ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 665 by tim, Thu Oct 13 22:26:47 2005 UTC vs.
Revision 1983 by gezelter, Tue Apr 15 20:36:19 2014 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 46 | Line 47
47   * @version 1.0
48   */
49  
50 + #ifdef IS_MPI
51 + #include <mpi.h>
52 + #endif
53   #include <algorithm>
54   #include <set>
55 + #include <map>
56  
57   #include "brains/SimInfo.hpp"
58   #include "math/Vector3.hpp"
59   #include "primitives/Molecule.hpp"
60 < #include "UseTheForce/fCutoffPolicy.h"
56 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 < #include "UseTheForce/doForces_interface.h"
58 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
59 < #include "UseTheForce/notifyCutoffs_interface.h"
60 > #include "primitives/StuntDouble.hpp"
61   #include "utils/MemoryUtils.hpp"
62   #include "utils/simError.h"
63   #include "selection/SelectionManager.hpp"
64 + #include "io/ForceFieldOptions.hpp"
65 + #include "brains/ForceField.hpp"
66 + #include "nonbonded/SwitchingFunction.hpp"
67  
68 < #ifdef IS_MPI
69 < #include "UseTheForce/mpiComponentPlan.h"
70 < #include "UseTheForce/DarkSide/simParallel_interface.h"
71 < #endif
72 <
73 < namespace oopse {
70 <
71 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 <                   ForceField* ff, Globals* simParams) :
73 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
74 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false) {
79 <
80 <            
81 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
82 <      MoleculeStamp* molStamp;
84 <      int nMolWithSameStamp;
85 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
87 <      CutoffGroupStamp* cgStamp;    
88 <      RigidBodyStamp* rbStamp;
89 <      int nRigidAtoms = 0;
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 >    nGlobalFluctuatingCharges_(0), nGlobalBonds_(0), nGlobalBends_(0),
77 >    nGlobalTorsions_(0), nGlobalInversions_(0), nGlobalConstraints_(0),
78 >    nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
79 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
80 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL),
81 >    topologyDone_(false), calcBoxDipole_(false), useAtomicVirial_(true),
82 >    hasNGlobalConstraints_(false) {    
83      
84 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
85 <        molStamp = i->first;
86 <        nMolWithSameStamp = i->second;
87 <        
88 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
89 <
90 <        //calculate atoms in molecules
91 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
92 <
93 <
94 <        //calculate atoms in cutoff groups
95 <        int nAtomsInGroups = 0;
96 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
97 <        
98 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
99 <          cgStamp = molStamp->getCutoffGroup(j);
100 <          nAtomsInGroups += cgStamp->getNMembers();
101 <        }
109 <
110 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111 <
112 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
113 <
114 <        //calculate atoms in rigid bodies
115 <        int nAtomsInRigidBodies = 0;
116 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 <        
118 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
119 <          rbStamp = molStamp->getRigidBody(j);
120 <          nAtomsInRigidBodies += rbStamp->getNMembers();
121 <        }
122 <
123 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125 <        
84 >    MoleculeStamp* molStamp;
85 >    int nMolWithSameStamp;
86 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88 >    CutoffGroupStamp* cgStamp;    
89 >    RigidBodyStamp* rbStamp;
90 >    int nRigidAtoms = 0;
91 >    
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin();
95 >         i !=components.end(); ++i) {
96 >      molStamp = (*i)->getMoleculeStamp();
97 >      if ( (*i)->haveRegion() ) {        
98 >        molStamp->setRegion( (*i)->getRegion() );
99 >      } else {
100 >        // set the region to a disallowed value:
101 >        molStamp->setRegion( -1 );
102        }
103  
104 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
105 <      //group therefore the total number of cutoff groups in the system is
106 <      //equal to the total number of atoms minus number of atoms belong to
107 <      //cutoff group defined in meta-data file plus the number of cutoff
108 <      //groups defined in meta-data file
109 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
110 <
111 <      //every free atom (atom does not belong to rigid bodies) is an
112 <      //integrable object therefore the total number of integrable objects
113 <      //in the system is equal to the total number of atoms minus number of
114 <      //atoms belong to rigid body defined in meta-data file plus the number
115 <      //of rigid bodies defined in meta-data file
116 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
117 <                                                + nGlobalRigidBodies_;
118 <  
119 <      nGlobalMols_ = molStampIds_.size();
120 <
121 < #ifdef IS_MPI    
122 <      molToProcMap_.resize(nGlobalMols_);
123 < #endif
124 <
104 >      nMolWithSameStamp = (*i)->getNMol();
105 >      
106 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
107 >      
108 >      //calculate atoms in molecules
109 >      nGlobalAtoms_ += molStamp->getNAtoms() * nMolWithSameStamp;
110 >      nGlobalBonds_ += molStamp->getNBonds() * nMolWithSameStamp;
111 >      nGlobalBends_ += molStamp->getNBends() * nMolWithSameStamp;
112 >      nGlobalTorsions_ += molStamp->getNTorsions() * nMolWithSameStamp;
113 >      nGlobalInversions_ += molStamp->getNInversions() * nMolWithSameStamp;
114 >      
115 >      //calculate atoms in cutoff groups
116 >      int nAtomsInGroups = 0;
117 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118 >      
119 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 >        cgStamp = molStamp->getCutoffGroupStamp(j);
121 >        nAtomsInGroups += cgStamp->getNMembers();
122 >      }
123 >      
124 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
125 >      
126 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
127 >      
128 >      //calculate atoms in rigid bodies
129 >      int nAtomsInRigidBodies = 0;
130 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
131 >      
132 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
133 >        rbStamp = molStamp->getRigidBodyStamp(j);
134 >        nAtomsInRigidBodies += rbStamp->getNMembers();
135 >      }
136 >      
137 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
138 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
139 >      
140      }
141 +    
142 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
143 +    //group therefore the total number of cutoff groups in the system is
144 +    //equal to the total number of atoms minus number of atoms belong to
145 +    //cutoff group defined in meta-data file plus the number of cutoff
146 +    //groups defined in meta-data file
147  
148 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
149 +    
150 +    //every free atom (atom does not belong to rigid bodies) is an
151 +    //integrable object therefore the total number of integrable objects
152 +    //in the system is equal to the total number of atoms minus number of
153 +    //atoms belong to rigid body defined in meta-data file plus the number
154 +    //of rigid bodies defined in meta-data file
155 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
156 +      + nGlobalRigidBodies_;
157 +    
158 +    nGlobalMols_ = molStampIds_.size();
159 +    molToProcMap_.resize(nGlobalMols_);
160 +  }
161 +  
162    SimInfo::~SimInfo() {
163 <    std::map<int, Molecule*>::iterator i;
163 >    map<int, Molecule*>::iterator i;
164      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
165        delete i->second;
166      }
167      molecules_.clear();
168        
158    delete stamps_;
169      delete sman_;
170      delete simParams_;
171      delete forceField_;
172    }
173  
164  int SimInfo::getNGlobalConstraints() {
165    int nGlobalConstraints;
166 #ifdef IS_MPI
167    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
168                  MPI_COMM_WORLD);    
169 #else
170    nGlobalConstraints =  nConstraints_;
171 #endif
172    return nGlobalConstraints;
173  }
174  
175    bool SimInfo::addMolecule(Molecule* mol) {
176      MoleculeIterator i;
177 <
177 >    
178      i = molecules_.find(mol->getGlobalIndex());
179      if (i == molecules_.end() ) {
180 <
181 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
182 <        
180 >      
181 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
182 >      
183        nAtoms_ += mol->getNAtoms();
184        nBonds_ += mol->getNBonds();
185        nBends_ += mol->getNBends();
186        nTorsions_ += mol->getNTorsions();
187 +      nInversions_ += mol->getNInversions();
188        nRigidBodies_ += mol->getNRigidBodies();
189        nIntegrableObjects_ += mol->getNIntegrableObjects();
190        nCutoffGroups_ += mol->getNCutoffGroups();
191        nConstraints_ += mol->getNConstraintPairs();
192 <
193 <      addExcludePairs(mol);
194 <        
192 >      
193 >      addInteractionPairs(mol);
194 >      
195        return true;
196      } else {
197        return false;
198      }
199    }
200 <
200 >  
201    bool SimInfo::removeMolecule(Molecule* mol) {
202      MoleculeIterator i;
203      i = molecules_.find(mol->getGlobalIndex());
# Line 209 | Line 210 | namespace oopse {
210        nBonds_ -= mol->getNBonds();
211        nBends_ -= mol->getNBends();
212        nTorsions_ -= mol->getNTorsions();
213 +      nInversions_ -= mol->getNInversions();
214        nRigidBodies_ -= mol->getNRigidBodies();
215        nIntegrableObjects_ -= mol->getNIntegrableObjects();
216        nCutoffGroups_ -= mol->getNCutoffGroups();
217        nConstraints_ -= mol->getNConstraintPairs();
218  
219 <      removeExcludePairs(mol);
219 >      removeInteractionPairs(mol);
220        molecules_.erase(mol->getGlobalIndex());
221  
222        delete mol;
# Line 223 | Line 225 | namespace oopse {
225      } else {
226        return false;
227      }
226
227
228    }    
229  
230          
# Line 240 | Line 240 | namespace oopse {
240  
241  
242    void SimInfo::calcNdf() {
243 <    int ndf_local;
243 >    int ndf_local, nfq_local;
244      MoleculeIterator i;
245 <    std::vector<StuntDouble*>::iterator j;
245 >    vector<StuntDouble*>::iterator j;
246 >    vector<Atom*>::iterator k;
247 >
248      Molecule* mol;
249 <    StuntDouble* integrableObject;
249 >    StuntDouble* sd;
250 >    Atom* atom;
251  
252      ndf_local = 0;
253 +    nfq_local = 0;
254      
255      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
252      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
253           integrableObject = mol->nextIntegrableObject(j)) {
256  
257 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
258 +           sd = mol->nextIntegrableObject(j)) {
259 +
260          ndf_local += 3;
261  
262 <        if (integrableObject->isDirectional()) {
263 <          if (integrableObject->isLinear()) {
262 >        if (sd->isDirectional()) {
263 >          if (sd->isLinear()) {
264              ndf_local += 2;
265            } else {
266              ndf_local += 3;
267            }
268          }
269 <            
270 <      }//end for (integrableObject)
271 <    }// end for (mol)
269 >      }
270 >
271 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
272 >           atom = mol->nextFluctuatingCharge(k)) {
273 >        if (atom->isFluctuatingCharge()) {
274 >          nfq_local++;
275 >        }
276 >      }
277 >    }
278      
279 +    ndfLocal_ = ndf_local;
280 +
281      // n_constraints is local, so subtract them on each processor
282      ndf_local -= nConstraints_;
283  
284   #ifdef IS_MPI
285 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
285 >    MPI_Allreduce(&ndf_local, &ndf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
286 >    MPI_Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
287 >      MPI_INT, MPI_SUM, MPI_COMM_WORLD);
288   #else
289      ndf_ = ndf_local;
290 +    nGlobalFluctuatingCharges_ = nfq_local;
291   #endif
292  
293      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 280 | Line 296 | namespace oopse {
296  
297    }
298  
299 +  int SimInfo::getFdf() {
300 + #ifdef IS_MPI
301 +    MPI_Allreduce(&fdf_local, &fdf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
302 + #else
303 +    fdf_ = fdf_local;
304 + #endif
305 +    return fdf_;
306 +  }
307 +  
308 +  unsigned int SimInfo::getNLocalCutoffGroups(){
309 +    int nLocalCutoffAtoms = 0;
310 +    Molecule* mol;
311 +    MoleculeIterator mi;
312 +    CutoffGroup* cg;
313 +    Molecule::CutoffGroupIterator ci;
314 +    
315 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
316 +      
317 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
318 +           cg = mol->nextCutoffGroup(ci)) {
319 +        nLocalCutoffAtoms += cg->getNumAtom();
320 +        
321 +      }        
322 +    }
323 +    
324 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
325 +  }
326 +    
327    void SimInfo::calcNdfRaw() {
328      int ndfRaw_local;
329  
330      MoleculeIterator i;
331 <    std::vector<StuntDouble*>::iterator j;
331 >    vector<StuntDouble*>::iterator j;
332      Molecule* mol;
333 <    StuntDouble* integrableObject;
333 >    StuntDouble* sd;
334  
335      // Raw degrees of freedom that we have to set
336      ndfRaw_local = 0;
337      
338      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
295      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
296           integrableObject = mol->nextIntegrableObject(j)) {
339  
340 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
341 +           sd = mol->nextIntegrableObject(j)) {
342 +
343          ndfRaw_local += 3;
344  
345 <        if (integrableObject->isDirectional()) {
346 <          if (integrableObject->isLinear()) {
345 >        if (sd->isDirectional()) {
346 >          if (sd->isLinear()) {
347              ndfRaw_local += 2;
348            } else {
349              ndfRaw_local += 3;
# Line 309 | Line 354 | namespace oopse {
354      }
355      
356   #ifdef IS_MPI
357 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
357 >    MPI_Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
358   #else
359      ndfRaw_ = ndfRaw_local;
360   #endif
# Line 320 | Line 365 | namespace oopse {
365  
366      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
367  
323
368   #ifdef IS_MPI
369 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
369 >    MPI_Allreduce(&ndfTrans_local, &ndfTrans_, 1, MPI_INT, MPI_SUM,
370 >                  MPI_COMM_WORLD);
371   #else
372      ndfTrans_ = ndfTrans_local;
373   #endif
374  
375      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
331
376    }
377  
378 <  void SimInfo::addExcludePairs(Molecule* mol) {
379 <    std::vector<Bond*>::iterator bondIter;
380 <    std::vector<Bend*>::iterator bendIter;
381 <    std::vector<Torsion*>::iterator torsionIter;
378 >  void SimInfo::addInteractionPairs(Molecule* mol) {
379 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
380 >    vector<Bond*>::iterator bondIter;
381 >    vector<Bend*>::iterator bendIter;
382 >    vector<Torsion*>::iterator torsionIter;
383 >    vector<Inversion*>::iterator inversionIter;
384      Bond* bond;
385      Bend* bend;
386      Torsion* torsion;
387 +    Inversion* inversion;
388      int a;
389      int b;
390      int c;
391      int d;
392 +
393 +    // atomGroups can be used to add special interaction maps between
394 +    // groups of atoms that are in two separate rigid bodies.
395 +    // However, most site-site interactions between two rigid bodies
396 +    // are probably not special, just the ones between the physically
397 +    // bonded atoms.  Interactions *within* a single rigid body should
398 +    // always be excluded.  These are done at the bottom of this
399 +    // function.
400 +
401 +    map<int, set<int> > atomGroups;
402 +    Molecule::RigidBodyIterator rbIter;
403 +    RigidBody* rb;
404 +    Molecule::IntegrableObjectIterator ii;
405 +    StuntDouble* sd;
406      
407 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
407 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
408 >         sd = mol->nextIntegrableObject(ii)) {
409 >      
410 >      if (sd->isRigidBody()) {
411 >        rb = static_cast<RigidBody*>(sd);
412 >        vector<Atom*> atoms = rb->getAtoms();
413 >        set<int> rigidAtoms;
414 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
415 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
416 >        }
417 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
418 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
419 >        }      
420 >      } else {
421 >        set<int> oneAtomSet;
422 >        oneAtomSet.insert(sd->getGlobalIndex());
423 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
424 >      }
425 >    }  
426 >
427 >          
428 >    for (bond= mol->beginBond(bondIter); bond != NULL;
429 >         bond = mol->nextBond(bondIter)) {
430 >
431        a = bond->getAtomA()->getGlobalIndex();
432 <      b = bond->getAtomB()->getGlobalIndex();        
433 <      exclude_.addPair(a, b);
432 >      b = bond->getAtomB()->getGlobalIndex();  
433 >
434 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
435 >        oneTwoInteractions_.addPair(a, b);
436 >      } else {
437 >        excludedInteractions_.addPair(a, b);
438 >      }
439      }
440  
441 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
441 >    for (bend= mol->beginBend(bendIter); bend != NULL;
442 >         bend = mol->nextBend(bendIter)) {
443 >
444        a = bend->getAtomA()->getGlobalIndex();
445        b = bend->getAtomB()->getGlobalIndex();        
446        c = bend->getAtomC()->getGlobalIndex();
447 +      
448 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
449 +        oneTwoInteractions_.addPair(a, b);      
450 +        oneTwoInteractions_.addPair(b, c);
451 +      } else {
452 +        excludedInteractions_.addPair(a, b);
453 +        excludedInteractions_.addPair(b, c);
454 +      }
455  
456 <      exclude_.addPair(a, b);
457 <      exclude_.addPair(a, c);
458 <      exclude_.addPair(b, c);        
456 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
457 >        oneThreeInteractions_.addPair(a, c);      
458 >      } else {
459 >        excludedInteractions_.addPair(a, c);
460 >      }
461      }
462  
463 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
463 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
464 >         torsion = mol->nextTorsion(torsionIter)) {
465 >
466        a = torsion->getAtomA()->getGlobalIndex();
467        b = torsion->getAtomB()->getGlobalIndex();        
468        c = torsion->getAtomC()->getGlobalIndex();        
469 <      d = torsion->getAtomD()->getGlobalIndex();        
469 >      d = torsion->getAtomD()->getGlobalIndex();      
470  
471 <      exclude_.addPair(a, b);
472 <      exclude_.addPair(a, c);
473 <      exclude_.addPair(a, d);
474 <      exclude_.addPair(b, c);
475 <      exclude_.addPair(b, d);
476 <      exclude_.addPair(c, d);        
471 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
472 >        oneTwoInteractions_.addPair(a, b);      
473 >        oneTwoInteractions_.addPair(b, c);
474 >        oneTwoInteractions_.addPair(c, d);
475 >      } else {
476 >        excludedInteractions_.addPair(a, b);
477 >        excludedInteractions_.addPair(b, c);
478 >        excludedInteractions_.addPair(c, d);
479 >      }
480 >
481 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
482 >        oneThreeInteractions_.addPair(a, c);      
483 >        oneThreeInteractions_.addPair(b, d);      
484 >      } else {
485 >        excludedInteractions_.addPair(a, c);
486 >        excludedInteractions_.addPair(b, d);
487 >      }
488 >
489 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
490 >        oneFourInteractions_.addPair(a, d);      
491 >      } else {
492 >        excludedInteractions_.addPair(a, d);
493 >      }
494      }
495  
496 <    Molecule::RigidBodyIterator rbIter;
497 <    RigidBody* rb;
498 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
499 <      std::vector<Atom*> atoms = rb->getAtoms();
500 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
501 <        for (int j = i + 1; j < atoms.size(); ++j) {
496 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
497 >         inversion = mol->nextInversion(inversionIter)) {
498 >
499 >      a = inversion->getAtomA()->getGlobalIndex();
500 >      b = inversion->getAtomB()->getGlobalIndex();        
501 >      c = inversion->getAtomC()->getGlobalIndex();        
502 >      d = inversion->getAtomD()->getGlobalIndex();        
503 >
504 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
505 >        oneTwoInteractions_.addPair(a, b);      
506 >        oneTwoInteractions_.addPair(a, c);
507 >        oneTwoInteractions_.addPair(a, d);
508 >      } else {
509 >        excludedInteractions_.addPair(a, b);
510 >        excludedInteractions_.addPair(a, c);
511 >        excludedInteractions_.addPair(a, d);
512 >      }
513 >
514 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
515 >        oneThreeInteractions_.addPair(b, c);    
516 >        oneThreeInteractions_.addPair(b, d);    
517 >        oneThreeInteractions_.addPair(c, d);      
518 >      } else {
519 >        excludedInteractions_.addPair(b, c);
520 >        excludedInteractions_.addPair(b, d);
521 >        excludedInteractions_.addPair(c, d);
522 >      }
523 >    }
524 >
525 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
526 >         rb = mol->nextRigidBody(rbIter)) {
527 >      vector<Atom*> atoms = rb->getAtoms();
528 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
529 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
530            a = atoms[i]->getGlobalIndex();
531            b = atoms[j]->getGlobalIndex();
532 <          exclude_.addPair(a, b);
532 >          excludedInteractions_.addPair(a, b);
533          }
534        }
535      }        
536  
537    }
538  
539 <  void SimInfo::removeExcludePairs(Molecule* mol) {
540 <    std::vector<Bond*>::iterator bondIter;
541 <    std::vector<Bend*>::iterator bendIter;
542 <    std::vector<Torsion*>::iterator torsionIter;
539 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
540 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
541 >    vector<Bond*>::iterator bondIter;
542 >    vector<Bend*>::iterator bendIter;
543 >    vector<Torsion*>::iterator torsionIter;
544 >    vector<Inversion*>::iterator inversionIter;
545      Bond* bond;
546      Bend* bend;
547      Torsion* torsion;
548 +    Inversion* inversion;
549      int a;
550      int b;
551      int c;
552      int d;
553 +
554 +    map<int, set<int> > atomGroups;
555 +    Molecule::RigidBodyIterator rbIter;
556 +    RigidBody* rb;
557 +    Molecule::IntegrableObjectIterator ii;
558 +    StuntDouble* sd;
559      
560 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
560 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
561 >         sd = mol->nextIntegrableObject(ii)) {
562 >      
563 >      if (sd->isRigidBody()) {
564 >        rb = static_cast<RigidBody*>(sd);
565 >        vector<Atom*> atoms = rb->getAtoms();
566 >        set<int> rigidAtoms;
567 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
568 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
569 >        }
570 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
571 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
572 >        }      
573 >      } else {
574 >        set<int> oneAtomSet;
575 >        oneAtomSet.insert(sd->getGlobalIndex());
576 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
577 >      }
578 >    }  
579 >
580 >    for (bond= mol->beginBond(bondIter); bond != NULL;
581 >         bond = mol->nextBond(bondIter)) {
582 >      
583        a = bond->getAtomA()->getGlobalIndex();
584 <      b = bond->getAtomB()->getGlobalIndex();        
585 <      exclude_.removePair(a, b);
584 >      b = bond->getAtomB()->getGlobalIndex();  
585 >    
586 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
587 >        oneTwoInteractions_.removePair(a, b);
588 >      } else {
589 >        excludedInteractions_.removePair(a, b);
590 >      }
591      }
592  
593 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
593 >    for (bend= mol->beginBend(bendIter); bend != NULL;
594 >         bend = mol->nextBend(bendIter)) {
595 >
596        a = bend->getAtomA()->getGlobalIndex();
597        b = bend->getAtomB()->getGlobalIndex();        
598        c = bend->getAtomC()->getGlobalIndex();
599 +      
600 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
601 +        oneTwoInteractions_.removePair(a, b);      
602 +        oneTwoInteractions_.removePair(b, c);
603 +      } else {
604 +        excludedInteractions_.removePair(a, b);
605 +        excludedInteractions_.removePair(b, c);
606 +      }
607  
608 <      exclude_.removePair(a, b);
609 <      exclude_.removePair(a, c);
610 <      exclude_.removePair(b, c);        
608 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
609 >        oneThreeInteractions_.removePair(a, c);      
610 >      } else {
611 >        excludedInteractions_.removePair(a, c);
612 >      }
613      }
614  
615 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
615 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
616 >         torsion = mol->nextTorsion(torsionIter)) {
617 >
618        a = torsion->getAtomA()->getGlobalIndex();
619        b = torsion->getAtomB()->getGlobalIndex();        
620        c = torsion->getAtomC()->getGlobalIndex();        
621 <      d = torsion->getAtomD()->getGlobalIndex();        
621 >      d = torsion->getAtomD()->getGlobalIndex();      
622 >  
623 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
624 >        oneTwoInteractions_.removePair(a, b);      
625 >        oneTwoInteractions_.removePair(b, c);
626 >        oneTwoInteractions_.removePair(c, d);
627 >      } else {
628 >        excludedInteractions_.removePair(a, b);
629 >        excludedInteractions_.removePair(b, c);
630 >        excludedInteractions_.removePair(c, d);
631 >      }
632  
633 <      exclude_.removePair(a, b);
634 <      exclude_.removePair(a, c);
635 <      exclude_.removePair(a, d);
636 <      exclude_.removePair(b, c);
637 <      exclude_.removePair(b, d);
638 <      exclude_.removePair(c, d);        
633 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
634 >        oneThreeInteractions_.removePair(a, c);      
635 >        oneThreeInteractions_.removePair(b, d);      
636 >      } else {
637 >        excludedInteractions_.removePair(a, c);
638 >        excludedInteractions_.removePair(b, d);
639 >      }
640 >
641 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
642 >        oneFourInteractions_.removePair(a, d);      
643 >      } else {
644 >        excludedInteractions_.removePair(a, d);
645 >      }
646      }
647  
648 <    Molecule::RigidBodyIterator rbIter;
649 <    RigidBody* rb;
650 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
651 <      std::vector<Atom*> atoms = rb->getAtoms();
652 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
653 <        for (int j = i + 1; j < atoms.size(); ++j) {
648 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
649 >         inversion = mol->nextInversion(inversionIter)) {
650 >
651 >      a = inversion->getAtomA()->getGlobalIndex();
652 >      b = inversion->getAtomB()->getGlobalIndex();        
653 >      c = inversion->getAtomC()->getGlobalIndex();        
654 >      d = inversion->getAtomD()->getGlobalIndex();        
655 >
656 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
657 >        oneTwoInteractions_.removePair(a, b);      
658 >        oneTwoInteractions_.removePair(a, c);
659 >        oneTwoInteractions_.removePair(a, d);
660 >      } else {
661 >        excludedInteractions_.removePair(a, b);
662 >        excludedInteractions_.removePair(a, c);
663 >        excludedInteractions_.removePair(a, d);
664 >      }
665 >
666 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
667 >        oneThreeInteractions_.removePair(b, c);    
668 >        oneThreeInteractions_.removePair(b, d);    
669 >        oneThreeInteractions_.removePair(c, d);      
670 >      } else {
671 >        excludedInteractions_.removePair(b, c);
672 >        excludedInteractions_.removePair(b, d);
673 >        excludedInteractions_.removePair(c, d);
674 >      }
675 >    }
676 >
677 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
678 >         rb = mol->nextRigidBody(rbIter)) {
679 >      vector<Atom*> atoms = rb->getAtoms();
680 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
681 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
682            a = atoms[i]->getGlobalIndex();
683            b = atoms[j]->getGlobalIndex();
684 <          exclude_.removePair(a, b);
684 >          excludedInteractions_.removePair(a, b);
685          }
686        }
687      }        
688 <
688 >    
689    }
690 <
691 <
690 >  
691 >  
692    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
693      int curStampId;
694 <
694 >    
695      //index from 0
696      curStampId = moleculeStamps_.size();
697  
# Line 456 | Line 699 | namespace oopse {
699      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
700    }
701  
459  void SimInfo::update() {
702  
703 <    setupSimType();
704 <
705 < #ifdef IS_MPI
706 <    setupFortranParallel();
707 < #endif
708 <
709 <    setupFortranSim();
710 <
711 <    //setup fortran force field
712 <    /** @deprecate */    
471 <    int isError = 0;
472 <    
473 <    setupElectrostaticSummationMethod( isError );
474 <
475 <    if(isError){
476 <      sprintf( painCave.errMsg,
477 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
478 <      painCave.isFatal = 1;
479 <      simError();
480 <    }
481 <  
482 <    
483 <    setupCutoff();
484 <
703 >  /**
704 >   * update
705 >   *
706 >   *  Performs the global checks and variable settings after the
707 >   *  objects have been created.
708 >   *
709 >   */
710 >  void SimInfo::update() {  
711 >    setupSimVariables();
712 >    calcNConstraints();
713      calcNdf();
714      calcNdfRaw();
715      calcNdfTrans();
488
489    fortranInitialized_ = true;
716    }
717 <
718 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
717 >  
718 >  /**
719 >   * getSimulatedAtomTypes
720 >   *
721 >   * Returns an STL set of AtomType* that are actually present in this
722 >   * simulation.  Must query all processors to assemble this information.
723 >   *
724 >   */
725 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
726      SimInfo::MoleculeIterator mi;
727      Molecule* mol;
728      Molecule::AtomIterator ai;
729      Atom* atom;
730 <    std::set<AtomType*> atomTypes;
731 <
730 >    set<AtomType*> atomTypes;
731 >    
732      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
733 <
734 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
733 >      for(atom = mol->beginAtom(ai); atom != NULL;
734 >          atom = mol->nextAtom(ai)) {
735          atomTypes.insert(atom->getAtomType());
736 <      }
737 <        
736 >      }      
737 >    }    
738 >    
739 > #ifdef IS_MPI
740 >
741 >    // loop over the found atom types on this processor, and add their
742 >    // numerical idents to a vector:
743 >    
744 >    vector<int> foundTypes;
745 >    set<AtomType*>::iterator i;
746 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
747 >      foundTypes.push_back( (*i)->getIdent() );
748 >
749 >    // count_local holds the number of found types on this processor
750 >    int count_local = foundTypes.size();
751 >
752 >    int nproc;
753 >    MPI_Comm_size( MPI_COMM_WORLD, &nproc);
754 >    // int nproc = MPI::COMM_WORLD.Get_size();
755 >
756 >    // we need arrays to hold the counts and displacement vectors for
757 >    // all processors
758 >    vector<int> counts(nproc, 0);
759 >    vector<int> disps(nproc, 0);
760 >
761 >    // fill the counts array
762 >    MPI_Allgather(&count_local, 1, MPI_INT, &counts[0],
763 >                  1, MPI_INT, MPI_COMM_WORLD);
764 >    // MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
765 >    //                           1, MPI::INT);
766 >  
767 >    // use the processor counts to compute the displacement array
768 >    disps[0] = 0;    
769 >    int totalCount = counts[0];
770 >    for (int iproc = 1; iproc < nproc; iproc++) {
771 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
772 >      totalCount += counts[iproc];
773      }
774  
775 <    return atomTypes;        
776 <  }
775 >    // we need a (possibly redundant) set of all found types:
776 >    vector<int> ftGlobal(totalCount);
777 >    
778 >    // now spray out the foundTypes to all the other processors:    
779 >    MPI_Allgatherv(&foundTypes[0], count_local, MPI_INT,
780 >                   &ftGlobal[0], &counts[0], &disps[0],
781 >                   MPI_INT, MPI_COMM_WORLD);
782 >    // MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
783 >    //                            &ftGlobal[0], &counts[0], &disps[0],
784 >    //                            MPI::INT);
785  
786 <  void SimInfo::setupSimType() {
787 <    std::set<AtomType*>::iterator i;
788 <    std::set<AtomType*> atomTypes;
789 <    atomTypes = getUniqueAtomTypes();
786 >    vector<int>::iterator j;
787 >
788 >    // foundIdents is a stl set, so inserting an already found ident
789 >    // will have no effect.
790 >    set<int> foundIdents;
791 >
792 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
793 >      foundIdents.insert((*j));
794      
795 <    int useLennardJones = 0;
796 <    int useElectrostatic = 0;
797 <    int useEAM = 0;
798 <    int useCharge = 0;
799 <    int useDirectional = 0;
800 <    int useDipole = 0;
801 <    int useGayBerne = 0;
522 <    int useSticky = 0;
523 <    int useStickyPower = 0;
524 <    int useShape = 0;
525 <    int useFLARB = 0; //it is not in AtomType yet
526 <    int useDirectionalAtom = 0;    
527 <    int useElectrostatics = 0;
528 <    //usePBC and useRF are from simParams
529 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
530 <    int useRF;
531 <    std::string myMethod;
795 >    // now iterate over the foundIdents and get the actual atom types
796 >    // that correspond to these:
797 >    set<int>::iterator it;
798 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
799 >      atomTypes.insert( forceField_->getAtomType((*it)) );
800 >
801 > #endif
802  
803 <    // set the useRF logical
804 <    useRF = 0;
805 <    if (simParams_->haveElectrostaticSummationMethod()) {
536 <        myMethod = simParams_->getElectrostaticSummationMethod();
537 <        if (myMethod == "REACTION_FIELD")
538 <             useRF = 1;
539 <    }
803 >    return atomTypes;        
804 >  }
805 >
806  
807 +  int getGlobalCountOfType(AtomType* atype) {
808 +    /*
809 +    set<AtomType*> atypes = getSimulatedAtomTypes();
810 +    map<AtomType*, int> counts_;
811 +
812 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
813 +      for(atom = mol->beginAtom(ai); atom != NULL;
814 +          atom = mol->nextAtom(ai)) {
815 +        atom->getAtomType();
816 +      }      
817 +    }    
818 +    */
819 +    return 0;
820 +  }
821 +
822 +  void SimInfo::setupSimVariables() {
823 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
824 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
825 +    // parameter is true
826 +    calcBoxDipole_ = false;
827 +    if ( simParams_->haveAccumulateBoxDipole() )
828 +      if ( simParams_->getAccumulateBoxDipole() ) {
829 +        calcBoxDipole_ = true;      
830 +      }
831 +    
832 +    set<AtomType*>::iterator i;
833 +    set<AtomType*> atomTypes;
834 +    atomTypes = getSimulatedAtomTypes();    
835 +    bool usesElectrostatic = false;
836 +    bool usesMetallic = false;
837 +    bool usesDirectional = false;
838 +    bool usesFluctuatingCharges =  false;
839      //loop over all of the atom types
840      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
841 <      useLennardJones |= (*i)->isLennardJones();
842 <      useElectrostatic |= (*i)->isElectrostatic();
843 <      useEAM |= (*i)->isEAM();
844 <      useCharge |= (*i)->isCharge();
547 <      useDirectional |= (*i)->isDirectional();
548 <      useDipole |= (*i)->isDipole();
549 <      useGayBerne |= (*i)->isGayBerne();
550 <      useSticky |= (*i)->isSticky();
551 <      useStickyPower |= (*i)->isStickyPower();
552 <      useShape |= (*i)->isShape();
841 >      usesElectrostatic |= (*i)->isElectrostatic();
842 >      usesMetallic |= (*i)->isMetal();
843 >      usesDirectional |= (*i)->isDirectional();
844 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
845      }
846  
847 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
556 <      useDirectionalAtom = 1;
557 <    }
558 <
559 <    if (useCharge || useDipole) {
560 <      useElectrostatics = 1;
561 <    }
562 <
563 < #ifdef IS_MPI    
847 > #ifdef IS_MPI
848      int temp;
849  
850 <    temp = usePBC;
851 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
852 <
569 <    temp = useDirectionalAtom;
570 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
571 <
572 <    temp = useLennardJones;
573 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
574 <
575 <    temp = useElectrostatics;
576 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
577 <
578 <    temp = useCharge;
579 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
580 <
581 <    temp = useDipole;
582 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
583 <
584 <    temp = useSticky;
585 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
586 <
587 <    temp = useStickyPower;
588 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
850 >    temp = usesDirectional;
851 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
852 >    usesDirectionalAtoms_ = (temp == 0) ? false : true;
853      
854 <    temp = useGayBerne;
855 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
854 >    temp = usesMetallic;
855 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
856 >    usesMetallicAtoms_ = (temp == 0) ? false : true;
857  
858 <    temp = useEAM;
859 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
858 >    temp = usesElectrostatic;
859 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
860 >    usesElectrostaticAtoms_ = (temp == 0) ? false : true;
861  
862 <    temp = useShape;
863 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
862 >    temp = usesFluctuatingCharges;
863 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
864 >    usesFluctuatingCharges_ = (temp == 0) ? false : true;
865 > #else
866  
867 <    temp = useFLARB;
868 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
867 >    usesDirectionalAtoms_ = usesDirectional;
868 >    usesMetallicAtoms_ = usesMetallic;
869 >    usesElectrostaticAtoms_ = usesElectrostatic;
870 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
871  
602    temp = useRF;
603    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
604
872   #endif
873 +    
874 +    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
875 +    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
876 +    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
877 +  }
878  
607    fInfo_.SIM_uses_PBC = usePBC;    
608    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
609    fInfo_.SIM_uses_LennardJones = useLennardJones;
610    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
611    fInfo_.SIM_uses_Charges = useCharge;
612    fInfo_.SIM_uses_Dipoles = useDipole;
613    fInfo_.SIM_uses_Sticky = useSticky;
614    fInfo_.SIM_uses_StickyPower = useStickyPower;
615    fInfo_.SIM_uses_GayBerne = useGayBerne;
616    fInfo_.SIM_uses_EAM = useEAM;
617    fInfo_.SIM_uses_Shapes = useShape;
618    fInfo_.SIM_uses_FLARB = useFLARB;
619    fInfo_.SIM_uses_RF = useRF;
879  
880 <    if( fInfo_.SIM_uses_Dipoles && myMethod == "REACTION_FIELD") {
880 >  vector<int> SimInfo::getGlobalAtomIndices() {
881 >    SimInfo::MoleculeIterator mi;
882 >    Molecule* mol;
883 >    Molecule::AtomIterator ai;
884 >    Atom* atom;
885  
886 <      if (simParams_->haveDielectric()) {
887 <        fInfo_.dielect = simParams_->getDielectric();
888 <      } else {
889 <        sprintf(painCave.errMsg,
890 <                "SimSetup Error: No Dielectric constant was set.\n"
891 <                "\tYou are trying to use Reaction Field without"
629 <                "\tsetting a dielectric constant!\n");
630 <        painCave.isFatal = 1;
631 <        simError();
886 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
887 >    
888 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
889 >      
890 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
891 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
892        }
633        
634    } else {
635      fInfo_.dielect = 0.0;
893      }
894 <
894 >    return GlobalAtomIndices;
895    }
896  
640  void SimInfo::setupFortranSim() {
641    int isError;
642    int nExclude;
643    std::vector<int> fortranGlobalGroupMembership;
644    
645    nExclude = exclude_.getSize();
646    isError = 0;
897  
898 <    //globalGroupMembership_ is filled by SimCreator    
899 <    for (int i = 0; i < nGlobalAtoms_; i++) {
900 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
898 >  vector<int> SimInfo::getGlobalGroupIndices() {
899 >    SimInfo::MoleculeIterator mi;
900 >    Molecule* mol;
901 >    Molecule::CutoffGroupIterator ci;
902 >    CutoffGroup* cg;
903 >
904 >    vector<int> GlobalGroupIndices;
905 >    
906 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
907 >      
908 >      //local index of cutoff group is trivial, it only depends on the
909 >      //order of travesing
910 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
911 >           cg = mol->nextCutoffGroup(ci)) {
912 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
913 >      }        
914      }
915 +    return GlobalGroupIndices;
916 +  }
917  
918 +
919 +  void SimInfo::prepareTopology() {
920 +
921      //calculate mass ratio of cutoff group
654    std::vector<double> mfact;
922      SimInfo::MoleculeIterator mi;
923      Molecule* mol;
924      Molecule::CutoffGroupIterator ci;
925      CutoffGroup* cg;
926      Molecule::AtomIterator ai;
927      Atom* atom;
928 <    double totalMass;
928 >    RealType totalMass;
929  
930 <    //to avoid memory reallocation, reserve enough space for mfact
931 <    mfact.reserve(getNCutoffGroups());
930 >    /**
931 >     * The mass factor is the relative mass of an atom to the total
932 >     * mass of the cutoff group it belongs to.  By default, all atoms
933 >     * are their own cutoff groups, and therefore have mass factors of
934 >     * 1.  We need some special handling for massless atoms, which
935 >     * will be treated as carrying the entire mass of the cutoff
936 >     * group.
937 >     */
938 >    massFactors_.clear();
939 >    massFactors_.resize(getNAtoms(), 1.0);
940      
941      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
942 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
942 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
943 >           cg = mol->nextCutoffGroup(ci)) {
944  
945          totalMass = cg->getMass();
946          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
947            // Check for massless groups - set mfact to 1 if true
948 <          if (totalMass != 0)
949 <            mfact.push_back(atom->getMass()/totalMass);
948 >          if (totalMass != 0)
949 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
950            else
951 <            mfact.push_back( 1.0 );
951 >            massFactors_[atom->getLocalIndex()] = 1.0;
952          }
677
953        }      
954      }
955  
956 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
682 <    std::vector<int> identArray;
956 >    // Build the identArray_ and regions_
957  
958 <    //to avoid memory reallocation, reserve enough space identArray
959 <    identArray.reserve(getNAtoms());
960 <    
961 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
958 >    identArray_.clear();
959 >    identArray_.reserve(getNAtoms());  
960 >    regions_.clear();
961 >    regions_.reserve(getNAtoms());
962 >
963 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
964 >      int reg = mol->getRegion();      
965        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
966 <        identArray.push_back(atom->getIdent());
966 >        identArray_.push_back(atom->getIdent());
967 >        regions_.push_back(reg);
968        }
969      }    
970 <
971 <    //fill molMembershipArray
694 <    //molMembershipArray is filled by SimCreator    
695 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
696 <    for (int i = 0; i < nGlobalAtoms_; i++) {
697 <      molMembershipArray[i] = globalMolMembership_[i] + 1;
698 <    }
699 <    
700 <    //setup fortran simulation
701 <    int nGlobalExcludes = 0;
702 <    int* globalExcludes = NULL;
703 <    int* excludeList = exclude_.getExcludeList();
704 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
705 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
706 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
707 <
708 <    if( isError ){
709 <
710 <      sprintf( painCave.errMsg,
711 <               "There was an error setting the simulation information in fortran.\n" );
712 <      painCave.isFatal = 1;
713 <      painCave.severity = OOPSE_ERROR;
714 <      simError();
715 <    }
716 <
717 < #ifdef IS_MPI
718 <    sprintf( checkPointMsg,
719 <             "succesfully sent the simulation information to fortran.\n");
720 <    MPIcheckPoint();
721 < #endif // is_mpi
722 <  }
723 <
724 <
725 < #ifdef IS_MPI
726 <  void SimInfo::setupFortranParallel() {
727 <    
728 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
729 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
730 <    std::vector<int> localToGlobalCutoffGroupIndex;
731 <    SimInfo::MoleculeIterator mi;
732 <    Molecule::AtomIterator ai;
733 <    Molecule::CutoffGroupIterator ci;
734 <    Molecule* mol;
735 <    Atom* atom;
736 <    CutoffGroup* cg;
737 <    mpiSimData parallelData;
738 <    int isError;
739 <
740 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
741 <
742 <      //local index(index in DataStorge) of atom is important
743 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
744 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
745 <      }
746 <
747 <      //local index of cutoff group is trivial, it only depends on the order of travesing
748 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
749 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
750 <      }        
751 <        
752 <    }
753 <
754 <    //fill up mpiSimData struct
755 <    parallelData.nMolGlobal = getNGlobalMolecules();
756 <    parallelData.nMolLocal = getNMolecules();
757 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
758 <    parallelData.nAtomsLocal = getNAtoms();
759 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
760 <    parallelData.nGroupsLocal = getNCutoffGroups();
761 <    parallelData.myNode = worldRank;
762 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
763 <
764 <    //pass mpiSimData struct and index arrays to fortran
765 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
766 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
767 <                    &localToGlobalCutoffGroupIndex[0], &isError);
768 <
769 <    if (isError) {
770 <      sprintf(painCave.errMsg,
771 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
772 <      painCave.isFatal = 1;
773 <      simError();
774 <    }
775 <
776 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
777 <    MPIcheckPoint();
778 <
779 <
780 <  }
781 <
782 < #endif
783 <
784 <  double SimInfo::calcMaxCutoffRadius() {
785 <
786 <
787 <    std::set<AtomType*> atomTypes;
788 <    std::set<AtomType*>::iterator i;
789 <    std::vector<double> cutoffRadius;
790 <
791 <    //get the unique atom types
792 <    atomTypes = getUniqueAtomTypes();
793 <
794 <    //query the max cutoff radius among these atom types
795 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
796 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
797 <    }
798 <
799 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
800 < #ifdef IS_MPI
801 <    //pick the max cutoff radius among the processors
802 < #endif
803 <
804 <    return maxCutoffRadius;
805 <  }
806 <
807 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
808 <    
809 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
810 <        
811 <      if (!simParams_->haveCutoffRadius()){
812 <        sprintf(painCave.errMsg,
813 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
814 <                "\tOOPSE will use a default value of 15.0 angstroms"
815 <                "\tfor the cutoffRadius.\n");
816 <        painCave.isFatal = 0;
817 <        simError();
818 <        rcut = 15.0;
819 <      } else{
820 <        rcut = simParams_->getCutoffRadius();
821 <      }
822 <
823 <      if (!simParams_->haveSwitchingRadius()){
824 <        sprintf(painCave.errMsg,
825 <                "SimCreator Warning: No value was set for switchingRadius.\n"
826 <                "\tOOPSE will use a default value of\n"
827 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
828 <        painCave.isFatal = 0;
829 <        simError();
830 <        rsw = 0.95 * rcut;
831 <      } else{
832 <        rsw = simParams_->getSwitchingRadius();
833 <      }
834 <
835 <    } else {
836 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
837 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
838 <        
839 <      if (simParams_->haveCutoffRadius()) {
840 <        rcut = simParams_->getCutoffRadius();
841 <      } else {
842 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
843 <        rcut = calcMaxCutoffRadius();
844 <      }
845 <
846 <      if (simParams_->haveSwitchingRadius()) {
847 <        rsw  = simParams_->getSwitchingRadius();
848 <      } else {
849 <        rsw = rcut;
850 <      }
851 <    
852 <    }
970 >      
971 >    topologyDone_ = true;
972    }
973  
855  void SimInfo::setupCutoff() {    
856    getCutoff(rcut_, rsw_);    
857    double rnblist = rcut_ + 1; // skin of neighbor list
858
859    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
860    
861    int cp =  TRADITIONAL_CUTOFF_POLICY;
862    if (simParams_->haveCutoffPolicy()) {
863      std::string myPolicy = simParams_->getCutoffPolicy();
864      toUpper(myPolicy);
865      if (myPolicy == "MIX") {
866        cp = MIX_CUTOFF_POLICY;
867      } else {
868        if (myPolicy == "MAX") {
869          cp = MAX_CUTOFF_POLICY;
870        } else {
871          if (myPolicy == "TRADITIONAL") {            
872            cp = TRADITIONAL_CUTOFF_POLICY;
873          } else {
874            // throw error        
875            sprintf( painCave.errMsg,
876                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
877            painCave.isFatal = 1;
878            simError();
879          }    
880        }          
881      }
882    }
883
884
885    if (simParams_->haveSkinThickness()) {
886      double skinThickness = simParams_->getSkinThickness();
887    }
888
889    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
890    // also send cutoff notification to electrostatics
891    setElectrostaticCutoffRadius(&rcut_);
892  }
893
894  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
895    
896    int errorOut;
897    int esm =  NONE;
898    double alphaVal;
899    double dielectric;
900
901    errorOut = isError;
902    alphaVal = simParams_->getDampingAlpha();
903    dielectric = simParams_->getDielectric();
904
905    if (simParams_->haveElectrostaticSummationMethod()) {
906      std::string myMethod = simParams_->getElectrostaticSummationMethod();
907      toUpper(myMethod);
908      if (myMethod == "NONE") {
909        esm = NONE;
910      } else {
911        if (myMethod == "UNDAMPED_WOLF") {
912          esm = UNDAMPED_WOLF;
913        } else {
914          if (myMethod == "DAMPED_WOLF") {            
915            esm = DAMPED_WOLF;
916            if (!simParams_->haveDampingAlpha()) {
917              //throw error
918              sprintf( painCave.errMsg,
919                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal);
920              painCave.isFatal = 0;
921              simError();
922            }
923          } else {
924            if (myMethod == "REACTION_FIELD") {
925              esm = REACTION_FIELD;
926            } else {
927              // throw error        
928              sprintf( painCave.errMsg,
929                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
930              painCave.isFatal = 1;
931              simError();
932            }    
933          }          
934        }
935      }
936    }
937    // let's pass some summation method variables to fortran
938    setElectrostaticSummationMethod( &esm );
939    setDampedWolfAlpha( &alphaVal );
940    setReactionFieldDielectric( &dielectric );
941    initFortranFF( &esm, &errorOut );
942  }
943
974    void SimInfo::addProperty(GenericData* genData) {
975      properties_.addProperty(genData);  
976    }
977  
978 <  void SimInfo::removeProperty(const std::string& propName) {
978 >  void SimInfo::removeProperty(const string& propName) {
979      properties_.removeProperty(propName);  
980    }
981  
# Line 953 | Line 983 | namespace oopse {
983      properties_.clearProperties();
984    }
985  
986 <  std::vector<std::string> SimInfo::getPropertyNames() {
986 >  vector<string> SimInfo::getPropertyNames() {
987      return properties_.getPropertyNames();  
988    }
989        
990 <  std::vector<GenericData*> SimInfo::getProperties() {
990 >  vector<GenericData*> SimInfo::getProperties() {
991      return properties_.getProperties();
992    }
993  
994 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
994 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
995      return properties_.getPropertyByName(propName);
996    }
997  
# Line 972 | Line 1002 | namespace oopse {
1002      delete sman_;
1003      sman_ = sman;
1004  
975    Molecule* mol;
976    RigidBody* rb;
977    Atom* atom;
1005      SimInfo::MoleculeIterator mi;
1006 +    Molecule::AtomIterator ai;
1007      Molecule::RigidBodyIterator rbIter;
1008 <    Molecule::AtomIterator atomIter;;
1008 >    Molecule::CutoffGroupIterator cgIter;
1009 >    Molecule::BondIterator bondIter;
1010 >    Molecule::BendIterator bendIter;
1011 >    Molecule::TorsionIterator torsionIter;
1012 >    Molecule::InversionIterator inversionIter;
1013  
1014 +    Molecule* mol;
1015 +    Atom* atom;
1016 +    RigidBody* rb;
1017 +    CutoffGroup* cg;
1018 +    Bond* bond;
1019 +    Bend* bend;
1020 +    Torsion* torsion;
1021 +    Inversion* inversion;    
1022 +
1023      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1024          
1025 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1025 >      for (atom = mol->beginAtom(ai); atom != NULL;
1026 >           atom = mol->nextAtom(ai)) {
1027          atom->setSnapshotManager(sman_);
1028 <      }
1029 <        
1030 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1028 >      }        
1029 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1030 >           rb = mol->nextRigidBody(rbIter)) {
1031          rb->setSnapshotManager(sman_);
1032        }
1033 <    }    
1034 <    
1033 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1034 >           cg = mol->nextCutoffGroup(cgIter)) {
1035 >        cg->setSnapshotManager(sman_);
1036 >      }
1037 >      for (bond = mol->beginBond(bondIter); bond != NULL;
1038 >           bond = mol->nextBond(bondIter)) {
1039 >        bond->setSnapshotManager(sman_);
1040 >      }
1041 >      for (bend = mol->beginBend(bendIter); bend != NULL;
1042 >           bend = mol->nextBend(bendIter)) {
1043 >        bend->setSnapshotManager(sman_);
1044 >      }
1045 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
1046 >           torsion = mol->nextTorsion(torsionIter)) {
1047 >        torsion->setSnapshotManager(sman_);
1048 >      }
1049 >      for (inversion = mol->beginInversion(inversionIter); inversion != NULL;
1050 >           inversion = mol->nextInversion(inversionIter)) {
1051 >        inversion->setSnapshotManager(sman_);
1052 >      }
1053 >    }
1054    }
1055  
995  Vector3d SimInfo::getComVel(){
996    SimInfo::MoleculeIterator i;
997    Molecule* mol;
1056  
1057 <    Vector3d comVel(0.0);
1000 <    double totalMass = 0.0;
1001 <    
1002 <
1003 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1004 <      double mass = mol->getMass();
1005 <      totalMass += mass;
1006 <      comVel += mass * mol->getComVel();
1007 <    }  
1057 >  ostream& operator <<(ostream& o, SimInfo& info) {
1058  
1009 #ifdef IS_MPI
1010    double tmpMass = totalMass;
1011    Vector3d tmpComVel(comVel);    
1012    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1013    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1014 #endif
1015
1016    comVel /= totalMass;
1017
1018    return comVel;
1019  }
1020
1021  Vector3d SimInfo::getCom(){
1022    SimInfo::MoleculeIterator i;
1023    Molecule* mol;
1024
1025    Vector3d com(0.0);
1026    double totalMass = 0.0;
1027    
1028    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1029      double mass = mol->getMass();
1030      totalMass += mass;
1031      com += mass * mol->getCom();
1032    }  
1033
1034 #ifdef IS_MPI
1035    double tmpMass = totalMass;
1036    Vector3d tmpCom(com);    
1037    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1038    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1039 #endif
1040
1041    com /= totalMass;
1042
1043    return com;
1044
1045  }        
1046
1047  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1048
1059      return o;
1060    }
1061    
1062 <  
1063 <   /*
1064 <   Returns center of mass and center of mass velocity in one function call.
1065 <   */
1066 <  
1067 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1068 <      SimInfo::MoleculeIterator i;
1069 <      Molecule* mol;
1070 <      
1071 <    
1072 <      double totalMass = 0.0;
1073 <    
1062 >  
1063 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1064 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1065 >      sprintf(painCave.errMsg,
1066 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1067 >              "\tindex exceeds number of known objects!\n");
1068 >      painCave.isFatal = 1;
1069 >      simError();
1070 >      return NULL;
1071 >    } else
1072 >      return IOIndexToIntegrableObject.at(index);
1073 >  }
1074 >  
1075 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1076 >    IOIndexToIntegrableObject= v;
1077 >  }
1078  
1079 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1066 <         double mass = mol->getMass();
1067 <         totalMass += mass;
1068 <         com += mass * mol->getCom();
1069 <         comVel += mass * mol->getComVel();          
1070 <      }  
1071 <      
1079 >  void SimInfo::calcNConstraints() {
1080   #ifdef IS_MPI
1081 <      double tmpMass = totalMass;
1082 <      Vector3d tmpCom(com);  
1083 <      Vector3d tmpComVel(comVel);
1084 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1077 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1078 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1081 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints_, 1,  
1082 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
1083 > #else
1084 >    nGlobalConstraints_ =  nConstraints_;
1085   #endif
1086 <      
1081 <      com /= totalMass;
1082 <      comVel /= totalMass;
1083 <   }        
1084 <  
1085 <   /*
1086 <   Return intertia tensor for entire system and angular momentum Vector.
1086 >  }
1087  
1088 + }//end namespace OpenMD
1089  
1089       [  Ixx -Ixy  -Ixz ]
1090  J =| -Iyx  Iyy  -Iyz |
1091       [ -Izx -Iyz   Izz ]
1092    */
1093
1094   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1095      
1096
1097      double xx = 0.0;
1098      double yy = 0.0;
1099      double zz = 0.0;
1100      double xy = 0.0;
1101      double xz = 0.0;
1102      double yz = 0.0;
1103      Vector3d com(0.0);
1104      Vector3d comVel(0.0);
1105      
1106      getComAll(com, comVel);
1107      
1108      SimInfo::MoleculeIterator i;
1109      Molecule* mol;
1110      
1111      Vector3d thisq(0.0);
1112      Vector3d thisv(0.0);
1113
1114      double thisMass = 0.0;
1115    
1116      
1117      
1118  
1119      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1120        
1121         thisq = mol->getCom()-com;
1122         thisv = mol->getComVel()-comVel;
1123         thisMass = mol->getMass();
1124         // Compute moment of intertia coefficients.
1125         xx += thisq[0]*thisq[0]*thisMass;
1126         yy += thisq[1]*thisq[1]*thisMass;
1127         zz += thisq[2]*thisq[2]*thisMass;
1128        
1129         // compute products of intertia
1130         xy += thisq[0]*thisq[1]*thisMass;
1131         xz += thisq[0]*thisq[2]*thisMass;
1132         yz += thisq[1]*thisq[2]*thisMass;
1133            
1134         angularMomentum += cross( thisq, thisv ) * thisMass;
1135            
1136      }  
1137      
1138      
1139      inertiaTensor(0,0) = yy + zz;
1140      inertiaTensor(0,1) = -xy;
1141      inertiaTensor(0,2) = -xz;
1142      inertiaTensor(1,0) = -xy;
1143      inertiaTensor(1,1) = xx + zz;
1144      inertiaTensor(1,2) = -yz;
1145      inertiaTensor(2,0) = -xz;
1146      inertiaTensor(2,1) = -yz;
1147      inertiaTensor(2,2) = xx + yy;
1148      
1149 #ifdef IS_MPI
1150      Mat3x3d tmpI(inertiaTensor);
1151      Vector3d tmpAngMom;
1152      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1153      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1154 #endif
1155              
1156      return;
1157   }
1158
1159   //Returns the angular momentum of the system
1160   Vector3d SimInfo::getAngularMomentum(){
1161      
1162      Vector3d com(0.0);
1163      Vector3d comVel(0.0);
1164      Vector3d angularMomentum(0.0);
1165      
1166      getComAll(com,comVel);
1167      
1168      SimInfo::MoleculeIterator i;
1169      Molecule* mol;
1170      
1171      Vector3d thisr(0.0);
1172      Vector3d thisp(0.0);
1173      
1174      double thisMass;
1175      
1176      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1177        thisMass = mol->getMass();
1178        thisr = mol->getCom()-com;
1179        thisp = (mol->getComVel()-comVel)*thisMass;
1180        
1181        angularMomentum += cross( thisr, thisp );
1182        
1183      }  
1184      
1185 #ifdef IS_MPI
1186      Vector3d tmpAngMom;
1187      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1188 #endif
1189      
1190      return angularMomentum;
1191   }
1192  
1193  
1194 }//end namespace oopse
1195

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 665 by tim, Thu Oct 13 22:26:47 2005 UTC vs.
Revision 1983 by gezelter, Tue Apr 15 20:36:19 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines