1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file SimInfo.cpp |
45 |
* @author tlin |
46 |
* @date 11/02/2004 |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#ifdef IS_MPI |
51 |
#include <mpi.h> |
52 |
#endif |
53 |
#include <algorithm> |
54 |
#include <set> |
55 |
#include <map> |
56 |
|
57 |
#include "brains/SimInfo.hpp" |
58 |
#include "math/Vector3.hpp" |
59 |
#include "primitives/Molecule.hpp" |
60 |
#include "primitives/StuntDouble.hpp" |
61 |
#include "utils/MemoryUtils.hpp" |
62 |
#include "utils/simError.h" |
63 |
#include "selection/SelectionManager.hpp" |
64 |
#include "io/ForceFieldOptions.hpp" |
65 |
#include "brains/ForceField.hpp" |
66 |
#include "nonbonded/SwitchingFunction.hpp" |
67 |
|
68 |
using namespace std; |
69 |
namespace OpenMD { |
70 |
|
71 |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
72 |
forceField_(ff), simParams_(simParams), |
73 |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
74 |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
75 |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
76 |
nGlobalFluctuatingCharges_(0), nGlobalBonds_(0), nGlobalBends_(0), |
77 |
nGlobalTorsions_(0), nGlobalInversions_(0), nAtoms_(0), nBonds_(0), |
78 |
nBends_(0), nTorsions_(0), nInversions_(0), nRigidBodies_(0), |
79 |
nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
80 |
nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
81 |
calcBoxDipole_(false), useAtomicVirial_(true) { |
82 |
|
83 |
MoleculeStamp* molStamp; |
84 |
int nMolWithSameStamp; |
85 |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
86 |
int nGroups = 0; //total cutoff groups defined in meta-data file |
87 |
CutoffGroupStamp* cgStamp; |
88 |
RigidBodyStamp* rbStamp; |
89 |
int nRigidAtoms = 0; |
90 |
|
91 |
vector<Component*> components = simParams->getComponents(); |
92 |
|
93 |
for (vector<Component*>::iterator i = components.begin(); |
94 |
i !=components.end(); ++i) { |
95 |
molStamp = (*i)->getMoleculeStamp(); |
96 |
if ( (*i)->haveRegion() ) { |
97 |
molStamp->setRegion( (*i)->getRegion() ); |
98 |
} else { |
99 |
// set the region to a disallowed value: |
100 |
molStamp->setRegion( -1 ); |
101 |
} |
102 |
|
103 |
nMolWithSameStamp = (*i)->getNMol(); |
104 |
|
105 |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
106 |
|
107 |
//calculate atoms in molecules |
108 |
nGlobalAtoms_ += molStamp->getNAtoms() * nMolWithSameStamp; |
109 |
nGlobalBonds_ += molStamp->getNBonds() * nMolWithSameStamp; |
110 |
nGlobalBends_ += molStamp->getNBends() * nMolWithSameStamp; |
111 |
nGlobalTorsions_ += molStamp->getNTorsions() * nMolWithSameStamp; |
112 |
nGlobalInversions_ += molStamp->getNInversions() * nMolWithSameStamp; |
113 |
|
114 |
//calculate atoms in cutoff groups |
115 |
int nAtomsInGroups = 0; |
116 |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
117 |
|
118 |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
119 |
cgStamp = molStamp->getCutoffGroupStamp(j); |
120 |
nAtomsInGroups += cgStamp->getNMembers(); |
121 |
} |
122 |
|
123 |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
124 |
|
125 |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
126 |
|
127 |
//calculate atoms in rigid bodies |
128 |
int nAtomsInRigidBodies = 0; |
129 |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
130 |
|
131 |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
132 |
rbStamp = molStamp->getRigidBodyStamp(j); |
133 |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
134 |
} |
135 |
|
136 |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
137 |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
138 |
|
139 |
} |
140 |
|
141 |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
142 |
//group therefore the total number of cutoff groups in the system is |
143 |
//equal to the total number of atoms minus number of atoms belong to |
144 |
//cutoff group defined in meta-data file plus the number of cutoff |
145 |
//groups defined in meta-data file |
146 |
|
147 |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
148 |
|
149 |
//every free atom (atom does not belong to rigid bodies) is an |
150 |
//integrable object therefore the total number of integrable objects |
151 |
//in the system is equal to the total number of atoms minus number of |
152 |
//atoms belong to rigid body defined in meta-data file plus the number |
153 |
//of rigid bodies defined in meta-data file |
154 |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
155 |
+ nGlobalRigidBodies_; |
156 |
|
157 |
nGlobalMols_ = molStampIds_.size(); |
158 |
molToProcMap_.resize(nGlobalMols_); |
159 |
} |
160 |
|
161 |
SimInfo::~SimInfo() { |
162 |
map<int, Molecule*>::iterator i; |
163 |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
164 |
delete i->second; |
165 |
} |
166 |
molecules_.clear(); |
167 |
|
168 |
delete sman_; |
169 |
delete simParams_; |
170 |
delete forceField_; |
171 |
} |
172 |
|
173 |
|
174 |
bool SimInfo::addMolecule(Molecule* mol) { |
175 |
MoleculeIterator i; |
176 |
|
177 |
i = molecules_.find(mol->getGlobalIndex()); |
178 |
if (i == molecules_.end() ) { |
179 |
|
180 |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
181 |
|
182 |
nAtoms_ += mol->getNAtoms(); |
183 |
nBonds_ += mol->getNBonds(); |
184 |
nBends_ += mol->getNBends(); |
185 |
nTorsions_ += mol->getNTorsions(); |
186 |
nInversions_ += mol->getNInversions(); |
187 |
nRigidBodies_ += mol->getNRigidBodies(); |
188 |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
189 |
nCutoffGroups_ += mol->getNCutoffGroups(); |
190 |
nConstraints_ += mol->getNConstraintPairs(); |
191 |
|
192 |
addInteractionPairs(mol); |
193 |
|
194 |
return true; |
195 |
} else { |
196 |
return false; |
197 |
} |
198 |
} |
199 |
|
200 |
bool SimInfo::removeMolecule(Molecule* mol) { |
201 |
MoleculeIterator i; |
202 |
i = molecules_.find(mol->getGlobalIndex()); |
203 |
|
204 |
if (i != molecules_.end() ) { |
205 |
|
206 |
assert(mol == i->second); |
207 |
|
208 |
nAtoms_ -= mol->getNAtoms(); |
209 |
nBonds_ -= mol->getNBonds(); |
210 |
nBends_ -= mol->getNBends(); |
211 |
nTorsions_ -= mol->getNTorsions(); |
212 |
nInversions_ -= mol->getNInversions(); |
213 |
nRigidBodies_ -= mol->getNRigidBodies(); |
214 |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
215 |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
216 |
nConstraints_ -= mol->getNConstraintPairs(); |
217 |
|
218 |
removeInteractionPairs(mol); |
219 |
molecules_.erase(mol->getGlobalIndex()); |
220 |
|
221 |
delete mol; |
222 |
|
223 |
return true; |
224 |
} else { |
225 |
return false; |
226 |
} |
227 |
} |
228 |
|
229 |
|
230 |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
231 |
i = molecules_.begin(); |
232 |
return i == molecules_.end() ? NULL : i->second; |
233 |
} |
234 |
|
235 |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
236 |
++i; |
237 |
return i == molecules_.end() ? NULL : i->second; |
238 |
} |
239 |
|
240 |
|
241 |
void SimInfo::calcNdf() { |
242 |
int ndf_local, nfq_local; |
243 |
MoleculeIterator i; |
244 |
vector<StuntDouble*>::iterator j; |
245 |
vector<Atom*>::iterator k; |
246 |
|
247 |
Molecule* mol; |
248 |
StuntDouble* sd; |
249 |
Atom* atom; |
250 |
|
251 |
ndf_local = 0; |
252 |
nfq_local = 0; |
253 |
|
254 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
255 |
|
256 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
257 |
sd = mol->nextIntegrableObject(j)) { |
258 |
|
259 |
ndf_local += 3; |
260 |
|
261 |
if (sd->isDirectional()) { |
262 |
if (sd->isLinear()) { |
263 |
ndf_local += 2; |
264 |
} else { |
265 |
ndf_local += 3; |
266 |
} |
267 |
} |
268 |
} |
269 |
|
270 |
for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
271 |
atom = mol->nextFluctuatingCharge(k)) { |
272 |
if (atom->isFluctuatingCharge()) { |
273 |
nfq_local++; |
274 |
} |
275 |
} |
276 |
} |
277 |
|
278 |
ndfLocal_ = ndf_local; |
279 |
|
280 |
// n_constraints is local, so subtract them on each processor |
281 |
ndf_local -= nConstraints_; |
282 |
|
283 |
#ifdef IS_MPI |
284 |
MPI_Allreduce(&ndf_local, &ndf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
285 |
MPI_Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1, |
286 |
MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
287 |
// MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM); |
288 |
// MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1, |
289 |
// MPI::INT, MPI::SUM); |
290 |
#else |
291 |
ndf_ = ndf_local; |
292 |
nGlobalFluctuatingCharges_ = nfq_local; |
293 |
#endif |
294 |
|
295 |
// nZconstraints_ is global, as are the 3 COM translations for the |
296 |
// entire system: |
297 |
ndf_ = ndf_ - 3 - nZconstraint_; |
298 |
|
299 |
} |
300 |
|
301 |
int SimInfo::getFdf() { |
302 |
#ifdef IS_MPI |
303 |
MPI_Allreduce(&fdf_local, &fdf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
304 |
// MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM); |
305 |
#else |
306 |
fdf_ = fdf_local; |
307 |
#endif |
308 |
return fdf_; |
309 |
} |
310 |
|
311 |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
312 |
int nLocalCutoffAtoms = 0; |
313 |
Molecule* mol; |
314 |
MoleculeIterator mi; |
315 |
CutoffGroup* cg; |
316 |
Molecule::CutoffGroupIterator ci; |
317 |
|
318 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
319 |
|
320 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
321 |
cg = mol->nextCutoffGroup(ci)) { |
322 |
nLocalCutoffAtoms += cg->getNumAtom(); |
323 |
|
324 |
} |
325 |
} |
326 |
|
327 |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
328 |
} |
329 |
|
330 |
void SimInfo::calcNdfRaw() { |
331 |
int ndfRaw_local; |
332 |
|
333 |
MoleculeIterator i; |
334 |
vector<StuntDouble*>::iterator j; |
335 |
Molecule* mol; |
336 |
StuntDouble* sd; |
337 |
|
338 |
// Raw degrees of freedom that we have to set |
339 |
ndfRaw_local = 0; |
340 |
|
341 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
342 |
|
343 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
344 |
sd = mol->nextIntegrableObject(j)) { |
345 |
|
346 |
ndfRaw_local += 3; |
347 |
|
348 |
if (sd->isDirectional()) { |
349 |
if (sd->isLinear()) { |
350 |
ndfRaw_local += 2; |
351 |
} else { |
352 |
ndfRaw_local += 3; |
353 |
} |
354 |
} |
355 |
|
356 |
} |
357 |
} |
358 |
|
359 |
#ifdef IS_MPI |
360 |
MPI_Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
361 |
// MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM); |
362 |
#else |
363 |
ndfRaw_ = ndfRaw_local; |
364 |
#endif |
365 |
} |
366 |
|
367 |
void SimInfo::calcNdfTrans() { |
368 |
int ndfTrans_local; |
369 |
|
370 |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
371 |
|
372 |
|
373 |
#ifdef IS_MPI |
374 |
MPI_Allreduce(&ndfTrans_local, &ndfTrans_, 1, |
375 |
MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
376 |
// MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1, |
377 |
// MPI::INT, MPI::SUM); |
378 |
#else |
379 |
ndfTrans_ = ndfTrans_local; |
380 |
#endif |
381 |
|
382 |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
383 |
|
384 |
} |
385 |
|
386 |
void SimInfo::addInteractionPairs(Molecule* mol) { |
387 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
388 |
vector<Bond*>::iterator bondIter; |
389 |
vector<Bend*>::iterator bendIter; |
390 |
vector<Torsion*>::iterator torsionIter; |
391 |
vector<Inversion*>::iterator inversionIter; |
392 |
Bond* bond; |
393 |
Bend* bend; |
394 |
Torsion* torsion; |
395 |
Inversion* inversion; |
396 |
int a; |
397 |
int b; |
398 |
int c; |
399 |
int d; |
400 |
|
401 |
// atomGroups can be used to add special interaction maps between |
402 |
// groups of atoms that are in two separate rigid bodies. |
403 |
// However, most site-site interactions between two rigid bodies |
404 |
// are probably not special, just the ones between the physically |
405 |
// bonded atoms. Interactions *within* a single rigid body should |
406 |
// always be excluded. These are done at the bottom of this |
407 |
// function. |
408 |
|
409 |
map<int, set<int> > atomGroups; |
410 |
Molecule::RigidBodyIterator rbIter; |
411 |
RigidBody* rb; |
412 |
Molecule::IntegrableObjectIterator ii; |
413 |
StuntDouble* sd; |
414 |
|
415 |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
416 |
sd = mol->nextIntegrableObject(ii)) { |
417 |
|
418 |
if (sd->isRigidBody()) { |
419 |
rb = static_cast<RigidBody*>(sd); |
420 |
vector<Atom*> atoms = rb->getAtoms(); |
421 |
set<int> rigidAtoms; |
422 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
423 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
424 |
} |
425 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
426 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
427 |
} |
428 |
} else { |
429 |
set<int> oneAtomSet; |
430 |
oneAtomSet.insert(sd->getGlobalIndex()); |
431 |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
432 |
} |
433 |
} |
434 |
|
435 |
|
436 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
437 |
bond = mol->nextBond(bondIter)) { |
438 |
|
439 |
a = bond->getAtomA()->getGlobalIndex(); |
440 |
b = bond->getAtomB()->getGlobalIndex(); |
441 |
|
442 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
443 |
oneTwoInteractions_.addPair(a, b); |
444 |
} else { |
445 |
excludedInteractions_.addPair(a, b); |
446 |
} |
447 |
} |
448 |
|
449 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
450 |
bend = mol->nextBend(bendIter)) { |
451 |
|
452 |
a = bend->getAtomA()->getGlobalIndex(); |
453 |
b = bend->getAtomB()->getGlobalIndex(); |
454 |
c = bend->getAtomC()->getGlobalIndex(); |
455 |
|
456 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
457 |
oneTwoInteractions_.addPair(a, b); |
458 |
oneTwoInteractions_.addPair(b, c); |
459 |
} else { |
460 |
excludedInteractions_.addPair(a, b); |
461 |
excludedInteractions_.addPair(b, c); |
462 |
} |
463 |
|
464 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
465 |
oneThreeInteractions_.addPair(a, c); |
466 |
} else { |
467 |
excludedInteractions_.addPair(a, c); |
468 |
} |
469 |
} |
470 |
|
471 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
472 |
torsion = mol->nextTorsion(torsionIter)) { |
473 |
|
474 |
a = torsion->getAtomA()->getGlobalIndex(); |
475 |
b = torsion->getAtomB()->getGlobalIndex(); |
476 |
c = torsion->getAtomC()->getGlobalIndex(); |
477 |
d = torsion->getAtomD()->getGlobalIndex(); |
478 |
|
479 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
480 |
oneTwoInteractions_.addPair(a, b); |
481 |
oneTwoInteractions_.addPair(b, c); |
482 |
oneTwoInteractions_.addPair(c, d); |
483 |
} else { |
484 |
excludedInteractions_.addPair(a, b); |
485 |
excludedInteractions_.addPair(b, c); |
486 |
excludedInteractions_.addPair(c, d); |
487 |
} |
488 |
|
489 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
490 |
oneThreeInteractions_.addPair(a, c); |
491 |
oneThreeInteractions_.addPair(b, d); |
492 |
} else { |
493 |
excludedInteractions_.addPair(a, c); |
494 |
excludedInteractions_.addPair(b, d); |
495 |
} |
496 |
|
497 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
498 |
oneFourInteractions_.addPair(a, d); |
499 |
} else { |
500 |
excludedInteractions_.addPair(a, d); |
501 |
} |
502 |
} |
503 |
|
504 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
505 |
inversion = mol->nextInversion(inversionIter)) { |
506 |
|
507 |
a = inversion->getAtomA()->getGlobalIndex(); |
508 |
b = inversion->getAtomB()->getGlobalIndex(); |
509 |
c = inversion->getAtomC()->getGlobalIndex(); |
510 |
d = inversion->getAtomD()->getGlobalIndex(); |
511 |
|
512 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
513 |
oneTwoInteractions_.addPair(a, b); |
514 |
oneTwoInteractions_.addPair(a, c); |
515 |
oneTwoInteractions_.addPair(a, d); |
516 |
} else { |
517 |
excludedInteractions_.addPair(a, b); |
518 |
excludedInteractions_.addPair(a, c); |
519 |
excludedInteractions_.addPair(a, d); |
520 |
} |
521 |
|
522 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
523 |
oneThreeInteractions_.addPair(b, c); |
524 |
oneThreeInteractions_.addPair(b, d); |
525 |
oneThreeInteractions_.addPair(c, d); |
526 |
} else { |
527 |
excludedInteractions_.addPair(b, c); |
528 |
excludedInteractions_.addPair(b, d); |
529 |
excludedInteractions_.addPair(c, d); |
530 |
} |
531 |
} |
532 |
|
533 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
534 |
rb = mol->nextRigidBody(rbIter)) { |
535 |
vector<Atom*> atoms = rb->getAtoms(); |
536 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
537 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
538 |
a = atoms[i]->getGlobalIndex(); |
539 |
b = atoms[j]->getGlobalIndex(); |
540 |
excludedInteractions_.addPair(a, b); |
541 |
} |
542 |
} |
543 |
} |
544 |
|
545 |
} |
546 |
|
547 |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
548 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
549 |
vector<Bond*>::iterator bondIter; |
550 |
vector<Bend*>::iterator bendIter; |
551 |
vector<Torsion*>::iterator torsionIter; |
552 |
vector<Inversion*>::iterator inversionIter; |
553 |
Bond* bond; |
554 |
Bend* bend; |
555 |
Torsion* torsion; |
556 |
Inversion* inversion; |
557 |
int a; |
558 |
int b; |
559 |
int c; |
560 |
int d; |
561 |
|
562 |
map<int, set<int> > atomGroups; |
563 |
Molecule::RigidBodyIterator rbIter; |
564 |
RigidBody* rb; |
565 |
Molecule::IntegrableObjectIterator ii; |
566 |
StuntDouble* sd; |
567 |
|
568 |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
569 |
sd = mol->nextIntegrableObject(ii)) { |
570 |
|
571 |
if (sd->isRigidBody()) { |
572 |
rb = static_cast<RigidBody*>(sd); |
573 |
vector<Atom*> atoms = rb->getAtoms(); |
574 |
set<int> rigidAtoms; |
575 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
576 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
577 |
} |
578 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
579 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
580 |
} |
581 |
} else { |
582 |
set<int> oneAtomSet; |
583 |
oneAtomSet.insert(sd->getGlobalIndex()); |
584 |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
585 |
} |
586 |
} |
587 |
|
588 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
589 |
bond = mol->nextBond(bondIter)) { |
590 |
|
591 |
a = bond->getAtomA()->getGlobalIndex(); |
592 |
b = bond->getAtomB()->getGlobalIndex(); |
593 |
|
594 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
595 |
oneTwoInteractions_.removePair(a, b); |
596 |
} else { |
597 |
excludedInteractions_.removePair(a, b); |
598 |
} |
599 |
} |
600 |
|
601 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
602 |
bend = mol->nextBend(bendIter)) { |
603 |
|
604 |
a = bend->getAtomA()->getGlobalIndex(); |
605 |
b = bend->getAtomB()->getGlobalIndex(); |
606 |
c = bend->getAtomC()->getGlobalIndex(); |
607 |
|
608 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
609 |
oneTwoInteractions_.removePair(a, b); |
610 |
oneTwoInteractions_.removePair(b, c); |
611 |
} else { |
612 |
excludedInteractions_.removePair(a, b); |
613 |
excludedInteractions_.removePair(b, c); |
614 |
} |
615 |
|
616 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
617 |
oneThreeInteractions_.removePair(a, c); |
618 |
} else { |
619 |
excludedInteractions_.removePair(a, c); |
620 |
} |
621 |
} |
622 |
|
623 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
624 |
torsion = mol->nextTorsion(torsionIter)) { |
625 |
|
626 |
a = torsion->getAtomA()->getGlobalIndex(); |
627 |
b = torsion->getAtomB()->getGlobalIndex(); |
628 |
c = torsion->getAtomC()->getGlobalIndex(); |
629 |
d = torsion->getAtomD()->getGlobalIndex(); |
630 |
|
631 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
632 |
oneTwoInteractions_.removePair(a, b); |
633 |
oneTwoInteractions_.removePair(b, c); |
634 |
oneTwoInteractions_.removePair(c, d); |
635 |
} else { |
636 |
excludedInteractions_.removePair(a, b); |
637 |
excludedInteractions_.removePair(b, c); |
638 |
excludedInteractions_.removePair(c, d); |
639 |
} |
640 |
|
641 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
642 |
oneThreeInteractions_.removePair(a, c); |
643 |
oneThreeInteractions_.removePair(b, d); |
644 |
} else { |
645 |
excludedInteractions_.removePair(a, c); |
646 |
excludedInteractions_.removePair(b, d); |
647 |
} |
648 |
|
649 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
650 |
oneFourInteractions_.removePair(a, d); |
651 |
} else { |
652 |
excludedInteractions_.removePair(a, d); |
653 |
} |
654 |
} |
655 |
|
656 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
657 |
inversion = mol->nextInversion(inversionIter)) { |
658 |
|
659 |
a = inversion->getAtomA()->getGlobalIndex(); |
660 |
b = inversion->getAtomB()->getGlobalIndex(); |
661 |
c = inversion->getAtomC()->getGlobalIndex(); |
662 |
d = inversion->getAtomD()->getGlobalIndex(); |
663 |
|
664 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
665 |
oneTwoInteractions_.removePair(a, b); |
666 |
oneTwoInteractions_.removePair(a, c); |
667 |
oneTwoInteractions_.removePair(a, d); |
668 |
} else { |
669 |
excludedInteractions_.removePair(a, b); |
670 |
excludedInteractions_.removePair(a, c); |
671 |
excludedInteractions_.removePair(a, d); |
672 |
} |
673 |
|
674 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
675 |
oneThreeInteractions_.removePair(b, c); |
676 |
oneThreeInteractions_.removePair(b, d); |
677 |
oneThreeInteractions_.removePair(c, d); |
678 |
} else { |
679 |
excludedInteractions_.removePair(b, c); |
680 |
excludedInteractions_.removePair(b, d); |
681 |
excludedInteractions_.removePair(c, d); |
682 |
} |
683 |
} |
684 |
|
685 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
686 |
rb = mol->nextRigidBody(rbIter)) { |
687 |
vector<Atom*> atoms = rb->getAtoms(); |
688 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
689 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
690 |
a = atoms[i]->getGlobalIndex(); |
691 |
b = atoms[j]->getGlobalIndex(); |
692 |
excludedInteractions_.removePair(a, b); |
693 |
} |
694 |
} |
695 |
} |
696 |
|
697 |
} |
698 |
|
699 |
|
700 |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
701 |
int curStampId; |
702 |
|
703 |
//index from 0 |
704 |
curStampId = moleculeStamps_.size(); |
705 |
|
706 |
moleculeStamps_.push_back(molStamp); |
707 |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
708 |
} |
709 |
|
710 |
|
711 |
/** |
712 |
* update |
713 |
* |
714 |
* Performs the global checks and variable settings after the |
715 |
* objects have been created. |
716 |
* |
717 |
*/ |
718 |
void SimInfo::update() { |
719 |
setupSimVariables(); |
720 |
calcNdf(); |
721 |
calcNdfRaw(); |
722 |
calcNdfTrans(); |
723 |
} |
724 |
|
725 |
/** |
726 |
* getSimulatedAtomTypes |
727 |
* |
728 |
* Returns an STL set of AtomType* that are actually present in this |
729 |
* simulation. Must query all processors to assemble this information. |
730 |
* |
731 |
*/ |
732 |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
733 |
SimInfo::MoleculeIterator mi; |
734 |
Molecule* mol; |
735 |
Molecule::AtomIterator ai; |
736 |
Atom* atom; |
737 |
set<AtomType*> atomTypes; |
738 |
|
739 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
740 |
for(atom = mol->beginAtom(ai); atom != NULL; |
741 |
atom = mol->nextAtom(ai)) { |
742 |
atomTypes.insert(atom->getAtomType()); |
743 |
} |
744 |
} |
745 |
|
746 |
#ifdef IS_MPI |
747 |
|
748 |
// loop over the found atom types on this processor, and add their |
749 |
// numerical idents to a vector: |
750 |
|
751 |
vector<int> foundTypes; |
752 |
set<AtomType*>::iterator i; |
753 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
754 |
foundTypes.push_back( (*i)->getIdent() ); |
755 |
|
756 |
// count_local holds the number of found types on this processor |
757 |
int count_local = foundTypes.size(); |
758 |
|
759 |
int nproc; |
760 |
MPI_Comm_size( MPI_COMM_WORLD, &nproc); |
761 |
// int nproc = MPI::COMM_WORLD.Get_size(); |
762 |
|
763 |
// we need arrays to hold the counts and displacement vectors for |
764 |
// all processors |
765 |
vector<int> counts(nproc, 0); |
766 |
vector<int> disps(nproc, 0); |
767 |
|
768 |
// fill the counts array |
769 |
MPI_Allgather(&count_local, 1, MPI_INT, &counts[0], |
770 |
1, MPI_INT, MPI_COMM_WORLD); |
771 |
// MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
772 |
// 1, MPI::INT); |
773 |
|
774 |
// use the processor counts to compute the displacement array |
775 |
disps[0] = 0; |
776 |
int totalCount = counts[0]; |
777 |
for (int iproc = 1; iproc < nproc; iproc++) { |
778 |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
779 |
totalCount += counts[iproc]; |
780 |
} |
781 |
|
782 |
// we need a (possibly redundant) set of all found types: |
783 |
vector<int> ftGlobal(totalCount); |
784 |
|
785 |
// now spray out the foundTypes to all the other processors: |
786 |
MPI_Allgatherv(&foundTypes[0], count_local, MPI_INT, |
787 |
&ftGlobal[0], &counts[0], &disps[0], |
788 |
MPI_INT, MPI_COMM_WORLD); |
789 |
// MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
790 |
// &ftGlobal[0], &counts[0], &disps[0], |
791 |
// MPI::INT); |
792 |
|
793 |
vector<int>::iterator j; |
794 |
|
795 |
// foundIdents is a stl set, so inserting an already found ident |
796 |
// will have no effect. |
797 |
set<int> foundIdents; |
798 |
|
799 |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
800 |
foundIdents.insert((*j)); |
801 |
|
802 |
// now iterate over the foundIdents and get the actual atom types |
803 |
// that correspond to these: |
804 |
set<int>::iterator it; |
805 |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
806 |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
807 |
|
808 |
#endif |
809 |
|
810 |
return atomTypes; |
811 |
} |
812 |
|
813 |
|
814 |
int getGlobalCountOfType(AtomType* atype) { |
815 |
/* |
816 |
set<AtomType*> atypes = getSimulatedAtomTypes(); |
817 |
map<AtomType*, int> counts_; |
818 |
|
819 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
820 |
for(atom = mol->beginAtom(ai); atom != NULL; |
821 |
atom = mol->nextAtom(ai)) { |
822 |
atom->getAtomType(); |
823 |
} |
824 |
} |
825 |
*/ |
826 |
return 0; |
827 |
} |
828 |
|
829 |
void SimInfo::setupSimVariables() { |
830 |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
831 |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole |
832 |
// parameter is true |
833 |
calcBoxDipole_ = false; |
834 |
if ( simParams_->haveAccumulateBoxDipole() ) |
835 |
if ( simParams_->getAccumulateBoxDipole() ) { |
836 |
calcBoxDipole_ = true; |
837 |
} |
838 |
|
839 |
set<AtomType*>::iterator i; |
840 |
set<AtomType*> atomTypes; |
841 |
atomTypes = getSimulatedAtomTypes(); |
842 |
bool usesElectrostatic = false; |
843 |
bool usesMetallic = false; |
844 |
bool usesDirectional = false; |
845 |
bool usesFluctuatingCharges = false; |
846 |
//loop over all of the atom types |
847 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
848 |
usesElectrostatic |= (*i)->isElectrostatic(); |
849 |
usesMetallic |= (*i)->isMetal(); |
850 |
usesDirectional |= (*i)->isDirectional(); |
851 |
usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
852 |
} |
853 |
|
854 |
#ifdef IS_MPI |
855 |
int temp; |
856 |
|
857 |
temp = usesDirectional; |
858 |
MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
859 |
usesDirectionalAtoms_ = (temp == 0) ? false : true; |
860 |
|
861 |
// MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL, |
862 |
// MPI::LOR); |
863 |
|
864 |
temp = usesMetallic; |
865 |
MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
866 |
usesMetallicAtoms_ = (temp == 0) ? false : true; |
867 |
|
868 |
// MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL, |
869 |
// MPI::LOR); |
870 |
|
871 |
temp = usesElectrostatic; |
872 |
MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
873 |
usesElectrostaticAtoms_ = (temp == 0) ? false : true; |
874 |
|
875 |
// MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL, |
876 |
// MPI::LOR); |
877 |
|
878 |
temp = usesFluctuatingCharges; |
879 |
MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
880 |
usesFluctuatingCharges_ = (temp == 0) ? false : true; |
881 |
|
882 |
// MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL, |
883 |
// MPI::LOR); |
884 |
|
885 |
#else |
886 |
|
887 |
usesDirectionalAtoms_ = usesDirectional; |
888 |
usesMetallicAtoms_ = usesMetallic; |
889 |
usesElectrostaticAtoms_ = usesElectrostatic; |
890 |
usesFluctuatingCharges_ = usesFluctuatingCharges; |
891 |
|
892 |
#endif |
893 |
|
894 |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
895 |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
896 |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
897 |
} |
898 |
|
899 |
|
900 |
vector<int> SimInfo::getGlobalAtomIndices() { |
901 |
SimInfo::MoleculeIterator mi; |
902 |
Molecule* mol; |
903 |
Molecule::AtomIterator ai; |
904 |
Atom* atom; |
905 |
|
906 |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
907 |
|
908 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
909 |
|
910 |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
911 |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
912 |
} |
913 |
} |
914 |
return GlobalAtomIndices; |
915 |
} |
916 |
|
917 |
|
918 |
vector<int> SimInfo::getGlobalGroupIndices() { |
919 |
SimInfo::MoleculeIterator mi; |
920 |
Molecule* mol; |
921 |
Molecule::CutoffGroupIterator ci; |
922 |
CutoffGroup* cg; |
923 |
|
924 |
vector<int> GlobalGroupIndices; |
925 |
|
926 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
927 |
|
928 |
//local index of cutoff group is trivial, it only depends on the |
929 |
//order of travesing |
930 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
931 |
cg = mol->nextCutoffGroup(ci)) { |
932 |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
933 |
} |
934 |
} |
935 |
return GlobalGroupIndices; |
936 |
} |
937 |
|
938 |
|
939 |
void SimInfo::prepareTopology() { |
940 |
|
941 |
//calculate mass ratio of cutoff group |
942 |
SimInfo::MoleculeIterator mi; |
943 |
Molecule* mol; |
944 |
Molecule::CutoffGroupIterator ci; |
945 |
CutoffGroup* cg; |
946 |
Molecule::AtomIterator ai; |
947 |
Atom* atom; |
948 |
RealType totalMass; |
949 |
|
950 |
/** |
951 |
* The mass factor is the relative mass of an atom to the total |
952 |
* mass of the cutoff group it belongs to. By default, all atoms |
953 |
* are their own cutoff groups, and therefore have mass factors of |
954 |
* 1. We need some special handling for massless atoms, which |
955 |
* will be treated as carrying the entire mass of the cutoff |
956 |
* group. |
957 |
*/ |
958 |
massFactors_.clear(); |
959 |
massFactors_.resize(getNAtoms(), 1.0); |
960 |
|
961 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
962 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
963 |
cg = mol->nextCutoffGroup(ci)) { |
964 |
|
965 |
totalMass = cg->getMass(); |
966 |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
967 |
// Check for massless groups - set mfact to 1 if true |
968 |
if (totalMass != 0) |
969 |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
970 |
else |
971 |
massFactors_[atom->getLocalIndex()] = 1.0; |
972 |
} |
973 |
} |
974 |
} |
975 |
|
976 |
// Build the identArray_ and regions_ |
977 |
|
978 |
identArray_.clear(); |
979 |
identArray_.reserve(getNAtoms()); |
980 |
regions_.clear(); |
981 |
regions_.reserve(getNAtoms()); |
982 |
|
983 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
984 |
int reg = mol->getRegion(); |
985 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
986 |
identArray_.push_back(atom->getIdent()); |
987 |
regions_.push_back(reg); |
988 |
} |
989 |
} |
990 |
|
991 |
topologyDone_ = true; |
992 |
} |
993 |
|
994 |
void SimInfo::addProperty(GenericData* genData) { |
995 |
properties_.addProperty(genData); |
996 |
} |
997 |
|
998 |
void SimInfo::removeProperty(const string& propName) { |
999 |
properties_.removeProperty(propName); |
1000 |
} |
1001 |
|
1002 |
void SimInfo::clearProperties() { |
1003 |
properties_.clearProperties(); |
1004 |
} |
1005 |
|
1006 |
vector<string> SimInfo::getPropertyNames() { |
1007 |
return properties_.getPropertyNames(); |
1008 |
} |
1009 |
|
1010 |
vector<GenericData*> SimInfo::getProperties() { |
1011 |
return properties_.getProperties(); |
1012 |
} |
1013 |
|
1014 |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
1015 |
return properties_.getPropertyByName(propName); |
1016 |
} |
1017 |
|
1018 |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
1019 |
if (sman_ == sman) { |
1020 |
return; |
1021 |
} |
1022 |
delete sman_; |
1023 |
sman_ = sman; |
1024 |
|
1025 |
SimInfo::MoleculeIterator mi; |
1026 |
Molecule::AtomIterator ai; |
1027 |
Molecule::RigidBodyIterator rbIter; |
1028 |
Molecule::CutoffGroupIterator cgIter; |
1029 |
Molecule::BondIterator bondIter; |
1030 |
Molecule::BendIterator bendIter; |
1031 |
Molecule::TorsionIterator torsionIter; |
1032 |
Molecule::InversionIterator inversionIter; |
1033 |
|
1034 |
Molecule* mol; |
1035 |
Atom* atom; |
1036 |
RigidBody* rb; |
1037 |
CutoffGroup* cg; |
1038 |
Bond* bond; |
1039 |
Bend* bend; |
1040 |
Torsion* torsion; |
1041 |
Inversion* inversion; |
1042 |
|
1043 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1044 |
|
1045 |
for (atom = mol->beginAtom(ai); atom != NULL; |
1046 |
atom = mol->nextAtom(ai)) { |
1047 |
atom->setSnapshotManager(sman_); |
1048 |
} |
1049 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
1050 |
rb = mol->nextRigidBody(rbIter)) { |
1051 |
rb->setSnapshotManager(sman_); |
1052 |
} |
1053 |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; |
1054 |
cg = mol->nextCutoffGroup(cgIter)) { |
1055 |
cg->setSnapshotManager(sman_); |
1056 |
} |
1057 |
for (bond = mol->beginBond(bondIter); bond != NULL; |
1058 |
bond = mol->nextBond(bondIter)) { |
1059 |
bond->setSnapshotManager(sman_); |
1060 |
} |
1061 |
for (bend = mol->beginBend(bendIter); bend != NULL; |
1062 |
bend = mol->nextBend(bendIter)) { |
1063 |
bend->setSnapshotManager(sman_); |
1064 |
} |
1065 |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
1066 |
torsion = mol->nextTorsion(torsionIter)) { |
1067 |
torsion->setSnapshotManager(sman_); |
1068 |
} |
1069 |
for (inversion = mol->beginInversion(inversionIter); inversion != NULL; |
1070 |
inversion = mol->nextInversion(inversionIter)) { |
1071 |
inversion->setSnapshotManager(sman_); |
1072 |
} |
1073 |
} |
1074 |
} |
1075 |
|
1076 |
|
1077 |
ostream& operator <<(ostream& o, SimInfo& info) { |
1078 |
|
1079 |
return o; |
1080 |
} |
1081 |
|
1082 |
|
1083 |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1084 |
if (index >= int(IOIndexToIntegrableObject.size())) { |
1085 |
sprintf(painCave.errMsg, |
1086 |
"SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n" |
1087 |
"\tindex exceeds number of known objects!\n"); |
1088 |
painCave.isFatal = 1; |
1089 |
simError(); |
1090 |
return NULL; |
1091 |
} else |
1092 |
return IOIndexToIntegrableObject.at(index); |
1093 |
} |
1094 |
|
1095 |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1096 |
IOIndexToIntegrableObject= v; |
1097 |
} |
1098 |
|
1099 |
int SimInfo::getNGlobalConstraints() { |
1100 |
int nGlobalConstraints; |
1101 |
#ifdef IS_MPI |
1102 |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, |
1103 |
MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
1104 |
// MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1, |
1105 |
// MPI::INT, MPI::SUM); |
1106 |
#else |
1107 |
nGlobalConstraints = nConstraints_; |
1108 |
#endif |
1109 |
return nGlobalConstraints; |
1110 |
} |
1111 |
|
1112 |
}//end namespace OpenMD |
1113 |
|