ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 608 by chrisfen, Fri Sep 16 21:07:45 2005 UTC vs.
Revision 1908 by gezelter, Fri Jul 19 21:25:45 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 48 | Line 49
49  
50   #include <algorithm>
51   #include <set>
52 + #include <map>
53  
54   #include "brains/SimInfo.hpp"
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57 < #include "UseTheForce/fCutoffPolicy.h"
56 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 < #include "UseTheForce/doForces_interface.h"
58 < #include "UseTheForce/notifyCutoffs_interface.h"
57 > #include "primitives/StuntDouble.hpp"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61 <
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
66 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <
70 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
71 <                   ForceField* ff, Globals* simParams) :
72 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
73 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false) {
79 <
80 <            
81 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
82 <      MoleculeStamp* molStamp;
83 <      int nMolWithSameStamp;
84 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
85 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
86 <      CutoffGroupStamp* cgStamp;    
87 <      RigidBodyStamp* rbStamp;
88 <      int nRigidAtoms = 0;
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
82 <        molStamp = i->first;
83 <        nMolWithSameStamp = i->second;
84 <        
85 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
86 <
87 <        //calculate atoms in molecules
88 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
89 <
90 <
91 <        //calculate atoms in cutoff groups
92 <        int nAtomsInGroups = 0;
93 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
94 <        
95 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
96 <          cgStamp = molStamp->getCutoffGroup(j);
97 <          nAtomsInGroups += cgStamp->getNMembers();
98 <        }
108 <
109 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
111 <
112 <        //calculate atoms in rigid bodies
113 <        int nAtomsInRigidBodies = 0;
114 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
115 <        
116 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
117 <          rbStamp = molStamp->getRigidBody(j);
118 <          nAtomsInRigidBodies += rbStamp->getNMembers();
119 <        }
120 <
121 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
122 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
123 <        
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      if ( (*i)->haveRegion() ) {        
95 >        molStamp->setRegion( (*i)->getRegion() );
96 >      } else {
97 >        // set the region to a disallowed value:
98 >        molStamp->setRegion( -1 );
99        }
100  
101 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
102 <      //therefore the total number of cutoff groups in the system is equal to
103 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
104 <      //file plus the number of cutoff groups defined in meta-data file
105 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
106 <
107 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
108 <      //therefore the total number of  integrable objects in the system is equal to
109 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
110 <      //file plus the number of  rigid bodies defined in meta-data file
111 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
112 <
113 <      nGlobalMols_ = molStampIds_.size();
114 <
115 < #ifdef IS_MPI    
116 <      molToProcMap_.resize(nGlobalMols_);
117 < #endif
118 <
101 >      nMolWithSameStamp = (*i)->getNMol();
102 >      
103 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
104 >      
105 >      //calculate atoms in molecules
106 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
107 >      
108 >      //calculate atoms in cutoff groups
109 >      int nAtomsInGroups = 0;
110 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
111 >      
112 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
113 >        cgStamp = molStamp->getCutoffGroupStamp(j);
114 >        nAtomsInGroups += cgStamp->getNMembers();
115 >      }
116 >      
117 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
118 >      
119 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
120 >      
121 >      //calculate atoms in rigid bodies
122 >      int nAtomsInRigidBodies = 0;
123 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
124 >      
125 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
126 >        rbStamp = molStamp->getRigidBodyStamp(j);
127 >        nAtomsInRigidBodies += rbStamp->getNMembers();
128 >      }
129 >      
130 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
131 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
132 >      
133      }
134 +    
135 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
136 +    //group therefore the total number of cutoff groups in the system is
137 +    //equal to the total number of atoms minus number of atoms belong to
138 +    //cutoff group defined in meta-data file plus the number of cutoff
139 +    //groups defined in meta-data file
140  
141 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
142 +    
143 +    //every free atom (atom does not belong to rigid bodies) is an
144 +    //integrable object therefore the total number of integrable objects
145 +    //in the system is equal to the total number of atoms minus number of
146 +    //atoms belong to rigid body defined in meta-data file plus the number
147 +    //of rigid bodies defined in meta-data file
148 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 +      + nGlobalRigidBodies_;
150 +    
151 +    nGlobalMols_ = molStampIds_.size();
152 +    molToProcMap_.resize(nGlobalMols_);
153 +  }
154 +  
155    SimInfo::~SimInfo() {
156 <    std::map<int, Molecule*>::iterator i;
156 >    map<int, Molecule*>::iterator i;
157      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158        delete i->second;
159      }
160      molecules_.clear();
161        
153    delete stamps_;
162      delete sman_;
163      delete simParams_;
164      delete forceField_;
165    }
166  
159  int SimInfo::getNGlobalConstraints() {
160    int nGlobalConstraints;
161 #ifdef IS_MPI
162    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
163                  MPI_COMM_WORLD);    
164 #else
165    nGlobalConstraints =  nConstraints_;
166 #endif
167    return nGlobalConstraints;
168  }
167  
168    bool SimInfo::addMolecule(Molecule* mol) {
169      MoleculeIterator i;
170 <
170 >    
171      i = molecules_.find(mol->getGlobalIndex());
172      if (i == molecules_.end() ) {
173 <
174 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 <        
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176        nAtoms_ += mol->getNAtoms();
177        nBonds_ += mol->getNBonds();
178        nBends_ += mol->getNBends();
179        nTorsions_ += mol->getNTorsions();
180 +      nInversions_ += mol->getNInversions();
181        nRigidBodies_ += mol->getNRigidBodies();
182        nIntegrableObjects_ += mol->getNIntegrableObjects();
183        nCutoffGroups_ += mol->getNCutoffGroups();
184        nConstraints_ += mol->getNConstraintPairs();
185 <
186 <      addExcludePairs(mol);
187 <        
185 >      
186 >      addInteractionPairs(mol);
187 >      
188        return true;
189      } else {
190        return false;
191      }
192    }
193 <
193 >  
194    bool SimInfo::removeMolecule(Molecule* mol) {
195      MoleculeIterator i;
196      i = molecules_.find(mol->getGlobalIndex());
# Line 204 | Line 203 | namespace oopse {
203        nBonds_ -= mol->getNBonds();
204        nBends_ -= mol->getNBends();
205        nTorsions_ -= mol->getNTorsions();
206 +      nInversions_ -= mol->getNInversions();
207        nRigidBodies_ -= mol->getNRigidBodies();
208        nIntegrableObjects_ -= mol->getNIntegrableObjects();
209        nCutoffGroups_ -= mol->getNCutoffGroups();
210        nConstraints_ -= mol->getNConstraintPairs();
211  
212 <      removeExcludePairs(mol);
212 >      removeInteractionPairs(mol);
213        molecules_.erase(mol->getGlobalIndex());
214  
215        delete mol;
# Line 218 | Line 218 | namespace oopse {
218      } else {
219        return false;
220      }
221
222
221    }    
222  
223          
# Line 235 | Line 233 | namespace oopse {
233  
234  
235    void SimInfo::calcNdf() {
236 <    int ndf_local;
236 >    int ndf_local, nfq_local;
237      MoleculeIterator i;
238 <    std::vector<StuntDouble*>::iterator j;
238 >    vector<StuntDouble*>::iterator j;
239 >    vector<Atom*>::iterator k;
240 >
241      Molecule* mol;
242 <    StuntDouble* integrableObject;
242 >    StuntDouble* sd;
243 >    Atom* atom;
244  
245      ndf_local = 0;
246 +    nfq_local = 0;
247      
248      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
247      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
248           integrableObject = mol->nextIntegrableObject(j)) {
249  
250 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
251 +           sd = mol->nextIntegrableObject(j)) {
252 +
253          ndf_local += 3;
254  
255 <        if (integrableObject->isDirectional()) {
256 <          if (integrableObject->isLinear()) {
255 >        if (sd->isDirectional()) {
256 >          if (sd->isLinear()) {
257              ndf_local += 2;
258            } else {
259              ndf_local += 3;
260            }
261          }
262 <            
263 <      }//end for (integrableObject)
264 <    }// end for (mol)
262 >      }
263 >
264 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
265 >           atom = mol->nextFluctuatingCharge(k)) {
266 >        if (atom->isFluctuatingCharge()) {
267 >          nfq_local++;
268 >        }
269 >      }
270 >    }
271      
272 +    ndfLocal_ = ndf_local;
273 +
274      // n_constraints is local, so subtract them on each processor
275      ndf_local -= nConstraints_;
276  
277   #ifdef IS_MPI
278 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
278 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
279 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
280 >                              MPI::INT, MPI::SUM);
281   #else
282      ndf_ = ndf_local;
283 +    nGlobalFluctuatingCharges_ = nfq_local;
284   #endif
285  
286      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 275 | Line 289 | namespace oopse {
289  
290    }
291  
292 +  int SimInfo::getFdf() {
293 + #ifdef IS_MPI
294 +    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
295 + #else
296 +    fdf_ = fdf_local;
297 + #endif
298 +    return fdf_;
299 +  }
300 +  
301 +  unsigned int SimInfo::getNLocalCutoffGroups(){
302 +    int nLocalCutoffAtoms = 0;
303 +    Molecule* mol;
304 +    MoleculeIterator mi;
305 +    CutoffGroup* cg;
306 +    Molecule::CutoffGroupIterator ci;
307 +    
308 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
309 +      
310 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
311 +           cg = mol->nextCutoffGroup(ci)) {
312 +        nLocalCutoffAtoms += cg->getNumAtom();
313 +        
314 +      }        
315 +    }
316 +    
317 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
318 +  }
319 +    
320    void SimInfo::calcNdfRaw() {
321      int ndfRaw_local;
322  
323      MoleculeIterator i;
324 <    std::vector<StuntDouble*>::iterator j;
324 >    vector<StuntDouble*>::iterator j;
325      Molecule* mol;
326 <    StuntDouble* integrableObject;
326 >    StuntDouble* sd;
327  
328      // Raw degrees of freedom that we have to set
329      ndfRaw_local = 0;
330      
331      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
290      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
291           integrableObject = mol->nextIntegrableObject(j)) {
332  
333 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
334 +           sd = mol->nextIntegrableObject(j)) {
335 +
336          ndfRaw_local += 3;
337  
338 <        if (integrableObject->isDirectional()) {
339 <          if (integrableObject->isLinear()) {
338 >        if (sd->isDirectional()) {
339 >          if (sd->isLinear()) {
340              ndfRaw_local += 2;
341            } else {
342              ndfRaw_local += 3;
# Line 304 | Line 347 | namespace oopse {
347      }
348      
349   #ifdef IS_MPI
350 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
350 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
351   #else
352      ndfRaw_ = ndfRaw_local;
353   #endif
# Line 317 | Line 360 | namespace oopse {
360  
361  
362   #ifdef IS_MPI
363 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
363 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
364 >                              MPI::INT, MPI::SUM);
365   #else
366      ndfTrans_ = ndfTrans_local;
367   #endif
# Line 326 | Line 370 | namespace oopse {
370  
371    }
372  
373 <  void SimInfo::addExcludePairs(Molecule* mol) {
374 <    std::vector<Bond*>::iterator bondIter;
375 <    std::vector<Bend*>::iterator bendIter;
376 <    std::vector<Torsion*>::iterator torsionIter;
373 >  void SimInfo::addInteractionPairs(Molecule* mol) {
374 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
375 >    vector<Bond*>::iterator bondIter;
376 >    vector<Bend*>::iterator bendIter;
377 >    vector<Torsion*>::iterator torsionIter;
378 >    vector<Inversion*>::iterator inversionIter;
379      Bond* bond;
380      Bend* bend;
381      Torsion* torsion;
382 +    Inversion* inversion;
383      int a;
384      int b;
385      int c;
386      int d;
387 +
388 +    // atomGroups can be used to add special interaction maps between
389 +    // groups of atoms that are in two separate rigid bodies.
390 +    // However, most site-site interactions between two rigid bodies
391 +    // are probably not special, just the ones between the physically
392 +    // bonded atoms.  Interactions *within* a single rigid body should
393 +    // always be excluded.  These are done at the bottom of this
394 +    // function.
395 +
396 +    map<int, set<int> > atomGroups;
397 +    Molecule::RigidBodyIterator rbIter;
398 +    RigidBody* rb;
399 +    Molecule::IntegrableObjectIterator ii;
400 +    StuntDouble* sd;
401      
402 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
402 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
403 >         sd = mol->nextIntegrableObject(ii)) {
404 >      
405 >      if (sd->isRigidBody()) {
406 >        rb = static_cast<RigidBody*>(sd);
407 >        vector<Atom*> atoms = rb->getAtoms();
408 >        set<int> rigidAtoms;
409 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
410 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
411 >        }
412 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
413 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
414 >        }      
415 >      } else {
416 >        set<int> oneAtomSet;
417 >        oneAtomSet.insert(sd->getGlobalIndex());
418 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
419 >      }
420 >    }  
421 >          
422 >    for (bond= mol->beginBond(bondIter); bond != NULL;
423 >         bond = mol->nextBond(bondIter)) {
424 >
425        a = bond->getAtomA()->getGlobalIndex();
426 <      b = bond->getAtomB()->getGlobalIndex();        
427 <      exclude_.addPair(a, b);
426 >      b = bond->getAtomB()->getGlobalIndex();  
427 >
428 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
429 >        oneTwoInteractions_.addPair(a, b);
430 >      } else {
431 >        excludedInteractions_.addPair(a, b);
432 >      }
433      }
434  
435 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
435 >    for (bend= mol->beginBend(bendIter); bend != NULL;
436 >         bend = mol->nextBend(bendIter)) {
437 >
438        a = bend->getAtomA()->getGlobalIndex();
439        b = bend->getAtomB()->getGlobalIndex();        
440        c = bend->getAtomC()->getGlobalIndex();
441 <
442 <      exclude_.addPair(a, b);
443 <      exclude_.addPair(a, c);
444 <      exclude_.addPair(b, c);        
441 >      
442 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
443 >        oneTwoInteractions_.addPair(a, b);      
444 >        oneTwoInteractions_.addPair(b, c);
445 >      } else {
446 >        excludedInteractions_.addPair(a, b);
447 >        excludedInteractions_.addPair(b, c);
448 >      }
449 >
450 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
451 >        oneThreeInteractions_.addPair(a, c);      
452 >      } else {
453 >        excludedInteractions_.addPair(a, c);
454 >      }
455      }
456  
457 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
457 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
458 >         torsion = mol->nextTorsion(torsionIter)) {
459 >
460        a = torsion->getAtomA()->getGlobalIndex();
461        b = torsion->getAtomB()->getGlobalIndex();        
462        c = torsion->getAtomC()->getGlobalIndex();        
463 <      d = torsion->getAtomD()->getGlobalIndex();        
463 >      d = torsion->getAtomD()->getGlobalIndex();      
464  
465 <      exclude_.addPair(a, b);
466 <      exclude_.addPair(a, c);
467 <      exclude_.addPair(a, d);
468 <      exclude_.addPair(b, c);
469 <      exclude_.addPair(b, d);
470 <      exclude_.addPair(c, d);        
465 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
466 >        oneTwoInteractions_.addPair(a, b);      
467 >        oneTwoInteractions_.addPair(b, c);
468 >        oneTwoInteractions_.addPair(c, d);
469 >      } else {
470 >        excludedInteractions_.addPair(a, b);
471 >        excludedInteractions_.addPair(b, c);
472 >        excludedInteractions_.addPair(c, d);
473 >      }
474 >
475 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
476 >        oneThreeInteractions_.addPair(a, c);      
477 >        oneThreeInteractions_.addPair(b, d);      
478 >      } else {
479 >        excludedInteractions_.addPair(a, c);
480 >        excludedInteractions_.addPair(b, d);
481 >      }
482 >
483 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
484 >        oneFourInteractions_.addPair(a, d);      
485 >      } else {
486 >        excludedInteractions_.addPair(a, d);
487 >      }
488      }
489  
490 <    Molecule::RigidBodyIterator rbIter;
491 <    RigidBody* rb;
492 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
493 <      std::vector<Atom*> atoms = rb->getAtoms();
494 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
495 <        for (int j = i + 1; j < atoms.size(); ++j) {
490 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
491 >         inversion = mol->nextInversion(inversionIter)) {
492 >
493 >      a = inversion->getAtomA()->getGlobalIndex();
494 >      b = inversion->getAtomB()->getGlobalIndex();        
495 >      c = inversion->getAtomC()->getGlobalIndex();        
496 >      d = inversion->getAtomD()->getGlobalIndex();        
497 >
498 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
499 >        oneTwoInteractions_.addPair(a, b);      
500 >        oneTwoInteractions_.addPair(a, c);
501 >        oneTwoInteractions_.addPair(a, d);
502 >      } else {
503 >        excludedInteractions_.addPair(a, b);
504 >        excludedInteractions_.addPair(a, c);
505 >        excludedInteractions_.addPair(a, d);
506 >      }
507 >
508 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
509 >        oneThreeInteractions_.addPair(b, c);    
510 >        oneThreeInteractions_.addPair(b, d);    
511 >        oneThreeInteractions_.addPair(c, d);      
512 >      } else {
513 >        excludedInteractions_.addPair(b, c);
514 >        excludedInteractions_.addPair(b, d);
515 >        excludedInteractions_.addPair(c, d);
516 >      }
517 >    }
518 >
519 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
520 >         rb = mol->nextRigidBody(rbIter)) {
521 >      vector<Atom*> atoms = rb->getAtoms();
522 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
523 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
524            a = atoms[i]->getGlobalIndex();
525            b = atoms[j]->getGlobalIndex();
526 <          exclude_.addPair(a, b);
526 >          excludedInteractions_.addPair(a, b);
527          }
528        }
529      }        
530  
531    }
532  
533 <  void SimInfo::removeExcludePairs(Molecule* mol) {
534 <    std::vector<Bond*>::iterator bondIter;
535 <    std::vector<Bend*>::iterator bendIter;
536 <    std::vector<Torsion*>::iterator torsionIter;
533 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
534 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
535 >    vector<Bond*>::iterator bondIter;
536 >    vector<Bend*>::iterator bendIter;
537 >    vector<Torsion*>::iterator torsionIter;
538 >    vector<Inversion*>::iterator inversionIter;
539      Bond* bond;
540      Bend* bend;
541      Torsion* torsion;
542 +    Inversion* inversion;
543      int a;
544      int b;
545      int c;
546      int d;
547 +
548 +    map<int, set<int> > atomGroups;
549 +    Molecule::RigidBodyIterator rbIter;
550 +    RigidBody* rb;
551 +    Molecule::IntegrableObjectIterator ii;
552 +    StuntDouble* sd;
553      
554 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
554 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
555 >         sd = mol->nextIntegrableObject(ii)) {
556 >      
557 >      if (sd->isRigidBody()) {
558 >        rb = static_cast<RigidBody*>(sd);
559 >        vector<Atom*> atoms = rb->getAtoms();
560 >        set<int> rigidAtoms;
561 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
562 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
563 >        }
564 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
565 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
566 >        }      
567 >      } else {
568 >        set<int> oneAtomSet;
569 >        oneAtomSet.insert(sd->getGlobalIndex());
570 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
571 >      }
572 >    }  
573 >
574 >    for (bond= mol->beginBond(bondIter); bond != NULL;
575 >         bond = mol->nextBond(bondIter)) {
576 >      
577        a = bond->getAtomA()->getGlobalIndex();
578 <      b = bond->getAtomB()->getGlobalIndex();        
579 <      exclude_.removePair(a, b);
578 >      b = bond->getAtomB()->getGlobalIndex();  
579 >    
580 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581 >        oneTwoInteractions_.removePair(a, b);
582 >      } else {
583 >        excludedInteractions_.removePair(a, b);
584 >      }
585      }
586  
587 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
587 >    for (bend= mol->beginBend(bendIter); bend != NULL;
588 >         bend = mol->nextBend(bendIter)) {
589 >
590        a = bend->getAtomA()->getGlobalIndex();
591        b = bend->getAtomB()->getGlobalIndex();        
592        c = bend->getAtomC()->getGlobalIndex();
593 +      
594 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
595 +        oneTwoInteractions_.removePair(a, b);      
596 +        oneTwoInteractions_.removePair(b, c);
597 +      } else {
598 +        excludedInteractions_.removePair(a, b);
599 +        excludedInteractions_.removePair(b, c);
600 +      }
601  
602 <      exclude_.removePair(a, b);
603 <      exclude_.removePair(a, c);
604 <      exclude_.removePair(b, c);        
602 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
603 >        oneThreeInteractions_.removePair(a, c);      
604 >      } else {
605 >        excludedInteractions_.removePair(a, c);
606 >      }
607      }
608  
609 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
609 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
610 >         torsion = mol->nextTorsion(torsionIter)) {
611 >
612        a = torsion->getAtomA()->getGlobalIndex();
613        b = torsion->getAtomB()->getGlobalIndex();        
614        c = torsion->getAtomC()->getGlobalIndex();        
615 <      d = torsion->getAtomD()->getGlobalIndex();        
615 >      d = torsion->getAtomD()->getGlobalIndex();      
616 >  
617 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
618 >        oneTwoInteractions_.removePair(a, b);      
619 >        oneTwoInteractions_.removePair(b, c);
620 >        oneTwoInteractions_.removePair(c, d);
621 >      } else {
622 >        excludedInteractions_.removePair(a, b);
623 >        excludedInteractions_.removePair(b, c);
624 >        excludedInteractions_.removePair(c, d);
625 >      }
626  
627 <      exclude_.removePair(a, b);
628 <      exclude_.removePair(a, c);
629 <      exclude_.removePair(a, d);
630 <      exclude_.removePair(b, c);
631 <      exclude_.removePair(b, d);
632 <      exclude_.removePair(c, d);        
627 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
628 >        oneThreeInteractions_.removePair(a, c);      
629 >        oneThreeInteractions_.removePair(b, d);      
630 >      } else {
631 >        excludedInteractions_.removePair(a, c);
632 >        excludedInteractions_.removePair(b, d);
633 >      }
634 >
635 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
636 >        oneFourInteractions_.removePair(a, d);      
637 >      } else {
638 >        excludedInteractions_.removePair(a, d);
639 >      }
640      }
641  
642 <    Molecule::RigidBodyIterator rbIter;
643 <    RigidBody* rb;
644 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
645 <      std::vector<Atom*> atoms = rb->getAtoms();
646 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
647 <        for (int j = i + 1; j < atoms.size(); ++j) {
642 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
643 >         inversion = mol->nextInversion(inversionIter)) {
644 >
645 >      a = inversion->getAtomA()->getGlobalIndex();
646 >      b = inversion->getAtomB()->getGlobalIndex();        
647 >      c = inversion->getAtomC()->getGlobalIndex();        
648 >      d = inversion->getAtomD()->getGlobalIndex();        
649 >
650 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
651 >        oneTwoInteractions_.removePair(a, b);      
652 >        oneTwoInteractions_.removePair(a, c);
653 >        oneTwoInteractions_.removePair(a, d);
654 >      } else {
655 >        excludedInteractions_.removePair(a, b);
656 >        excludedInteractions_.removePair(a, c);
657 >        excludedInteractions_.removePair(a, d);
658 >      }
659 >
660 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
661 >        oneThreeInteractions_.removePair(b, c);    
662 >        oneThreeInteractions_.removePair(b, d);    
663 >        oneThreeInteractions_.removePair(c, d);      
664 >      } else {
665 >        excludedInteractions_.removePair(b, c);
666 >        excludedInteractions_.removePair(b, d);
667 >        excludedInteractions_.removePair(c, d);
668 >      }
669 >    }
670 >
671 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
672 >         rb = mol->nextRigidBody(rbIter)) {
673 >      vector<Atom*> atoms = rb->getAtoms();
674 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
675 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
676            a = atoms[i]->getGlobalIndex();
677            b = atoms[j]->getGlobalIndex();
678 <          exclude_.removePair(a, b);
678 >          excludedInteractions_.removePair(a, b);
679          }
680        }
681      }        
682 <
682 >    
683    }
684 <
685 <
684 >  
685 >  
686    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
687      int curStampId;
688 <
688 >    
689      //index from 0
690      curStampId = moleculeStamps_.size();
691  
# Line 451 | Line 693 | namespace oopse {
693      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
694    }
695  
454  void SimInfo::update() {
696  
697 <    setupSimType();
698 <
699 < #ifdef IS_MPI
700 <    setupFortranParallel();
701 < #endif
702 <
703 <    setupFortranSim();
704 <
705 <    //setup fortran force field
465 <    /** @deprecate */    
466 <    int isError = 0;
467 <    
468 <    setupElectrostaticSummationMethod( isError );
469 <
470 <    if(isError){
471 <      sprintf( painCave.errMsg,
472 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
473 <      painCave.isFatal = 1;
474 <      simError();
475 <    }
476 <  
477 <    
478 <    setupCutoff();
479 <
697 >  /**
698 >   * update
699 >   *
700 >   *  Performs the global checks and variable settings after the
701 >   *  objects have been created.
702 >   *
703 >   */
704 >  void SimInfo::update() {  
705 >    setupSimVariables();
706      calcNdf();
707      calcNdfRaw();
708      calcNdfTrans();
483
484    fortranInitialized_ = true;
709    }
710 <
711 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
710 >  
711 >  /**
712 >   * getSimulatedAtomTypes
713 >   *
714 >   * Returns an STL set of AtomType* that are actually present in this
715 >   * simulation.  Must query all processors to assemble this information.
716 >   *
717 >   */
718 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
719      SimInfo::MoleculeIterator mi;
720      Molecule* mol;
721      Molecule::AtomIterator ai;
722      Atom* atom;
723 <    std::set<AtomType*> atomTypes;
724 <
723 >    set<AtomType*> atomTypes;
724 >    
725      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
726 <
727 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
726 >      for(atom = mol->beginAtom(ai); atom != NULL;
727 >          atom = mol->nextAtom(ai)) {
728          atomTypes.insert(atom->getAtomType());
729 <      }
730 <        
729 >      }      
730 >    }    
731 >    
732 > #ifdef IS_MPI
733 >
734 >    // loop over the found atom types on this processor, and add their
735 >    // numerical idents to a vector:
736 >    
737 >    vector<int> foundTypes;
738 >    set<AtomType*>::iterator i;
739 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
740 >      foundTypes.push_back( (*i)->getIdent() );
741 >
742 >    // count_local holds the number of found types on this processor
743 >    int count_local = foundTypes.size();
744 >
745 >    int nproc = MPI::COMM_WORLD.Get_size();
746 >
747 >    // we need arrays to hold the counts and displacement vectors for
748 >    // all processors
749 >    vector<int> counts(nproc, 0);
750 >    vector<int> disps(nproc, 0);
751 >
752 >    // fill the counts array
753 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
754 >                              1, MPI::INT);
755 >  
756 >    // use the processor counts to compute the displacement array
757 >    disps[0] = 0;    
758 >    int totalCount = counts[0];
759 >    for (int iproc = 1; iproc < nproc; iproc++) {
760 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
761 >      totalCount += counts[iproc];
762      }
763  
764 +    // we need a (possibly redundant) set of all found types:
765 +    vector<int> ftGlobal(totalCount);
766 +    
767 +    // now spray out the foundTypes to all the other processors:    
768 +    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
769 +                               &ftGlobal[0], &counts[0], &disps[0],
770 +                               MPI::INT);
771 +
772 +    vector<int>::iterator j;
773 +
774 +    // foundIdents is a stl set, so inserting an already found ident
775 +    // will have no effect.
776 +    set<int> foundIdents;
777 +
778 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
779 +      foundIdents.insert((*j));
780 +    
781 +    // now iterate over the foundIdents and get the actual atom types
782 +    // that correspond to these:
783 +    set<int>::iterator it;
784 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
785 +      atomTypes.insert( forceField_->getAtomType((*it)) );
786 +
787 + #endif
788 +
789      return atomTypes;        
790    }
791  
792 <  void SimInfo::setupSimType() {
793 <    std::set<AtomType*>::iterator i;
794 <    std::set<AtomType*> atomTypes;
795 <    atomTypes = getUniqueAtomTypes();
796 <    
510 <    int useLennardJones = 0;
511 <    int useElectrostatic = 0;
512 <    int useEAM = 0;
513 <    int useCharge = 0;
514 <    int useDirectional = 0;
515 <    int useDipole = 0;
516 <    int useGayBerne = 0;
517 <    int useSticky = 0;
518 <    int useStickyPower = 0;
519 <    int useShape = 0;
520 <    int useFLARB = 0; //it is not in AtomType yet
521 <    int useDirectionalAtom = 0;    
522 <    int useElectrostatics = 0;
523 <    //usePBC and useRF are from simParams
524 <    int usePBC = simParams_->getPBC();
792 >
793 >  int getGlobalCountOfType(AtomType* atype) {
794 >    /*
795 >    set<AtomType*> atypes = getSimulatedAtomTypes();
796 >    map<AtomType*, int> counts_;
797  
798 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
799 +      for(atom = mol->beginAtom(ai); atom != NULL;
800 +          atom = mol->nextAtom(ai)) {
801 +        atom->getAtomType();
802 +      }      
803 +    }    
804 +    */
805 +    return 0;
806 +  }
807 +
808 +  void SimInfo::setupSimVariables() {
809 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
810 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
811 +    // parameter is true
812 +    calcBoxDipole_ = false;
813 +    if ( simParams_->haveAccumulateBoxDipole() )
814 +      if ( simParams_->getAccumulateBoxDipole() ) {
815 +        calcBoxDipole_ = true;      
816 +      }
817 +    
818 +    set<AtomType*>::iterator i;
819 +    set<AtomType*> atomTypes;
820 +    atomTypes = getSimulatedAtomTypes();    
821 +    bool usesElectrostatic = false;
822 +    bool usesMetallic = false;
823 +    bool usesDirectional = false;
824 +    bool usesFluctuatingCharges =  false;
825      //loop over all of the atom types
826      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
827 <      useLennardJones |= (*i)->isLennardJones();
828 <      useElectrostatic |= (*i)->isElectrostatic();
829 <      useEAM |= (*i)->isEAM();
830 <      useCharge |= (*i)->isCharge();
532 <      useDirectional |= (*i)->isDirectional();
533 <      useDipole |= (*i)->isDipole();
534 <      useGayBerne |= (*i)->isGayBerne();
535 <      useSticky |= (*i)->isSticky();
536 <      useStickyPower |= (*i)->isStickyPower();
537 <      useShape |= (*i)->isShape();
827 >      usesElectrostatic |= (*i)->isElectrostatic();
828 >      usesMetallic |= (*i)->isMetal();
829 >      usesDirectional |= (*i)->isDirectional();
830 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
831      }
832  
833 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
834 <      useDirectionalAtom = 1;
835 <    }
836 <
837 <    if (useCharge || useDipole) {
838 <      useElectrostatics = 1;
839 <    }
840 <
841 < #ifdef IS_MPI    
549 <    int temp;
550 <
551 <    temp = usePBC;
552 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
553 <
554 <    temp = useDirectionalAtom;
555 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
556 <
557 <    temp = useLennardJones;
558 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
559 <
560 <    temp = useElectrostatics;
561 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
562 <
563 <    temp = useCharge;
564 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
565 <
566 <    temp = useDipole;
567 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
568 <
569 <    temp = useSticky;
570 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
571 <
572 <    temp = useStickyPower;
573 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
833 > #ifdef IS_MPI
834 >    bool temp;
835 >    temp = usesDirectional;
836 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
837 >                              MPI::LOR);
838 >        
839 >    temp = usesMetallic;
840 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
841 >                              MPI::LOR);
842      
843 <    temp = useGayBerne;
844 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
843 >    temp = usesElectrostatic;
844 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
845 >                              MPI::LOR);
846  
847 <    temp = useEAM;
848 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
847 >    temp = usesFluctuatingCharges;
848 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
849 >                              MPI::LOR);
850 > #else
851  
852 <    temp = useShape;
853 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
852 >    usesDirectionalAtoms_ = usesDirectional;
853 >    usesMetallicAtoms_ = usesMetallic;
854 >    usesElectrostaticAtoms_ = usesElectrostatic;
855 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
856  
584    temp = useFLARB;
585    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
586
857   #endif
858 +    
859 +    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
860 +    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
861 +    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
862 +  }
863  
589    fInfo_.SIM_uses_PBC = usePBC;    
590    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
591    fInfo_.SIM_uses_LennardJones = useLennardJones;
592    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
593    fInfo_.SIM_uses_Charges = useCharge;
594    fInfo_.SIM_uses_Dipoles = useDipole;
595    fInfo_.SIM_uses_Sticky = useSticky;
596    fInfo_.SIM_uses_StickyPower = useStickyPower;
597    fInfo_.SIM_uses_GayBerne = useGayBerne;
598    fInfo_.SIM_uses_EAM = useEAM;
599    fInfo_.SIM_uses_Shapes = useShape;
600    fInfo_.SIM_uses_FLARB = useFLARB;
864  
865 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
865 >  vector<int> SimInfo::getGlobalAtomIndices() {
866 >    SimInfo::MoleculeIterator mi;
867 >    Molecule* mol;
868 >    Molecule::AtomIterator ai;
869 >    Atom* atom;
870  
871 <      if (simParams_->haveDielectric()) {
872 <        fInfo_.dielect = simParams_->getDielectric();
873 <      } else {
874 <        sprintf(painCave.errMsg,
875 <                "SimSetup Error: No Dielectric constant was set.\n"
876 <                "\tYou are trying to use Reaction Field without"
610 <                "\tsetting a dielectric constant!\n");
611 <        painCave.isFatal = 1;
612 <        simError();
871 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
872 >    
873 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
874 >      
875 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
876 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
877        }
614        
615    } else {
616      fInfo_.dielect = 0.0;
878      }
879 <
879 >    return GlobalAtomIndices;
880    }
881  
621  void SimInfo::setupFortranSim() {
622    int isError;
623    int nExclude;
624    std::vector<int> fortranGlobalGroupMembership;
625    
626    nExclude = exclude_.getSize();
627    isError = 0;
882  
883 <    //globalGroupMembership_ is filled by SimCreator    
884 <    for (int i = 0; i < nGlobalAtoms_; i++) {
885 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
883 >  vector<int> SimInfo::getGlobalGroupIndices() {
884 >    SimInfo::MoleculeIterator mi;
885 >    Molecule* mol;
886 >    Molecule::CutoffGroupIterator ci;
887 >    CutoffGroup* cg;
888 >
889 >    vector<int> GlobalGroupIndices;
890 >    
891 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
892 >      
893 >      //local index of cutoff group is trivial, it only depends on the
894 >      //order of travesing
895 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
896 >           cg = mol->nextCutoffGroup(ci)) {
897 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
898 >      }        
899      }
900 +    return GlobalGroupIndices;
901 +  }
902  
903 +
904 +  void SimInfo::prepareTopology() {
905 +
906      //calculate mass ratio of cutoff group
635    std::vector<double> mfact;
907      SimInfo::MoleculeIterator mi;
908      Molecule* mol;
909      Molecule::CutoffGroupIterator ci;
910      CutoffGroup* cg;
911      Molecule::AtomIterator ai;
912      Atom* atom;
913 <    double totalMass;
913 >    RealType totalMass;
914  
915 <    //to avoid memory reallocation, reserve enough space for mfact
916 <    mfact.reserve(getNCutoffGroups());
915 >    /**
916 >     * The mass factor is the relative mass of an atom to the total
917 >     * mass of the cutoff group it belongs to.  By default, all atoms
918 >     * are their own cutoff groups, and therefore have mass factors of
919 >     * 1.  We need some special handling for massless atoms, which
920 >     * will be treated as carrying the entire mass of the cutoff
921 >     * group.
922 >     */
923 >    massFactors_.clear();
924 >    massFactors_.resize(getNAtoms(), 1.0);
925      
926      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
927 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
927 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
928 >           cg = mol->nextCutoffGroup(ci)) {
929  
930          totalMass = cg->getMass();
931          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
932 <          mfact.push_back(atom->getMass()/totalMass);
932 >          // Check for massless groups - set mfact to 1 if true
933 >          if (totalMass != 0)
934 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
935 >          else
936 >            massFactors_[atom->getLocalIndex()] = 1.0;
937          }
654
938        }      
939      }
940  
941 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
659 <    std::vector<int> identArray;
941 >    // Build the identArray_
942  
943 <    //to avoid memory reallocation, reserve enough space identArray
944 <    identArray.reserve(getNAtoms());
663 <    
943 >    identArray_.clear();
944 >    identArray_.reserve(getNAtoms());    
945      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
946        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
947 <        identArray.push_back(atom->getIdent());
947 >        identArray_.push_back(atom->getIdent());
948        }
949      }    
669
670    //fill molMembershipArray
671    //molMembershipArray is filled by SimCreator    
672    std::vector<int> molMembershipArray(nGlobalAtoms_);
673    for (int i = 0; i < nGlobalAtoms_; i++) {
674      molMembershipArray[i] = globalMolMembership_[i] + 1;
675    }
950      
951 <    //setup fortran simulation
678 <    int nGlobalExcludes = 0;
679 <    int* globalExcludes = NULL;
680 <    int* excludeList = exclude_.getExcludeList();
681 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
682 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
683 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
684 <
685 <    if( isError ){
686 <
687 <      sprintf( painCave.errMsg,
688 <               "There was an error setting the simulation information in fortran.\n" );
689 <      painCave.isFatal = 1;
690 <      painCave.severity = OOPSE_ERROR;
691 <      simError();
692 <    }
693 <
694 < #ifdef IS_MPI
695 <    sprintf( checkPointMsg,
696 <             "succesfully sent the simulation information to fortran.\n");
697 <    MPIcheckPoint();
698 < #endif // is_mpi
699 <  }
700 <
701 <
702 < #ifdef IS_MPI
703 <  void SimInfo::setupFortranParallel() {
704 <    
705 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
706 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
707 <    std::vector<int> localToGlobalCutoffGroupIndex;
708 <    SimInfo::MoleculeIterator mi;
709 <    Molecule::AtomIterator ai;
710 <    Molecule::CutoffGroupIterator ci;
711 <    Molecule* mol;
712 <    Atom* atom;
713 <    CutoffGroup* cg;
714 <    mpiSimData parallelData;
715 <    int isError;
716 <
717 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
718 <
719 <      //local index(index in DataStorge) of atom is important
720 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
721 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
722 <      }
723 <
724 <      //local index of cutoff group is trivial, it only depends on the order of travesing
725 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
726 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
727 <      }        
728 <        
729 <    }
730 <
731 <    //fill up mpiSimData struct
732 <    parallelData.nMolGlobal = getNGlobalMolecules();
733 <    parallelData.nMolLocal = getNMolecules();
734 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
735 <    parallelData.nAtomsLocal = getNAtoms();
736 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
737 <    parallelData.nGroupsLocal = getNCutoffGroups();
738 <    parallelData.myNode = worldRank;
739 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
740 <
741 <    //pass mpiSimData struct and index arrays to fortran
742 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
743 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
744 <                    &localToGlobalCutoffGroupIndex[0], &isError);
745 <
746 <    if (isError) {
747 <      sprintf(painCave.errMsg,
748 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
749 <      painCave.isFatal = 1;
750 <      simError();
751 <    }
752 <
753 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
754 <    MPIcheckPoint();
755 <
756 <
757 <  }
758 <
759 < #endif
760 <
761 <  double SimInfo::calcMaxCutoffRadius() {
762 <
763 <
764 <    std::set<AtomType*> atomTypes;
765 <    std::set<AtomType*>::iterator i;
766 <    std::vector<double> cutoffRadius;
767 <
768 <    //get the unique atom types
769 <    atomTypes = getUniqueAtomTypes();
770 <
771 <    //query the max cutoff radius among these atom types
772 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
773 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
774 <    }
775 <
776 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
777 < #ifdef IS_MPI
778 <    //pick the max cutoff radius among the processors
779 < #endif
780 <
781 <    return maxCutoffRadius;
782 <  }
783 <
784 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
785 <    
786 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
787 <        
788 <      if (!simParams_->haveRcut()){
789 <        sprintf(painCave.errMsg,
790 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
791 <                "\tOOPSE will use a default value of 15.0 angstroms"
792 <                "\tfor the cutoffRadius.\n");
793 <        painCave.isFatal = 0;
794 <        simError();
795 <        rcut = 15.0;
796 <      } else{
797 <        rcut = simParams_->getRcut();
798 <      }
799 <
800 <      if (!simParams_->haveRsw()){
801 <        sprintf(painCave.errMsg,
802 <                "SimCreator Warning: No value was set for switchingRadius.\n"
803 <                "\tOOPSE will use a default value of\n"
804 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
805 <        painCave.isFatal = 0;
806 <        simError();
807 <        rsw = 0.95 * rcut;
808 <      } else{
809 <        rsw = simParams_->getRsw();
810 <      }
811 <
812 <    } else {
813 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
814 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
815 <        
816 <      if (simParams_->haveRcut()) {
817 <        rcut = simParams_->getRcut();
818 <      } else {
819 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
820 <        rcut = calcMaxCutoffRadius();
821 <      }
822 <
823 <      if (simParams_->haveRsw()) {
824 <        rsw  = simParams_->getRsw();
825 <      } else {
826 <        rsw = rcut;
827 <      }
828 <    
829 <    }
951 >    topologyDone_ = true;
952    }
953  
832  void SimInfo::setupCutoff() {    
833    getCutoff(rcut_, rsw_);    
834    double rnblist = rcut_ + 1; // skin of neighbor list
835
836    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
837    
838    int cp =  TRADITIONAL_CUTOFF_POLICY;
839    if (simParams_->haveCutoffPolicy()) {
840      std::string myPolicy = simParams_->getCutoffPolicy();
841      if (myPolicy == "MIX") {
842        cp = MIX_CUTOFF_POLICY;
843      } else {
844        if (myPolicy == "MAX") {
845          cp = MAX_CUTOFF_POLICY;
846        } else {
847          if (myPolicy == "TRADITIONAL") {            
848            cp = TRADITIONAL_CUTOFF_POLICY;
849          } else {
850            // throw error        
851            sprintf( painCave.errMsg,
852                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
853            painCave.isFatal = 1;
854            simError();
855          }    
856        }          
857      }
858    }
859    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
860  }
861
862  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
863    
864    int errorOut;
865    int esm =  NONE;
866    double alphaVal;
867
868    errorOut = isError;
869
870    if (simParams_->haveElectrostaticSummationMethod()) {
871      std::string myMethod = simParams_->getElectrostaticSummationMethod();
872      if (myMethod == "NONE") {
873        esm = NONE;
874      } else {
875        if (myMethod == "UNDAMPED_WOLF") {
876          esm = UNDAMPED_WOLF;
877        } else {
878          if (myMethod == "DAMPED_WOLF") {            
879            esm = DAMPED_WOLF;
880            if (!simParams_->haveDampingAlpha()) {
881              //throw error
882              sprintf( painCave.errMsg,
883                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", simParams_->getDampingAlpha());
884              painCave.isFatal = 0;
885              simError();
886            }
887            alphaVal = simParams_->getDampingAlpha();
888          } else {
889            if (myMethod == "REACTION_FIELD") {
890              esm = REACTION_FIELD;
891            } else {
892              // throw error        
893              sprintf( painCave.errMsg,
894                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
895              painCave.isFatal = 1;
896              simError();
897            }    
898          }          
899        }
900      }
901    }
902    initFortranFF( &esm, &alphaVal, &errorOut );
903  }
904
954    void SimInfo::addProperty(GenericData* genData) {
955      properties_.addProperty(genData);  
956    }
957  
958 <  void SimInfo::removeProperty(const std::string& propName) {
958 >  void SimInfo::removeProperty(const string& propName) {
959      properties_.removeProperty(propName);  
960    }
961  
# Line 914 | Line 963 | namespace oopse {
963      properties_.clearProperties();
964    }
965  
966 <  std::vector<std::string> SimInfo::getPropertyNames() {
966 >  vector<string> SimInfo::getPropertyNames() {
967      return properties_.getPropertyNames();  
968    }
969        
970 <  std::vector<GenericData*> SimInfo::getProperties() {
970 >  vector<GenericData*> SimInfo::getProperties() {
971      return properties_.getProperties();
972    }
973  
974 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
974 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
975      return properties_.getPropertyByName(propName);
976    }
977  
# Line 936 | Line 985 | namespace oopse {
985      Molecule* mol;
986      RigidBody* rb;
987      Atom* atom;
988 +    CutoffGroup* cg;
989      SimInfo::MoleculeIterator mi;
990      Molecule::RigidBodyIterator rbIter;
991 <    Molecule::AtomIterator atomIter;;
991 >    Molecule::AtomIterator atomIter;
992 >    Molecule::CutoffGroupIterator cgIter;
993  
994      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
995          
996 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
996 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
997 >           atom = mol->nextAtom(atomIter)) {
998          atom->setSnapshotManager(sman_);
999        }
1000          
1001 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1001 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1002 >           rb = mol->nextRigidBody(rbIter)) {
1003          rb->setSnapshotManager(sman_);
1004        }
1005 +
1006 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1007 +           cg = mol->nextCutoffGroup(cgIter)) {
1008 +        cg->setSnapshotManager(sman_);
1009 +      }
1010      }    
1011      
1012    }
1013  
956  Vector3d SimInfo::getComVel(){
957    SimInfo::MoleculeIterator i;
958    Molecule* mol;
1014  
1015 <    Vector3d comVel(0.0);
961 <    double totalMass = 0.0;
962 <    
963 <
964 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
965 <      double mass = mol->getMass();
966 <      totalMass += mass;
967 <      comVel += mass * mol->getComVel();
968 <    }  
1015 >  ostream& operator <<(ostream& o, SimInfo& info) {
1016  
970 #ifdef IS_MPI
971    double tmpMass = totalMass;
972    Vector3d tmpComVel(comVel);    
973    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
974    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
975 #endif
976
977    comVel /= totalMass;
978
979    return comVel;
980  }
981
982  Vector3d SimInfo::getCom(){
983    SimInfo::MoleculeIterator i;
984    Molecule* mol;
985
986    Vector3d com(0.0);
987    double totalMass = 0.0;
988    
989    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
990      double mass = mol->getMass();
991      totalMass += mass;
992      com += mass * mol->getCom();
993    }  
994
995 #ifdef IS_MPI
996    double tmpMass = totalMass;
997    Vector3d tmpCom(com);    
998    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
999    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1000 #endif
1001
1002    com /= totalMass;
1003
1004    return com;
1005
1006  }        
1007
1008  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1009
1017      return o;
1018    }
1019    
1020 <  
1021 <   /*
1022 <   Returns center of mass and center of mass velocity in one function call.
1023 <   */
1024 <  
1025 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1026 <      SimInfo::MoleculeIterator i;
1027 <      Molecule* mol;
1028 <      
1029 <    
1030 <      double totalMass = 0.0;
1031 <    
1020 >  
1021 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1022 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1023 >      sprintf(painCave.errMsg,
1024 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1025 >              "\tindex exceeds number of known objects!\n");
1026 >      painCave.isFatal = 1;
1027 >      simError();
1028 >      return NULL;
1029 >    } else
1030 >      return IOIndexToIntegrableObject.at(index);
1031 >  }
1032 >  
1033 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1034 >    IOIndexToIntegrableObject= v;
1035 >  }
1036  
1037 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1038 <         double mass = mol->getMass();
1028 <         totalMass += mass;
1029 <         com += mass * mol->getCom();
1030 <         comVel += mass * mol->getComVel();          
1031 <      }  
1032 <      
1037 >  int SimInfo::getNGlobalConstraints() {
1038 >    int nGlobalConstraints;
1039   #ifdef IS_MPI
1040 <      double tmpMass = totalMass;
1041 <      Vector3d tmpCom(com);  
1042 <      Vector3d tmpComVel(comVel);
1043 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1038 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1039 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1040 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1041 >                              MPI::INT, MPI::SUM);
1042 > #else
1043 >    nGlobalConstraints =  nConstraints_;
1044   #endif
1045 <      
1046 <      com /= totalMass;
1043 <      comVel /= totalMass;
1044 <   }        
1045 <  
1046 <   /*
1047 <   Return intertia tensor for entire system and angular momentum Vector.
1045 >    return nGlobalConstraints;
1046 >  }
1047  
1048 + }//end namespace OpenMD
1049  
1050       [  Ixx -Ixy  -Ixz ]
1051  J =| -Iyx  Iyy  -Iyz |
1052       [ -Izx -Iyz   Izz ]
1053    */
1054
1055   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1056      
1057
1058      double xx = 0.0;
1059      double yy = 0.0;
1060      double zz = 0.0;
1061      double xy = 0.0;
1062      double xz = 0.0;
1063      double yz = 0.0;
1064      Vector3d com(0.0);
1065      Vector3d comVel(0.0);
1066      
1067      getComAll(com, comVel);
1068      
1069      SimInfo::MoleculeIterator i;
1070      Molecule* mol;
1071      
1072      Vector3d thisq(0.0);
1073      Vector3d thisv(0.0);
1074
1075      double thisMass = 0.0;
1076    
1077      
1078      
1079  
1080      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1081        
1082         thisq = mol->getCom()-com;
1083         thisv = mol->getComVel()-comVel;
1084         thisMass = mol->getMass();
1085         // Compute moment of intertia coefficients.
1086         xx += thisq[0]*thisq[0]*thisMass;
1087         yy += thisq[1]*thisq[1]*thisMass;
1088         zz += thisq[2]*thisq[2]*thisMass;
1089        
1090         // compute products of intertia
1091         xy += thisq[0]*thisq[1]*thisMass;
1092         xz += thisq[0]*thisq[2]*thisMass;
1093         yz += thisq[1]*thisq[2]*thisMass;
1094            
1095         angularMomentum += cross( thisq, thisv ) * thisMass;
1096            
1097      }  
1098      
1099      
1100      inertiaTensor(0,0) = yy + zz;
1101      inertiaTensor(0,1) = -xy;
1102      inertiaTensor(0,2) = -xz;
1103      inertiaTensor(1,0) = -xy;
1104      inertiaTensor(1,1) = xx + zz;
1105      inertiaTensor(1,2) = -yz;
1106      inertiaTensor(2,0) = -xz;
1107      inertiaTensor(2,1) = -yz;
1108      inertiaTensor(2,2) = xx + yy;
1109      
1110 #ifdef IS_MPI
1111      Mat3x3d tmpI(inertiaTensor);
1112      Vector3d tmpAngMom;
1113      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1114      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1115 #endif
1116              
1117      return;
1118   }
1119
1120   //Returns the angular momentum of the system
1121   Vector3d SimInfo::getAngularMomentum(){
1122      
1123      Vector3d com(0.0);
1124      Vector3d comVel(0.0);
1125      Vector3d angularMomentum(0.0);
1126      
1127      getComAll(com,comVel);
1128      
1129      SimInfo::MoleculeIterator i;
1130      Molecule* mol;
1131      
1132      Vector3d thisr(0.0);
1133      Vector3d thisp(0.0);
1134      
1135      double thisMass;
1136      
1137      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1138        thisMass = mol->getMass();
1139        thisr = mol->getCom()-com;
1140        thisp = (mol->getComVel()-comVel)*thisMass;
1141        
1142        angularMomentum += cross( thisr, thisp );
1143        
1144      }  
1145      
1146 #ifdef IS_MPI
1147      Vector3d tmpAngMom;
1148      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1149 #endif
1150      
1151      return angularMomentum;
1152   }
1153  
1154  
1155 }//end namespace oopse
1156

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 608 by chrisfen, Fri Sep 16 21:07:45 2005 UTC vs.
Revision 1908 by gezelter, Fri Jul 19 21:25:45 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines