1 |
< |
#include <stdlib.h> |
2 |
< |
#include <string.h> |
3 |
< |
#include <math.h> |
1 |
> |
/* |
2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
> |
* |
4 |
> |
* The University of Notre Dame grants you ("Licensee") a |
5 |
> |
* non-exclusive, royalty free, license to use, modify and |
6 |
> |
* redistribute this software in source and binary code form, provided |
7 |
> |
* that the following conditions are met: |
8 |
> |
* |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
> |
* notice, this list of conditions and the following disclaimer. |
11 |
> |
* |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
> |
* notice, this list of conditions and the following disclaimer in the |
14 |
> |
* documentation and/or other materials provided with the |
15 |
> |
* distribution. |
16 |
> |
* |
17 |
> |
* This software is provided "AS IS," without a warranty of any |
18 |
> |
* kind. All express or implied conditions, representations and |
19 |
> |
* warranties, including any implied warranty of merchantability, |
20 |
> |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
> |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
> |
* be liable for any damages suffered by licensee as a result of |
23 |
> |
* using, modifying or distributing the software or its |
24 |
> |
* derivatives. In no event will the University of Notre Dame or its |
25 |
> |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
> |
* direct, indirect, special, consequential, incidental or punitive |
27 |
> |
* damages, however caused and regardless of the theory of liability, |
28 |
> |
* arising out of the use of or inability to use software, even if the |
29 |
> |
* University of Notre Dame has been advised of the possibility of |
30 |
> |
* such damages. |
31 |
> |
* |
32 |
> |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
> |
* research, please cite the appropriate papers when you publish your |
34 |
> |
* work. Good starting points are: |
35 |
> |
* |
36 |
> |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
> |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
> |
*/ |
42 |
> |
|
43 |
> |
/** |
44 |
> |
* @file SimInfo.cpp |
45 |
> |
* @author tlin |
46 |
> |
* @date 11/02/2004 |
47 |
> |
* @version 1.0 |
48 |
> |
*/ |
49 |
|
|
50 |
< |
#include <iostream> |
51 |
< |
using namespace std; |
50 |
> |
#ifdef IS_MPI |
51 |
> |
#include <mpi.h> |
52 |
> |
#endif |
53 |
> |
#include <algorithm> |
54 |
> |
#include <set> |
55 |
> |
#include <map> |
56 |
|
|
57 |
|
#include "brains/SimInfo.hpp" |
58 |
< |
#define __C |
59 |
< |
#include "brains/fSimulation.h" |
58 |
> |
#include "math/Vector3.hpp" |
59 |
> |
#include "primitives/Molecule.hpp" |
60 |
> |
#include "primitives/StuntDouble.hpp" |
61 |
> |
#include "utils/MemoryUtils.hpp" |
62 |
|
#include "utils/simError.h" |
63 |
+ |
#include "selection/SelectionManager.hpp" |
64 |
+ |
#include "io/ForceFieldOptions.hpp" |
65 |
+ |
#include "brains/ForceField.hpp" |
66 |
+ |
#include "nonbonded/SwitchingFunction.hpp" |
67 |
|
|
68 |
< |
#include "UseTheForce/fortranWrappers.hpp" |
68 |
> |
using namespace std; |
69 |
> |
namespace OpenMD { |
70 |
> |
|
71 |
> |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
72 |
> |
forceField_(ff), simParams_(simParams), |
73 |
> |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
74 |
> |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
75 |
> |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
76 |
> |
nGlobalFluctuatingCharges_(0), nGlobalBonds_(0), nGlobalBends_(0), |
77 |
> |
nGlobalTorsions_(0), nGlobalInversions_(0), nAtoms_(0), nBonds_(0), |
78 |
> |
nBends_(0), nTorsions_(0), nInversions_(0), nRigidBodies_(0), |
79 |
> |
nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
80 |
> |
nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
81 |
> |
calcBoxDipole_(false), useAtomicVirial_(true) { |
82 |
> |
|
83 |
> |
MoleculeStamp* molStamp; |
84 |
> |
int nMolWithSameStamp; |
85 |
> |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
86 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
87 |
> |
CutoffGroupStamp* cgStamp; |
88 |
> |
RigidBodyStamp* rbStamp; |
89 |
> |
int nRigidAtoms = 0; |
90 |
> |
|
91 |
> |
vector<Component*> components = simParams->getComponents(); |
92 |
> |
|
93 |
> |
for (vector<Component*>::iterator i = components.begin(); |
94 |
> |
i !=components.end(); ++i) { |
95 |
> |
molStamp = (*i)->getMoleculeStamp(); |
96 |
> |
if ( (*i)->haveRegion() ) { |
97 |
> |
molStamp->setRegion( (*i)->getRegion() ); |
98 |
> |
} else { |
99 |
> |
// set the region to a disallowed value: |
100 |
> |
molStamp->setRegion( -1 ); |
101 |
> |
} |
102 |
|
|
103 |
< |
#include "math/MatVec3.h" |
103 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
104 |
> |
|
105 |
> |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
106 |
> |
|
107 |
> |
//calculate atoms in molecules |
108 |
> |
nGlobalAtoms_ += molStamp->getNAtoms() * nMolWithSameStamp; |
109 |
> |
nGlobalBonds_ += molStamp->getNBonds() * nMolWithSameStamp; |
110 |
> |
nGlobalBends_ += molStamp->getNBends() * nMolWithSameStamp; |
111 |
> |
nGlobalTorsions_ += molStamp->getNTorsions() * nMolWithSameStamp; |
112 |
> |
nGlobalInversions_ += molStamp->getNInversions() * nMolWithSameStamp; |
113 |
> |
|
114 |
> |
//calculate atoms in cutoff groups |
115 |
> |
int nAtomsInGroups = 0; |
116 |
> |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
117 |
> |
|
118 |
> |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
119 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
120 |
> |
nAtomsInGroups += cgStamp->getNMembers(); |
121 |
> |
} |
122 |
> |
|
123 |
> |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
124 |
> |
|
125 |
> |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
126 |
> |
|
127 |
> |
//calculate atoms in rigid bodies |
128 |
> |
int nAtomsInRigidBodies = 0; |
129 |
> |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
130 |
> |
|
131 |
> |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
132 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
133 |
> |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
134 |
> |
} |
135 |
> |
|
136 |
> |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
137 |
> |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
138 |
> |
|
139 |
> |
} |
140 |
> |
|
141 |
> |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
142 |
> |
//group therefore the total number of cutoff groups in the system is |
143 |
> |
//equal to the total number of atoms minus number of atoms belong to |
144 |
> |
//cutoff group defined in meta-data file plus the number of cutoff |
145 |
> |
//groups defined in meta-data file |
146 |
|
|
147 |
< |
#ifdef IS_MPI |
148 |
< |
#include "brains/mpiSimulation.hpp" |
149 |
< |
#endif |
147 |
> |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
148 |
> |
|
149 |
> |
//every free atom (atom does not belong to rigid bodies) is an |
150 |
> |
//integrable object therefore the total number of integrable objects |
151 |
> |
//in the system is equal to the total number of atoms minus number of |
152 |
> |
//atoms belong to rigid body defined in meta-data file plus the number |
153 |
> |
//of rigid bodies defined in meta-data file |
154 |
> |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
155 |
> |
+ nGlobalRigidBodies_; |
156 |
> |
|
157 |
> |
nGlobalMols_ = molStampIds_.size(); |
158 |
> |
molToProcMap_.resize(nGlobalMols_); |
159 |
> |
} |
160 |
> |
|
161 |
> |
SimInfo::~SimInfo() { |
162 |
> |
map<int, Molecule*>::iterator i; |
163 |
> |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
164 |
> |
delete i->second; |
165 |
> |
} |
166 |
> |
molecules_.clear(); |
167 |
> |
|
168 |
> |
delete sman_; |
169 |
> |
delete simParams_; |
170 |
> |
delete forceField_; |
171 |
> |
} |
172 |
|
|
21 |
– |
inline double roundMe( double x ){ |
22 |
– |
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
23 |
– |
} |
24 |
– |
|
25 |
– |
inline double min( double a, double b ){ |
26 |
– |
return (a < b ) ? a : b; |
27 |
– |
} |
173 |
|
|
174 |
< |
SimInfo* currentInfo; |
175 |
< |
|
176 |
< |
SimInfo::SimInfo(){ |
177 |
< |
|
178 |
< |
n_constraints = 0; |
179 |
< |
nZconstraints = 0; |
180 |
< |
n_oriented = 0; |
181 |
< |
n_dipoles = 0; |
182 |
< |
ndf = 0; |
183 |
< |
ndfRaw = 0; |
184 |
< |
nZconstraints = 0; |
185 |
< |
the_integrator = NULL; |
186 |
< |
setTemp = 0; |
187 |
< |
thermalTime = 0.0; |
188 |
< |
currentTime = 0.0; |
189 |
< |
rCut = 0.0; |
190 |
< |
rSw = 0.0; |
191 |
< |
|
192 |
< |
haveRcut = 0; |
193 |
< |
haveRsw = 0; |
194 |
< |
boxIsInit = 0; |
174 |
> |
bool SimInfo::addMolecule(Molecule* mol) { |
175 |
> |
MoleculeIterator i; |
176 |
> |
|
177 |
> |
i = molecules_.find(mol->getGlobalIndex()); |
178 |
> |
if (i == molecules_.end() ) { |
179 |
> |
|
180 |
> |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
181 |
> |
|
182 |
> |
nAtoms_ += mol->getNAtoms(); |
183 |
> |
nBonds_ += mol->getNBonds(); |
184 |
> |
nBends_ += mol->getNBends(); |
185 |
> |
nTorsions_ += mol->getNTorsions(); |
186 |
> |
nInversions_ += mol->getNInversions(); |
187 |
> |
nRigidBodies_ += mol->getNRigidBodies(); |
188 |
> |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
189 |
> |
nCutoffGroups_ += mol->getNCutoffGroups(); |
190 |
> |
nConstraints_ += mol->getNConstraintPairs(); |
191 |
> |
|
192 |
> |
addInteractionPairs(mol); |
193 |
> |
|
194 |
> |
return true; |
195 |
> |
} else { |
196 |
> |
return false; |
197 |
> |
} |
198 |
> |
} |
199 |
|
|
200 |
< |
resetTime = 1e99; |
200 |
> |
bool SimInfo::removeMolecule(Molecule* mol) { |
201 |
> |
MoleculeIterator i; |
202 |
> |
i = molecules_.find(mol->getGlobalIndex()); |
203 |
|
|
204 |
< |
orthoRhombic = 0; |
54 |
< |
orthoTolerance = 1E-6; |
55 |
< |
useInitXSstate = true; |
204 |
> |
if (i != molecules_.end() ) { |
205 |
|
|
206 |
< |
usePBC = 0; |
207 |
< |
useLJ = 0; |
208 |
< |
useSticky = 0; |
209 |
< |
useCharges = 0; |
210 |
< |
useDipoles = 0; |
211 |
< |
useReactionField = 0; |
212 |
< |
useGB = 0; |
213 |
< |
useEAM = 0; |
214 |
< |
useSolidThermInt = 0; |
215 |
< |
useLiquidThermInt = 0; |
206 |
> |
assert(mol == i->second); |
207 |
> |
|
208 |
> |
nAtoms_ -= mol->getNAtoms(); |
209 |
> |
nBonds_ -= mol->getNBonds(); |
210 |
> |
nBends_ -= mol->getNBends(); |
211 |
> |
nTorsions_ -= mol->getNTorsions(); |
212 |
> |
nInversions_ -= mol->getNInversions(); |
213 |
> |
nRigidBodies_ -= mol->getNRigidBodies(); |
214 |
> |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
215 |
> |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
216 |
> |
nConstraints_ -= mol->getNConstraintPairs(); |
217 |
|
|
218 |
< |
haveCutoffGroups = false; |
218 |
> |
removeInteractionPairs(mol); |
219 |
> |
molecules_.erase(mol->getGlobalIndex()); |
220 |
|
|
221 |
< |
excludes = Exclude::Instance(); |
221 |
> |
delete mol; |
222 |
> |
|
223 |
> |
return true; |
224 |
> |
} else { |
225 |
> |
return false; |
226 |
> |
} |
227 |
> |
} |
228 |
|
|
229 |
< |
myConfiguration = new SimState(); |
229 |
> |
|
230 |
> |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
231 |
> |
i = molecules_.begin(); |
232 |
> |
return i == molecules_.end() ? NULL : i->second; |
233 |
> |
} |
234 |
|
|
235 |
< |
has_minimizer = false; |
236 |
< |
the_minimizer =NULL; |
235 |
> |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
236 |
> |
++i; |
237 |
> |
return i == molecules_.end() ? NULL : i->second; |
238 |
> |
} |
239 |
|
|
77 |
– |
ngroup = 0; |
240 |
|
|
241 |
< |
wrapMeSimInfo( this ); |
242 |
< |
} |
241 |
> |
void SimInfo::calcNdf() { |
242 |
> |
int ndf_local, nfq_local; |
243 |
> |
MoleculeIterator i; |
244 |
> |
vector<StuntDouble*>::iterator j; |
245 |
> |
vector<Atom*>::iterator k; |
246 |
|
|
247 |
+ |
Molecule* mol; |
248 |
+ |
StuntDouble* sd; |
249 |
+ |
Atom* atom; |
250 |
|
|
251 |
< |
SimInfo::~SimInfo(){ |
251 |
> |
ndf_local = 0; |
252 |
> |
nfq_local = 0; |
253 |
> |
|
254 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
255 |
|
|
256 |
< |
delete myConfiguration; |
256 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
257 |
> |
sd = mol->nextIntegrableObject(j)) { |
258 |
|
|
259 |
< |
map<string, GenericData*>::iterator i; |
88 |
< |
|
89 |
< |
for(i = properties.begin(); i != properties.end(); i++) |
90 |
< |
delete (*i).second; |
259 |
> |
ndf_local += 3; |
260 |
|
|
261 |
< |
} |
261 |
> |
if (sd->isDirectional()) { |
262 |
> |
if (sd->isLinear()) { |
263 |
> |
ndf_local += 2; |
264 |
> |
} else { |
265 |
> |
ndf_local += 3; |
266 |
> |
} |
267 |
> |
} |
268 |
> |
} |
269 |
|
|
270 |
< |
void SimInfo::setBox(double newBox[3]) { |
271 |
< |
|
272 |
< |
int i, j; |
273 |
< |
double tempMat[3][3]; |
270 |
> |
for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
271 |
> |
atom = mol->nextFluctuatingCharge(k)) { |
272 |
> |
if (atom->isFluctuatingCharge()) { |
273 |
> |
nfq_local++; |
274 |
> |
} |
275 |
> |
} |
276 |
> |
} |
277 |
> |
|
278 |
> |
ndfLocal_ = ndf_local; |
279 |
|
|
280 |
< |
for(i=0; i<3; i++) |
281 |
< |
for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
280 |
> |
// n_constraints is local, so subtract them on each processor |
281 |
> |
ndf_local -= nConstraints_; |
282 |
|
|
283 |
< |
tempMat[0][0] = newBox[0]; |
284 |
< |
tempMat[1][1] = newBox[1]; |
285 |
< |
tempMat[2][2] = newBox[2]; |
283 |
> |
#ifdef IS_MPI |
284 |
> |
MPI_Allreduce(&ndf_local, &ndf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
285 |
> |
MPI_Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1, |
286 |
> |
MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
287 |
> |
// MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM); |
288 |
> |
// MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1, |
289 |
> |
// MPI::INT, MPI::SUM); |
290 |
> |
#else |
291 |
> |
ndf_ = ndf_local; |
292 |
> |
nGlobalFluctuatingCharges_ = nfq_local; |
293 |
> |
#endif |
294 |
|
|
295 |
< |
setBoxM( tempMat ); |
295 |
> |
// nZconstraints_ is global, as are the 3 COM translations for the |
296 |
> |
// entire system: |
297 |
> |
ndf_ = ndf_ - 3 - nZconstraint_; |
298 |
|
|
299 |
< |
} |
299 |
> |
} |
300 |
|
|
301 |
< |
void SimInfo::setBoxM( double theBox[3][3] ){ |
301 |
> |
int SimInfo::getFdf() { |
302 |
> |
#ifdef IS_MPI |
303 |
> |
MPI_Allreduce(&fdf_local, &fdf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
304 |
> |
// MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM); |
305 |
> |
#else |
306 |
> |
fdf_ = fdf_local; |
307 |
> |
#endif |
308 |
> |
return fdf_; |
309 |
> |
} |
310 |
|
|
311 |
< |
int i, j; |
312 |
< |
double FortranHmat[9]; // to preserve compatibility with Fortran the |
313 |
< |
// ordering in the array is as follows: |
314 |
< |
// [ 0 3 6 ] |
315 |
< |
// [ 1 4 7 ] |
316 |
< |
// [ 2 5 8 ] |
317 |
< |
double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
318 |
< |
|
319 |
< |
if( !boxIsInit ) boxIsInit = 1; |
320 |
< |
|
321 |
< |
for(i=0; i < 3; i++) |
322 |
< |
for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
323 |
< |
|
324 |
< |
calcBoxL(); |
126 |
< |
calcHmatInv(); |
127 |
< |
|
128 |
< |
for(i=0; i < 3; i++) { |
129 |
< |
for (j=0; j < 3; j++) { |
130 |
< |
FortranHmat[3*j + i] = Hmat[i][j]; |
131 |
< |
FortranHmatInv[3*j + i] = HmatInv[i][j]; |
311 |
> |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
312 |
> |
int nLocalCutoffAtoms = 0; |
313 |
> |
Molecule* mol; |
314 |
> |
MoleculeIterator mi; |
315 |
> |
CutoffGroup* cg; |
316 |
> |
Molecule::CutoffGroupIterator ci; |
317 |
> |
|
318 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
319 |
> |
|
320 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
321 |
> |
cg = mol->nextCutoffGroup(ci)) { |
322 |
> |
nLocalCutoffAtoms += cg->getNumAtom(); |
323 |
> |
|
324 |
> |
} |
325 |
|
} |
326 |
+ |
|
327 |
+ |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
328 |
|
} |
329 |
+ |
|
330 |
+ |
void SimInfo::calcNdfRaw() { |
331 |
+ |
int ndfRaw_local; |
332 |
|
|
333 |
< |
setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
334 |
< |
|
335 |
< |
} |
336 |
< |
|
333 |
> |
MoleculeIterator i; |
334 |
> |
vector<StuntDouble*>::iterator j; |
335 |
> |
Molecule* mol; |
336 |
> |
StuntDouble* sd; |
337 |
|
|
338 |
< |
void SimInfo::getBoxM (double theBox[3][3]) { |
338 |
> |
// Raw degrees of freedom that we have to set |
339 |
> |
ndfRaw_local = 0; |
340 |
> |
|
341 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
342 |
|
|
343 |
< |
int i, j; |
344 |
< |
for(i=0; i<3; i++) |
144 |
< |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
145 |
< |
} |
343 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
344 |
> |
sd = mol->nextIntegrableObject(j)) { |
345 |
|
|
346 |
+ |
ndfRaw_local += 3; |
347 |
|
|
348 |
< |
void SimInfo::scaleBox(double scale) { |
349 |
< |
double theBox[3][3]; |
350 |
< |
int i, j; |
351 |
< |
|
352 |
< |
// cerr << "Scaling box by " << scale << "\n"; |
348 |
> |
if (sd->isDirectional()) { |
349 |
> |
if (sd->isLinear()) { |
350 |
> |
ndfRaw_local += 2; |
351 |
> |
} else { |
352 |
> |
ndfRaw_local += 3; |
353 |
> |
} |
354 |
> |
} |
355 |
> |
|
356 |
> |
} |
357 |
> |
} |
358 |
> |
|
359 |
> |
#ifdef IS_MPI |
360 |
> |
MPI_Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
361 |
> |
// MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM); |
362 |
> |
#else |
363 |
> |
ndfRaw_ = ndfRaw_local; |
364 |
> |
#endif |
365 |
> |
} |
366 |
|
|
367 |
< |
for(i=0; i<3; i++) |
368 |
< |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
367 |
> |
void SimInfo::calcNdfTrans() { |
368 |
> |
int ndfTrans_local; |
369 |
|
|
370 |
< |
setBoxM(theBox); |
370 |
> |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
371 |
|
|
159 |
– |
} |
372 |
|
|
373 |
< |
void SimInfo::calcHmatInv( void ) { |
374 |
< |
|
375 |
< |
int oldOrtho; |
376 |
< |
int i,j; |
377 |
< |
double smallDiag; |
378 |
< |
double tol; |
379 |
< |
double sanity[3][3]; |
373 |
> |
#ifdef IS_MPI |
374 |
> |
MPI_Allreduce(&ndfTrans_local, &ndfTrans_, 1, |
375 |
> |
MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
376 |
> |
// MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1, |
377 |
> |
// MPI::INT, MPI::SUM); |
378 |
> |
#else |
379 |
> |
ndfTrans_ = ndfTrans_local; |
380 |
> |
#endif |
381 |
|
|
382 |
< |
invertMat3( Hmat, HmatInv ); |
382 |
> |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
383 |
> |
|
384 |
> |
} |
385 |
|
|
386 |
< |
// check to see if Hmat is orthorhombic |
387 |
< |
|
388 |
< |
oldOrtho = orthoRhombic; |
386 |
> |
void SimInfo::addInteractionPairs(Molecule* mol) { |
387 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
388 |
> |
vector<Bond*>::iterator bondIter; |
389 |
> |
vector<Bend*>::iterator bendIter; |
390 |
> |
vector<Torsion*>::iterator torsionIter; |
391 |
> |
vector<Inversion*>::iterator inversionIter; |
392 |
> |
Bond* bond; |
393 |
> |
Bend* bend; |
394 |
> |
Torsion* torsion; |
395 |
> |
Inversion* inversion; |
396 |
> |
int a; |
397 |
> |
int b; |
398 |
> |
int c; |
399 |
> |
int d; |
400 |
|
|
401 |
< |
smallDiag = fabs(Hmat[0][0]); |
402 |
< |
if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); |
403 |
< |
if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); |
404 |
< |
tol = smallDiag * orthoTolerance; |
401 |
> |
// atomGroups can be used to add special interaction maps between |
402 |
> |
// groups of atoms that are in two separate rigid bodies. |
403 |
> |
// However, most site-site interactions between two rigid bodies |
404 |
> |
// are probably not special, just the ones between the physically |
405 |
> |
// bonded atoms. Interactions *within* a single rigid body should |
406 |
> |
// always be excluded. These are done at the bottom of this |
407 |
> |
// function. |
408 |
|
|
409 |
< |
orthoRhombic = 1; |
410 |
< |
|
411 |
< |
for (i = 0; i < 3; i++ ) { |
412 |
< |
for (j = 0 ; j < 3; j++) { |
413 |
< |
if (i != j) { |
414 |
< |
if (orthoRhombic) { |
415 |
< |
if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; |
416 |
< |
} |
409 |
> |
map<int, set<int> > atomGroups; |
410 |
> |
Molecule::RigidBodyIterator rbIter; |
411 |
> |
RigidBody* rb; |
412 |
> |
Molecule::IntegrableObjectIterator ii; |
413 |
> |
StuntDouble* sd; |
414 |
> |
|
415 |
> |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
416 |
> |
sd = mol->nextIntegrableObject(ii)) { |
417 |
> |
|
418 |
> |
if (sd->isRigidBody()) { |
419 |
> |
rb = static_cast<RigidBody*>(sd); |
420 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
421 |
> |
set<int> rigidAtoms; |
422 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
423 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
424 |
> |
} |
425 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
426 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
427 |
> |
} |
428 |
> |
} else { |
429 |
> |
set<int> oneAtomSet; |
430 |
> |
oneAtomSet.insert(sd->getGlobalIndex()); |
431 |
> |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
432 |
|
} |
433 |
< |
} |
190 |
< |
} |
433 |
> |
} |
434 |
|
|
435 |
< |
if( oldOrtho != orthoRhombic ){ |
436 |
< |
|
437 |
< |
if( orthoRhombic ) { |
438 |
< |
sprintf( painCave.errMsg, |
439 |
< |
"OOPSE is switching from the default Non-Orthorhombic\n" |
440 |
< |
"\tto the faster Orthorhombic periodic boundary computations.\n" |
441 |
< |
"\tThis is usually a good thing, but if you wan't the\n" |
442 |
< |
"\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
443 |
< |
"\tvariable ( currently set to %G ) smaller.\n", |
444 |
< |
orthoTolerance); |
445 |
< |
painCave.severity = OOPSE_INFO; |
446 |
< |
simError(); |
435 |
> |
|
436 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
437 |
> |
bond = mol->nextBond(bondIter)) { |
438 |
> |
|
439 |
> |
a = bond->getAtomA()->getGlobalIndex(); |
440 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
441 |
> |
|
442 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
443 |
> |
oneTwoInteractions_.addPair(a, b); |
444 |
> |
} else { |
445 |
> |
excludedInteractions_.addPair(a, b); |
446 |
> |
} |
447 |
|
} |
205 |
– |
else { |
206 |
– |
sprintf( painCave.errMsg, |
207 |
– |
"OOPSE is switching from the faster Orthorhombic to the more\n" |
208 |
– |
"\tflexible Non-Orthorhombic periodic boundary computations.\n" |
209 |
– |
"\tThis is usually because the box has deformed under\n" |
210 |
– |
"\tNPTf integration. If you wan't to live on the edge with\n" |
211 |
– |
"\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
212 |
– |
"\tvariable ( currently set to %G ) larger.\n", |
213 |
– |
orthoTolerance); |
214 |
– |
painCave.severity = OOPSE_WARNING; |
215 |
– |
simError(); |
216 |
– |
} |
217 |
– |
} |
218 |
– |
} |
448 |
|
|
449 |
< |
void SimInfo::calcBoxL( void ){ |
449 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
450 |
> |
bend = mol->nextBend(bendIter)) { |
451 |
|
|
452 |
< |
double dx, dy, dz, dsq; |
452 |
> |
a = bend->getAtomA()->getGlobalIndex(); |
453 |
> |
b = bend->getAtomB()->getGlobalIndex(); |
454 |
> |
c = bend->getAtomC()->getGlobalIndex(); |
455 |
> |
|
456 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
457 |
> |
oneTwoInteractions_.addPair(a, b); |
458 |
> |
oneTwoInteractions_.addPair(b, c); |
459 |
> |
} else { |
460 |
> |
excludedInteractions_.addPair(a, b); |
461 |
> |
excludedInteractions_.addPair(b, c); |
462 |
> |
} |
463 |
|
|
464 |
< |
// boxVol = Determinant of Hmat |
464 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
465 |
> |
oneThreeInteractions_.addPair(a, c); |
466 |
> |
} else { |
467 |
> |
excludedInteractions_.addPair(a, c); |
468 |
> |
} |
469 |
> |
} |
470 |
|
|
471 |
< |
boxVol = matDet3( Hmat ); |
471 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
472 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
473 |
|
|
474 |
< |
// boxLx |
475 |
< |
|
476 |
< |
dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
477 |
< |
dsq = dx*dx + dy*dy + dz*dz; |
232 |
< |
boxL[0] = sqrt( dsq ); |
233 |
< |
//maxCutoff = 0.5 * boxL[0]; |
474 |
> |
a = torsion->getAtomA()->getGlobalIndex(); |
475 |
> |
b = torsion->getAtomB()->getGlobalIndex(); |
476 |
> |
c = torsion->getAtomC()->getGlobalIndex(); |
477 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
478 |
|
|
479 |
< |
// boxLy |
480 |
< |
|
481 |
< |
dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
482 |
< |
dsq = dx*dx + dy*dy + dz*dz; |
483 |
< |
boxL[1] = sqrt( dsq ); |
484 |
< |
//if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
479 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
480 |
> |
oneTwoInteractions_.addPair(a, b); |
481 |
> |
oneTwoInteractions_.addPair(b, c); |
482 |
> |
oneTwoInteractions_.addPair(c, d); |
483 |
> |
} else { |
484 |
> |
excludedInteractions_.addPair(a, b); |
485 |
> |
excludedInteractions_.addPair(b, c); |
486 |
> |
excludedInteractions_.addPair(c, d); |
487 |
> |
} |
488 |
|
|
489 |
+ |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
490 |
+ |
oneThreeInteractions_.addPair(a, c); |
491 |
+ |
oneThreeInteractions_.addPair(b, d); |
492 |
+ |
} else { |
493 |
+ |
excludedInteractions_.addPair(a, c); |
494 |
+ |
excludedInteractions_.addPair(b, d); |
495 |
+ |
} |
496 |
|
|
497 |
< |
// boxLz |
498 |
< |
|
499 |
< |
dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
500 |
< |
dsq = dx*dx + dy*dy + dz*dz; |
501 |
< |
boxL[2] = sqrt( dsq ); |
502 |
< |
//if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
497 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
498 |
> |
oneFourInteractions_.addPair(a, d); |
499 |
> |
} else { |
500 |
> |
excludedInteractions_.addPair(a, d); |
501 |
> |
} |
502 |
> |
} |
503 |
|
|
504 |
< |
//calculate the max cutoff |
505 |
< |
maxCutoff = calcMaxCutOff(); |
252 |
< |
|
253 |
< |
checkCutOffs(); |
504 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
505 |
> |
inversion = mol->nextInversion(inversionIter)) { |
506 |
|
|
507 |
< |
} |
507 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
508 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
509 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
510 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
511 |
|
|
512 |
+ |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
513 |
+ |
oneTwoInteractions_.addPair(a, b); |
514 |
+ |
oneTwoInteractions_.addPair(a, c); |
515 |
+ |
oneTwoInteractions_.addPair(a, d); |
516 |
+ |
} else { |
517 |
+ |
excludedInteractions_.addPair(a, b); |
518 |
+ |
excludedInteractions_.addPair(a, c); |
519 |
+ |
excludedInteractions_.addPair(a, d); |
520 |
+ |
} |
521 |
|
|
522 |
< |
double SimInfo::calcMaxCutOff(){ |
522 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
523 |
> |
oneThreeInteractions_.addPair(b, c); |
524 |
> |
oneThreeInteractions_.addPair(b, d); |
525 |
> |
oneThreeInteractions_.addPair(c, d); |
526 |
> |
} else { |
527 |
> |
excludedInteractions_.addPair(b, c); |
528 |
> |
excludedInteractions_.addPair(b, d); |
529 |
> |
excludedInteractions_.addPair(c, d); |
530 |
> |
} |
531 |
> |
} |
532 |
|
|
533 |
< |
double ri[3], rj[3], rk[3]; |
534 |
< |
double rij[3], rjk[3], rki[3]; |
535 |
< |
double minDist; |
533 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
534 |
> |
rb = mol->nextRigidBody(rbIter)) { |
535 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
536 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
537 |
> |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
538 |
> |
a = atoms[i]->getGlobalIndex(); |
539 |
> |
b = atoms[j]->getGlobalIndex(); |
540 |
> |
excludedInteractions_.addPair(a, b); |
541 |
> |
} |
542 |
> |
} |
543 |
> |
} |
544 |
|
|
545 |
< |
ri[0] = Hmat[0][0]; |
265 |
< |
ri[1] = Hmat[1][0]; |
266 |
< |
ri[2] = Hmat[2][0]; |
545 |
> |
} |
546 |
|
|
547 |
< |
rj[0] = Hmat[0][1]; |
548 |
< |
rj[1] = Hmat[1][1]; |
549 |
< |
rj[2] = Hmat[2][1]; |
547 |
> |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
548 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
549 |
> |
vector<Bond*>::iterator bondIter; |
550 |
> |
vector<Bend*>::iterator bendIter; |
551 |
> |
vector<Torsion*>::iterator torsionIter; |
552 |
> |
vector<Inversion*>::iterator inversionIter; |
553 |
> |
Bond* bond; |
554 |
> |
Bend* bend; |
555 |
> |
Torsion* torsion; |
556 |
> |
Inversion* inversion; |
557 |
> |
int a; |
558 |
> |
int b; |
559 |
> |
int c; |
560 |
> |
int d; |
561 |
|
|
562 |
< |
rk[0] = Hmat[0][2]; |
563 |
< |
rk[1] = Hmat[1][2]; |
564 |
< |
rk[2] = Hmat[2][2]; |
562 |
> |
map<int, set<int> > atomGroups; |
563 |
> |
Molecule::RigidBodyIterator rbIter; |
564 |
> |
RigidBody* rb; |
565 |
> |
Molecule::IntegrableObjectIterator ii; |
566 |
> |
StuntDouble* sd; |
567 |
|
|
568 |
< |
crossProduct3(ri, rj, rij); |
569 |
< |
distXY = dotProduct3(rk,rij) / norm3(rij); |
568 |
> |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
569 |
> |
sd = mol->nextIntegrableObject(ii)) { |
570 |
> |
|
571 |
> |
if (sd->isRigidBody()) { |
572 |
> |
rb = static_cast<RigidBody*>(sd); |
573 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
574 |
> |
set<int> rigidAtoms; |
575 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
576 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
577 |
> |
} |
578 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
579 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
580 |
> |
} |
581 |
> |
} else { |
582 |
> |
set<int> oneAtomSet; |
583 |
> |
oneAtomSet.insert(sd->getGlobalIndex()); |
584 |
> |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
585 |
> |
} |
586 |
> |
} |
587 |
|
|
588 |
< |
crossProduct3(rj,rk, rjk); |
589 |
< |
distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
588 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
589 |
> |
bond = mol->nextBond(bondIter)) { |
590 |
> |
|
591 |
> |
a = bond->getAtomA()->getGlobalIndex(); |
592 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
593 |
> |
|
594 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
595 |
> |
oneTwoInteractions_.removePair(a, b); |
596 |
> |
} else { |
597 |
> |
excludedInteractions_.removePair(a, b); |
598 |
> |
} |
599 |
> |
} |
600 |
|
|
601 |
< |
crossProduct3(rk,ri, rki); |
602 |
< |
distZX = dotProduct3(rj,rki) / norm3(rki); |
601 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
602 |
> |
bend = mol->nextBend(bendIter)) { |
603 |
|
|
604 |
< |
minDist = min(min(distXY, distYZ), distZX); |
605 |
< |
return minDist/2; |
606 |
< |
|
607 |
< |
} |
604 |
> |
a = bend->getAtomA()->getGlobalIndex(); |
605 |
> |
b = bend->getAtomB()->getGlobalIndex(); |
606 |
> |
c = bend->getAtomC()->getGlobalIndex(); |
607 |
> |
|
608 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
609 |
> |
oneTwoInteractions_.removePair(a, b); |
610 |
> |
oneTwoInteractions_.removePair(b, c); |
611 |
> |
} else { |
612 |
> |
excludedInteractions_.removePair(a, b); |
613 |
> |
excludedInteractions_.removePair(b, c); |
614 |
> |
} |
615 |
|
|
616 |
< |
void SimInfo::wrapVector( double thePos[3] ){ |
616 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
617 |
> |
oneThreeInteractions_.removePair(a, c); |
618 |
> |
} else { |
619 |
> |
excludedInteractions_.removePair(a, c); |
620 |
> |
} |
621 |
> |
} |
622 |
|
|
623 |
< |
int i; |
624 |
< |
double scaled[3]; |
623 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
624 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
625 |
> |
|
626 |
> |
a = torsion->getAtomA()->getGlobalIndex(); |
627 |
> |
b = torsion->getAtomB()->getGlobalIndex(); |
628 |
> |
c = torsion->getAtomC()->getGlobalIndex(); |
629 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
630 |
> |
|
631 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
632 |
> |
oneTwoInteractions_.removePair(a, b); |
633 |
> |
oneTwoInteractions_.removePair(b, c); |
634 |
> |
oneTwoInteractions_.removePair(c, d); |
635 |
> |
} else { |
636 |
> |
excludedInteractions_.removePair(a, b); |
637 |
> |
excludedInteractions_.removePair(b, c); |
638 |
> |
excludedInteractions_.removePair(c, d); |
639 |
> |
} |
640 |
|
|
641 |
< |
if( !orthoRhombic ){ |
642 |
< |
// calc the scaled coordinates. |
643 |
< |
|
641 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
642 |
> |
oneThreeInteractions_.removePair(a, c); |
643 |
> |
oneThreeInteractions_.removePair(b, d); |
644 |
> |
} else { |
645 |
> |
excludedInteractions_.removePair(a, c); |
646 |
> |
excludedInteractions_.removePair(b, d); |
647 |
> |
} |
648 |
|
|
649 |
< |
matVecMul3(HmatInv, thePos, scaled); |
650 |
< |
|
651 |
< |
for(i=0; i<3; i++) |
652 |
< |
scaled[i] -= roundMe(scaled[i]); |
653 |
< |
|
654 |
< |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
305 |
< |
|
306 |
< |
matVecMul3(Hmat, scaled, thePos); |
649 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
650 |
> |
oneFourInteractions_.removePair(a, d); |
651 |
> |
} else { |
652 |
> |
excludedInteractions_.removePair(a, d); |
653 |
> |
} |
654 |
> |
} |
655 |
|
|
656 |
< |
} |
657 |
< |
else{ |
658 |
< |
// calc the scaled coordinates. |
656 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
657 |
> |
inversion = mol->nextInversion(inversionIter)) { |
658 |
> |
|
659 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
660 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
661 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
662 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
663 |
> |
|
664 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
665 |
> |
oneTwoInteractions_.removePair(a, b); |
666 |
> |
oneTwoInteractions_.removePair(a, c); |
667 |
> |
oneTwoInteractions_.removePair(a, d); |
668 |
> |
} else { |
669 |
> |
excludedInteractions_.removePair(a, b); |
670 |
> |
excludedInteractions_.removePair(a, c); |
671 |
> |
excludedInteractions_.removePair(a, d); |
672 |
> |
} |
673 |
> |
|
674 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
675 |
> |
oneThreeInteractions_.removePair(b, c); |
676 |
> |
oneThreeInteractions_.removePair(b, d); |
677 |
> |
oneThreeInteractions_.removePair(c, d); |
678 |
> |
} else { |
679 |
> |
excludedInteractions_.removePair(b, c); |
680 |
> |
excludedInteractions_.removePair(b, d); |
681 |
> |
excludedInteractions_.removePair(c, d); |
682 |
> |
} |
683 |
> |
} |
684 |
> |
|
685 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
686 |
> |
rb = mol->nextRigidBody(rbIter)) { |
687 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
688 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
689 |
> |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
690 |
> |
a = atoms[i]->getGlobalIndex(); |
691 |
> |
b = atoms[j]->getGlobalIndex(); |
692 |
> |
excludedInteractions_.removePair(a, b); |
693 |
> |
} |
694 |
> |
} |
695 |
> |
} |
696 |
|
|
312 |
– |
for(i=0; i<3; i++) |
313 |
– |
scaled[i] = thePos[i]*HmatInv[i][i]; |
314 |
– |
|
315 |
– |
// wrap the scaled coordinates |
316 |
– |
|
317 |
– |
for(i=0; i<3; i++) |
318 |
– |
scaled[i] -= roundMe(scaled[i]); |
319 |
– |
|
320 |
– |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
321 |
– |
|
322 |
– |
for(i=0; i<3; i++) |
323 |
– |
thePos[i] = scaled[i]*Hmat[i][i]; |
697 |
|
} |
698 |
+ |
|
699 |
+ |
|
700 |
+ |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
701 |
+ |
int curStampId; |
702 |
|
|
703 |
< |
} |
703 |
> |
//index from 0 |
704 |
> |
curStampId = moleculeStamps_.size(); |
705 |
|
|
706 |
+ |
moleculeStamps_.push_back(molStamp); |
707 |
+ |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
708 |
+ |
} |
709 |
|
|
329 |
– |
int SimInfo::getNDF(){ |
330 |
– |
int ndf_local; |
710 |
|
|
711 |
< |
ndf_local = 0; |
712 |
< |
|
713 |
< |
for(int i = 0; i < integrableObjects.size(); i++){ |
714 |
< |
ndf_local += 3; |
715 |
< |
if (integrableObjects[i]->isDirectional()) { |
716 |
< |
if (integrableObjects[i]->isLinear()) |
717 |
< |
ndf_local += 2; |
718 |
< |
else |
719 |
< |
ndf_local += 3; |
720 |
< |
} |
711 |
> |
/** |
712 |
> |
* update |
713 |
> |
* |
714 |
> |
* Performs the global checks and variable settings after the |
715 |
> |
* objects have been created. |
716 |
> |
* |
717 |
> |
*/ |
718 |
> |
void SimInfo::update() { |
719 |
> |
setupSimVariables(); |
720 |
> |
calcNdf(); |
721 |
> |
calcNdfRaw(); |
722 |
> |
calcNdfTrans(); |
723 |
|
} |
724 |
+ |
|
725 |
+ |
/** |
726 |
+ |
* getSimulatedAtomTypes |
727 |
+ |
* |
728 |
+ |
* Returns an STL set of AtomType* that are actually present in this |
729 |
+ |
* simulation. Must query all processors to assemble this information. |
730 |
+ |
* |
731 |
+ |
*/ |
732 |
+ |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
733 |
+ |
SimInfo::MoleculeIterator mi; |
734 |
+ |
Molecule* mol; |
735 |
+ |
Molecule::AtomIterator ai; |
736 |
+ |
Atom* atom; |
737 |
+ |
set<AtomType*> atomTypes; |
738 |
+ |
|
739 |
+ |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
740 |
+ |
for(atom = mol->beginAtom(ai); atom != NULL; |
741 |
+ |
atom = mol->nextAtom(ai)) { |
742 |
+ |
atomTypes.insert(atom->getAtomType()); |
743 |
+ |
} |
744 |
+ |
} |
745 |
+ |
|
746 |
+ |
#ifdef IS_MPI |
747 |
|
|
748 |
< |
// n_constraints is local, so subtract them on each processor: |
748 |
> |
// loop over the found atom types on this processor, and add their |
749 |
> |
// numerical idents to a vector: |
750 |
> |
|
751 |
> |
vector<int> foundTypes; |
752 |
> |
set<AtomType*>::iterator i; |
753 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
754 |
> |
foundTypes.push_back( (*i)->getIdent() ); |
755 |
|
|
756 |
< |
ndf_local -= n_constraints; |
756 |
> |
// count_local holds the number of found types on this processor |
757 |
> |
int count_local = foundTypes.size(); |
758 |
|
|
759 |
< |
#ifdef IS_MPI |
760 |
< |
MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
761 |
< |
#else |
351 |
< |
ndf = ndf_local; |
352 |
< |
#endif |
759 |
> |
int nproc; |
760 |
> |
MPI_Comm_size( MPI_COMM_WORLD, &nproc); |
761 |
> |
// int nproc = MPI::COMM_WORLD.Get_size(); |
762 |
|
|
763 |
< |
// nZconstraints is global, as are the 3 COM translations for the |
764 |
< |
// entire system: |
763 |
> |
// we need arrays to hold the counts and displacement vectors for |
764 |
> |
// all processors |
765 |
> |
vector<int> counts(nproc, 0); |
766 |
> |
vector<int> disps(nproc, 0); |
767 |
|
|
768 |
< |
ndf = ndf - 3 - nZconstraints; |
768 |
> |
// fill the counts array |
769 |
> |
MPI_Allgather(&count_local, 1, MPI_INT, &counts[0], |
770 |
> |
1, MPI_INT, MPI_COMM_WORLD); |
771 |
> |
// MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
772 |
> |
// 1, MPI::INT); |
773 |
> |
|
774 |
> |
// use the processor counts to compute the displacement array |
775 |
> |
disps[0] = 0; |
776 |
> |
int totalCount = counts[0]; |
777 |
> |
for (int iproc = 1; iproc < nproc; iproc++) { |
778 |
> |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
779 |
> |
totalCount += counts[iproc]; |
780 |
> |
} |
781 |
|
|
782 |
< |
return ndf; |
783 |
< |
} |
782 |
> |
// we need a (possibly redundant) set of all found types: |
783 |
> |
vector<int> ftGlobal(totalCount); |
784 |
> |
|
785 |
> |
// now spray out the foundTypes to all the other processors: |
786 |
> |
MPI_Allgatherv(&foundTypes[0], count_local, MPI_INT, |
787 |
> |
&ftGlobal[0], &counts[0], &disps[0], |
788 |
> |
MPI_INT, MPI_COMM_WORLD); |
789 |
> |
// MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
790 |
> |
// &ftGlobal[0], &counts[0], &disps[0], |
791 |
> |
// MPI::INT); |
792 |
|
|
793 |
< |
int SimInfo::getNDFraw() { |
363 |
< |
int ndfRaw_local; |
793 |
> |
vector<int>::iterator j; |
794 |
|
|
795 |
< |
// Raw degrees of freedom that we have to set |
796 |
< |
ndfRaw_local = 0; |
795 |
> |
// foundIdents is a stl set, so inserting an already found ident |
796 |
> |
// will have no effect. |
797 |
> |
set<int> foundIdents; |
798 |
|
|
799 |
< |
for(int i = 0; i < integrableObjects.size(); i++){ |
800 |
< |
ndfRaw_local += 3; |
370 |
< |
if (integrableObjects[i]->isDirectional()) { |
371 |
< |
if (integrableObjects[i]->isLinear()) |
372 |
< |
ndfRaw_local += 2; |
373 |
< |
else |
374 |
< |
ndfRaw_local += 3; |
375 |
< |
} |
376 |
< |
} |
799 |
> |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
800 |
> |
foundIdents.insert((*j)); |
801 |
|
|
802 |
< |
#ifdef IS_MPI |
803 |
< |
MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
804 |
< |
#else |
805 |
< |
ndfRaw = ndfRaw_local; |
802 |
> |
// now iterate over the foundIdents and get the actual atom types |
803 |
> |
// that correspond to these: |
804 |
> |
set<int>::iterator it; |
805 |
> |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
806 |
> |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
807 |
> |
|
808 |
|
#endif |
809 |
|
|
810 |
< |
return ndfRaw; |
811 |
< |
} |
810 |
> |
return atomTypes; |
811 |
> |
} |
812 |
|
|
387 |
– |
int SimInfo::getNDFtranslational() { |
388 |
– |
int ndfTrans_local; |
813 |
|
|
814 |
< |
ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
814 |
> |
int getGlobalCountOfType(AtomType* atype) { |
815 |
> |
/* |
816 |
> |
set<AtomType*> atypes = getSimulatedAtomTypes(); |
817 |
> |
map<AtomType*, int> counts_; |
818 |
|
|
819 |
+ |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
820 |
+ |
for(atom = mol->beginAtom(ai); atom != NULL; |
821 |
+ |
atom = mol->nextAtom(ai)) { |
822 |
+ |
atom->getAtomType(); |
823 |
+ |
} |
824 |
+ |
} |
825 |
+ |
*/ |
826 |
+ |
return 0; |
827 |
+ |
} |
828 |
|
|
829 |
+ |
void SimInfo::setupSimVariables() { |
830 |
+ |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
831 |
+ |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole |
832 |
+ |
// parameter is true |
833 |
+ |
calcBoxDipole_ = false; |
834 |
+ |
if ( simParams_->haveAccumulateBoxDipole() ) |
835 |
+ |
if ( simParams_->getAccumulateBoxDipole() ) { |
836 |
+ |
calcBoxDipole_ = true; |
837 |
+ |
} |
838 |
+ |
|
839 |
+ |
set<AtomType*>::iterator i; |
840 |
+ |
set<AtomType*> atomTypes; |
841 |
+ |
atomTypes = getSimulatedAtomTypes(); |
842 |
+ |
bool usesElectrostatic = false; |
843 |
+ |
bool usesMetallic = false; |
844 |
+ |
bool usesDirectional = false; |
845 |
+ |
bool usesFluctuatingCharges = false; |
846 |
+ |
//loop over all of the atom types |
847 |
+ |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
848 |
+ |
usesElectrostatic |= (*i)->isElectrostatic(); |
849 |
+ |
usesMetallic |= (*i)->isMetal(); |
850 |
+ |
usesDirectional |= (*i)->isDirectional(); |
851 |
+ |
usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
852 |
+ |
} |
853 |
+ |
|
854 |
|
#ifdef IS_MPI |
855 |
< |
MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
395 |
< |
#else |
396 |
< |
ndfTrans = ndfTrans_local; |
397 |
< |
#endif |
855 |
> |
int temp; |
856 |
|
|
857 |
< |
ndfTrans = ndfTrans - 3 - nZconstraints; |
857 |
> |
temp = usesDirectional; |
858 |
> |
MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
859 |
> |
usesDirectionalAtoms_ = (temp == 0) ? false : true; |
860 |
|
|
861 |
< |
return ndfTrans; |
862 |
< |
} |
861 |
> |
// MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL, |
862 |
> |
// MPI::LOR); |
863 |
> |
|
864 |
> |
temp = usesMetallic; |
865 |
> |
MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
866 |
> |
usesMetallicAtoms_ = (temp == 0) ? false : true; |
867 |
|
|
868 |
< |
int SimInfo::getTotIntegrableObjects() { |
869 |
< |
int nObjs_local; |
870 |
< |
int nObjs; |
868 |
> |
// MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL, |
869 |
> |
// MPI::LOR); |
870 |
> |
|
871 |
> |
temp = usesElectrostatic; |
872 |
> |
MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
873 |
> |
usesElectrostaticAtoms_ = (temp == 0) ? false : true; |
874 |
|
|
875 |
< |
nObjs_local = integrableObjects.size(); |
875 |
> |
// MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL, |
876 |
> |
// MPI::LOR); |
877 |
|
|
878 |
+ |
temp = usesFluctuatingCharges; |
879 |
+ |
MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
880 |
+ |
usesFluctuatingCharges_ = (temp == 0) ? false : true; |
881 |
|
|
882 |
< |
#ifdef IS_MPI |
883 |
< |
MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
882 |
> |
// MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL, |
883 |
> |
// MPI::LOR); |
884 |
> |
|
885 |
|
#else |
414 |
– |
nObjs = nObjs_local; |
415 |
– |
#endif |
886 |
|
|
887 |
+ |
usesDirectionalAtoms_ = usesDirectional; |
888 |
+ |
usesMetallicAtoms_ = usesMetallic; |
889 |
+ |
usesElectrostaticAtoms_ = usesElectrostatic; |
890 |
+ |
usesFluctuatingCharges_ = usesFluctuatingCharges; |
891 |
|
|
892 |
< |
return nObjs; |
893 |
< |
} |
892 |
> |
#endif |
893 |
> |
|
894 |
> |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
895 |
> |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
896 |
> |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
897 |
> |
} |
898 |
|
|
421 |
– |
void SimInfo::refreshSim(){ |
899 |
|
|
900 |
< |
simtype fInfo; |
901 |
< |
int isError; |
902 |
< |
int n_global; |
903 |
< |
int* excl; |
900 |
> |
vector<int> SimInfo::getGlobalAtomIndices() { |
901 |
> |
SimInfo::MoleculeIterator mi; |
902 |
> |
Molecule* mol; |
903 |
> |
Molecule::AtomIterator ai; |
904 |
> |
Atom* atom; |
905 |
|
|
906 |
< |
fInfo.dielect = 0.0; |
907 |
< |
|
908 |
< |
if( useDipoles ){ |
909 |
< |
if( useReactionField )fInfo.dielect = dielectric; |
906 |
> |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
907 |
> |
|
908 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
909 |
> |
|
910 |
> |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
911 |
> |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
912 |
> |
} |
913 |
> |
} |
914 |
> |
return GlobalAtomIndices; |
915 |
|
} |
916 |
|
|
434 |
– |
fInfo.SIM_uses_PBC = usePBC; |
435 |
– |
//fInfo.SIM_uses_LJ = 0; |
436 |
– |
fInfo.SIM_uses_LJ = useLJ; |
437 |
– |
fInfo.SIM_uses_sticky = useSticky; |
438 |
– |
//fInfo.SIM_uses_sticky = 0; |
439 |
– |
fInfo.SIM_uses_charges = useCharges; |
440 |
– |
fInfo.SIM_uses_dipoles = useDipoles; |
441 |
– |
//fInfo.SIM_uses_dipoles = 0; |
442 |
– |
fInfo.SIM_uses_RF = useReactionField; |
443 |
– |
//fInfo.SIM_uses_RF = 0; |
444 |
– |
fInfo.SIM_uses_GB = useGB; |
445 |
– |
fInfo.SIM_uses_EAM = useEAM; |
917 |
|
|
918 |
< |
n_exclude = excludes->getSize(); |
919 |
< |
excl = excludes->getFortranArray(); |
920 |
< |
|
921 |
< |
#ifdef IS_MPI |
922 |
< |
n_global = mpiSim->getNAtomsGlobal(); |
452 |
< |
#else |
453 |
< |
n_global = n_atoms; |
454 |
< |
#endif |
455 |
< |
|
456 |
< |
isError = 0; |
457 |
< |
|
458 |
< |
getFortranGroupArrays(this, FglobalGroupMembership, mfact); |
459 |
< |
//it may not be a good idea to pass the address of first element in vector |
460 |
< |
//since c++ standard does not require vector to be stored continuously in meomory |
461 |
< |
//Most of the compilers will organize the memory of vector continuously |
462 |
< |
setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
463 |
< |
&nGlobalExcludes, globalExcludes, molMembershipArray, |
464 |
< |
&mfact[0], &ngroup, &FglobalGroupMembership[0], &isError); |
918 |
> |
vector<int> SimInfo::getGlobalGroupIndices() { |
919 |
> |
SimInfo::MoleculeIterator mi; |
920 |
> |
Molecule* mol; |
921 |
> |
Molecule::CutoffGroupIterator ci; |
922 |
> |
CutoffGroup* cg; |
923 |
|
|
924 |
< |
if( isError ){ |
924 |
> |
vector<int> GlobalGroupIndices; |
925 |
|
|
926 |
< |
sprintf( painCave.errMsg, |
927 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
928 |
< |
painCave.isFatal = 1; |
929 |
< |
painCave.severity = OOPSE_ERROR; |
930 |
< |
simError(); |
926 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
927 |
> |
|
928 |
> |
//local index of cutoff group is trivial, it only depends on the |
929 |
> |
//order of travesing |
930 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
931 |
> |
cg = mol->nextCutoffGroup(ci)) { |
932 |
> |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
933 |
> |
} |
934 |
> |
} |
935 |
> |
return GlobalGroupIndices; |
936 |
|
} |
474 |
– |
|
475 |
– |
#ifdef IS_MPI |
476 |
– |
sprintf( checkPointMsg, |
477 |
– |
"succesfully sent the simulation information to fortran.\n"); |
478 |
– |
MPIcheckPoint(); |
479 |
– |
#endif // is_mpi |
480 |
– |
|
481 |
– |
this->ndf = this->getNDF(); |
482 |
– |
this->ndfRaw = this->getNDFraw(); |
483 |
– |
this->ndfTrans = this->getNDFtranslational(); |
484 |
– |
} |
937 |
|
|
486 |
– |
void SimInfo::setDefaultRcut( double theRcut ){ |
487 |
– |
|
488 |
– |
haveRcut = 1; |
489 |
– |
rCut = theRcut; |
490 |
– |
rList = rCut + 1.0; |
491 |
– |
|
492 |
– |
notifyFortranCutOffs( &rCut, &rSw, &rList ); |
493 |
– |
} |
938 |
|
|
939 |
< |
void SimInfo::setDefaultRcut( double theRcut, double theRsw ){ |
939 |
> |
void SimInfo::prepareTopology() { |
940 |
|
|
941 |
< |
rSw = theRsw; |
942 |
< |
setDefaultRcut( theRcut ); |
943 |
< |
} |
941 |
> |
//calculate mass ratio of cutoff group |
942 |
> |
SimInfo::MoleculeIterator mi; |
943 |
> |
Molecule* mol; |
944 |
> |
Molecule::CutoffGroupIterator ci; |
945 |
> |
CutoffGroup* cg; |
946 |
> |
Molecule::AtomIterator ai; |
947 |
> |
Atom* atom; |
948 |
> |
RealType totalMass; |
949 |
|
|
950 |
< |
|
951 |
< |
void SimInfo::checkCutOffs( void ){ |
952 |
< |
|
953 |
< |
if( boxIsInit ){ |
950 |
> |
/** |
951 |
> |
* The mass factor is the relative mass of an atom to the total |
952 |
> |
* mass of the cutoff group it belongs to. By default, all atoms |
953 |
> |
* are their own cutoff groups, and therefore have mass factors of |
954 |
> |
* 1. We need some special handling for massless atoms, which |
955 |
> |
* will be treated as carrying the entire mass of the cutoff |
956 |
> |
* group. |
957 |
> |
*/ |
958 |
> |
massFactors_.clear(); |
959 |
> |
massFactors_.resize(getNAtoms(), 1.0); |
960 |
|
|
961 |
< |
//we need to check cutOffs against the box |
962 |
< |
|
963 |
< |
if( rCut > maxCutoff ){ |
964 |
< |
sprintf( painCave.errMsg, |
965 |
< |
"cutoffRadius is too large for the current periodic box.\n" |
966 |
< |
"\tCurrent Value of cutoffRadius = %G at time %G\n " |
967 |
< |
"\tThis is larger than half of at least one of the\n" |
968 |
< |
"\tperiodic box vectors. Right now, the Box matrix is:\n" |
969 |
< |
"\n" |
970 |
< |
"\t[ %G %G %G ]\n" |
971 |
< |
"\t[ %G %G %G ]\n" |
972 |
< |
"\t[ %G %G %G ]\n", |
973 |
< |
rCut, currentTime, |
974 |
< |
Hmat[0][0], Hmat[0][1], Hmat[0][2], |
975 |
< |
Hmat[1][0], Hmat[1][1], Hmat[1][2], |
976 |
< |
Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
977 |
< |
painCave.severity = OOPSE_ERROR; |
978 |
< |
painCave.isFatal = 1; |
979 |
< |
simError(); |
961 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
962 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
963 |
> |
cg = mol->nextCutoffGroup(ci)) { |
964 |
> |
|
965 |
> |
totalMass = cg->getMass(); |
966 |
> |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
967 |
> |
// Check for massless groups - set mfact to 1 if true |
968 |
> |
if (totalMass != 0) |
969 |
> |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
970 |
> |
else |
971 |
> |
massFactors_[atom->getLocalIndex()] = 1.0; |
972 |
> |
} |
973 |
> |
} |
974 |
> |
} |
975 |
> |
|
976 |
> |
// Build the identArray_ and regions_ |
977 |
> |
|
978 |
> |
identArray_.clear(); |
979 |
> |
identArray_.reserve(getNAtoms()); |
980 |
> |
regions_.clear(); |
981 |
> |
regions_.reserve(getNAtoms()); |
982 |
> |
|
983 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
984 |
> |
int reg = mol->getRegion(); |
985 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
986 |
> |
identArray_.push_back(atom->getIdent()); |
987 |
> |
regions_.push_back(reg); |
988 |
> |
} |
989 |
|
} |
990 |
< |
} else { |
991 |
< |
// initialize this stuff before using it, OK? |
528 |
< |
sprintf( painCave.errMsg, |
529 |
< |
"Trying to check cutoffs without a box.\n" |
530 |
< |
"\tOOPSE should have better programmers than that.\n" ); |
531 |
< |
painCave.severity = OOPSE_ERROR; |
532 |
< |
painCave.isFatal = 1; |
533 |
< |
simError(); |
990 |
> |
|
991 |
> |
topologyDone_ = true; |
992 |
|
} |
535 |
– |
|
536 |
– |
} |
993 |
|
|
994 |
< |
void SimInfo::addProperty(GenericData* prop){ |
994 |
> |
void SimInfo::addProperty(GenericData* genData) { |
995 |
> |
properties_.addProperty(genData); |
996 |
> |
} |
997 |
|
|
998 |
< |
map<string, GenericData*>::iterator result; |
999 |
< |
result = properties.find(prop->getID()); |
542 |
< |
|
543 |
< |
//we can't simply use properties[prop->getID()] = prop, |
544 |
< |
//it will cause memory leak if we already contain a propery which has the same name of prop |
545 |
< |
|
546 |
< |
if(result != properties.end()){ |
547 |
< |
|
548 |
< |
delete (*result).second; |
549 |
< |
(*result).second = prop; |
550 |
< |
|
998 |
> |
void SimInfo::removeProperty(const string& propName) { |
999 |
> |
properties_.removeProperty(propName); |
1000 |
|
} |
552 |
– |
else{ |
1001 |
|
|
1002 |
< |
properties[prop->getID()] = prop; |
1002 |
> |
void SimInfo::clearProperties() { |
1003 |
> |
properties_.clearProperties(); |
1004 |
> |
} |
1005 |
|
|
1006 |
+ |
vector<string> SimInfo::getPropertyNames() { |
1007 |
+ |
return properties_.getPropertyNames(); |
1008 |
|
} |
1009 |
< |
|
1010 |
< |
} |
1009 |
> |
|
1010 |
> |
vector<GenericData*> SimInfo::getProperties() { |
1011 |
> |
return properties_.getProperties(); |
1012 |
> |
} |
1013 |
|
|
1014 |
< |
GenericData* SimInfo::getProperty(const string& propName){ |
1014 |
> |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
1015 |
> |
return properties_.getPropertyByName(propName); |
1016 |
> |
} |
1017 |
> |
|
1018 |
> |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
1019 |
> |
if (sman_ == sman) { |
1020 |
> |
return; |
1021 |
> |
} |
1022 |
> |
delete sman_; |
1023 |
> |
sman_ = sman; |
1024 |
> |
|
1025 |
> |
SimInfo::MoleculeIterator mi; |
1026 |
> |
Molecule::AtomIterator ai; |
1027 |
> |
Molecule::RigidBodyIterator rbIter; |
1028 |
> |
Molecule::CutoffGroupIterator cgIter; |
1029 |
> |
Molecule::BondIterator bondIter; |
1030 |
> |
Molecule::BendIterator bendIter; |
1031 |
> |
Molecule::TorsionIterator torsionIter; |
1032 |
> |
Molecule::InversionIterator inversionIter; |
1033 |
|
|
1034 |
< |
map<string, GenericData*>::iterator result; |
1035 |
< |
|
1036 |
< |
//string lowerCaseName = (); |
1037 |
< |
|
1038 |
< |
result = properties.find(propName); |
1039 |
< |
|
1040 |
< |
if(result != properties.end()) |
1041 |
< |
return (*result).second; |
570 |
< |
else |
571 |
< |
return NULL; |
572 |
< |
} |
1034 |
> |
Molecule* mol; |
1035 |
> |
Atom* atom; |
1036 |
> |
RigidBody* rb; |
1037 |
> |
CutoffGroup* cg; |
1038 |
> |
Bond* bond; |
1039 |
> |
Bend* bend; |
1040 |
> |
Torsion* torsion; |
1041 |
> |
Inversion* inversion; |
1042 |
|
|
1043 |
+ |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1044 |
+ |
|
1045 |
+ |
for (atom = mol->beginAtom(ai); atom != NULL; |
1046 |
+ |
atom = mol->nextAtom(ai)) { |
1047 |
+ |
atom->setSnapshotManager(sman_); |
1048 |
+ |
} |
1049 |
+ |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
1050 |
+ |
rb = mol->nextRigidBody(rbIter)) { |
1051 |
+ |
rb->setSnapshotManager(sman_); |
1052 |
+ |
} |
1053 |
+ |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; |
1054 |
+ |
cg = mol->nextCutoffGroup(cgIter)) { |
1055 |
+ |
cg->setSnapshotManager(sman_); |
1056 |
+ |
} |
1057 |
+ |
for (bond = mol->beginBond(bondIter); bond != NULL; |
1058 |
+ |
bond = mol->nextBond(bondIter)) { |
1059 |
+ |
bond->setSnapshotManager(sman_); |
1060 |
+ |
} |
1061 |
+ |
for (bend = mol->beginBend(bendIter); bend != NULL; |
1062 |
+ |
bend = mol->nextBend(bendIter)) { |
1063 |
+ |
bend->setSnapshotManager(sman_); |
1064 |
+ |
} |
1065 |
+ |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
1066 |
+ |
torsion = mol->nextTorsion(torsionIter)) { |
1067 |
+ |
torsion->setSnapshotManager(sman_); |
1068 |
+ |
} |
1069 |
+ |
for (inversion = mol->beginInversion(inversionIter); inversion != NULL; |
1070 |
+ |
inversion = mol->nextInversion(inversionIter)) { |
1071 |
+ |
inversion->setSnapshotManager(sman_); |
1072 |
+ |
} |
1073 |
+ |
} |
1074 |
+ |
} |
1075 |
|
|
1076 |
< |
void SimInfo::getFortranGroupArrays(SimInfo* info, |
1077 |
< |
vector<int>& FglobalGroupMembership, |
1078 |
< |
vector<double>& mfact){ |
1076 |
> |
|
1077 |
> |
ostream& operator <<(ostream& o, SimInfo& info) { |
1078 |
> |
|
1079 |
> |
return o; |
1080 |
> |
} |
1081 |
> |
|
1082 |
|
|
1083 |
< |
Molecule* myMols; |
1084 |
< |
Atom** myAtoms; |
1085 |
< |
int numAtom; |
1086 |
< |
double mtot; |
1087 |
< |
int numMol; |
1088 |
< |
int numCutoffGroups; |
1089 |
< |
CutoffGroup* myCutoffGroup; |
1090 |
< |
vector<CutoffGroup*>::iterator iterCutoff; |
1091 |
< |
Atom* cutoffAtom; |
1092 |
< |
vector<Atom*>::iterator iterAtom; |
1093 |
< |
int atomIndex; |
590 |
< |
double totalMass; |
1083 |
> |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1084 |
> |
if (index >= int(IOIndexToIntegrableObject.size())) { |
1085 |
> |
sprintf(painCave.errMsg, |
1086 |
> |
"SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n" |
1087 |
> |
"\tindex exceeds number of known objects!\n"); |
1088 |
> |
painCave.isFatal = 1; |
1089 |
> |
simError(); |
1090 |
> |
return NULL; |
1091 |
> |
} else |
1092 |
> |
return IOIndexToIntegrableObject.at(index); |
1093 |
> |
} |
1094 |
|
|
1095 |
< |
mfact.clear(); |
1096 |
< |
FglobalGroupMembership.clear(); |
1097 |
< |
|
1095 |
> |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1096 |
> |
IOIndexToIntegrableObject= v; |
1097 |
> |
} |
1098 |
|
|
1099 |
< |
// Fix the silly fortran indexing problem |
1099 |
> |
int SimInfo::getNGlobalConstraints() { |
1100 |
> |
int nGlobalConstraints; |
1101 |
|
#ifdef IS_MPI |
1102 |
< |
numAtom = mpiSim->getNAtomsGlobal(); |
1102 |
> |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, |
1103 |
> |
MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
1104 |
> |
// MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1, |
1105 |
> |
// MPI::INT, MPI::SUM); |
1106 |
|
#else |
1107 |
< |
numAtom = n_atoms; |
1107 |
> |
nGlobalConstraints = nConstraints_; |
1108 |
|
#endif |
1109 |
< |
for (int i = 0; i < numAtom; i++) |
603 |
< |
FglobalGroupMembership.push_back(globalGroupMembership[i] + 1); |
604 |
< |
|
605 |
< |
|
606 |
< |
myMols = info->molecules; |
607 |
< |
numMol = info->n_mol; |
608 |
< |
for(int i = 0; i < numMol; i++){ |
609 |
< |
numCutoffGroups = myMols[i].getNCutoffGroups(); |
610 |
< |
for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); |
611 |
< |
myCutoffGroup != NULL; |
612 |
< |
myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){ |
613 |
< |
|
614 |
< |
totalMass = myCutoffGroup->getMass(); |
615 |
< |
|
616 |
< |
for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); |
617 |
< |
cutoffAtom != NULL; |
618 |
< |
cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){ |
619 |
< |
mfact.push_back(cutoffAtom->getMass()/totalMass); |
620 |
< |
} |
621 |
< |
} |
1109 |
> |
return nGlobalConstraints; |
1110 |
|
} |
1111 |
|
|
1112 |
< |
} |
1112 |
> |
}//end namespace OpenMD |
1113 |
> |
|