756 >    // we need arrays to hold the counts and displacement vectors for
757 >    // all processors
758 >    vector<int> counts(nproc, 0);
759 >    vector<int> disps(nproc, 0);
760  
761 <    if (useCharge || useDipole) {
762 <      useElectrostatics = 1;
761 >    // fill the counts array
762 >    MPI_Allgather(&count_local, 1, MPI_INT, &counts[0],
763 >                  1, MPI_INT, MPI_COMM_WORLD);
764 >  
765 >    // use the processor counts to compute the displacement array
766 >    disps[0] = 0;    
767 >    int totalCount = counts[0];
768 >    for (int iproc = 1; iproc < nproc; iproc++) {
769 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
770 >      totalCount += counts[iproc];
771      }
772  
773 < #ifdef IS_MPI    
774 <    int temp;
773 >    // we need a (possibly redundant) set of all found types:
774 >    vector<int> ftGlobal(totalCount);
775 >    
776 >    // now spray out the foundTypes to all the other processors:    
777 >    MPI_Allgatherv(&foundTypes[0], count_local, MPI_INT,
778 >                   &ftGlobal[0], &counts[0], &disps[0],
779 >                   MPI_INT, MPI_COMM_WORLD);
780  
781 <    temp = usePBC;
813 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
781 >    vector<int>::iterator j;
782  
783 <    temp = useDirectionalAtom;
784 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
783 >    // foundIdents is a stl set, so inserting an already found ident
784 >    // will have no effect.
785 >    set<int> foundIdents;
786  
787 <    temp = useLennardJones;
788 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
787 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
788 >      foundIdents.insert((*j));
789 >    
790 >    // now iterate over the foundIdents and get the actual atom types
791 >    // that correspond to these:
792 >    set<int>::iterator it;
793 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
794 >      atomTypes.insert( forceField_->getAtomType((*it)) );
795 >
796 > #endif
797  
798 <    temp = useElectrostatics;
799 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
798 >    return atomTypes;        
799 >  }
800  
824    temp = useCharge;
825    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
801  
802 <    temp = useDipole;
803 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
802 >  int getGlobalCountOfType(AtomType* atype) {
803 >    /*
804 >    set<AtomType*> atypes = getSimulatedAtomTypes();
805 >    map<AtomType*, int> counts_;
806  
807 <    temp = useSticky;
808 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
807 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
808 >      for(atom = mol->beginAtom(ai); atom != NULL;
809 >          atom = mol->nextAtom(ai)) {
810 >        atom->getAtomType();
811 >      }      
812 >    }    
813 >    */
814 >    return 0;
815 >  }
816  
817 <    temp = useStickyPower;
818 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
817 >  void SimInfo::setupSimVariables() {
818 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
819 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
820 >    // parameter is true
821 >    calcBoxDipole_ = false;
822 >    if ( simParams_->haveAccumulateBoxDipole() )
823 >      if ( simParams_->getAccumulateBoxDipole() ) {
824 >        calcBoxDipole_ = true;      
825 >      }
826 >    // we only call setAccumulateBoxQuadrupole if the accumulateBoxQuadrupole
827 >    // parameter is true
828 >    calcBoxQuadrupole_ = false;
829 >    if ( simParams_->haveAccumulateBoxQuadrupole() )
830 >      if ( simParams_->getAccumulateBoxQuadrupole() ) {
831 >        calcBoxQuadrupole_ = true;      
832 >      }
833      
834 <    temp = useGayBerne;
835 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
834 >    set<AtomType*>::iterator i;
835 >    set<AtomType*> atomTypes;
836 >    atomTypes = getSimulatedAtomTypes();    
837 >    bool usesElectrostatic = false;
838 >    bool usesMetallic = false;
839 >    bool usesDirectional = false;
840 >    bool usesFluctuatingCharges =  false;
841 >    //loop over all of the atom types
842 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
843 >      usesElectrostatic |= (*i)->isElectrostatic();
844 >      usesMetallic |= (*i)->isMetal();
845 >      usesDirectional |= (*i)->isDirectional();
846 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
847 >    }
848  
849 <    temp = useEAM;
850 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
849 > #ifdef IS_MPI
850 >    int temp;
851  
852 <    temp = useSC;
853 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
852 >    temp = usesDirectional;
853 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
854 >    usesDirectionalAtoms_ = (temp == 0) ? false : true;
855      
856 <    temp = useShape;
857 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
856 >    temp = usesMetallic;
857 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
858 >    usesMetallicAtoms_ = (temp == 0) ? false : true;
859  
860 <    temp = useFLARB;
861 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
860 >    temp = usesElectrostatic;
861 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
862 >    usesElectrostaticAtoms_ = (temp == 0) ? false : true;
863  
864 <    temp = useRF;
865 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
864 >    temp = usesFluctuatingCharges;
865 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
866 >    usesFluctuatingCharges_ = (temp == 0) ? false : true;
867 > #else
868  
869 <    temp = useSF;
870 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
869 >    usesDirectionalAtoms_ = usesDirectional;
870 >    usesMetallicAtoms_ = usesMetallic;
871 >    usesElectrostaticAtoms_ = usesElectrostatic;
872 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
873  
874 <    temp = useSP;
875 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
874 > #endif
875 >    
876 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
877 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
878 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
879 >  }
880  
860    temp = useBoxDipole;
861    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
881  
882 <    temp = useAtomicVirial_;
883 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
882 >  vector<int> SimInfo::getGlobalAtomIndices() {
883 >    SimInfo::MoleculeIterator mi;
884 >    Molecule* mol;
885 >    Molecule::AtomIterator ai;
886 >    Atom* atom;
887  
888 < #endif
889 <
890 <    fInfo_.SIM_uses_PBC = usePBC;    
891 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
892 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
893 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
894 <    fInfo_.SIM_uses_Charges = useCharge;
895 <    fInfo_.SIM_uses_Dipoles = useDipole;
896 <    fInfo_.SIM_uses_Sticky = useSticky;
875 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
876 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
877 <    fInfo_.SIM_uses_EAM = useEAM;
878 <    fInfo_.SIM_uses_SC = useSC;
879 <    fInfo_.SIM_uses_Shapes = useShape;
880 <    fInfo_.SIM_uses_FLARB = useFLARB;
881 <    fInfo_.SIM_uses_RF = useRF;
882 <    fInfo_.SIM_uses_SF = useSF;
883 <    fInfo_.SIM_uses_SP = useSP;
884 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
885 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
888 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
889 >    
890 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
891 >      
892 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
893 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
894 >      }
895 >    }
896 >    return GlobalAtomIndices;
897    }
898  
888  void SimInfo::setupFortranSim() {
889    int isError;
890    int nExclude, nOneTwo, nOneThree, nOneFour;
891    std::vector<int> fortranGlobalGroupMembership;
892    
893    isError = 0;
899  
900 <    //globalGroupMembership_ is filled by SimCreator    
901 <    for (int i = 0; i < nGlobalAtoms_; i++) {
902 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
900 >  vector<int> SimInfo::getGlobalGroupIndices() {
901 >    SimInfo::MoleculeIterator mi;
902 >    Molecule* mol;
903 >    Molecule::CutoffGroupIterator ci;
904 >    CutoffGroup* cg;
905 >
906 >    vector<int> GlobalGroupIndices;
907 >    
908 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
909 >      
910 >      //local index of cutoff group is trivial, it only depends on the
911 >      //order of travesing
912 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
913 >           cg = mol->nextCutoffGroup(ci)) {
914 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
915 >      }        
916      }
917 +    return GlobalGroupIndices;
918 +  }
919  
920 +
921 +  void SimInfo::prepareTopology() {
922 +
923      //calculate mass ratio of cutoff group
901    std::vector<RealType> mfact;
924      SimInfo::MoleculeIterator mi;
925      Molecule* mol;
926      Molecule::CutoffGroupIterator ci;
# Line 907 | Line 929 | namespace oopse {
929      Atom* atom;
930      RealType totalMass;
931  
932 <    //to avoid memory reallocation, reserve enough space for mfact
933 <    mfact.reserve(getNCutoffGroups());
932 >    /**
933 >     * The mass factor is the relative mass of an atom to the total
934 >     * mass of the cutoff group it belongs to.  By default, all atoms
935 >     * are their own cutoff groups, and therefore have mass factors of
936 >     * 1.  We need some special handling for massless atoms, which
937 >     * will be treated as carrying the entire mass of the cutoff
938 >     * group.
939 >     */
940 >    massFactors_.clear();
941 >    massFactors_.resize(getNAtoms(), 1.0);
942      
943      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
944 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
944 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
945 >           cg = mol->nextCutoffGroup(ci)) {
946  
947          totalMass = cg->getMass();
948          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
949            // Check for massless groups - set mfact to 1 if true
950 <          if (totalMass != 0)
951 <            mfact.push_back(atom->getMass()/totalMass);
950 >          if (totalMass != 0)
951 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
952            else
953 <            mfact.push_back( 1.0 );
953 >            massFactors_[atom->getLocalIndex()] = 1.0;
954          }
955        }      
956      }
957  
958 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
928 <    std::vector<int> identArray;
958 >    // Build the identArray_ and regions_
959  
960 <    //to avoid memory reallocation, reserve enough space identArray
961 <    identArray.reserve(getNAtoms());
962 <    
963 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
960 >    identArray_.clear();
961 >    identArray_.reserve(getNAtoms());  
962 >    regions_.clear();
963 >    regions_.reserve(getNAtoms());
964 >
965 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
966 >      int reg = mol->getRegion();      
967        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
968 <        identArray.push_back(atom->getIdent());
968 >        identArray_.push_back(atom->getIdent());
969 >        regions_.push_back(reg);
970        }
971      }    
972 +      
973 +    topologyDone_ = true;
974 +  }
975  
976 <    //fill molMembershipArray
977 <    //molMembershipArray is filled by SimCreator    
978 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
942 <    for (int i = 0; i < nGlobalAtoms_; i++) {
943 <      molMembershipArray[i] = globalMolMembership_[i] + 1;
944 <    }
945 <    
946 <    //setup fortran simulation
976 >  void SimInfo::addProperty(GenericData* genData) {
977 >    properties_.addProperty(genData);  
978 >  }
979  
980 <    nExclude = excludedInteractions_.getSize();
981 <    nOneTwo = oneTwoInteractions_.getSize();
982 <    nOneThree = oneThreeInteractions_.getSize();
951 <    nOneFour = oneFourInteractions_.getSize();
980 >  void SimInfo::removeProperty(const string& propName) {
981 >    properties_.removeProperty(propName);  
982 >  }
983  
984 <    std::cerr << "excludedInteractions contains: " << excludedInteractions_.getSize() << " pairs \n";
985 <    std::cerr << "oneTwoInteractions contains: " << oneTwoInteractions_.getSize() << " pairs \n";
986 <    std::cerr << "oneThreeInteractions contains: " << oneThreeInteractions_.getSize() << " pairs \n";
956 <    std::cerr << "oneFourInteractions contains: " << oneFourInteractions_.getSize() << " pairs \n";
984 >  void SimInfo::clearProperties() {
985 >    properties_.clearProperties();
986 >  }
987  
988 <    int* excludeList = excludedInteractions_.getPairList();
989 <    int* oneTwoList = oneTwoInteractions_.getPairList();
990 <    int* oneThreeList = oneThreeInteractions_.getPairList();
961 <    int* oneFourList = oneFourInteractions_.getPairList();
962 <
963 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
964 <                   &nExclude, excludeList,
965 <                   &nOneTwo, oneTwoList,
966 <                   &nOneThree, oneThreeList,
967 <                   &nOneFour, oneFourList,
968 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
969 <                   &fortranGlobalGroupMembership[0], &isError);
970 <    
971 <    if( isError ){
988 >  vector<string> SimInfo::getPropertyNames() {
989 >    return properties_.getPropertyNames();  
990 >  }
991        
992 <      sprintf( painCave.errMsg,
993 <               "There was an error setting the simulation information in fortran.\n" );
994 <      painCave.isFatal = 1;
976 <      painCave.severity = OOPSE_ERROR;
977 <      simError();
978 <    }
979 <    
980 <    
981 <    sprintf( checkPointMsg,
982 <             "succesfully sent the simulation information to fortran.\n");
983 <    
984 <    errorCheckPoint();
985 <    
986 <    // Setup number of neighbors in neighbor list if present
987 <    if (simParams_->haveNeighborListNeighbors()) {
988 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
989 <      setNeighbors(&nlistNeighbors);
990 <    }
991 <  
992 >  vector<GenericData*> SimInfo::getProperties() {
993 >    return properties_.getProperties();
994 >  }
995  
996 +  GenericData* SimInfo::getPropertyByName(const string& propName) {
997 +    return properties_.getPropertyByName(propName);
998    }
999  
1000 +  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1001 +    if (sman_ == sman) {
1002 +      return;
1003 +    }    
1004 +    delete sman_;
1005 +    sman_ = sman;
1006  
996  void SimInfo::setupFortranParallel() {
997 #ifdef IS_MPI    
998    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
999    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1000    std::vector<int> localToGlobalCutoffGroupIndex;
1007      SimInfo::MoleculeIterator mi;
1008      Molecule::AtomIterator ai;
1009 <    Molecule::CutoffGroupIterator ci;
1009 >    Molecule::RigidBodyIterator rbIter;
1010 >    Molecule::CutoffGroupIterator cgIter;
1011 >    Molecule::BondIterator bondIter;
1012 >    Molecule::BendIterator bendIter;
1013 >    Molecule::TorsionIterator torsionIter;
1014 >    Molecule::InversionIterator inversionIter;
1015 >
1016      Molecule* mol;
1017      Atom* atom;
1018 +    RigidBody* rb;
1019      CutoffGroup* cg;
1020 <    mpiSimData parallelData;
1021 <    int isError;
1020 >    Bond* bond;
1021 >    Bend* bend;
1022 >    Torsion* torsion;
1023 >    Inversion* inversion;    
1024  
1025 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
1011 <
1012 <      //local index(index in DataStorge) of atom is important
1013 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1014 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1015 <      }
1016 <
1017 <      //local index of cutoff group is trivial, it only depends on the order of travesing
1018 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1019 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1020 <      }        
1025 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1026          
1027 <    }
1028 <
1029 <    //fill up mpiSimData struct
1030 <    parallelData.nMolGlobal = getNGlobalMolecules();
1031 <    parallelData.nMolLocal = getNMolecules();
1032 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
1033 <    parallelData.nAtomsLocal = getNAtoms();
1029 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1030 <    parallelData.nGroupsLocal = getNCutoffGroups();
1031 <    parallelData.myNode = worldRank;
1032 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1033 <
1034 <    //pass mpiSimData struct and index arrays to fortran
1035 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1036 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
1037 <                    &localToGlobalCutoffGroupIndex[0], &isError);
1038 <
1039 <    if (isError) {
1040 <      sprintf(painCave.errMsg,
1041 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1042 <      painCave.isFatal = 1;
1043 <      simError();
1044 <    }
1045 <
1046 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
1047 <    errorCheckPoint();
1048 <
1049 < #endif
1050 <  }
1051 <
1052 <  void SimInfo::setupCutoff() {          
1053 <    
1054 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1055 <
1056 <    // Check the cutoff policy
1057 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1058 <
1059 <    // Set LJ shifting bools to false
1060 <    ljsp_ = false;
1061 <    ljsf_ = false;
1062 <
1063 <    std::string myPolicy;
1064 <    if (forceFieldOptions_.haveCutoffPolicy()){
1065 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
1066 <    }else if (simParams_->haveCutoffPolicy()) {
1067 <      myPolicy = simParams_->getCutoffPolicy();
1068 <    }
1069 <
1070 <    if (!myPolicy.empty()){
1071 <      toUpper(myPolicy);
1072 <      if (myPolicy == "MIX") {
1073 <        cp = MIX_CUTOFF_POLICY;
1074 <      } else {
1075 <        if (myPolicy == "MAX") {
1076 <          cp = MAX_CUTOFF_POLICY;
1077 <        } else {
1078 <          if (myPolicy == "TRADITIONAL") {            
1079 <            cp = TRADITIONAL_CUTOFF_POLICY;
1080 <          } else {
1081 <            // throw error        
1082 <            sprintf( painCave.errMsg,
1083 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1084 <            painCave.isFatal = 1;
1085 <            simError();
1086 <          }    
1087 <        }          
1027 >      for (atom = mol->beginAtom(ai); atom != NULL;
1028 >           atom = mol->nextAtom(ai)) {
1029 >        atom->setSnapshotManager(sman_);
1030 >      }        
1031 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1032 >           rb = mol->nextRigidBody(rbIter)) {
1033 >        rb->setSnapshotManager(sman_);
1034        }
1035 <    }          
1036 <    notifyFortranCutoffPolicy(&cp);
1037 <
1092 <    // Check the Skin Thickness for neighborlists
1093 <    RealType skin;
1094 <    if (simParams_->haveSkinThickness()) {
1095 <      skin = simParams_->getSkinThickness();
1096 <      notifyFortranSkinThickness(&skin);
1097 <    }            
1098 <        
1099 <    // Check if the cutoff was set explicitly:
1100 <    if (simParams_->haveCutoffRadius()) {
1101 <      rcut_ = simParams_->getCutoffRadius();
1102 <      if (simParams_->haveSwitchingRadius()) {
1103 <        rsw_  = simParams_->getSwitchingRadius();
1104 <      } else {
1105 <        if (fInfo_.SIM_uses_Charges |
1106 <            fInfo_.SIM_uses_Dipoles |
1107 <            fInfo_.SIM_uses_RF) {
1108 <          
1109 <          rsw_ = 0.85 * rcut_;
1110 <          sprintf(painCave.errMsg,
1111 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1112 <                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1113 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1114 <        painCave.isFatal = 0;
1115 <        simError();
1116 <        } else {
1117 <          rsw_ = rcut_;
1118 <          sprintf(painCave.errMsg,
1119 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1120 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1121 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1122 <          painCave.isFatal = 0;
1123 <          simError();
1124 <        }
1035 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1036 >           cg = mol->nextCutoffGroup(cgIter)) {
1037 >        cg->setSnapshotManager(sman_);
1038        }
1039 <
1040 <      if (simParams_->haveElectrostaticSummationMethod()) {
1041 <        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1129 <        toUpper(myMethod);
1130 <        
1131 <        if (myMethod == "SHIFTED_POTENTIAL") {
1132 <          ljsp_ = true;
1133 <        } else if (myMethod == "SHIFTED_FORCE") {
1134 <          ljsf_ = true;
1135 <        }
1039 >      for (bond = mol->beginBond(bondIter); bond != NULL;
1040 >           bond = mol->nextBond(bondIter)) {
1041 >        bond->setSnapshotManager(sman_);
1042        }
1043 <      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1044 <      
1045 <    } else {
1140 <      
1141 <      // For electrostatic atoms, we'll assume a large safe value:
1142 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1143 <        sprintf(painCave.errMsg,
1144 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1145 <                "\tOOPSE will use a default value of 15.0 angstroms"
1146 <                "\tfor the cutoffRadius.\n");
1147 <        painCave.isFatal = 0;
1148 <        simError();
1149 <        rcut_ = 15.0;
1150 <      
1151 <        if (simParams_->haveElectrostaticSummationMethod()) {
1152 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1153 <          toUpper(myMethod);
1154 <      
1155 <      // For the time being, we're tethering the LJ shifted behavior to the
1156 <      // electrostaticSummationMethod keyword options
1157 <          if (myMethod == "SHIFTED_POTENTIAL") {
1158 <            ljsp_ = true;
1159 <          } else if (myMethod == "SHIFTED_FORCE") {
1160 <            ljsf_ = true;
1161 <          }
1162 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1163 <            if (simParams_->haveSwitchingRadius()){
1164 <              sprintf(painCave.errMsg,
1165 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1166 <                      "\teven though the electrostaticSummationMethod was\n"
1167 <                      "\tset to %s\n", myMethod.c_str());
1168 <              painCave.isFatal = 1;
1169 <              simError();            
1170 <            }
1171 <          }
1172 <        }
1173 <      
1174 <        if (simParams_->haveSwitchingRadius()){
1175 <          rsw_ = simParams_->getSwitchingRadius();
1176 <        } else {        
1177 <          sprintf(painCave.errMsg,
1178 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1179 <                  "\tOOPSE will use a default value of\n"
1180 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1181 <          painCave.isFatal = 0;
1182 <          simError();
1183 <          rsw_ = 0.85 * rcut_;
1184 <        }
1185 <
1186 <        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1187 <
1188 <      } else {
1189 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1190 <        // We'll punt and let fortran figure out the cutoffs later.
1191 <        
1192 <        notifyFortranYouAreOnYourOwn();
1193 <
1043 >      for (bend = mol->beginBend(bendIter); bend != NULL;
1044 >           bend = mol->nextBend(bendIter)) {
1045 >        bend->setSnapshotManager(sman_);
1046        }
1047 +      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
1048 +           torsion = mol->nextTorsion(torsionIter)) {
1049 +        torsion->setSnapshotManager(sman_);
1050 +      }
1051 +      for (inversion = mol->beginInversion(inversionIter); inversion != NULL;
1052 +           inversion = mol->nextInversion(inversionIter)) {
1053 +        inversion->setSnapshotManager(sman_);
1054 +      }
1055      }
1056    }
1057  
1198  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1199    
1200    int errorOut;
1201    int esm =  NONE;
1202    int sm = UNDAMPED;
1203    RealType alphaVal;
1204    RealType dielectric;
1205    
1206    errorOut = isError;
1058  
1059 <    if (simParams_->haveElectrostaticSummationMethod()) {
1209 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1210 <      toUpper(myMethod);
1211 <      if (myMethod == "NONE") {
1212 <        esm = NONE;
1213 <      } else {
1214 <        if (myMethod == "SWITCHING_FUNCTION") {
1215 <          esm = SWITCHING_FUNCTION;
1216 <        } else {
1217 <          if (myMethod == "SHIFTED_POTENTIAL") {
1218 <            esm = SHIFTED_POTENTIAL;
1219 <          } else {
1220 <            if (myMethod == "SHIFTED_FORCE") {            
1221 <              esm = SHIFTED_FORCE;
1222 <            } else {
1223 <              if (myMethod == "REACTION_FIELD") {
1224 <                esm = REACTION_FIELD;
1225 <                dielectric = simParams_->getDielectric();
1226 <                if (!simParams_->haveDielectric()) {
1227 <                  // throw warning
1228 <                  sprintf( painCave.errMsg,
1229 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1230 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1231 <                  painCave.isFatal = 0;
1232 <                  simError();
1233 <                }
1234 <              } else {
1235 <                // throw error        
1236 <                sprintf( painCave.errMsg,
1237 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1238 <                         "\t(Input file specified %s .)\n"
1239 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1240 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1241 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1242 <                painCave.isFatal = 1;
1243 <                simError();
1244 <              }    
1245 <            }          
1246 <          }
1247 <        }
1248 <      }
1249 <    }
1250 <    
1251 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1252 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1253 <      toUpper(myScreen);
1254 <      if (myScreen == "UNDAMPED") {
1255 <        sm = UNDAMPED;
1256 <      } else {
1257 <        if (myScreen == "DAMPED") {
1258 <          sm = DAMPED;
1259 <          if (!simParams_->haveDampingAlpha()) {
1260 <            // first set a cutoff dependent alpha value
1261 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1262 <            alphaVal = 0.5125 - rcut_* 0.025;
1263 <            // for values rcut > 20.5, alpha is zero
1264 <            if (alphaVal < 0) alphaVal = 0;
1059 >  ostream& operator <<(ostream& o, SimInfo& info) {
1060  
1266            // throw warning
1267            sprintf( painCave.errMsg,
1268                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1269                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1270            painCave.isFatal = 0;
1271            simError();
1272          } else {
1273            alphaVal = simParams_->getDampingAlpha();
1274          }
1275          
1276        } else {
1277          // throw error        
1278          sprintf( painCave.errMsg,
1279                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1280                   "\t(Input file specified %s .)\n"
1281                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1282                   "or \"damped\".\n", myScreen.c_str() );
1283          painCave.isFatal = 1;
1284          simError();
1285        }
1286      }
1287    }
1288    
1289    // let's pass some summation method variables to fortran
1290    setElectrostaticSummationMethod( &esm );
1291    setFortranElectrostaticMethod( &esm );
1292    setScreeningMethod( &sm );
1293    setDampingAlpha( &alphaVal );
1294    setReactionFieldDielectric( &dielectric );
1295    initFortranFF( &errorOut );
1296  }
1297
1298  void SimInfo::setupSwitchingFunction() {    
1299    int ft = CUBIC;
1300
1301    if (simParams_->haveSwitchingFunctionType()) {
1302      std::string funcType = simParams_->getSwitchingFunctionType();
1303      toUpper(funcType);
1304      if (funcType == "CUBIC") {
1305        ft = CUBIC;
1306      } else {
1307        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1308          ft = FIFTH_ORDER_POLY;
1309        } else {
1310          // throw error        
1311          sprintf( painCave.errMsg,
1312                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1313          painCave.isFatal = 1;
1314          simError();
1315        }          
1316      }
1317    }
1318
1319    // send switching function notification to switcheroo
1320    setFunctionType(&ft);
1321
1322  }
1323
1324  void SimInfo::setupAccumulateBoxDipole() {    
1325
1326    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1327    if ( simParams_->haveAccumulateBoxDipole() )
1328      if ( simParams_->getAccumulateBoxDipole() ) {
1329        setAccumulateBoxDipole();
1330        calcBoxDipole_ = true;
1331      }
1332
1333  }
1334
1335  void SimInfo::addProperty(GenericData* genData) {
1336    properties_.addProperty(genData);  
1337  }
1338
1339  void SimInfo::removeProperty(const std::string& propName) {
1340    properties_.removeProperty(propName);  
1341  }
1342
1343  void SimInfo::clearProperties() {
1344    properties_.clearProperties();
1345  }
1346
1347  std::vector<std::string> SimInfo::getPropertyNames() {
1348    return properties_.getPropertyNames();  
1349  }
1350      
1351  std::vector<GenericData*> SimInfo::getProperties() {
1352    return properties_.getProperties();
1353  }
1354
1355  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1356    return properties_.getPropertyByName(propName);
1357  }
1358
1359  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1360    if (sman_ == sman) {
1361      return;
1362    }    
1363    delete sman_;
1364    sman_ = sman;
1365
1366    Molecule* mol;
1367    RigidBody* rb;
1368    Atom* atom;
1369    SimInfo::MoleculeIterator mi;
1370    Molecule::RigidBodyIterator rbIter;
1371    Molecule::AtomIterator atomIter;;
1372
1373    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1374        
1375      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1376        atom->setSnapshotManager(sman_);
1377      }
1378        
1379      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1380        rb->setSnapshotManager(sman_);
1381      }
1382    }    
1383    
1384  }
1385
1386  Vector3d SimInfo::getComVel(){
1387    SimInfo::MoleculeIterator i;
1388    Molecule* mol;
1389
1390    Vector3d comVel(0.0);
1391    RealType totalMass = 0.0;
1392    
1393
1394    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1395      RealType mass = mol->getMass();
1396      totalMass += mass;
1397      comVel += mass * mol->getComVel();
1398    }  
1399
1400 #ifdef IS_MPI
1401    RealType tmpMass = totalMass;
1402    Vector3d tmpComVel(comVel);    
1403    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1404    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1405 #endif
1406
1407    comVel /= totalMass;
1408
1409    return comVel;
1410  }
1411
1412  Vector3d SimInfo::getCom(){
1413    SimInfo::MoleculeIterator i;
1414    Molecule* mol;
1415
1416    Vector3d com(0.0);
1417    RealType totalMass = 0.0;
1418    
1419    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1420      RealType mass = mol->getMass();
1421      totalMass += mass;
1422      com += mass * mol->getCom();
1423    }  
1424
1425 #ifdef IS_MPI
1426    RealType tmpMass = totalMass;
1427    Vector3d tmpCom(com);    
1428    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1429    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1430 #endif
1431
1432    com /= totalMass;
1433
1434    return com;
1435
1436  }        
1437
1438  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1439
1061      return o;
1062    }
1063    
1064 <  
1444 <   /*
1445 <   Returns center of mass and center of mass velocity in one function call.
1446 <   */
1447 <  
1448 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1449 <      SimInfo::MoleculeIterator i;
1450 <      Molecule* mol;
1451 <      
1452 <    
1453 <      RealType totalMass = 0.0;
1454 <    
1455 <
1456 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1457 <         RealType mass = mol->getMass();
1458 <         totalMass += mass;
1459 <         com += mass * mol->getCom();
1460 <         comVel += mass * mol->getComVel();          
1461 <      }  
1462 <      
1463 < #ifdef IS_MPI
1464 <      RealType tmpMass = totalMass;
1465 <      Vector3d tmpCom(com);  
1466 <      Vector3d tmpComVel(comVel);
1467 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1468 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1469 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1470 < #endif
1471 <      
1472 <      com /= totalMass;
1473 <      comVel /= totalMass;
1474 <   }        
1475 <  
1476 <   /*
1477 <   Return intertia tensor for entire system and angular momentum Vector.
1478 <
1479 <
1480 <       [  Ixx -Ixy  -Ixz ]
1481 <  J =| -Iyx  Iyy  -Iyz |
1482 <       [ -Izx -Iyz   Izz ]
1483 <    */
1484 <
1485 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1486 <      
1487 <
1488 <      RealType xx = 0.0;
1489 <      RealType yy = 0.0;
1490 <      RealType zz = 0.0;
1491 <      RealType xy = 0.0;
1492 <      RealType xz = 0.0;
1493 <      RealType yz = 0.0;
1494 <      Vector3d com(0.0);
1495 <      Vector3d comVel(0.0);
1496 <      
1497 <      getComAll(com, comVel);
1498 <      
1499 <      SimInfo::MoleculeIterator i;
1500 <      Molecule* mol;
1501 <      
1502 <      Vector3d thisq(0.0);
1503 <      Vector3d thisv(0.0);
1504 <
1505 <      RealType thisMass = 0.0;
1506 <    
1507 <      
1508 <      
1509 <  
1510 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1511 <        
1512 <         thisq = mol->getCom()-com;
1513 <         thisv = mol->getComVel()-comVel;
1514 <         thisMass = mol->getMass();
1515 <         // Compute moment of intertia coefficients.
1516 <         xx += thisq[0]*thisq[0]*thisMass;
1517 <         yy += thisq[1]*thisq[1]*thisMass;
1518 <         zz += thisq[2]*thisq[2]*thisMass;
1519 <        
1520 <         // compute products of intertia
1521 <         xy += thisq[0]*thisq[1]*thisMass;
1522 <         xz += thisq[0]*thisq[2]*thisMass;
1523 <         yz += thisq[1]*thisq[2]*thisMass;
1524 <            
1525 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1526 <            
1527 <      }  
1528 <      
1529 <      
1530 <      inertiaTensor(0,0) = yy + zz;
1531 <      inertiaTensor(0,1) = -xy;
1532 <      inertiaTensor(0,2) = -xz;
1533 <      inertiaTensor(1,0) = -xy;
1534 <      inertiaTensor(1,1) = xx + zz;
1535 <      inertiaTensor(1,2) = -yz;
1536 <      inertiaTensor(2,0) = -xz;
1537 <      inertiaTensor(2,1) = -yz;
1538 <      inertiaTensor(2,2) = xx + yy;
1539 <      
1540 < #ifdef IS_MPI
1541 <      Mat3x3d tmpI(inertiaTensor);
1542 <      Vector3d tmpAngMom;
1543 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1544 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1545 < #endif
1546 <              
1547 <      return;
1548 <   }
1549 <
1550 <   //Returns the angular momentum of the system
1551 <   Vector3d SimInfo::getAngularMomentum(){
1552 <      
1553 <      Vector3d com(0.0);
1554 <      Vector3d comVel(0.0);
1555 <      Vector3d angularMomentum(0.0);
1556 <      
1557 <      getComAll(com,comVel);
1558 <      
1559 <      SimInfo::MoleculeIterator i;
1560 <      Molecule* mol;
1561 <      
1562 <      Vector3d thisr(0.0);
1563 <      Vector3d thisp(0.0);
1564 <      
1565 <      RealType thisMass;
1566 <      
1567 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1568 <        thisMass = mol->getMass();
1569 <        thisr = mol->getCom()-com;
1570 <        thisp = (mol->getComVel()-comVel)*thisMass;
1571 <        
1572 <        angularMomentum += cross( thisr, thisp );
1573 <        
1574 <      }  
1575 <      
1576 < #ifdef IS_MPI
1577 <      Vector3d tmpAngMom;
1578 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1579 < #endif
1580 <      
1581 <      return angularMomentum;
1582 <   }
1583 <  
1064 >  
1065    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1066 <    return IOIndexToIntegrableObject.at(index);
1066 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1067 >      sprintf(painCave.errMsg,
1068 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1069 >              "\tindex exceeds number of known objects!\n");
1070 >      painCave.isFatal = 1;
1071 >      simError();
1072 >      return NULL;
1073 >    } else
1074 >      return IOIndexToIntegrableObject.at(index);
1075    }
1076    
1077 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1077 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1078      IOIndexToIntegrableObject= v;
1079    }
1080  
1081 <  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1082 <     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1083 <     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1084 <     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1085 <  */
1086 <  void SimInfo::getGyrationalVolume(RealType &volume){
1087 <    Mat3x3d intTensor;
1599 <    RealType det;
1600 <    Vector3d dummyAngMom;
1601 <    RealType sysconstants;
1602 <    RealType geomCnst;
1603 <
1604 <    geomCnst = 3.0/2.0;
1605 <    /* Get the inertial tensor and angular momentum for free*/
1606 <    getInertiaTensor(intTensor,dummyAngMom);
1607 <    
1608 <    det = intTensor.determinant();
1609 <    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1610 <    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1611 <    return;
1081 >  void SimInfo::calcNConstraints() {
1082 > #ifdef IS_MPI
1083 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints_, 1,  
1084 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
1085 > #else
1086 >    nGlobalConstraints_ =  nConstraints_;
1087 > #endif
1088    }
1089  
1090 <  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1615 <    Mat3x3d intTensor;
1616 <    Vector3d dummyAngMom;
1617 <    RealType sysconstants;
1618 <    RealType geomCnst;
1090 > }//end namespace OpenMD
1091  
1620    geomCnst = 3.0/2.0;
1621    /* Get the inertial tensor and angular momentum for free*/
1622    getInertiaTensor(intTensor,dummyAngMom);
1623    
1624    detI = intTensor.determinant();
1625    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1626    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1627    return;
1628  }
1629 /*
1630   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1631      assert( v.size() == nAtoms_ + nRigidBodies_);
1632      sdByGlobalIndex_ = v;
1633    }
1634
1635    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1636      //assert(index < nAtoms_ + nRigidBodies_);
1637      return sdByGlobalIndex_.at(index);
1638    }  
1639 */  
1640 }//end namespace oopse
1641

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 1290 by cli2, Wed Sep 10 19:51:45 2008 UTC vs.
Revision 2071 by gezelter, Sat Mar 7 21:41:51 2015 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines