ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 328 by tim, Sun Feb 13 20:36:24 2005 UTC vs.
Revision 1953 by gezelter, Thu Dec 5 18:19:26 2013 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 46 | Line 47
47   * @version 1.0
48   */
49  
50 + #ifdef IS_MPI
51 + #include <mpi.h>
52 + #endif
53   #include <algorithm>
54   #include <set>
55 + #include <map>
56  
57   #include "brains/SimInfo.hpp"
58   #include "math/Vector3.hpp"
59   #include "primitives/Molecule.hpp"
60 < #include "UseTheForce/doForces_interface.h"
56 < #include "UseTheForce/notifyCutoffs_interface.h"
60 > #include "primitives/StuntDouble.hpp"
61   #include "utils/MemoryUtils.hpp"
62   #include "utils/simError.h"
63   #include "selection/SelectionManager.hpp"
64 + #include "io/ForceFieldOptions.hpp"
65 + #include "brains/ForceField.hpp"
66 + #include "nonbonded/SwitchingFunction.hpp"
67  
68 < #ifdef IS_MPI
69 < #include "UseTheForce/mpiComponentPlan.h"
70 < #include "UseTheForce/DarkSide/simParallel_interface.h"
71 < #endif
72 <
73 < namespace oopse {
74 <
75 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
76 <                                ForceField* ff, Globals* simParams) :
77 <                                forceField_(ff), simParams_(simParams),
78 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
79 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
80 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
81 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
82 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
76 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
77 <
78 <            
79 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 >    nGlobalFluctuatingCharges_(0), nGlobalBonds_(0), nGlobalBends_(0),
77 >    nGlobalTorsions_(0), nGlobalInversions_(0), nAtoms_(0), nBonds_(0),
78 >    nBends_(0), nTorsions_(0), nInversions_(0), nRigidBodies_(0),
79 >    nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
80 >    nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
81 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
82 >    
83      MoleculeStamp* molStamp;
84      int nMolWithSameStamp;
85      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
86 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
87      CutoffGroupStamp* cgStamp;    
88      RigidBodyStamp* rbStamp;
89      int nRigidAtoms = 0;
90      
91 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
92 <        molStamp = i->first;
93 <        nMolWithSameStamp = i->second;
94 <        
95 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
91 >    vector<Component*> components = simParams->getComponents();
92 >    
93 >    for (vector<Component*>::iterator i = components.begin();
94 >         i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      if ( (*i)->haveRegion() ) {        
97 >        molStamp->setRegion( (*i)->getRegion() );
98 >      } else {
99 >        // set the region to a disallowed value:
100 >        molStamp->setRegion( -1 );
101 >      }
102  
103 <        //calculate atoms in molecules
104 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
105 <
106 <
107 <        //calculate atoms in cutoff groups
108 <        int nAtomsInGroups = 0;
109 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
110 <        
111 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
112 <            cgStamp = molStamp->getCutoffGroup(j);
113 <            nAtomsInGroups += cgStamp->getNMembers();
114 <        }
115 <
116 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
117 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
118 <
119 <        //calculate atoms in rigid bodies
120 <        int nAtomsInRigidBodies = 0;
121 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
122 <        
123 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
124 <            rbStamp = molStamp->getRigidBody(j);
125 <            nAtomsInRigidBodies += rbStamp->getNMembers();
126 <        }
127 <
128 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
129 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
130 <        
103 >      nMolWithSameStamp = (*i)->getNMol();
104 >      
105 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
106 >      
107 >      //calculate atoms in molecules
108 >      nGlobalAtoms_ += molStamp->getNAtoms() * nMolWithSameStamp;
109 >      nGlobalBonds_ += molStamp->getNBonds() * nMolWithSameStamp;
110 >      nGlobalBends_ += molStamp->getNBends() * nMolWithSameStamp;
111 >      nGlobalTorsions_ += molStamp->getNTorsions() * nMolWithSameStamp;
112 >      nGlobalInversions_ += molStamp->getNInversions() * nMolWithSameStamp;
113 >      
114 >      //calculate atoms in cutoff groups
115 >      int nAtomsInGroups = 0;
116 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
117 >      
118 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
119 >        cgStamp = molStamp->getCutoffGroupStamp(j);
120 >        nAtomsInGroups += cgStamp->getNMembers();
121 >      }
122 >      
123 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
124 >      
125 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
126 >      
127 >      //calculate atoms in rigid bodies
128 >      int nAtomsInRigidBodies = 0;
129 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
130 >      
131 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
132 >        rbStamp = molStamp->getRigidBodyStamp(j);
133 >        nAtomsInRigidBodies += rbStamp->getNMembers();
134 >      }
135 >      
136 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
137 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
138 >      
139      }
140 +    
141 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
142 +    //group therefore the total number of cutoff groups in the system is
143 +    //equal to the total number of atoms minus number of atoms belong to
144 +    //cutoff group defined in meta-data file plus the number of cutoff
145 +    //groups defined in meta-data file
146  
124    //every free atom (atom does not belong to cutoff groups) is a cutoff group
125    //therefore the total number of cutoff groups in the system is equal to
126    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127    //file plus the number of cutoff groups defined in meta-data file
147      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
148 <
149 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
150 <    //therefore the total number of  integrable objects in the system is equal to
151 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
152 <    //file plus the number of  rigid bodies defined in meta-data file
153 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
154 <
148 >    
149 >    //every free atom (atom does not belong to rigid bodies) is an
150 >    //integrable object therefore the total number of integrable objects
151 >    //in the system is equal to the total number of atoms minus number of
152 >    //atoms belong to rigid body defined in meta-data file plus the number
153 >    //of rigid bodies defined in meta-data file
154 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
155 >      + nGlobalRigidBodies_;
156 >    
157      nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI    
158      molToProcMap_.resize(nGlobalMols_);
159 < #endif
160 <
161 <    selectMan_ = new SelectionManager(this);
162 <    selectMan_->selectAll();
163 < }
164 <
165 < SimInfo::~SimInfo() {
166 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
167 <
149 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
150 <    
159 >  }
160 >  
161 >  SimInfo::~SimInfo() {
162 >    map<int, Molecule*>::iterator i;
163 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
164 >      delete i->second;
165 >    }
166 >    molecules_.clear();
167 >      
168      delete sman_;
169      delete simParams_;
170      delete forceField_;
171 <    delete selectMan_;
155 < }
171 >  }
172  
157 int SimInfo::getNGlobalConstraints() {
158    int nGlobalConstraints;
159 #ifdef IS_MPI
160    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161                  MPI_COMM_WORLD);    
162 #else
163    nGlobalConstraints =  nConstraints_;
164 #endif
165    return nGlobalConstraints;
166 }
173  
174 < bool SimInfo::addMolecule(Molecule* mol) {
174 >  bool SimInfo::addMolecule(Molecule* mol) {
175      MoleculeIterator i;
176 <
176 >    
177      i = molecules_.find(mol->getGlobalIndex());
178      if (i == molecules_.end() ) {
179 <
180 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
181 <        
182 <        nAtoms_ += mol->getNAtoms();
183 <        nBonds_ += mol->getNBonds();
184 <        nBends_ += mol->getNBends();
185 <        nTorsions_ += mol->getNTorsions();
186 <        nRigidBodies_ += mol->getNRigidBodies();
187 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
188 <        nCutoffGroups_ += mol->getNCutoffGroups();
189 <        nConstraints_ += mol->getNConstraintPairs();
190 <
191 <        addExcludePairs(mol);
192 <        
193 <        return true;
179 >      
180 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
181 >      
182 >      nAtoms_ += mol->getNAtoms();
183 >      nBonds_ += mol->getNBonds();
184 >      nBends_ += mol->getNBends();
185 >      nTorsions_ += mol->getNTorsions();
186 >      nInversions_ += mol->getNInversions();
187 >      nRigidBodies_ += mol->getNRigidBodies();
188 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
189 >      nCutoffGroups_ += mol->getNCutoffGroups();
190 >      nConstraints_ += mol->getNConstraintPairs();
191 >      
192 >      addInteractionPairs(mol);
193 >      
194 >      return true;
195      } else {
196 <        return false;
196 >      return false;
197      }
198 < }
199 <
200 < bool SimInfo::removeMolecule(Molecule* mol) {
198 >  }
199 >  
200 >  bool SimInfo::removeMolecule(Molecule* mol) {
201      MoleculeIterator i;
202      i = molecules_.find(mol->getGlobalIndex());
203  
204      if (i != molecules_.end() ) {
205  
206 <        assert(mol == i->second);
206 >      assert(mol == i->second);
207          
208 <        nAtoms_ -= mol->getNAtoms();
209 <        nBonds_ -= mol->getNBonds();
210 <        nBends_ -= mol->getNBends();
211 <        nTorsions_ -= mol->getNTorsions();
212 <        nRigidBodies_ -= mol->getNRigidBodies();
213 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
214 <        nCutoffGroups_ -= mol->getNCutoffGroups();
215 <        nConstraints_ -= mol->getNConstraintPairs();
208 >      nAtoms_ -= mol->getNAtoms();
209 >      nBonds_ -= mol->getNBonds();
210 >      nBends_ -= mol->getNBends();
211 >      nTorsions_ -= mol->getNTorsions();
212 >      nInversions_ -= mol->getNInversions();
213 >      nRigidBodies_ -= mol->getNRigidBodies();
214 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
215 >      nCutoffGroups_ -= mol->getNCutoffGroups();
216 >      nConstraints_ -= mol->getNConstraintPairs();
217  
218 <        removeExcludePairs(mol);
219 <        molecules_.erase(mol->getGlobalIndex());
218 >      removeInteractionPairs(mol);
219 >      molecules_.erase(mol->getGlobalIndex());
220  
221 <        delete mol;
221 >      delete mol;
222          
223 <        return true;
223 >      return true;
224      } else {
225 <        return false;
225 >      return false;
226      }
227 +  }    
228  
220
221 }    
222
229          
230 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
230 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
231      i = molecules_.begin();
232      return i == molecules_.end() ? NULL : i->second;
233 < }    
233 >  }    
234  
235 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
235 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
236      ++i;
237      return i == molecules_.end() ? NULL : i->second;    
238 < }
238 >  }
239  
240  
241 < void SimInfo::calcNdf() {
242 <    int ndf_local;
241 >  void SimInfo::calcNdf() {
242 >    int ndf_local, nfq_local;
243      MoleculeIterator i;
244 <    std::vector<StuntDouble*>::iterator j;
244 >    vector<StuntDouble*>::iterator j;
245 >    vector<Atom*>::iterator k;
246 >
247      Molecule* mol;
248 <    StuntDouble* integrableObject;
248 >    StuntDouble* sd;
249 >    Atom* atom;
250  
251      ndf_local = 0;
252 +    nfq_local = 0;
253      
254      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
245        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
246               integrableObject = mol->nextIntegrableObject(j)) {
255  
256 <            ndf_local += 3;
256 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
257 >           sd = mol->nextIntegrableObject(j)) {
258  
259 <            if (integrableObject->isDirectional()) {
260 <                if (integrableObject->isLinear()) {
261 <                    ndf_local += 2;
262 <                } else {
263 <                    ndf_local += 3;
264 <                }
265 <            }
266 <            
267 <        }//end for (integrableObject)
268 <    }// end for (mol)
259 >        ndf_local += 3;
260 >
261 >        if (sd->isDirectional()) {
262 >          if (sd->isLinear()) {
263 >            ndf_local += 2;
264 >          } else {
265 >            ndf_local += 3;
266 >          }
267 >        }
268 >      }
269 >
270 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
271 >           atom = mol->nextFluctuatingCharge(k)) {
272 >        if (atom->isFluctuatingCharge()) {
273 >          nfq_local++;
274 >        }
275 >      }
276 >    }
277      
278 +    ndfLocal_ = ndf_local;
279 +
280      // n_constraints is local, so subtract them on each processor
281      ndf_local -= nConstraints_;
282  
283   #ifdef IS_MPI
284 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
284 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
285 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
286 >                              MPI::INT, MPI::SUM);
287   #else
288      ndf_ = ndf_local;
289 +    nGlobalFluctuatingCharges_ = nfq_local;
290   #endif
291  
292      // nZconstraints_ is global, as are the 3 COM translations for the
293      // entire system:
294      ndf_ = ndf_ - 3 - nZconstraint_;
295  
296 < }
296 >  }
297  
298 < void SimInfo::calcNdfRaw() {
298 >  int SimInfo::getFdf() {
299 > #ifdef IS_MPI
300 >    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
301 > #else
302 >    fdf_ = fdf_local;
303 > #endif
304 >    return fdf_;
305 >  }
306 >  
307 >  unsigned int SimInfo::getNLocalCutoffGroups(){
308 >    int nLocalCutoffAtoms = 0;
309 >    Molecule* mol;
310 >    MoleculeIterator mi;
311 >    CutoffGroup* cg;
312 >    Molecule::CutoffGroupIterator ci;
313 >    
314 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
315 >      
316 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
317 >           cg = mol->nextCutoffGroup(ci)) {
318 >        nLocalCutoffAtoms += cg->getNumAtom();
319 >        
320 >      }        
321 >    }
322 >    
323 >    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
324 >  }
325 >    
326 >  void SimInfo::calcNdfRaw() {
327      int ndfRaw_local;
328  
329      MoleculeIterator i;
330 <    std::vector<StuntDouble*>::iterator j;
330 >    vector<StuntDouble*>::iterator j;
331      Molecule* mol;
332 <    StuntDouble* integrableObject;
332 >    StuntDouble* sd;
333  
334      // Raw degrees of freedom that we have to set
335      ndfRaw_local = 0;
336      
337      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
288        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
289               integrableObject = mol->nextIntegrableObject(j)) {
338  
339 <            ndfRaw_local += 3;
339 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
340 >           sd = mol->nextIntegrableObject(j)) {
341  
342 <            if (integrableObject->isDirectional()) {
343 <                if (integrableObject->isLinear()) {
344 <                    ndfRaw_local += 2;
345 <                } else {
346 <                    ndfRaw_local += 3;
347 <                }
348 <            }
342 >        ndfRaw_local += 3;
343 >
344 >        if (sd->isDirectional()) {
345 >          if (sd->isLinear()) {
346 >            ndfRaw_local += 2;
347 >          } else {
348 >            ndfRaw_local += 3;
349 >          }
350 >        }
351              
352 <        }
352 >      }
353      }
354      
355   #ifdef IS_MPI
356 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
356 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
357   #else
358      ndfRaw_ = ndfRaw_local;
359   #endif
360 < }
360 >  }
361  
362 < void SimInfo::calcNdfTrans() {
362 >  void SimInfo::calcNdfTrans() {
363      int ndfTrans_local;
364  
365      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
366  
367  
368   #ifdef IS_MPI
369 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
369 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
370 >                              MPI::INT, MPI::SUM);
371   #else
372      ndfTrans_ = ndfTrans_local;
373   #endif
374  
375      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
376  
377 < }
377 >  }
378  
379 < void SimInfo::addExcludePairs(Molecule* mol) {
380 <    std::vector<Bond*>::iterator bondIter;
381 <    std::vector<Bend*>::iterator bendIter;
382 <    std::vector<Torsion*>::iterator torsionIter;
379 >  void SimInfo::addInteractionPairs(Molecule* mol) {
380 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
381 >    vector<Bond*>::iterator bondIter;
382 >    vector<Bend*>::iterator bendIter;
383 >    vector<Torsion*>::iterator torsionIter;
384 >    vector<Inversion*>::iterator inversionIter;
385      Bond* bond;
386      Bend* bend;
387      Torsion* torsion;
388 +    Inversion* inversion;
389      int a;
390      int b;
391      int c;
392      int d;
393 +
394 +    // atomGroups can be used to add special interaction maps between
395 +    // groups of atoms that are in two separate rigid bodies.
396 +    // However, most site-site interactions between two rigid bodies
397 +    // are probably not special, just the ones between the physically
398 +    // bonded atoms.  Interactions *within* a single rigid body should
399 +    // always be excluded.  These are done at the bottom of this
400 +    // function.
401 +
402 +    map<int, set<int> > atomGroups;
403 +    Molecule::RigidBodyIterator rbIter;
404 +    RigidBody* rb;
405 +    Molecule::IntegrableObjectIterator ii;
406 +    StuntDouble* sd;
407      
408 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
409 <        a = bond->getAtomA()->getGlobalIndex();
410 <        b = bond->getAtomB()->getGlobalIndex();        
411 <        exclude_.addPair(a, b);
408 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
409 >         sd = mol->nextIntegrableObject(ii)) {
410 >      
411 >      if (sd->isRigidBody()) {
412 >        rb = static_cast<RigidBody*>(sd);
413 >        vector<Atom*> atoms = rb->getAtoms();
414 >        set<int> rigidAtoms;
415 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
416 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
417 >        }
418 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
419 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
420 >        }      
421 >      } else {
422 >        set<int> oneAtomSet;
423 >        oneAtomSet.insert(sd->getGlobalIndex());
424 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
425 >      }
426 >    }  
427 >
428 >          
429 >    for (bond= mol->beginBond(bondIter); bond != NULL;
430 >         bond = mol->nextBond(bondIter)) {
431 >
432 >      a = bond->getAtomA()->getGlobalIndex();
433 >      b = bond->getAtomB()->getGlobalIndex();  
434 >
435 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
436 >        oneTwoInteractions_.addPair(a, b);
437 >      } else {
438 >        excludedInteractions_.addPair(a, b);
439 >      }
440      }
441  
442 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
443 <        a = bend->getAtomA()->getGlobalIndex();
347 <        b = bend->getAtomB()->getGlobalIndex();        
348 <        c = bend->getAtomC()->getGlobalIndex();
442 >    for (bend= mol->beginBend(bendIter); bend != NULL;
443 >         bend = mol->nextBend(bendIter)) {
444  
445 <        exclude_.addPair(a, b);
446 <        exclude_.addPair(a, c);
447 <        exclude_.addPair(b, c);        
445 >      a = bend->getAtomA()->getGlobalIndex();
446 >      b = bend->getAtomB()->getGlobalIndex();        
447 >      c = bend->getAtomC()->getGlobalIndex();
448 >      
449 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
450 >        oneTwoInteractions_.addPair(a, b);      
451 >        oneTwoInteractions_.addPair(b, c);
452 >      } else {
453 >        excludedInteractions_.addPair(a, b);
454 >        excludedInteractions_.addPair(b, c);
455 >      }
456 >
457 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
458 >        oneThreeInteractions_.addPair(a, c);      
459 >      } else {
460 >        excludedInteractions_.addPair(a, c);
461 >      }
462      }
463  
464 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
465 <        a = torsion->getAtomA()->getGlobalIndex();
357 <        b = torsion->getAtomB()->getGlobalIndex();        
358 <        c = torsion->getAtomC()->getGlobalIndex();        
359 <        d = torsion->getAtomD()->getGlobalIndex();        
464 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
465 >         torsion = mol->nextTorsion(torsionIter)) {
466  
467 <        exclude_.addPair(a, b);
468 <        exclude_.addPair(a, c);
469 <        exclude_.addPair(a, d);
470 <        exclude_.addPair(b, c);
471 <        exclude_.addPair(b, d);
472 <        exclude_.addPair(c, d);        
467 >      a = torsion->getAtomA()->getGlobalIndex();
468 >      b = torsion->getAtomB()->getGlobalIndex();        
469 >      c = torsion->getAtomC()->getGlobalIndex();        
470 >      d = torsion->getAtomD()->getGlobalIndex();      
471 >
472 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
473 >        oneTwoInteractions_.addPair(a, b);      
474 >        oneTwoInteractions_.addPair(b, c);
475 >        oneTwoInteractions_.addPair(c, d);
476 >      } else {
477 >        excludedInteractions_.addPair(a, b);
478 >        excludedInteractions_.addPair(b, c);
479 >        excludedInteractions_.addPair(c, d);
480 >      }
481 >
482 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
483 >        oneThreeInteractions_.addPair(a, c);      
484 >        oneThreeInteractions_.addPair(b, d);      
485 >      } else {
486 >        excludedInteractions_.addPair(a, c);
487 >        excludedInteractions_.addPair(b, d);
488 >      }
489 >
490 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
491 >        oneFourInteractions_.addPair(a, d);      
492 >      } else {
493 >        excludedInteractions_.addPair(a, d);
494 >      }
495      }
496  
497 <    
498 < }
497 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
498 >         inversion = mol->nextInversion(inversionIter)) {
499  
500 < void SimInfo::removeExcludePairs(Molecule* mol) {
501 <    std::vector<Bond*>::iterator bondIter;
502 <    std::vector<Bend*>::iterator bendIter;
503 <    std::vector<Torsion*>::iterator torsionIter;
500 >      a = inversion->getAtomA()->getGlobalIndex();
501 >      b = inversion->getAtomB()->getGlobalIndex();        
502 >      c = inversion->getAtomC()->getGlobalIndex();        
503 >      d = inversion->getAtomD()->getGlobalIndex();        
504 >
505 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
506 >        oneTwoInteractions_.addPair(a, b);      
507 >        oneTwoInteractions_.addPair(a, c);
508 >        oneTwoInteractions_.addPair(a, d);
509 >      } else {
510 >        excludedInteractions_.addPair(a, b);
511 >        excludedInteractions_.addPair(a, c);
512 >        excludedInteractions_.addPair(a, d);
513 >      }
514 >
515 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
516 >        oneThreeInteractions_.addPair(b, c);    
517 >        oneThreeInteractions_.addPair(b, d);    
518 >        oneThreeInteractions_.addPair(c, d);      
519 >      } else {
520 >        excludedInteractions_.addPair(b, c);
521 >        excludedInteractions_.addPair(b, d);
522 >        excludedInteractions_.addPair(c, d);
523 >      }
524 >    }
525 >
526 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
527 >         rb = mol->nextRigidBody(rbIter)) {
528 >      vector<Atom*> atoms = rb->getAtoms();
529 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
530 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
531 >          a = atoms[i]->getGlobalIndex();
532 >          b = atoms[j]->getGlobalIndex();
533 >          excludedInteractions_.addPair(a, b);
534 >        }
535 >      }
536 >    }        
537 >
538 >  }
539 >
540 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
541 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
542 >    vector<Bond*>::iterator bondIter;
543 >    vector<Bend*>::iterator bendIter;
544 >    vector<Torsion*>::iterator torsionIter;
545 >    vector<Inversion*>::iterator inversionIter;
546      Bond* bond;
547      Bend* bend;
548      Torsion* torsion;
549 +    Inversion* inversion;
550      int a;
551      int b;
552      int c;
553      int d;
554 +
555 +    map<int, set<int> > atomGroups;
556 +    Molecule::RigidBodyIterator rbIter;
557 +    RigidBody* rb;
558 +    Molecule::IntegrableObjectIterator ii;
559 +    StuntDouble* sd;
560      
561 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
562 <        a = bond->getAtomA()->getGlobalIndex();
563 <        b = bond->getAtomB()->getGlobalIndex();        
564 <        exclude_.removePair(a, b);
561 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
562 >         sd = mol->nextIntegrableObject(ii)) {
563 >      
564 >      if (sd->isRigidBody()) {
565 >        rb = static_cast<RigidBody*>(sd);
566 >        vector<Atom*> atoms = rb->getAtoms();
567 >        set<int> rigidAtoms;
568 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
569 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
570 >        }
571 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
572 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
573 >        }      
574 >      } else {
575 >        set<int> oneAtomSet;
576 >        oneAtomSet.insert(sd->getGlobalIndex());
577 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
578 >      }
579 >    }  
580 >
581 >    for (bond= mol->beginBond(bondIter); bond != NULL;
582 >         bond = mol->nextBond(bondIter)) {
583 >      
584 >      a = bond->getAtomA()->getGlobalIndex();
585 >      b = bond->getAtomB()->getGlobalIndex();  
586 >    
587 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
588 >        oneTwoInteractions_.removePair(a, b);
589 >      } else {
590 >        excludedInteractions_.removePair(a, b);
591 >      }
592      }
593  
594 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
595 <        a = bend->getAtomA()->getGlobalIndex();
392 <        b = bend->getAtomB()->getGlobalIndex();        
393 <        c = bend->getAtomC()->getGlobalIndex();
594 >    for (bend= mol->beginBend(bendIter); bend != NULL;
595 >         bend = mol->nextBend(bendIter)) {
596  
597 <        exclude_.removePair(a, b);
598 <        exclude_.removePair(a, c);
599 <        exclude_.removePair(b, c);        
597 >      a = bend->getAtomA()->getGlobalIndex();
598 >      b = bend->getAtomB()->getGlobalIndex();        
599 >      c = bend->getAtomC()->getGlobalIndex();
600 >      
601 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
602 >        oneTwoInteractions_.removePair(a, b);      
603 >        oneTwoInteractions_.removePair(b, c);
604 >      } else {
605 >        excludedInteractions_.removePair(a, b);
606 >        excludedInteractions_.removePair(b, c);
607 >      }
608 >
609 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
610 >        oneThreeInteractions_.removePair(a, c);      
611 >      } else {
612 >        excludedInteractions_.removePair(a, c);
613 >      }
614      }
615  
616 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
617 <        a = torsion->getAtomA()->getGlobalIndex();
402 <        b = torsion->getAtomB()->getGlobalIndex();        
403 <        c = torsion->getAtomC()->getGlobalIndex();        
404 <        d = torsion->getAtomD()->getGlobalIndex();        
616 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
617 >         torsion = mol->nextTorsion(torsionIter)) {
618  
619 <        exclude_.removePair(a, b);
620 <        exclude_.removePair(a, c);
621 <        exclude_.removePair(a, d);
622 <        exclude_.removePair(b, c);
623 <        exclude_.removePair(b, d);
624 <        exclude_.removePair(c, d);        
619 >      a = torsion->getAtomA()->getGlobalIndex();
620 >      b = torsion->getAtomB()->getGlobalIndex();        
621 >      c = torsion->getAtomC()->getGlobalIndex();        
622 >      d = torsion->getAtomD()->getGlobalIndex();      
623 >  
624 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
625 >        oneTwoInteractions_.removePair(a, b);      
626 >        oneTwoInteractions_.removePair(b, c);
627 >        oneTwoInteractions_.removePair(c, d);
628 >      } else {
629 >        excludedInteractions_.removePair(a, b);
630 >        excludedInteractions_.removePair(b, c);
631 >        excludedInteractions_.removePair(c, d);
632 >      }
633 >
634 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
635 >        oneThreeInteractions_.removePair(a, c);      
636 >        oneThreeInteractions_.removePair(b, d);      
637 >      } else {
638 >        excludedInteractions_.removePair(a, c);
639 >        excludedInteractions_.removePair(b, d);
640 >      }
641 >
642 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
643 >        oneFourInteractions_.removePair(a, d);      
644 >      } else {
645 >        excludedInteractions_.removePair(a, d);
646 >      }
647      }
648  
649 < }
649 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
650 >         inversion = mol->nextInversion(inversionIter)) {
651  
652 +      a = inversion->getAtomA()->getGlobalIndex();
653 +      b = inversion->getAtomB()->getGlobalIndex();        
654 +      c = inversion->getAtomC()->getGlobalIndex();        
655 +      d = inversion->getAtomD()->getGlobalIndex();        
656  
657 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
658 <    int curStampId;
657 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
658 >        oneTwoInteractions_.removePair(a, b);      
659 >        oneTwoInteractions_.removePair(a, c);
660 >        oneTwoInteractions_.removePair(a, d);
661 >      } else {
662 >        excludedInteractions_.removePair(a, b);
663 >        excludedInteractions_.removePair(a, c);
664 >        excludedInteractions_.removePair(a, d);
665 >      }
666  
667 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
668 +        oneThreeInteractions_.removePair(b, c);    
669 +        oneThreeInteractions_.removePair(b, d);    
670 +        oneThreeInteractions_.removePair(c, d);      
671 +      } else {
672 +        excludedInteractions_.removePair(b, c);
673 +        excludedInteractions_.removePair(b, d);
674 +        excludedInteractions_.removePair(c, d);
675 +      }
676 +    }
677 +
678 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
679 +         rb = mol->nextRigidBody(rbIter)) {
680 +      vector<Atom*> atoms = rb->getAtoms();
681 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
682 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
683 +          a = atoms[i]->getGlobalIndex();
684 +          b = atoms[j]->getGlobalIndex();
685 +          excludedInteractions_.removePair(a, b);
686 +        }
687 +      }
688 +    }        
689 +    
690 +  }
691 +  
692 +  
693 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
694 +    int curStampId;
695 +    
696      //index from 0
697      curStampId = moleculeStamps_.size();
698  
699      moleculeStamps_.push_back(molStamp);
700      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
701 < }
701 >  }
702  
427 void SimInfo::update() {
703  
704 <    setupSimType();
705 <
706 < #ifdef IS_MPI
707 <    setupFortranParallel();
708 < #endif
709 <
710 <    setupFortranSim();
711 <
712 <    //setup fortran force field
438 <    /** @deprecate */    
439 <    int isError = 0;
440 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
441 <    if(isError){
442 <        sprintf( painCave.errMsg,
443 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
444 <        painCave.isFatal = 1;
445 <        simError();
446 <    }
447 <  
448 <    
449 <    setupCutoff();
450 <
704 >  /**
705 >   * update
706 >   *
707 >   *  Performs the global checks and variable settings after the
708 >   *  objects have been created.
709 >   *
710 >   */
711 >  void SimInfo::update() {  
712 >    setupSimVariables();
713      calcNdf();
714      calcNdfRaw();
715      calcNdfTrans();
716 <
717 <    fortranInitialized_ = true;
718 < }
719 <
720 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
716 >  }
717 >  
718 >  /**
719 >   * getSimulatedAtomTypes
720 >   *
721 >   * Returns an STL set of AtomType* that are actually present in this
722 >   * simulation.  Must query all processors to assemble this information.
723 >   *
724 >   */
725 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
726      SimInfo::MoleculeIterator mi;
727      Molecule* mol;
728      Molecule::AtomIterator ai;
729      Atom* atom;
730 <    std::set<AtomType*> atomTypes;
731 <
730 >    set<AtomType*> atomTypes;
731 >    
732      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
733 +      for(atom = mol->beginAtom(ai); atom != NULL;
734 +          atom = mol->nextAtom(ai)) {
735 +        atomTypes.insert(atom->getAtomType());
736 +      }      
737 +    }    
738 +    
739 + #ifdef IS_MPI
740  
741 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
742 <            atomTypes.insert(atom->getAtomType());
743 <        }
744 <        
745 <    }
741 >    // loop over the found atom types on this processor, and add their
742 >    // numerical idents to a vector:
743 >    
744 >    vector<int> foundTypes;
745 >    set<AtomType*>::iterator i;
746 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
747 >      foundTypes.push_back( (*i)->getIdent() );
748  
749 <    return atomTypes;        
750 < }
749 >    // count_local holds the number of found types on this processor
750 >    int count_local = foundTypes.size();
751  
752 < void SimInfo::setupSimType() {
477 <    std::set<AtomType*>::iterator i;
478 <    std::set<AtomType*> atomTypes;
479 <    atomTypes = getUniqueAtomTypes();
480 <    
481 <    int useLennardJones = 0;
482 <    int useElectrostatic = 0;
483 <    int useEAM = 0;
484 <    int useCharge = 0;
485 <    int useDirectional = 0;
486 <    int useDipole = 0;
487 <    int useGayBerne = 0;
488 <    int useSticky = 0;
489 <    int useShape = 0;
490 <    int useFLARB = 0; //it is not in AtomType yet
491 <    int useDirectionalAtom = 0;    
492 <    int useElectrostatics = 0;
493 <    //usePBC and useRF are from simParams
494 <    int usePBC = simParams_->getPBC();
495 <    int useRF = simParams_->getUseRF();
752 >    int nproc = MPI::COMM_WORLD.Get_size();
753  
754 <    //loop over all of the atom types
755 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
756 <        useLennardJones |= (*i)->isLennardJones();
757 <        useElectrostatic |= (*i)->isElectrostatic();
501 <        useEAM |= (*i)->isEAM();
502 <        useCharge |= (*i)->isCharge();
503 <        useDirectional |= (*i)->isDirectional();
504 <        useDipole |= (*i)->isDipole();
505 <        useGayBerne |= (*i)->isGayBerne();
506 <        useSticky |= (*i)->isSticky();
507 <        useShape |= (*i)->isShape();
508 <    }
754 >    // we need arrays to hold the counts and displacement vectors for
755 >    // all processors
756 >    vector<int> counts(nproc, 0);
757 >    vector<int> disps(nproc, 0);
758  
759 <    if (useSticky || useDipole || useGayBerne || useShape) {
760 <        useDirectionalAtom = 1;
759 >    // fill the counts array
760 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
761 >                              1, MPI::INT);
762 >  
763 >    // use the processor counts to compute the displacement array
764 >    disps[0] = 0;    
765 >    int totalCount = counts[0];
766 >    for (int iproc = 1; iproc < nproc; iproc++) {
767 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
768 >      totalCount += counts[iproc];
769      }
770  
771 <    if (useCharge || useDipole) {
772 <        useElectrostatics = 1;
773 <    }
771 >    // we need a (possibly redundant) set of all found types:
772 >    vector<int> ftGlobal(totalCount);
773 >    
774 >    // now spray out the foundTypes to all the other processors:    
775 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
776 >                               &ftGlobal[0], &counts[0], &disps[0],
777 >                               MPI::INT);
778  
779 < #ifdef IS_MPI    
519 <    int temp;
779 >    vector<int>::iterator j;
780  
781 <    temp = usePBC;
782 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
781 >    // foundIdents is a stl set, so inserting an already found ident
782 >    // will have no effect.
783 >    set<int> foundIdents;
784  
785 <    temp = useDirectionalAtom;
786 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
785 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
786 >      foundIdents.insert((*j));
787 >    
788 >    // now iterate over the foundIdents and get the actual atom types
789 >    // that correspond to these:
790 >    set<int>::iterator it;
791 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
792 >      atomTypes.insert( forceField_->getAtomType((*it)) );
793 >
794 > #endif
795  
796 <    temp = useLennardJones;
797 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
796 >    return atomTypes;        
797 >  }
798  
530    temp = useElectrostatics;
531    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
799  
800 <    temp = useCharge;
801 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
800 >  int getGlobalCountOfType(AtomType* atype) {
801 >    /*
802 >    set<AtomType*> atypes = getSimulatedAtomTypes();
803 >    map<AtomType*, int> counts_;
804  
805 <    temp = useDipole;
806 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
805 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
806 >      for(atom = mol->beginAtom(ai); atom != NULL;
807 >          atom = mol->nextAtom(ai)) {
808 >        atom->getAtomType();
809 >      }      
810 >    }    
811 >    */
812 >    return 0;
813 >  }
814  
815 <    temp = useSticky;
816 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
815 >  void SimInfo::setupSimVariables() {
816 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
817 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
818 >    // parameter is true
819 >    calcBoxDipole_ = false;
820 >    if ( simParams_->haveAccumulateBoxDipole() )
821 >      if ( simParams_->getAccumulateBoxDipole() ) {
822 >        calcBoxDipole_ = true;      
823 >      }
824 >    
825 >    set<AtomType*>::iterator i;
826 >    set<AtomType*> atomTypes;
827 >    atomTypes = getSimulatedAtomTypes();    
828 >    bool usesElectrostatic = false;
829 >    bool usesMetallic = false;
830 >    bool usesDirectional = false;
831 >    bool usesFluctuatingCharges =  false;
832 >    //loop over all of the atom types
833 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
834 >      usesElectrostatic |= (*i)->isElectrostatic();
835 >      usesMetallic |= (*i)->isMetal();
836 >      usesDirectional |= (*i)->isDirectional();
837 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
838 >    }
839  
840 <    temp = useGayBerne;
841 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
840 > #ifdef IS_MPI
841 >    bool temp;
842 >    temp = usesDirectional;
843 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
844 >                              MPI::LOR);
845 >        
846 >    temp = usesMetallic;
847 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
848 >                              MPI::LOR);
849 >    
850 >    temp = usesElectrostatic;
851 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
852 >                              MPI::LOR);
853  
854 <    temp = useEAM;
855 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
854 >    temp = usesFluctuatingCharges;
855 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
856 >                              MPI::LOR);
857 > #else
858  
859 <    temp = useShape;
860 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
859 >    usesDirectionalAtoms_ = usesDirectional;
860 >    usesMetallicAtoms_ = usesMetallic;
861 >    usesElectrostaticAtoms_ = usesElectrostatic;
862 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
863  
551    temp = useFLARB;
552    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
553
554    temp = useRF;
555    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
556    
864   #endif
865 +    
866 +    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
867 +    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
868 +    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
869 +  }
870  
559    fInfo_.SIM_uses_PBC = usePBC;    
560    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
561    fInfo_.SIM_uses_LennardJones = useLennardJones;
562    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
563    fInfo_.SIM_uses_Charges = useCharge;
564    fInfo_.SIM_uses_Dipoles = useDipole;
565    fInfo_.SIM_uses_Sticky = useSticky;
566    fInfo_.SIM_uses_GayBerne = useGayBerne;
567    fInfo_.SIM_uses_EAM = useEAM;
568    fInfo_.SIM_uses_Shapes = useShape;
569    fInfo_.SIM_uses_FLARB = useFLARB;
570    fInfo_.SIM_uses_RF = useRF;
871  
872 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
872 >  vector<int> SimInfo::getGlobalAtomIndices() {
873 >    SimInfo::MoleculeIterator mi;
874 >    Molecule* mol;
875 >    Molecule::AtomIterator ai;
876 >    Atom* atom;
877  
878 <        if (simParams_->haveDielectric()) {
879 <            fInfo_.dielect = simParams_->getDielectric();
880 <        } else {
881 <            sprintf(painCave.errMsg,
882 <                    "SimSetup Error: No Dielectric constant was set.\n"
883 <                    "\tYou are trying to use Reaction Field without"
884 <                    "\tsetting a dielectric constant!\n");
581 <            painCave.isFatal = 1;
582 <            simError();
583 <        }
584 <        
585 <    } else {
586 <        fInfo_.dielect = 0.0;
878 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
879 >    
880 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
881 >      
882 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
883 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
884 >      }
885      }
886 +    return GlobalAtomIndices;
887 +  }
888  
589 }
889  
890 < void SimInfo::setupFortranSim() {
891 <    int isError;
892 <    int nExclude;
893 <    std::vector<int> fortranGlobalGroupMembership;
894 <    
596 <    nExclude = exclude_.getSize();
597 <    isError = 0;
890 >  vector<int> SimInfo::getGlobalGroupIndices() {
891 >    SimInfo::MoleculeIterator mi;
892 >    Molecule* mol;
893 >    Molecule::CutoffGroupIterator ci;
894 >    CutoffGroup* cg;
895  
896 <    //globalGroupMembership_ is filled by SimCreator    
897 <    for (int i = 0; i < nGlobalAtoms_; i++) {
898 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
896 >    vector<int> GlobalGroupIndices;
897 >    
898 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
899 >      
900 >      //local index of cutoff group is trivial, it only depends on the
901 >      //order of travesing
902 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
903 >           cg = mol->nextCutoffGroup(ci)) {
904 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
905 >      }        
906      }
907 +    return GlobalGroupIndices;
908 +  }
909  
910 +
911 +  void SimInfo::prepareTopology() {
912 +
913      //calculate mass ratio of cutoff group
605    std::vector<double> mfact;
914      SimInfo::MoleculeIterator mi;
915      Molecule* mol;
916      Molecule::CutoffGroupIterator ci;
917      CutoffGroup* cg;
918      Molecule::AtomIterator ai;
919      Atom* atom;
920 <    double totalMass;
920 >    RealType totalMass;
921  
922 <    //to avoid memory reallocation, reserve enough space for mfact
923 <    mfact.reserve(getNCutoffGroups());
922 >    /**
923 >     * The mass factor is the relative mass of an atom to the total
924 >     * mass of the cutoff group it belongs to.  By default, all atoms
925 >     * are their own cutoff groups, and therefore have mass factors of
926 >     * 1.  We need some special handling for massless atoms, which
927 >     * will be treated as carrying the entire mass of the cutoff
928 >     * group.
929 >     */
930 >    massFactors_.clear();
931 >    massFactors_.resize(getNAtoms(), 1.0);
932      
933      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
934 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
934 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
935 >           cg = mol->nextCutoffGroup(ci)) {
936  
937 <            totalMass = cg->getMass();
938 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
939 <                        mfact.push_back(atom->getMass()/totalMass);
940 <            }
941 <
942 <        }      
937 >        totalMass = cg->getMass();
938 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
939 >          // Check for massless groups - set mfact to 1 if true
940 >          if (totalMass != 0)
941 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
942 >          else
943 >            massFactors_[atom->getLocalIndex()] = 1.0;
944 >        }
945 >      }      
946      }
947  
948 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
629 <    std::vector<int> identArray;
948 >    // Build the identArray_ and regions_
949  
950 <    //to avoid memory reallocation, reserve enough space identArray
951 <    identArray.reserve(getNAtoms());
952 <    
953 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
954 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
955 <            identArray.push_back(atom->getIdent());
956 <        }
950 >    identArray_.clear();
951 >    identArray_.reserve(getNAtoms());  
952 >    regions_.clear();
953 >    regions_.reserve(getNAtoms());
954 >
955 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
956 >      int reg = mol->getRegion();      
957 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
958 >        identArray_.push_back(atom->getIdent());
959 >        regions_.push_back(reg);
960 >      }
961      }    
962 +      
963 +    topologyDone_ = true;
964 +  }
965  
966 <    //fill molMembershipArray
641 <    //molMembershipArray is filled by SimCreator    
642 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
643 <    for (int i = 0; i < nGlobalAtoms_; i++) {
644 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
645 <    }
646 <    
647 <    //setup fortran simulation
648 <    //gloalExcludes and molMembershipArray should go away (They are never used)
649 <    //why the hell fortran need to know molecule?
650 <    //OOPSE = Object-Obfuscated Parallel Simulation Engine
651 <    int nGlobalExcludes = 0;
652 <    int* globalExcludes = NULL;
653 <    int* excludeList = exclude_.getExcludeList();
654 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
655 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
656 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
657 <
658 <    if( isError ){
659 <
660 <        sprintf( painCave.errMsg,
661 <                 "There was an error setting the simulation information in fortran.\n" );
662 <        painCave.isFatal = 1;
663 <        painCave.severity = OOPSE_ERROR;
664 <        simError();
665 <    }
666 <
667 < #ifdef IS_MPI
668 <    sprintf( checkPointMsg,
669 <       "succesfully sent the simulation information to fortran.\n");
670 <    MPIcheckPoint();
671 < #endif // is_mpi
672 < }
673 <
674 <
675 < #ifdef IS_MPI
676 < void SimInfo::setupFortranParallel() {
677 <    
678 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
679 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
680 <    std::vector<int> localToGlobalCutoffGroupIndex;
681 <    SimInfo::MoleculeIterator mi;
682 <    Molecule::AtomIterator ai;
683 <    Molecule::CutoffGroupIterator ci;
684 <    Molecule* mol;
685 <    Atom* atom;
686 <    CutoffGroup* cg;
687 <    mpiSimData parallelData;
688 <    int isError;
689 <
690 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
691 <
692 <        //local index(index in DataStorge) of atom is important
693 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
694 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
695 <        }
696 <
697 <        //local index of cutoff group is trivial, it only depends on the order of travesing
698 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
699 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
700 <        }        
701 <        
702 <    }
703 <
704 <    //fill up mpiSimData struct
705 <    parallelData.nMolGlobal = getNGlobalMolecules();
706 <    parallelData.nMolLocal = getNMolecules();
707 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
708 <    parallelData.nAtomsLocal = getNAtoms();
709 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
710 <    parallelData.nGroupsLocal = getNCutoffGroups();
711 <    parallelData.myNode = worldRank;
712 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
713 <
714 <    //pass mpiSimData struct and index arrays to fortran
715 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
716 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
717 <                    &localToGlobalCutoffGroupIndex[0], &isError);
718 <
719 <    if (isError) {
720 <        sprintf(painCave.errMsg,
721 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
722 <        painCave.isFatal = 1;
723 <        simError();
724 <    }
725 <
726 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
727 <    MPIcheckPoint();
728 <
729 <
730 < }
731 <
732 < #endif
733 <
734 < double SimInfo::calcMaxCutoffRadius() {
735 <
736 <
737 <    std::set<AtomType*> atomTypes;
738 <    std::set<AtomType*>::iterator i;
739 <    std::vector<double> cutoffRadius;
740 <
741 <    //get the unique atom types
742 <    atomTypes = getUniqueAtomTypes();
743 <
744 <    //query the max cutoff radius among these atom types
745 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
746 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
747 <    }
748 <
749 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
750 < #ifdef IS_MPI
751 <    //pick the max cutoff radius among the processors
752 < #endif
753 <
754 <    return maxCutoffRadius;
755 < }
756 <
757 < void SimInfo::getCutoff(double& rcut, double& rsw) {
758 <    
759 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
760 <        
761 <        if (!simParams_->haveRcut()){
762 <            sprintf(painCave.errMsg,
763 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
764 <                "\tOOPSE will use a default value of 15.0 angstroms"
765 <                "\tfor the cutoffRadius.\n");
766 <            painCave.isFatal = 0;
767 <            simError();
768 <            rcut = 15.0;
769 <        } else{
770 <            rcut = simParams_->getRcut();
771 <        }
772 <
773 <        if (!simParams_->haveRsw()){
774 <            sprintf(painCave.errMsg,
775 <                "SimCreator Warning: No value was set for switchingRadius.\n"
776 <                "\tOOPSE will use a default value of\n"
777 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
778 <            painCave.isFatal = 0;
779 <            simError();
780 <            rsw = 0.95 * rcut;
781 <        } else{
782 <            rsw = simParams_->getRsw();
783 <        }
784 <
785 <    } else {
786 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
787 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
788 <        
789 <        if (simParams_->haveRcut()) {
790 <            rcut = simParams_->getRcut();
791 <        } else {
792 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
793 <            rcut = calcMaxCutoffRadius();
794 <        }
795 <
796 <        if (simParams_->haveRsw()) {
797 <            rsw  = simParams_->getRsw();
798 <        } else {
799 <            rsw = rcut;
800 <        }
801 <    
802 <    }
803 < }
804 <
805 < void SimInfo::setupCutoff() {
806 <    getCutoff(rcut_, rsw_);    
807 <    double rnblist = rcut_ + 1; // skin of neighbor list
808 <
809 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
810 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
811 < }
812 <
813 < void SimInfo::addProperty(GenericData* genData) {
966 >  void SimInfo::addProperty(GenericData* genData) {
967      properties_.addProperty(genData);  
968 < }
968 >  }
969  
970 < void SimInfo::removeProperty(const std::string& propName) {
970 >  void SimInfo::removeProperty(const string& propName) {
971      properties_.removeProperty(propName);  
972 < }
972 >  }
973  
974 < void SimInfo::clearProperties() {
974 >  void SimInfo::clearProperties() {
975      properties_.clearProperties();
976 < }
976 >  }
977  
978 < std::vector<std::string> SimInfo::getPropertyNames() {
978 >  vector<string> SimInfo::getPropertyNames() {
979      return properties_.getPropertyNames();  
980 < }
980 >  }
981        
982 < std::vector<GenericData*> SimInfo::getProperties() {
982 >  vector<GenericData*> SimInfo::getProperties() {
983      return properties_.getProperties();
984 < }
984 >  }
985  
986 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
986 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
987      return properties_.getPropertyByName(propName);
988 < }
988 >  }
989  
990 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
990 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
991 >    if (sman_ == sman) {
992 >      return;
993 >    }    
994 >    delete sman_;
995      sman_ = sman;
996  
840    Molecule* mol;
841    RigidBody* rb;
842    Atom* atom;
997      SimInfo::MoleculeIterator mi;
998 +    Molecule::AtomIterator ai;
999      Molecule::RigidBodyIterator rbIter;
1000 <    Molecule::AtomIterator atomIter;;
1000 >    Molecule::CutoffGroupIterator cgIter;
1001 >    Molecule::BondIterator bondIter;
1002 >    Molecule::BendIterator bendIter;
1003 >    Molecule::TorsionIterator torsionIter;
1004 >    Molecule::InversionIterator inversionIter;
1005  
1006 +    Molecule* mol;
1007 +    Atom* atom;
1008 +    RigidBody* rb;
1009 +    CutoffGroup* cg;
1010 +    Bond* bond;
1011 +    Bend* bend;
1012 +    Torsion* torsion;
1013 +    Inversion* inversion;    
1014 +
1015      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1016          
1017 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1018 <            atom->setSnapshotManager(sman_);
1019 <        }
1020 <        
1021 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1022 <            rb->setSnapshotManager(sman_);
1023 <        }
1024 <    }    
1025 <    
1026 < }
1017 >      for (atom = mol->beginAtom(ai); atom != NULL;
1018 >           atom = mol->nextAtom(ai)) {
1019 >        atom->setSnapshotManager(sman_);
1020 >      }        
1021 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1022 >           rb = mol->nextRigidBody(rbIter)) {
1023 >        rb->setSnapshotManager(sman_);
1024 >      }
1025 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1026 >           cg = mol->nextCutoffGroup(cgIter)) {
1027 >        cg->setSnapshotManager(sman_);
1028 >      }
1029 >      for (bond = mol->beginBond(bondIter); bond != NULL;
1030 >           bond = mol->nextBond(bondIter)) {
1031 >        bond->setSnapshotManager(sman_);
1032 >      }
1033 >      for (bend = mol->beginBend(bendIter); bend != NULL;
1034 >           bend = mol->nextBend(bendIter)) {
1035 >        bend->setSnapshotManager(sman_);
1036 >      }
1037 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
1038 >           torsion = mol->nextTorsion(torsionIter)) {
1039 >        torsion->setSnapshotManager(sman_);
1040 >      }
1041 >      for (inversion = mol->beginInversion(inversionIter); inversion != NULL;
1042 >           inversion = mol->nextInversion(inversionIter)) {
1043 >        inversion->setSnapshotManager(sman_);
1044 >      }
1045 >    }
1046 >  }
1047  
860 Vector3d SimInfo::getComVel(){
861    SimInfo::MoleculeIterator i;
862    Molecule* mol;
1048  
1049 <    Vector3d comVel(0.0);
865 <    double totalMass = 0.0;
866 <    
867 <
868 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
869 <        double mass = mol->getMass();
870 <        totalMass += mass;
871 <        comVel += mass * mol->getComVel();
872 <    }  
1049 >  ostream& operator <<(ostream& o, SimInfo& info) {
1050  
1051 < #ifdef IS_MPI
1052 <    double tmpMass = totalMass;
1053 <    Vector3d tmpComVel(comVel);    
1054 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1055 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1056 < #endif
1051 >    return o;
1052 >  }
1053 >  
1054 >  
1055 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1056 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1057 >      sprintf(painCave.errMsg,
1058 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1059 >              "\tindex exceeds number of known objects!\n");
1060 >      painCave.isFatal = 1;
1061 >      simError();
1062 >      return NULL;
1063 >    } else
1064 >      return IOIndexToIntegrableObject.at(index);
1065 >  }
1066 >  
1067 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1068 >    IOIndexToIntegrableObject= v;
1069 >  }
1070  
1071 <    comVel /= totalMass;
1072 <
883 <    return comVel;
884 < }
885 <
886 < Vector3d SimInfo::getCom(){
887 <    SimInfo::MoleculeIterator i;
888 <    Molecule* mol;
889 <
890 <    Vector3d com(0.0);
891 <    double totalMass = 0.0;
892 <    
893 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
894 <        double mass = mol->getMass();
895 <        totalMass += mass;
896 <        com += mass * mol->getCom();
897 <    }  
898 <
1071 >  int SimInfo::getNGlobalConstraints() {
1072 >    int nGlobalConstraints;
1073   #ifdef IS_MPI
1074 <    double tmpMass = totalMass;
1075 <    Vector3d tmpCom(com);    
1076 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1077 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1074 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1075 >                              MPI::INT, MPI::SUM);
1076 > #else
1077 >    nGlobalConstraints =  nConstraints_;
1078   #endif
1079 +    return nGlobalConstraints;
1080 +  }
1081  
1082 <    com /= totalMass;
1082 > }//end namespace OpenMD
1083  
908    return com;
909
910 }        
911
912 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
913
914    return o;
915 }
916
917 }//end namespace oopse
918

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 328 by tim, Sun Feb 13 20:36:24 2005 UTC vs.
Revision 1953 by gezelter, Thu Dec 5 18:19:26 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines