ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
Revision 1983 by gezelter, Tue Apr 15 20:36:19 2014 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file SimInfo.cpp
45 > * @author    tlin
46 > * @date  11/02/2004
47 > * @version 1.0
48 > */
49  
50 < #include <iostream>
51 < using namespace std;
50 > #ifdef IS_MPI
51 > #include <mpi.h>
52 > #endif
53 > #include <algorithm>
54 > #include <set>
55 > #include <map>
56  
57   #include "brains/SimInfo.hpp"
58 < #define __C
59 < #include "brains/fSimulation.h"
58 > #include "math/Vector3.hpp"
59 > #include "primitives/Molecule.hpp"
60 > #include "primitives/StuntDouble.hpp"
61 > #include "utils/MemoryUtils.hpp"
62   #include "utils/simError.h"
63 + #include "selection/SelectionManager.hpp"
64 + #include "io/ForceFieldOptions.hpp"
65 + #include "brains/ForceField.hpp"
66 + #include "nonbonded/SwitchingFunction.hpp"
67  
68 < #include "UseTheForce/fortranWrappers.hpp"
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 >    nGlobalFluctuatingCharges_(0), nGlobalBonds_(0), nGlobalBends_(0),
77 >    nGlobalTorsions_(0), nGlobalInversions_(0), nGlobalConstraints_(0),
78 >    nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
79 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
80 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL),
81 >    topologyDone_(false), calcBoxDipole_(false), useAtomicVirial_(true),
82 >    hasNGlobalConstraints_(false) {    
83 >    
84 >    MoleculeStamp* molStamp;
85 >    int nMolWithSameStamp;
86 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88 >    CutoffGroupStamp* cgStamp;    
89 >    RigidBodyStamp* rbStamp;
90 >    int nRigidAtoms = 0;
91 >    
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin();
95 >         i !=components.end(); ++i) {
96 >      molStamp = (*i)->getMoleculeStamp();
97 >      if ( (*i)->haveRegion() ) {        
98 >        molStamp->setRegion( (*i)->getRegion() );
99 >      } else {
100 >        // set the region to a disallowed value:
101 >        molStamp->setRegion( -1 );
102 >      }
103  
104 < #include "math/MatVec3.h"
104 >      nMolWithSameStamp = (*i)->getNMol();
105 >      
106 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
107 >      
108 >      //calculate atoms in molecules
109 >      nGlobalAtoms_ += molStamp->getNAtoms() * nMolWithSameStamp;
110 >      nGlobalBonds_ += molStamp->getNBonds() * nMolWithSameStamp;
111 >      nGlobalBends_ += molStamp->getNBends() * nMolWithSameStamp;
112 >      nGlobalTorsions_ += molStamp->getNTorsions() * nMolWithSameStamp;
113 >      nGlobalInversions_ += molStamp->getNInversions() * nMolWithSameStamp;
114 >      
115 >      //calculate atoms in cutoff groups
116 >      int nAtomsInGroups = 0;
117 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118 >      
119 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 >        cgStamp = molStamp->getCutoffGroupStamp(j);
121 >        nAtomsInGroups += cgStamp->getNMembers();
122 >      }
123 >      
124 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
125 >      
126 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
127 >      
128 >      //calculate atoms in rigid bodies
129 >      int nAtomsInRigidBodies = 0;
130 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
131 >      
132 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
133 >        rbStamp = molStamp->getRigidBodyStamp(j);
134 >        nAtomsInRigidBodies += rbStamp->getNMembers();
135 >      }
136 >      
137 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
138 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
139 >      
140 >    }
141 >    
142 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
143 >    //group therefore the total number of cutoff groups in the system is
144 >    //equal to the total number of atoms minus number of atoms belong to
145 >    //cutoff group defined in meta-data file plus the number of cutoff
146 >    //groups defined in meta-data file
147  
148 < #ifdef IS_MPI
149 < #include "brains/mpiSimulation.hpp"
150 < #endif
148 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
149 >    
150 >    //every free atom (atom does not belong to rigid bodies) is an
151 >    //integrable object therefore the total number of integrable objects
152 >    //in the system is equal to the total number of atoms minus number of
153 >    //atoms belong to rigid body defined in meta-data file plus the number
154 >    //of rigid bodies defined in meta-data file
155 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
156 >      + nGlobalRigidBodies_;
157 >    
158 >    nGlobalMols_ = molStampIds_.size();
159 >    molToProcMap_.resize(nGlobalMols_);
160 >  }
161 >  
162 >  SimInfo::~SimInfo() {
163 >    map<int, Molecule*>::iterator i;
164 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
165 >      delete i->second;
166 >    }
167 >    molecules_.clear();
168 >      
169 >    delete sman_;
170 >    delete simParams_;
171 >    delete forceField_;
172 >  }
173  
21 inline double roundMe( double x ){
22  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
23 }
24          
25 inline double min( double a, double b ){
26  return (a < b ) ? a : b;
27 }
174  
175 < SimInfo* currentInfo;
176 <
177 < SimInfo::SimInfo(){
178 <
179 <  n_constraints = 0;
180 <  nZconstraints = 0;
181 <  n_oriented = 0;
182 <  n_dipoles = 0;
183 <  ndf = 0;
184 <  ndfRaw = 0;
185 <  nZconstraints = 0;
186 <  the_integrator = NULL;
187 <  setTemp = 0;
188 <  thermalTime = 0.0;
189 <  currentTime = 0.0;
190 <  rCut = 0.0;
191 <  rSw = 0.0;
192 <
193 <  haveRcut = 0;
194 <  haveRsw = 0;
195 <  boxIsInit = 0;
175 >  bool SimInfo::addMolecule(Molecule* mol) {
176 >    MoleculeIterator i;
177 >    
178 >    i = molecules_.find(mol->getGlobalIndex());
179 >    if (i == molecules_.end() ) {
180 >      
181 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
182 >      
183 >      nAtoms_ += mol->getNAtoms();
184 >      nBonds_ += mol->getNBonds();
185 >      nBends_ += mol->getNBends();
186 >      nTorsions_ += mol->getNTorsions();
187 >      nInversions_ += mol->getNInversions();
188 >      nRigidBodies_ += mol->getNRigidBodies();
189 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
190 >      nCutoffGroups_ += mol->getNCutoffGroups();
191 >      nConstraints_ += mol->getNConstraintPairs();
192 >      
193 >      addInteractionPairs(mol);
194 >      
195 >      return true;
196 >    } else {
197 >      return false;
198 >    }
199 >  }
200    
201 <  resetTime = 1e99;
201 >  bool SimInfo::removeMolecule(Molecule* mol) {
202 >    MoleculeIterator i;
203 >    i = molecules_.find(mol->getGlobalIndex());
204  
205 <  orthoRhombic = 0;
54 <  orthoTolerance = 1E-6;
55 <  useInitXSstate = true;
205 >    if (i != molecules_.end() ) {
206  
207 <  usePBC = 0;
208 <  useLJ = 0;
209 <  useSticky = 0;
210 <  useCharges = 0;
211 <  useDipoles = 0;
212 <  useReactionField = 0;
213 <  useGB = 0;
214 <  useEAM = 0;
215 <  useSolidThermInt = 0;
216 <  useLiquidThermInt = 0;
207 >      assert(mol == i->second);
208 >        
209 >      nAtoms_ -= mol->getNAtoms();
210 >      nBonds_ -= mol->getNBonds();
211 >      nBends_ -= mol->getNBends();
212 >      nTorsions_ -= mol->getNTorsions();
213 >      nInversions_ -= mol->getNInversions();
214 >      nRigidBodies_ -= mol->getNRigidBodies();
215 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
216 >      nCutoffGroups_ -= mol->getNCutoffGroups();
217 >      nConstraints_ -= mol->getNConstraintPairs();
218  
219 <  haveCutoffGroups = false;
219 >      removeInteractionPairs(mol);
220 >      molecules_.erase(mol->getGlobalIndex());
221  
222 <  excludes = Exclude::Instance();
222 >      delete mol;
223 >        
224 >      return true;
225 >    } else {
226 >      return false;
227 >    }
228 >  }    
229  
230 <  myConfiguration = new SimState();
230 >        
231 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
232 >    i = molecules_.begin();
233 >    return i == molecules_.end() ? NULL : i->second;
234 >  }    
235  
236 <  has_minimizer = false;
237 <  the_minimizer =NULL;
236 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
237 >    ++i;
238 >    return i == molecules_.end() ? NULL : i->second;    
239 >  }
240  
77  ngroup = 0;
241  
242 <  wrapMeSimInfo( this );
243 < }
242 >  void SimInfo::calcNdf() {
243 >    int ndf_local, nfq_local;
244 >    MoleculeIterator i;
245 >    vector<StuntDouble*>::iterator j;
246 >    vector<Atom*>::iterator k;
247  
248 +    Molecule* mol;
249 +    StuntDouble* sd;
250 +    Atom* atom;
251  
252 < SimInfo::~SimInfo(){
252 >    ndf_local = 0;
253 >    nfq_local = 0;
254 >    
255 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
256  
257 <  delete myConfiguration;
257 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
258 >           sd = mol->nextIntegrableObject(j)) {
259  
260 <  map<string, GenericData*>::iterator i;
88 <  
89 <  for(i = properties.begin(); i != properties.end(); i++)
90 <    delete (*i).second;
260 >        ndf_local += 3;
261  
262 < }
262 >        if (sd->isDirectional()) {
263 >          if (sd->isLinear()) {
264 >            ndf_local += 2;
265 >          } else {
266 >            ndf_local += 3;
267 >          }
268 >        }
269 >      }
270  
271 < void SimInfo::setBox(double newBox[3]) {
272 <  
273 <  int i, j;
274 <  double tempMat[3][3];
271 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
272 >           atom = mol->nextFluctuatingCharge(k)) {
273 >        if (atom->isFluctuatingCharge()) {
274 >          nfq_local++;
275 >        }
276 >      }
277 >    }
278 >    
279 >    ndfLocal_ = ndf_local;
280  
281 <  for(i=0; i<3; i++)
282 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
281 >    // n_constraints is local, so subtract them on each processor
282 >    ndf_local -= nConstraints_;
283  
284 <  tempMat[0][0] = newBox[0];
285 <  tempMat[1][1] = newBox[1];
286 <  tempMat[2][2] = newBox[2];
284 > #ifdef IS_MPI
285 >    MPI_Allreduce(&ndf_local, &ndf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
286 >    MPI_Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
287 >      MPI_INT, MPI_SUM, MPI_COMM_WORLD);
288 > #else
289 >    ndf_ = ndf_local;
290 >    nGlobalFluctuatingCharges_ = nfq_local;
291 > #endif
292  
293 <  setBoxM( tempMat );
293 >    // nZconstraints_ is global, as are the 3 COM translations for the
294 >    // entire system:
295 >    ndf_ = ndf_ - 3 - nZconstraint_;
296  
297 < }
297 >  }
298  
299 < void SimInfo::setBoxM( double theBox[3][3] ){
299 >  int SimInfo::getFdf() {
300 > #ifdef IS_MPI
301 >    MPI_Allreduce(&fdf_local, &fdf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
302 > #else
303 >    fdf_ = fdf_local;
304 > #endif
305 >    return fdf_;
306 >  }
307    
308 <  int i, j;
309 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
310 <                         // ordering in the array is as follows:
311 <                         // [ 0 3 6 ]
312 <                         // [ 1 4 7 ]
313 <                         // [ 2 5 8 ]
314 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
315 <
316 <  if( !boxIsInit ) boxIsInit = 1;
317 <
318 <  for(i=0; i < 3; i++)
319 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
320 <  
321 <  calcBoxL();
126 <  calcHmatInv();
127 <
128 <  for(i=0; i < 3; i++) {
129 <    for (j=0; j < 3; j++) {
130 <      FortranHmat[3*j + i] = Hmat[i][j];
131 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
308 >  unsigned int SimInfo::getNLocalCutoffGroups(){
309 >    int nLocalCutoffAtoms = 0;
310 >    Molecule* mol;
311 >    MoleculeIterator mi;
312 >    CutoffGroup* cg;
313 >    Molecule::CutoffGroupIterator ci;
314 >    
315 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
316 >      
317 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
318 >           cg = mol->nextCutoffGroup(ci)) {
319 >        nLocalCutoffAtoms += cg->getNumAtom();
320 >        
321 >      }        
322      }
323 +    
324 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
325    }
326 +    
327 +  void SimInfo::calcNdfRaw() {
328 +    int ndfRaw_local;
329  
330 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
331 <
332 < }
333 <
330 >    MoleculeIterator i;
331 >    vector<StuntDouble*>::iterator j;
332 >    Molecule* mol;
333 >    StuntDouble* sd;
334  
335 < void SimInfo::getBoxM (double theBox[3][3]) {
335 >    // Raw degrees of freedom that we have to set
336 >    ndfRaw_local = 0;
337 >    
338 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
339  
340 <  int i, j;
341 <  for(i=0; i<3; i++)
144 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
145 < }
340 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
341 >           sd = mol->nextIntegrableObject(j)) {
342  
343 +        ndfRaw_local += 3;
344  
345 < void SimInfo::scaleBox(double scale) {
346 <  double theBox[3][3];
347 <  int i, j;
345 >        if (sd->isDirectional()) {
346 >          if (sd->isLinear()) {
347 >            ndfRaw_local += 2;
348 >          } else {
349 >            ndfRaw_local += 3;
350 >          }
351 >        }
352 >            
353 >      }
354 >    }
355 >    
356 > #ifdef IS_MPI
357 >    MPI_Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
358 > #else
359 >    ndfRaw_ = ndfRaw_local;
360 > #endif
361 >  }
362  
363 <  // cerr << "Scaling box by " << scale << "\n";
363 >  void SimInfo::calcNdfTrans() {
364 >    int ndfTrans_local;
365  
366 <  for(i=0; i<3; i++)
155 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
366 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
367  
368 <  setBoxM(theBox);
368 > #ifdef IS_MPI
369 >    MPI_Allreduce(&ndfTrans_local, &ndfTrans_, 1, MPI_INT, MPI_SUM,
370 >                  MPI_COMM_WORLD);
371 > #else
372 >    ndfTrans_ = ndfTrans_local;
373 > #endif
374  
375 < }
375 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
376 >  }
377  
378 < void SimInfo::calcHmatInv( void ) {
379 <  
380 <  int oldOrtho;
381 <  int i,j;
382 <  double smallDiag;
383 <  double tol;
384 <  double sanity[3][3];
378 >  void SimInfo::addInteractionPairs(Molecule* mol) {
379 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
380 >    vector<Bond*>::iterator bondIter;
381 >    vector<Bend*>::iterator bendIter;
382 >    vector<Torsion*>::iterator torsionIter;
383 >    vector<Inversion*>::iterator inversionIter;
384 >    Bond* bond;
385 >    Bend* bend;
386 >    Torsion* torsion;
387 >    Inversion* inversion;
388 >    int a;
389 >    int b;
390 >    int c;
391 >    int d;
392  
393 <  invertMat3( Hmat, HmatInv );
393 >    // atomGroups can be used to add special interaction maps between
394 >    // groups of atoms that are in two separate rigid bodies.
395 >    // However, most site-site interactions between two rigid bodies
396 >    // are probably not special, just the ones between the physically
397 >    // bonded atoms.  Interactions *within* a single rigid body should
398 >    // always be excluded.  These are done at the bottom of this
399 >    // function.
400  
401 <  // check to see if Hmat is orthorhombic
402 <  
403 <  oldOrtho = orthoRhombic;
401 >    map<int, set<int> > atomGroups;
402 >    Molecule::RigidBodyIterator rbIter;
403 >    RigidBody* rb;
404 >    Molecule::IntegrableObjectIterator ii;
405 >    StuntDouble* sd;
406 >    
407 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
408 >         sd = mol->nextIntegrableObject(ii)) {
409 >      
410 >      if (sd->isRigidBody()) {
411 >        rb = static_cast<RigidBody*>(sd);
412 >        vector<Atom*> atoms = rb->getAtoms();
413 >        set<int> rigidAtoms;
414 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
415 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
416 >        }
417 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
418 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
419 >        }      
420 >      } else {
421 >        set<int> oneAtomSet;
422 >        oneAtomSet.insert(sd->getGlobalIndex());
423 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
424 >      }
425 >    }  
426  
427 <  smallDiag = fabs(Hmat[0][0]);
428 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
429 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
427 >          
428 >    for (bond= mol->beginBond(bondIter); bond != NULL;
429 >         bond = mol->nextBond(bondIter)) {
430  
431 <  orthoRhombic = 1;
432 <  
433 <  for (i = 0; i < 3; i++ ) {
434 <    for (j = 0 ; j < 3; j++) {
435 <      if (i != j) {
436 <        if (orthoRhombic) {
437 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
187 <        }        
431 >      a = bond->getAtomA()->getGlobalIndex();
432 >      b = bond->getAtomB()->getGlobalIndex();  
433 >
434 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
435 >        oneTwoInteractions_.addPair(a, b);
436 >      } else {
437 >        excludedInteractions_.addPair(a, b);
438        }
439      }
190  }
440  
441 <  if( oldOrtho != orthoRhombic ){
442 <    
194 <    if( orthoRhombic ) {
195 <      sprintf( painCave.errMsg,
196 <               "OOPSE is switching from the default Non-Orthorhombic\n"
197 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
198 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
217 <  }
218 < }
441 >    for (bend= mol->beginBend(bendIter); bend != NULL;
442 >         bend = mol->nextBend(bendIter)) {
443  
444 < void SimInfo::calcBoxL( void ){
444 >      a = bend->getAtomA()->getGlobalIndex();
445 >      b = bend->getAtomB()->getGlobalIndex();        
446 >      c = bend->getAtomC()->getGlobalIndex();
447 >      
448 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
449 >        oneTwoInteractions_.addPair(a, b);      
450 >        oneTwoInteractions_.addPair(b, c);
451 >      } else {
452 >        excludedInteractions_.addPair(a, b);
453 >        excludedInteractions_.addPair(b, c);
454 >      }
455  
456 <  double dx, dy, dz, dsq;
456 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
457 >        oneThreeInteractions_.addPair(a, c);      
458 >      } else {
459 >        excludedInteractions_.addPair(a, c);
460 >      }
461 >    }
462  
463 <  // boxVol = Determinant of Hmat
463 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
464 >         torsion = mol->nextTorsion(torsionIter)) {
465  
466 <  boxVol = matDet3( Hmat );
466 >      a = torsion->getAtomA()->getGlobalIndex();
467 >      b = torsion->getAtomB()->getGlobalIndex();        
468 >      c = torsion->getAtomC()->getGlobalIndex();        
469 >      d = torsion->getAtomD()->getGlobalIndex();      
470  
471 <  // boxLx
472 <  
473 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
474 <  dsq = dx*dx + dy*dy + dz*dz;
475 <  boxL[0] = sqrt( dsq );
476 <  //maxCutoff = 0.5 * boxL[0];
471 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
472 >        oneTwoInteractions_.addPair(a, b);      
473 >        oneTwoInteractions_.addPair(b, c);
474 >        oneTwoInteractions_.addPair(c, d);
475 >      } else {
476 >        excludedInteractions_.addPair(a, b);
477 >        excludedInteractions_.addPair(b, c);
478 >        excludedInteractions_.addPair(c, d);
479 >      }
480  
481 <  // boxLy
482 <  
483 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
484 <  dsq = dx*dx + dy*dy + dz*dz;
485 <  boxL[1] = sqrt( dsq );
486 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
481 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
482 >        oneThreeInteractions_.addPair(a, c);      
483 >        oneThreeInteractions_.addPair(b, d);      
484 >      } else {
485 >        excludedInteractions_.addPair(a, c);
486 >        excludedInteractions_.addPair(b, d);
487 >      }
488  
489 +      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
490 +        oneFourInteractions_.addPair(a, d);      
491 +      } else {
492 +        excludedInteractions_.addPair(a, d);
493 +      }
494 +    }
495  
496 <  // boxLz
497 <  
245 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
246 <  dsq = dx*dx + dy*dy + dz*dz;
247 <  boxL[2] = sqrt( dsq );
248 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
496 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
497 >         inversion = mol->nextInversion(inversionIter)) {
498  
499 <  //calculate the max cutoff
500 <  maxCutoff =  calcMaxCutOff();
501 <  
502 <  checkCutOffs();
499 >      a = inversion->getAtomA()->getGlobalIndex();
500 >      b = inversion->getAtomB()->getGlobalIndex();        
501 >      c = inversion->getAtomC()->getGlobalIndex();        
502 >      d = inversion->getAtomD()->getGlobalIndex();        
503  
504 < }
504 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
505 >        oneTwoInteractions_.addPair(a, b);      
506 >        oneTwoInteractions_.addPair(a, c);
507 >        oneTwoInteractions_.addPair(a, d);
508 >      } else {
509 >        excludedInteractions_.addPair(a, b);
510 >        excludedInteractions_.addPair(a, c);
511 >        excludedInteractions_.addPair(a, d);
512 >      }
513  
514 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
515 +        oneThreeInteractions_.addPair(b, c);    
516 +        oneThreeInteractions_.addPair(b, d);    
517 +        oneThreeInteractions_.addPair(c, d);      
518 +      } else {
519 +        excludedInteractions_.addPair(b, c);
520 +        excludedInteractions_.addPair(b, d);
521 +        excludedInteractions_.addPair(c, d);
522 +      }
523 +    }
524  
525 < double SimInfo::calcMaxCutOff(){
525 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
526 >         rb = mol->nextRigidBody(rbIter)) {
527 >      vector<Atom*> atoms = rb->getAtoms();
528 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
529 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
530 >          a = atoms[i]->getGlobalIndex();
531 >          b = atoms[j]->getGlobalIndex();
532 >          excludedInteractions_.addPair(a, b);
533 >        }
534 >      }
535 >    }        
536  
537 <  double ri[3], rj[3], rk[3];
261 <  double rij[3], rjk[3], rki[3];
262 <  double minDist;
537 >  }
538  
539 <  ri[0] = Hmat[0][0];
540 <  ri[1] = Hmat[1][0];
541 <  ri[2] = Hmat[2][0];
539 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
540 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
541 >    vector<Bond*>::iterator bondIter;
542 >    vector<Bend*>::iterator bendIter;
543 >    vector<Torsion*>::iterator torsionIter;
544 >    vector<Inversion*>::iterator inversionIter;
545 >    Bond* bond;
546 >    Bend* bend;
547 >    Torsion* torsion;
548 >    Inversion* inversion;
549 >    int a;
550 >    int b;
551 >    int c;
552 >    int d;
553  
554 <  rj[0] = Hmat[0][1];
555 <  rj[1] = Hmat[1][1];
556 <  rj[2] = Hmat[2][1];
554 >    map<int, set<int> > atomGroups;
555 >    Molecule::RigidBodyIterator rbIter;
556 >    RigidBody* rb;
557 >    Molecule::IntegrableObjectIterator ii;
558 >    StuntDouble* sd;
559 >    
560 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
561 >         sd = mol->nextIntegrableObject(ii)) {
562 >      
563 >      if (sd->isRigidBody()) {
564 >        rb = static_cast<RigidBody*>(sd);
565 >        vector<Atom*> atoms = rb->getAtoms();
566 >        set<int> rigidAtoms;
567 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
568 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
569 >        }
570 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
571 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
572 >        }      
573 >      } else {
574 >        set<int> oneAtomSet;
575 >        oneAtomSet.insert(sd->getGlobalIndex());
576 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
577 >      }
578 >    }  
579  
580 <  rk[0] = Hmat[0][2];
581 <  rk[1] = Hmat[1][2];
582 <  rk[2] = Hmat[2][2];
580 >    for (bond= mol->beginBond(bondIter); bond != NULL;
581 >         bond = mol->nextBond(bondIter)) {
582 >      
583 >      a = bond->getAtomA()->getGlobalIndex();
584 >      b = bond->getAtomB()->getGlobalIndex();  
585      
586 <  crossProduct3(ri, rj, rij);
587 <  distXY = dotProduct3(rk,rij) / norm3(rij);
586 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
587 >        oneTwoInteractions_.removePair(a, b);
588 >      } else {
589 >        excludedInteractions_.removePair(a, b);
590 >      }
591 >    }
592  
593 <  crossProduct3(rj,rk, rjk);
594 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
593 >    for (bend= mol->beginBend(bendIter); bend != NULL;
594 >         bend = mol->nextBend(bendIter)) {
595  
596 <  crossProduct3(rk,ri, rki);
597 <  distZX = dotProduct3(rj,rki) / norm3(rki);
596 >      a = bend->getAtomA()->getGlobalIndex();
597 >      b = bend->getAtomB()->getGlobalIndex();        
598 >      c = bend->getAtomC()->getGlobalIndex();
599 >      
600 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
601 >        oneTwoInteractions_.removePair(a, b);      
602 >        oneTwoInteractions_.removePair(b, c);
603 >      } else {
604 >        excludedInteractions_.removePair(a, b);
605 >        excludedInteractions_.removePair(b, c);
606 >      }
607  
608 <  minDist = min(min(distXY, distYZ), distZX);
609 <  return minDist/2;
610 <  
611 < }
608 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
609 >        oneThreeInteractions_.removePair(a, c);      
610 >      } else {
611 >        excludedInteractions_.removePair(a, c);
612 >      }
613 >    }
614  
615 < void SimInfo::wrapVector( double thePos[3] ){
615 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
616 >         torsion = mol->nextTorsion(torsionIter)) {
617  
618 <  int i;
619 <  double scaled[3];
620 <
621 <  if( !orthoRhombic ){
296 <    // calc the scaled coordinates.
618 >      a = torsion->getAtomA()->getGlobalIndex();
619 >      b = torsion->getAtomB()->getGlobalIndex();        
620 >      c = torsion->getAtomC()->getGlobalIndex();        
621 >      d = torsion->getAtomD()->getGlobalIndex();      
622    
623 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
624 +        oneTwoInteractions_.removePair(a, b);      
625 +        oneTwoInteractions_.removePair(b, c);
626 +        oneTwoInteractions_.removePair(c, d);
627 +      } else {
628 +        excludedInteractions_.removePair(a, b);
629 +        excludedInteractions_.removePair(b, c);
630 +        excludedInteractions_.removePair(c, d);
631 +      }
632  
633 <    matVecMul3(HmatInv, thePos, scaled);
634 <    
635 <    for(i=0; i<3; i++)
636 <      scaled[i] -= roundMe(scaled[i]);
637 <    
638 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
639 <    
306 <    matVecMul3(Hmat, scaled, thePos);
633 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
634 >        oneThreeInteractions_.removePair(a, c);      
635 >        oneThreeInteractions_.removePair(b, d);      
636 >      } else {
637 >        excludedInteractions_.removePair(a, c);
638 >        excludedInteractions_.removePair(b, d);
639 >      }
640  
641 <  }
642 <  else{
643 <    // calc the scaled coordinates.
641 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
642 >        oneFourInteractions_.removePair(a, d);      
643 >      } else {
644 >        excludedInteractions_.removePair(a, d);
645 >      }
646 >    }
647 >
648 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
649 >         inversion = mol->nextInversion(inversionIter)) {
650 >
651 >      a = inversion->getAtomA()->getGlobalIndex();
652 >      b = inversion->getAtomB()->getGlobalIndex();        
653 >      c = inversion->getAtomC()->getGlobalIndex();        
654 >      d = inversion->getAtomD()->getGlobalIndex();        
655 >
656 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
657 >        oneTwoInteractions_.removePair(a, b);      
658 >        oneTwoInteractions_.removePair(a, c);
659 >        oneTwoInteractions_.removePair(a, d);
660 >      } else {
661 >        excludedInteractions_.removePair(a, b);
662 >        excludedInteractions_.removePair(a, c);
663 >        excludedInteractions_.removePair(a, d);
664 >      }
665 >
666 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
667 >        oneThreeInteractions_.removePair(b, c);    
668 >        oneThreeInteractions_.removePair(b, d);    
669 >        oneThreeInteractions_.removePair(c, d);      
670 >      } else {
671 >        excludedInteractions_.removePair(b, c);
672 >        excludedInteractions_.removePair(b, d);
673 >        excludedInteractions_.removePair(c, d);
674 >      }
675 >    }
676 >
677 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
678 >         rb = mol->nextRigidBody(rbIter)) {
679 >      vector<Atom*> atoms = rb->getAtoms();
680 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
681 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
682 >          a = atoms[i]->getGlobalIndex();
683 >          b = atoms[j]->getGlobalIndex();
684 >          excludedInteractions_.removePair(a, b);
685 >        }
686 >      }
687 >    }        
688      
312    for(i=0; i<3; i++)
313      scaled[i] = thePos[i]*HmatInv[i][i];
314    
315    // wrap the scaled coordinates
316    
317    for(i=0; i<3; i++)
318      scaled[i] -= roundMe(scaled[i]);
319    
320    // calc the wrapped real coordinates from the wrapped scaled coordinates
321    
322    for(i=0; i<3; i++)
323      thePos[i] = scaled[i]*Hmat[i][i];
689    }
690 +  
691 +  
692 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
693 +    int curStampId;
694      
695 < }
695 >    //index from 0
696 >    curStampId = moleculeStamps_.size();
697  
698 +    moleculeStamps_.push_back(molStamp);
699 +    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
700 +  }
701  
329 int SimInfo::getNDF(){
330  int ndf_local;
702  
703 <  ndf_local = 0;
704 <  
705 <  for(int i = 0; i < integrableObjects.size(); i++){
706 <    ndf_local += 3;
707 <    if (integrableObjects[i]->isDirectional()) {
708 <      if (integrableObjects[i]->isLinear())
709 <        ndf_local += 2;
710 <      else
711 <        ndf_local += 3;
712 <    }
703 >  /**
704 >   * update
705 >   *
706 >   *  Performs the global checks and variable settings after the
707 >   *  objects have been created.
708 >   *
709 >   */
710 >  void SimInfo::update() {  
711 >    setupSimVariables();
712 >    calcNConstraints();
713 >    calcNdf();
714 >    calcNdfRaw();
715 >    calcNdfTrans();
716    }
717 +  
718 +  /**
719 +   * getSimulatedAtomTypes
720 +   *
721 +   * Returns an STL set of AtomType* that are actually present in this
722 +   * simulation.  Must query all processors to assemble this information.
723 +   *
724 +   */
725 +  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
726 +    SimInfo::MoleculeIterator mi;
727 +    Molecule* mol;
728 +    Molecule::AtomIterator ai;
729 +    Atom* atom;
730 +    set<AtomType*> atomTypes;
731 +    
732 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
733 +      for(atom = mol->beginAtom(ai); atom != NULL;
734 +          atom = mol->nextAtom(ai)) {
735 +        atomTypes.insert(atom->getAtomType());
736 +      }      
737 +    }    
738 +    
739 + #ifdef IS_MPI
740  
741 <  // n_constraints is local, so subtract them on each processor:
741 >    // loop over the found atom types on this processor, and add their
742 >    // numerical idents to a vector:
743 >    
744 >    vector<int> foundTypes;
745 >    set<AtomType*>::iterator i;
746 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
747 >      foundTypes.push_back( (*i)->getIdent() );
748  
749 <  ndf_local -= n_constraints;
749 >    // count_local holds the number of found types on this processor
750 >    int count_local = foundTypes.size();
751  
752 < #ifdef IS_MPI
753 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
754 < #else
351 <  ndf = ndf_local;
352 < #endif
752 >    int nproc;
753 >    MPI_Comm_size( MPI_COMM_WORLD, &nproc);
754 >    // int nproc = MPI::COMM_WORLD.Get_size();
755  
756 <  // nZconstraints is global, as are the 3 COM translations for the
757 <  // entire system:
756 >    // we need arrays to hold the counts and displacement vectors for
757 >    // all processors
758 >    vector<int> counts(nproc, 0);
759 >    vector<int> disps(nproc, 0);
760  
761 <  ndf = ndf - 3 - nZconstraints;
761 >    // fill the counts array
762 >    MPI_Allgather(&count_local, 1, MPI_INT, &counts[0],
763 >                  1, MPI_INT, MPI_COMM_WORLD);
764 >    // MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
765 >    //                           1, MPI::INT);
766 >  
767 >    // use the processor counts to compute the displacement array
768 >    disps[0] = 0;    
769 >    int totalCount = counts[0];
770 >    for (int iproc = 1; iproc < nproc; iproc++) {
771 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
772 >      totalCount += counts[iproc];
773 >    }
774  
775 <  return ndf;
776 < }
775 >    // we need a (possibly redundant) set of all found types:
776 >    vector<int> ftGlobal(totalCount);
777 >    
778 >    // now spray out the foundTypes to all the other processors:    
779 >    MPI_Allgatherv(&foundTypes[0], count_local, MPI_INT,
780 >                   &ftGlobal[0], &counts[0], &disps[0],
781 >                   MPI_INT, MPI_COMM_WORLD);
782 >    // MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
783 >    //                            &ftGlobal[0], &counts[0], &disps[0],
784 >    //                            MPI::INT);
785  
786 < int SimInfo::getNDFraw() {
363 <  int ndfRaw_local;
786 >    vector<int>::iterator j;
787  
788 <  // Raw degrees of freedom that we have to set
789 <  ndfRaw_local = 0;
788 >    // foundIdents is a stl set, so inserting an already found ident
789 >    // will have no effect.
790 >    set<int> foundIdents;
791  
792 <  for(int i = 0; i < integrableObjects.size(); i++){
793 <    ndfRaw_local += 3;
370 <    if (integrableObjects[i]->isDirectional()) {
371 <       if (integrableObjects[i]->isLinear())
372 <        ndfRaw_local += 2;
373 <      else
374 <        ndfRaw_local += 3;
375 <    }
376 <  }
792 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
793 >      foundIdents.insert((*j));
794      
795 < #ifdef IS_MPI
796 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
797 < #else
798 <  ndfRaw = ndfRaw_local;
795 >    // now iterate over the foundIdents and get the actual atom types
796 >    // that correspond to these:
797 >    set<int>::iterator it;
798 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
799 >      atomTypes.insert( forceField_->getAtomType((*it)) );
800 >
801   #endif
802  
803 <  return ndfRaw;
804 < }
803 >    return atomTypes;        
804 >  }
805  
387 int SimInfo::getNDFtranslational() {
388  int ndfTrans_local;
806  
807 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
807 >  int getGlobalCountOfType(AtomType* atype) {
808 >    /*
809 >    set<AtomType*> atypes = getSimulatedAtomTypes();
810 >    map<AtomType*, int> counts_;
811  
812 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
813 +      for(atom = mol->beginAtom(ai); atom != NULL;
814 +          atom = mol->nextAtom(ai)) {
815 +        atom->getAtomType();
816 +      }      
817 +    }    
818 +    */
819 +    return 0;
820 +  }
821  
822 +  void SimInfo::setupSimVariables() {
823 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
824 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
825 +    // parameter is true
826 +    calcBoxDipole_ = false;
827 +    if ( simParams_->haveAccumulateBoxDipole() )
828 +      if ( simParams_->getAccumulateBoxDipole() ) {
829 +        calcBoxDipole_ = true;      
830 +      }
831 +    
832 +    set<AtomType*>::iterator i;
833 +    set<AtomType*> atomTypes;
834 +    atomTypes = getSimulatedAtomTypes();    
835 +    bool usesElectrostatic = false;
836 +    bool usesMetallic = false;
837 +    bool usesDirectional = false;
838 +    bool usesFluctuatingCharges =  false;
839 +    //loop over all of the atom types
840 +    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
841 +      usesElectrostatic |= (*i)->isElectrostatic();
842 +      usesMetallic |= (*i)->isMetal();
843 +      usesDirectional |= (*i)->isDirectional();
844 +      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
845 +    }
846 +
847   #ifdef IS_MPI
848 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
395 < #else
396 <  ndfTrans = ndfTrans_local;
397 < #endif
848 >    int temp;
849  
850 <  ndfTrans = ndfTrans - 3 - nZconstraints;
850 >    temp = usesDirectional;
851 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
852 >    usesDirectionalAtoms_ = (temp == 0) ? false : true;
853 >    
854 >    temp = usesMetallic;
855 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
856 >    usesMetallicAtoms_ = (temp == 0) ? false : true;
857  
858 <  return ndfTrans;
859 < }
858 >    temp = usesElectrostatic;
859 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
860 >    usesElectrostaticAtoms_ = (temp == 0) ? false : true;
861  
862 < int SimInfo::getTotIntegrableObjects() {
863 <  int nObjs_local;
864 <  int nObjs;
862 >    temp = usesFluctuatingCharges;
863 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
864 >    usesFluctuatingCharges_ = (temp == 0) ? false : true;
865 > #else
866  
867 <  nObjs_local =  integrableObjects.size();
867 >    usesDirectionalAtoms_ = usesDirectional;
868 >    usesMetallicAtoms_ = usesMetallic;
869 >    usesElectrostaticAtoms_ = usesElectrostatic;
870 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
871  
410
411 #ifdef IS_MPI
412  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
413 #else
414  nObjs = nObjs_local;
872   #endif
873 +    
874 +    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
875 +    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
876 +    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
877 +  }
878  
879  
880 <  return nObjs;
881 < }
880 >  vector<int> SimInfo::getGlobalAtomIndices() {
881 >    SimInfo::MoleculeIterator mi;
882 >    Molecule* mol;
883 >    Molecule::AtomIterator ai;
884 >    Atom* atom;
885  
886 < void SimInfo::refreshSim(){
886 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
887 >    
888 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
889 >      
890 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
891 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
892 >      }
893 >    }
894 >    return GlobalAtomIndices;
895 >  }
896  
423  simtype fInfo;
424  int isError;
425  int n_global;
426  int* excl;
897  
898 <  fInfo.dielect = 0.0;
898 >  vector<int> SimInfo::getGlobalGroupIndices() {
899 >    SimInfo::MoleculeIterator mi;
900 >    Molecule* mol;
901 >    Molecule::CutoffGroupIterator ci;
902 >    CutoffGroup* cg;
903  
904 <  if( useDipoles ){
905 <    if( useReactionField )fInfo.dielect = dielectric;
906 <  }
904 >    vector<int> GlobalGroupIndices;
905 >    
906 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
907 >      
908 >      //local index of cutoff group is trivial, it only depends on the
909 >      //order of travesing
910 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
911 >           cg = mol->nextCutoffGroup(ci)) {
912 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
913 >      }        
914 >    }
915 >    return GlobalGroupIndices;
916 >  }
917  
434  fInfo.SIM_uses_PBC = usePBC;
435  //fInfo.SIM_uses_LJ = 0;
436  fInfo.SIM_uses_LJ = useLJ;
437  fInfo.SIM_uses_sticky = useSticky;
438  //fInfo.SIM_uses_sticky = 0;
439  fInfo.SIM_uses_charges = useCharges;
440  fInfo.SIM_uses_dipoles = useDipoles;
441  //fInfo.SIM_uses_dipoles = 0;
442  fInfo.SIM_uses_RF = useReactionField;
443  //fInfo.SIM_uses_RF = 0;
444  fInfo.SIM_uses_GB = useGB;
445  fInfo.SIM_uses_EAM = useEAM;
918  
919 <  n_exclude = excludes->getSize();
448 <  excl = excludes->getFortranArray();
449 <  
450 < #ifdef IS_MPI
451 <  n_global = mpiSim->getNAtomsGlobal();
452 < #else
453 <  n_global = n_atoms;
454 < #endif
455 <  
456 <  isError = 0;
457 <  
458 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
459 <  //it may not be a good idea to pass the address of first element in vector
460 <  //since c++ standard does not require vector to be stored continuously in meomory
461 <  //Most of the compilers will organize the memory of vector continuously
462 <  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
919 >  void SimInfo::prepareTopology() {
920  
921 <  if( isError ){
921 >    //calculate mass ratio of cutoff group
922 >    SimInfo::MoleculeIterator mi;
923 >    Molecule* mol;
924 >    Molecule::CutoffGroupIterator ci;
925 >    CutoffGroup* cg;
926 >    Molecule::AtomIterator ai;
927 >    Atom* atom;
928 >    RealType totalMass;
929 >
930 >    /**
931 >     * The mass factor is the relative mass of an atom to the total
932 >     * mass of the cutoff group it belongs to.  By default, all atoms
933 >     * are their own cutoff groups, and therefore have mass factors of
934 >     * 1.  We need some special handling for massless atoms, which
935 >     * will be treated as carrying the entire mass of the cutoff
936 >     * group.
937 >     */
938 >    massFactors_.clear();
939 >    massFactors_.resize(getNAtoms(), 1.0);
940      
941 <    sprintf( painCave.errMsg,
942 <             "There was an error setting the simulation information in fortran.\n" );
943 <    painCave.isFatal = 1;
471 <    painCave.severity = OOPSE_ERROR;
472 <    simError();
473 <  }
474 <  
475 < #ifdef IS_MPI
476 <  sprintf( checkPointMsg,
477 <           "succesfully sent the simulation information to fortran.\n");
478 <  MPIcheckPoint();
479 < #endif // is_mpi
480 <  
481 <  this->ndf = this->getNDF();
482 <  this->ndfRaw = this->getNDFraw();
483 <  this->ndfTrans = this->getNDFtranslational();
484 < }
941 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
942 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
943 >           cg = mol->nextCutoffGroup(ci)) {
944  
945 < void SimInfo::setDefaultRcut( double theRcut ){
946 <  
947 <  haveRcut = 1;
948 <  rCut = theRcut;
949 <  rList = rCut + 1.0;
950 <  
951 <  notifyFortranCutOffs( &rCut, &rSw, &rList );
952 < }
945 >        totalMass = cg->getMass();
946 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
947 >          // Check for massless groups - set mfact to 1 if true
948 >          if (totalMass != 0)
949 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
950 >          else
951 >            massFactors_[atom->getLocalIndex()] = 1.0;
952 >        }
953 >      }      
954 >    }
955  
956 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
956 >    // Build the identArray_ and regions_
957  
958 <  rSw = theRsw;
959 <  setDefaultRcut( theRcut );
960 < }
958 >    identArray_.clear();
959 >    identArray_.reserve(getNAtoms());  
960 >    regions_.clear();
961 >    regions_.reserve(getNAtoms());
962 >
963 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
964 >      int reg = mol->getRegion();      
965 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
966 >        identArray_.push_back(atom->getIdent());
967 >        regions_.push_back(reg);
968 >      }
969 >    }    
970 >      
971 >    topologyDone_ = true;
972 >  }
973  
974 +  void SimInfo::addProperty(GenericData* genData) {
975 +    properties_.addProperty(genData);  
976 +  }
977  
978 < void SimInfo::checkCutOffs( void ){
979 <  
504 <  if( boxIsInit ){
505 <    
506 <    //we need to check cutOffs against the box
507 <    
508 <    if( rCut > maxCutoff ){
509 <      sprintf( painCave.errMsg,
510 <               "cutoffRadius is too large for the current periodic box.\n"
511 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 <               "\tThis is larger than half of at least one of the\n"
513 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 <               "\n"
515 <               "\t[ %G %G %G ]\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n",
518 <               rCut, currentTime,
519 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 <      painCave.severity = OOPSE_ERROR;
523 <      painCave.isFatal = 1;
524 <      simError();
525 <    }    
526 <  } else {
527 <    // initialize this stuff before using it, OK?
528 <    sprintf( painCave.errMsg,
529 <             "Trying to check cutoffs without a box.\n"
530 <             "\tOOPSE should have better programmers than that.\n" );
531 <    painCave.severity = OOPSE_ERROR;
532 <    painCave.isFatal = 1;
533 <    simError();      
978 >  void SimInfo::removeProperty(const string& propName) {
979 >    properties_.removeProperty(propName);  
980    }
535  
536 }
981  
982 < void SimInfo::addProperty(GenericData* prop){
982 >  void SimInfo::clearProperties() {
983 >    properties_.clearProperties();
984 >  }
985  
986 <  map<string, GenericData*>::iterator result;
987 <  result = properties.find(prop->getID());
988 <  
543 <  //we can't simply use  properties[prop->getID()] = prop,
544 <  //it will cause memory leak if we already contain a propery which has the same name of prop
545 <  
546 <  if(result != properties.end()){
547 <    
548 <    delete (*result).second;
549 <    (*result).second = prop;
986 >  vector<string> SimInfo::getPropertyNames() {
987 >    return properties_.getPropertyNames();  
988 >  }
989        
990 +  vector<GenericData*> SimInfo::getProperties() {
991 +    return properties_.getProperties();
992    }
552  else{
993  
994 <    properties[prop->getID()] = prop;
995 <
994 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
995 >    return properties_.getPropertyByName(propName);
996    }
557    
558 }
997  
998 < GenericData* SimInfo::getProperty(const string& propName){
998 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
999 >    if (sman_ == sman) {
1000 >      return;
1001 >    }    
1002 >    delete sman_;
1003 >    sman_ = sman;
1004 >
1005 >    SimInfo::MoleculeIterator mi;
1006 >    Molecule::AtomIterator ai;
1007 >    Molecule::RigidBodyIterator rbIter;
1008 >    Molecule::CutoffGroupIterator cgIter;
1009 >    Molecule::BondIterator bondIter;
1010 >    Molecule::BendIterator bendIter;
1011 >    Molecule::TorsionIterator torsionIter;
1012 >    Molecule::InversionIterator inversionIter;
1013  
1014 <  map<string, GenericData*>::iterator result;
1015 <  
1016 <  //string lowerCaseName = ();
1017 <  
1018 <  result = properties.find(propName);
1019 <  
1020 <  if(result != properties.end())
1021 <    return (*result).second;  
570 <  else  
571 <    return NULL;  
572 < }
1014 >    Molecule* mol;
1015 >    Atom* atom;
1016 >    RigidBody* rb;
1017 >    CutoffGroup* cg;
1018 >    Bond* bond;
1019 >    Bend* bend;
1020 >    Torsion* torsion;
1021 >    Inversion* inversion;    
1022  
1023 +    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1024 +        
1025 +      for (atom = mol->beginAtom(ai); atom != NULL;
1026 +           atom = mol->nextAtom(ai)) {
1027 +        atom->setSnapshotManager(sman_);
1028 +      }        
1029 +      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1030 +           rb = mol->nextRigidBody(rbIter)) {
1031 +        rb->setSnapshotManager(sman_);
1032 +      }
1033 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1034 +           cg = mol->nextCutoffGroup(cgIter)) {
1035 +        cg->setSnapshotManager(sman_);
1036 +      }
1037 +      for (bond = mol->beginBond(bondIter); bond != NULL;
1038 +           bond = mol->nextBond(bondIter)) {
1039 +        bond->setSnapshotManager(sman_);
1040 +      }
1041 +      for (bend = mol->beginBend(bendIter); bend != NULL;
1042 +           bend = mol->nextBend(bendIter)) {
1043 +        bend->setSnapshotManager(sman_);
1044 +      }
1045 +      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
1046 +           torsion = mol->nextTorsion(torsionIter)) {
1047 +        torsion->setSnapshotManager(sman_);
1048 +      }
1049 +      for (inversion = mol->beginInversion(inversionIter); inversion != NULL;
1050 +           inversion = mol->nextInversion(inversionIter)) {
1051 +        inversion->setSnapshotManager(sman_);
1052 +      }
1053 +    }
1054 +  }
1055  
1056 < void SimInfo::getFortranGroupArrays(SimInfo* info,
1057 <                                    vector<int>& FglobalGroupMembership,
1058 <                                    vector<double>& mfact){
1056 >
1057 >  ostream& operator <<(ostream& o, SimInfo& info) {
1058 >
1059 >    return o;
1060 >  }
1061 >  
1062    
1063 <  Molecule* myMols;
1064 <  Atom** myAtoms;
1065 <  int numAtom;
1066 <  double mtot;
1067 <  int numMol;
1068 <  int numCutoffGroups;
1069 <  CutoffGroup* myCutoffGroup;
1070 <  vector<CutoffGroup*>::iterator iterCutoff;
1071 <  Atom* cutoffAtom;
1072 <  vector<Atom*>::iterator iterAtom;
1073 <  int atomIndex;
590 <  double totalMass;
1063 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1064 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1065 >      sprintf(painCave.errMsg,
1066 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1067 >              "\tindex exceeds number of known objects!\n");
1068 >      painCave.isFatal = 1;
1069 >      simError();
1070 >      return NULL;
1071 >    } else
1072 >      return IOIndexToIntegrableObject.at(index);
1073 >  }
1074    
1075 <  mfact.clear();
1076 <  FglobalGroupMembership.clear();
1077 <  
1075 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1076 >    IOIndexToIntegrableObject= v;
1077 >  }
1078  
1079 <  // Fix the silly fortran indexing problem
1079 >  void SimInfo::calcNConstraints() {
1080   #ifdef IS_MPI
1081 <  numAtom = mpiSim->getNAtomsGlobal();
1081 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints_, 1,  
1082 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
1083   #else
1084 <  numAtom = n_atoms;
1084 >    nGlobalConstraints_ =  nConstraints_;
1085   #endif
602  for (int i = 0; i < numAtom; i++)
603    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604  
605
606  myMols = info->molecules;
607  numMol = info->n_mol;
608  for(int i  = 0; i < numMol; i++){
609    numCutoffGroups = myMols[i].getNCutoffGroups();
610    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611        myCutoffGroup != NULL;
612        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
613
614      totalMass = myCutoffGroup->getMass();
615      
616      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
617          cutoffAtom != NULL;
618          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
619        mfact.push_back(cutoffAtom->getMass()/totalMass);
620      }  
621    }
1086    }
1087  
1088 < }
1088 > }//end namespace OpenMD
1089 >

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
Revision 1983 by gezelter, Tue Apr 15 20:36:19 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines