ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 124 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
Revision 1969 by gezelter, Wed Feb 26 14:14:50 2014 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file SimInfo.cpp
45 > * @author    tlin
46 > * @date  11/02/2004
47 > * @version 1.0
48 > */
49  
50 < #include <iostream>
51 < using namespace std;
50 > #ifdef IS_MPI
51 > #include <mpi.h>
52 > #endif
53 > #include <algorithm>
54 > #include <set>
55 > #include <map>
56  
57   #include "brains/SimInfo.hpp"
58 < #define __C
59 < #include "brains/fSimulation.h"
58 > #include "math/Vector3.hpp"
59 > #include "primitives/Molecule.hpp"
60 > #include "primitives/StuntDouble.hpp"
61 > #include "utils/MemoryUtils.hpp"
62   #include "utils/simError.h"
63 < #include "UseTheForce/DarkSide/simulation_interface.h"
64 < #include "UseTheForce/notifyCutoffs_interface.h"
63 > #include "selection/SelectionManager.hpp"
64 > #include "io/ForceFieldOptions.hpp"
65 > #include "brains/ForceField.hpp"
66 > #include "nonbonded/SwitchingFunction.hpp"
67  
68 < //#include "UseTheForce/fortranWrappers.hpp"
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 >    nGlobalFluctuatingCharges_(0), nGlobalBonds_(0), nGlobalBends_(0),
77 >    nGlobalTorsions_(0), nGlobalInversions_(0), nAtoms_(0), nBonds_(0),
78 >    nBends_(0), nTorsions_(0), nInversions_(0), nRigidBodies_(0),
79 >    nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
80 >    nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
81 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
82 >    
83 >    MoleculeStamp* molStamp;
84 >    int nMolWithSameStamp;
85 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
87 >    CutoffGroupStamp* cgStamp;    
88 >    RigidBodyStamp* rbStamp;
89 >    int nRigidAtoms = 0;
90 >    
91 >    vector<Component*> components = simParams->getComponents();
92 >    
93 >    for (vector<Component*>::iterator i = components.begin();
94 >         i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      if ( (*i)->haveRegion() ) {        
97 >        molStamp->setRegion( (*i)->getRegion() );
98 >      } else {
99 >        // set the region to a disallowed value:
100 >        molStamp->setRegion( -1 );
101 >      }
102  
103 < #include "math/MatVec3.h"
103 >      nMolWithSameStamp = (*i)->getNMol();
104 >      
105 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
106 >      
107 >      //calculate atoms in molecules
108 >      nGlobalAtoms_ += molStamp->getNAtoms() * nMolWithSameStamp;
109 >      nGlobalBonds_ += molStamp->getNBonds() * nMolWithSameStamp;
110 >      nGlobalBends_ += molStamp->getNBends() * nMolWithSameStamp;
111 >      nGlobalTorsions_ += molStamp->getNTorsions() * nMolWithSameStamp;
112 >      nGlobalInversions_ += molStamp->getNInversions() * nMolWithSameStamp;
113 >      
114 >      //calculate atoms in cutoff groups
115 >      int nAtomsInGroups = 0;
116 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
117 >      
118 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
119 >        cgStamp = molStamp->getCutoffGroupStamp(j);
120 >        nAtomsInGroups += cgStamp->getNMembers();
121 >      }
122 >      
123 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
124 >      
125 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
126 >      
127 >      //calculate atoms in rigid bodies
128 >      int nAtomsInRigidBodies = 0;
129 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
130 >      
131 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
132 >        rbStamp = molStamp->getRigidBodyStamp(j);
133 >        nAtomsInRigidBodies += rbStamp->getNMembers();
134 >      }
135 >      
136 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
137 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
138 >      
139 >    }
140 >    
141 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
142 >    //group therefore the total number of cutoff groups in the system is
143 >    //equal to the total number of atoms minus number of atoms belong to
144 >    //cutoff group defined in meta-data file plus the number of cutoff
145 >    //groups defined in meta-data file
146  
147 < #ifdef IS_MPI
148 < #include "brains/mpiSimulation.hpp"
149 < #endif
147 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
148 >    
149 >    //every free atom (atom does not belong to rigid bodies) is an
150 >    //integrable object therefore the total number of integrable objects
151 >    //in the system is equal to the total number of atoms minus number of
152 >    //atoms belong to rigid body defined in meta-data file plus the number
153 >    //of rigid bodies defined in meta-data file
154 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
155 >      + nGlobalRigidBodies_;
156 >    
157 >    nGlobalMols_ = molStampIds_.size();
158 >    molToProcMap_.resize(nGlobalMols_);
159 >  }
160 >  
161 >  SimInfo::~SimInfo() {
162 >    map<int, Molecule*>::iterator i;
163 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
164 >      delete i->second;
165 >    }
166 >    molecules_.clear();
167 >      
168 >    delete sman_;
169 >    delete simParams_;
170 >    delete forceField_;
171 >  }
172  
23 inline double roundMe( double x ){
24  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
25 }
26          
27 inline double min( double a, double b ){
28  return (a < b ) ? a : b;
29 }
173  
174 < SimInfo* currentInfo;
175 <
176 < SimInfo::SimInfo(){
177 <
178 <  n_constraints = 0;
179 <  nZconstraints = 0;
180 <  n_oriented = 0;
181 <  n_dipoles = 0;
182 <  ndf = 0;
183 <  ndfRaw = 0;
184 <  nZconstraints = 0;
185 <  the_integrator = NULL;
186 <  setTemp = 0;
187 <  thermalTime = 0.0;
188 <  currentTime = 0.0;
189 <  rCut = 0.0;
190 <  rSw = 0.0;
191 <
192 <  haveRcut = 0;
193 <  haveRsw = 0;
194 <  boxIsInit = 0;
174 >  bool SimInfo::addMolecule(Molecule* mol) {
175 >    MoleculeIterator i;
176 >    
177 >    i = molecules_.find(mol->getGlobalIndex());
178 >    if (i == molecules_.end() ) {
179 >      
180 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
181 >      
182 >      nAtoms_ += mol->getNAtoms();
183 >      nBonds_ += mol->getNBonds();
184 >      nBends_ += mol->getNBends();
185 >      nTorsions_ += mol->getNTorsions();
186 >      nInversions_ += mol->getNInversions();
187 >      nRigidBodies_ += mol->getNRigidBodies();
188 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
189 >      nCutoffGroups_ += mol->getNCutoffGroups();
190 >      nConstraints_ += mol->getNConstraintPairs();
191 >      
192 >      addInteractionPairs(mol);
193 >      
194 >      return true;
195 >    } else {
196 >      return false;
197 >    }
198 >  }
199    
200 <  resetTime = 1e99;
200 >  bool SimInfo::removeMolecule(Molecule* mol) {
201 >    MoleculeIterator i;
202 >    i = molecules_.find(mol->getGlobalIndex());
203  
204 <  orthoRhombic = 0;
56 <  orthoTolerance = 1E-6;
57 <  useInitXSstate = true;
204 >    if (i != molecules_.end() ) {
205  
206 <  usePBC = 0;
207 <  useLJ = 0;
208 <  useSticky = 0;
209 <  useCharges = 0;
210 <  useDipoles = 0;
211 <  useReactionField = 0;
212 <  useGB = 0;
213 <  useEAM = 0;
214 <  useSolidThermInt = 0;
215 <  useLiquidThermInt = 0;
206 >      assert(mol == i->second);
207 >        
208 >      nAtoms_ -= mol->getNAtoms();
209 >      nBonds_ -= mol->getNBonds();
210 >      nBends_ -= mol->getNBends();
211 >      nTorsions_ -= mol->getNTorsions();
212 >      nInversions_ -= mol->getNInversions();
213 >      nRigidBodies_ -= mol->getNRigidBodies();
214 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
215 >      nCutoffGroups_ -= mol->getNCutoffGroups();
216 >      nConstraints_ -= mol->getNConstraintPairs();
217  
218 <  haveCutoffGroups = false;
218 >      removeInteractionPairs(mol);
219 >      molecules_.erase(mol->getGlobalIndex());
220  
221 <  excludes = Exclude::Instance();
221 >      delete mol;
222 >        
223 >      return true;
224 >    } else {
225 >      return false;
226 >    }
227 >  }    
228  
229 <  myConfiguration = new SimState();
229 >        
230 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
231 >    i = molecules_.begin();
232 >    return i == molecules_.end() ? NULL : i->second;
233 >  }    
234  
235 <  has_minimizer = false;
236 <  the_minimizer =NULL;
235 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
236 >    ++i;
237 >    return i == molecules_.end() ? NULL : i->second;    
238 >  }
239  
79  ngroup = 0;
240  
241 < }
241 >  void SimInfo::calcNdf() {
242 >    int ndf_local, nfq_local;
243 >    MoleculeIterator i;
244 >    vector<StuntDouble*>::iterator j;
245 >    vector<Atom*>::iterator k;
246  
247 +    Molecule* mol;
248 +    StuntDouble* sd;
249 +    Atom* atom;
250  
251 < SimInfo::~SimInfo(){
251 >    ndf_local = 0;
252 >    nfq_local = 0;
253 >    
254 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
255  
256 <  delete myConfiguration;
256 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
257 >           sd = mol->nextIntegrableObject(j)) {
258  
259 <  map<string, GenericData*>::iterator i;
89 <  
90 <  for(i = properties.begin(); i != properties.end(); i++)
91 <    delete (*i).second;
259 >        ndf_local += 3;
260  
261 < }
261 >        if (sd->isDirectional()) {
262 >          if (sd->isLinear()) {
263 >            ndf_local += 2;
264 >          } else {
265 >            ndf_local += 3;
266 >          }
267 >        }
268 >      }
269  
270 < void SimInfo::setBox(double newBox[3]) {
271 <  
272 <  int i, j;
273 <  double tempMat[3][3];
270 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
271 >           atom = mol->nextFluctuatingCharge(k)) {
272 >        if (atom->isFluctuatingCharge()) {
273 >          nfq_local++;
274 >        }
275 >      }
276 >    }
277 >    
278 >    ndfLocal_ = ndf_local;
279  
280 <  for(i=0; i<3; i++)
281 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
280 >    // n_constraints is local, so subtract them on each processor
281 >    ndf_local -= nConstraints_;
282  
283 <  tempMat[0][0] = newBox[0];
284 <  tempMat[1][1] = newBox[1];
285 <  tempMat[2][2] = newBox[2];
283 > #ifdef IS_MPI
284 >    MPI_Allreduce(&ndf_local, &ndf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
285 >    MPI_Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
286 >      MPI_INT, MPI_SUM, MPI_COMM_WORLD);
287 >    // MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
288 >    // MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
289 >    //                           MPI::INT, MPI::SUM);
290 > #else
291 >    ndf_ = ndf_local;
292 >    nGlobalFluctuatingCharges_ = nfq_local;
293 > #endif
294  
295 <  setBoxM( tempMat );
295 >    // nZconstraints_ is global, as are the 3 COM translations for the
296 >    // entire system:
297 >    ndf_ = ndf_ - 3 - nZconstraint_;
298  
299 < }
299 >  }
300  
301 < void SimInfo::setBoxM( double theBox[3][3] ){
301 >  int SimInfo::getFdf() {
302 > #ifdef IS_MPI
303 >    MPI_Allreduce(&fdf_local, &fdf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
304 >    // MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
305 > #else
306 >    fdf_ = fdf_local;
307 > #endif
308 >    return fdf_;
309 >  }
310    
311 <  int i, j;
312 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
313 <                         // ordering in the array is as follows:
314 <                         // [ 0 3 6 ]
315 <                         // [ 1 4 7 ]
316 <                         // [ 2 5 8 ]
317 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
318 <
319 <  if( !boxIsInit ) boxIsInit = 1;
320 <
321 <  for(i=0; i < 3; i++)
322 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
323 <  
324 <  calcBoxL();
127 <  calcHmatInv();
128 <
129 <  for(i=0; i < 3; i++) {
130 <    for (j=0; j < 3; j++) {
131 <      FortranHmat[3*j + i] = Hmat[i][j];
132 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
311 >  unsigned int SimInfo::getNLocalCutoffGroups(){
312 >    int nLocalCutoffAtoms = 0;
313 >    Molecule* mol;
314 >    MoleculeIterator mi;
315 >    CutoffGroup* cg;
316 >    Molecule::CutoffGroupIterator ci;
317 >    
318 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
319 >      
320 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
321 >           cg = mol->nextCutoffGroup(ci)) {
322 >        nLocalCutoffAtoms += cg->getNumAtom();
323 >        
324 >      }        
325      }
326 +    
327 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
328    }
329 +    
330 +  void SimInfo::calcNdfRaw() {
331 +    int ndfRaw_local;
332  
333 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
334 <
335 < }
336 <
333 >    MoleculeIterator i;
334 >    vector<StuntDouble*>::iterator j;
335 >    Molecule* mol;
336 >    StuntDouble* sd;
337  
338 < void SimInfo::getBoxM (double theBox[3][3]) {
338 >    // Raw degrees of freedom that we have to set
339 >    ndfRaw_local = 0;
340 >    
341 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
342  
343 <  int i, j;
344 <  for(i=0; i<3; i++)
145 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
146 < }
343 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
344 >           sd = mol->nextIntegrableObject(j)) {
345  
346 +        ndfRaw_local += 3;
347  
348 < void SimInfo::scaleBox(double scale) {
349 <  double theBox[3][3];
350 <  int i, j;
348 >        if (sd->isDirectional()) {
349 >          if (sd->isLinear()) {
350 >            ndfRaw_local += 2;
351 >          } else {
352 >            ndfRaw_local += 3;
353 >          }
354 >        }
355 >            
356 >      }
357 >    }
358 >    
359 > #ifdef IS_MPI
360 >    MPI_Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
361 >    // MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
362 > #else
363 >    ndfRaw_ = ndfRaw_local;
364 > #endif
365 >  }
366  
367 <  // cerr << "Scaling box by " << scale << "\n";
367 >  void SimInfo::calcNdfTrans() {
368 >    int ndfTrans_local;
369  
370 <  for(i=0; i<3; i++)
156 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
370 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
371  
158  setBoxM(theBox);
372  
373 < }
373 > #ifdef IS_MPI
374 >    MPI_Allreduce(&ndfTrans_local, &ndfTrans_, 1,
375 >      MPI_INT, MPI_SUM, MPI_COMM_WORLD);
376 >    // MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
377 >    //                           MPI::INT, MPI::SUM);
378 > #else
379 >    ndfTrans_ = ndfTrans_local;
380 > #endif
381  
382 < void SimInfo::calcHmatInv( void ) {
383 <  
384 <  int oldOrtho;
165 <  int i,j;
166 <  double smallDiag;
167 <  double tol;
168 <  double sanity[3][3];
382 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
383 >
384 >  }
385  
386 <  invertMat3( Hmat, HmatInv );
386 >  void SimInfo::addInteractionPairs(Molecule* mol) {
387 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
388 >    vector<Bond*>::iterator bondIter;
389 >    vector<Bend*>::iterator bendIter;
390 >    vector<Torsion*>::iterator torsionIter;
391 >    vector<Inversion*>::iterator inversionIter;
392 >    Bond* bond;
393 >    Bend* bend;
394 >    Torsion* torsion;
395 >    Inversion* inversion;
396 >    int a;
397 >    int b;
398 >    int c;
399 >    int d;
400  
401 <  // check to see if Hmat is orthorhombic
402 <  
403 <  oldOrtho = orthoRhombic;
401 >    // atomGroups can be used to add special interaction maps between
402 >    // groups of atoms that are in two separate rigid bodies.
403 >    // However, most site-site interactions between two rigid bodies
404 >    // are probably not special, just the ones between the physically
405 >    // bonded atoms.  Interactions *within* a single rigid body should
406 >    // always be excluded.  These are done at the bottom of this
407 >    // function.
408  
409 <  smallDiag = fabs(Hmat[0][0]);
410 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
411 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
412 <  tol = smallDiag * orthoTolerance;
409 >    map<int, set<int> > atomGroups;
410 >    Molecule::RigidBodyIterator rbIter;
411 >    RigidBody* rb;
412 >    Molecule::IntegrableObjectIterator ii;
413 >    StuntDouble* sd;
414 >    
415 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
416 >         sd = mol->nextIntegrableObject(ii)) {
417 >      
418 >      if (sd->isRigidBody()) {
419 >        rb = static_cast<RigidBody*>(sd);
420 >        vector<Atom*> atoms = rb->getAtoms();
421 >        set<int> rigidAtoms;
422 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
423 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
424 >        }
425 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
426 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
427 >        }      
428 >      } else {
429 >        set<int> oneAtomSet;
430 >        oneAtomSet.insert(sd->getGlobalIndex());
431 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
432 >      }
433 >    }  
434  
435 <  orthoRhombic = 1;
436 <  
437 <  for (i = 0; i < 3; i++ ) {
438 <    for (j = 0 ; j < 3; j++) {
439 <      if (i != j) {
440 <        if (orthoRhombic) {
441 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
442 <        }        
435 >          
436 >    for (bond= mol->beginBond(bondIter); bond != NULL;
437 >         bond = mol->nextBond(bondIter)) {
438 >
439 >      a = bond->getAtomA()->getGlobalIndex();
440 >      b = bond->getAtomB()->getGlobalIndex();  
441 >
442 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
443 >        oneTwoInteractions_.addPair(a, b);
444 >      } else {
445 >        excludedInteractions_.addPair(a, b);
446        }
447      }
191  }
448  
449 <  if( oldOrtho != orthoRhombic ){
450 <    
195 <    if( orthoRhombic ) {
196 <      sprintf( painCave.errMsg,
197 <               "OOPSE is switching from the default Non-Orthorhombic\n"
198 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
199 <               "\tThis is usually a good thing, but if you wan't the\n"
200 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
201 <               "\tvariable ( currently set to %G ) smaller.\n",
202 <               orthoTolerance);
203 <      painCave.severity = OOPSE_INFO;
204 <      simError();
205 <    }
206 <    else {
207 <      sprintf( painCave.errMsg,
208 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
209 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
210 <               "\tThis is usually because the box has deformed under\n"
211 <               "\tNPTf integration. If you wan't to live on the edge with\n"
212 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
213 <               "\tvariable ( currently set to %G ) larger.\n",
214 <               orthoTolerance);
215 <      painCave.severity = OOPSE_WARNING;
216 <      simError();
217 <    }
218 <  }
219 < }
449 >    for (bend= mol->beginBend(bendIter); bend != NULL;
450 >         bend = mol->nextBend(bendIter)) {
451  
452 < void SimInfo::calcBoxL( void ){
452 >      a = bend->getAtomA()->getGlobalIndex();
453 >      b = bend->getAtomB()->getGlobalIndex();        
454 >      c = bend->getAtomC()->getGlobalIndex();
455 >      
456 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
457 >        oneTwoInteractions_.addPair(a, b);      
458 >        oneTwoInteractions_.addPair(b, c);
459 >      } else {
460 >        excludedInteractions_.addPair(a, b);
461 >        excludedInteractions_.addPair(b, c);
462 >      }
463  
464 <  double dx, dy, dz, dsq;
464 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
465 >        oneThreeInteractions_.addPair(a, c);      
466 >      } else {
467 >        excludedInteractions_.addPair(a, c);
468 >      }
469 >    }
470  
471 <  // boxVol = Determinant of Hmat
471 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
472 >         torsion = mol->nextTorsion(torsionIter)) {
473  
474 <  boxVol = matDet3( Hmat );
474 >      a = torsion->getAtomA()->getGlobalIndex();
475 >      b = torsion->getAtomB()->getGlobalIndex();        
476 >      c = torsion->getAtomC()->getGlobalIndex();        
477 >      d = torsion->getAtomD()->getGlobalIndex();      
478  
479 <  // boxLx
480 <  
481 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
482 <  dsq = dx*dx + dy*dy + dz*dz;
483 <  boxL[0] = sqrt( dsq );
484 <  //maxCutoff = 0.5 * boxL[0];
479 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
480 >        oneTwoInteractions_.addPair(a, b);      
481 >        oneTwoInteractions_.addPair(b, c);
482 >        oneTwoInteractions_.addPair(c, d);
483 >      } else {
484 >        excludedInteractions_.addPair(a, b);
485 >        excludedInteractions_.addPair(b, c);
486 >        excludedInteractions_.addPair(c, d);
487 >      }
488  
489 <  // boxLy
490 <  
491 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
492 <  dsq = dx*dx + dy*dy + dz*dz;
493 <  boxL[1] = sqrt( dsq );
494 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
489 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
490 >        oneThreeInteractions_.addPair(a, c);      
491 >        oneThreeInteractions_.addPair(b, d);      
492 >      } else {
493 >        excludedInteractions_.addPair(a, c);
494 >        excludedInteractions_.addPair(b, d);
495 >      }
496  
497 +      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
498 +        oneFourInteractions_.addPair(a, d);      
499 +      } else {
500 +        excludedInteractions_.addPair(a, d);
501 +      }
502 +    }
503  
504 <  // boxLz
505 <  
246 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
247 <  dsq = dx*dx + dy*dy + dz*dz;
248 <  boxL[2] = sqrt( dsq );
249 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
504 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
505 >         inversion = mol->nextInversion(inversionIter)) {
506  
507 <  //calculate the max cutoff
508 <  maxCutoff =  calcMaxCutOff();
509 <  
510 <  checkCutOffs();
507 >      a = inversion->getAtomA()->getGlobalIndex();
508 >      b = inversion->getAtomB()->getGlobalIndex();        
509 >      c = inversion->getAtomC()->getGlobalIndex();        
510 >      d = inversion->getAtomD()->getGlobalIndex();        
511  
512 < }
512 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
513 >        oneTwoInteractions_.addPair(a, b);      
514 >        oneTwoInteractions_.addPair(a, c);
515 >        oneTwoInteractions_.addPair(a, d);
516 >      } else {
517 >        excludedInteractions_.addPair(a, b);
518 >        excludedInteractions_.addPair(a, c);
519 >        excludedInteractions_.addPair(a, d);
520 >      }
521  
522 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
523 +        oneThreeInteractions_.addPair(b, c);    
524 +        oneThreeInteractions_.addPair(b, d);    
525 +        oneThreeInteractions_.addPair(c, d);      
526 +      } else {
527 +        excludedInteractions_.addPair(b, c);
528 +        excludedInteractions_.addPair(b, d);
529 +        excludedInteractions_.addPair(c, d);
530 +      }
531 +    }
532  
533 < double SimInfo::calcMaxCutOff(){
533 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
534 >         rb = mol->nextRigidBody(rbIter)) {
535 >      vector<Atom*> atoms = rb->getAtoms();
536 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
537 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
538 >          a = atoms[i]->getGlobalIndex();
539 >          b = atoms[j]->getGlobalIndex();
540 >          excludedInteractions_.addPair(a, b);
541 >        }
542 >      }
543 >    }        
544  
545 <  double ri[3], rj[3], rk[3];
262 <  double rij[3], rjk[3], rki[3];
263 <  double minDist;
545 >  }
546  
547 <  ri[0] = Hmat[0][0];
548 <  ri[1] = Hmat[1][0];
549 <  ri[2] = Hmat[2][0];
547 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
548 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
549 >    vector<Bond*>::iterator bondIter;
550 >    vector<Bend*>::iterator bendIter;
551 >    vector<Torsion*>::iterator torsionIter;
552 >    vector<Inversion*>::iterator inversionIter;
553 >    Bond* bond;
554 >    Bend* bend;
555 >    Torsion* torsion;
556 >    Inversion* inversion;
557 >    int a;
558 >    int b;
559 >    int c;
560 >    int d;
561  
562 <  rj[0] = Hmat[0][1];
563 <  rj[1] = Hmat[1][1];
564 <  rj[2] = Hmat[2][1];
562 >    map<int, set<int> > atomGroups;
563 >    Molecule::RigidBodyIterator rbIter;
564 >    RigidBody* rb;
565 >    Molecule::IntegrableObjectIterator ii;
566 >    StuntDouble* sd;
567 >    
568 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
569 >         sd = mol->nextIntegrableObject(ii)) {
570 >      
571 >      if (sd->isRigidBody()) {
572 >        rb = static_cast<RigidBody*>(sd);
573 >        vector<Atom*> atoms = rb->getAtoms();
574 >        set<int> rigidAtoms;
575 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
576 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
577 >        }
578 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
579 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
580 >        }      
581 >      } else {
582 >        set<int> oneAtomSet;
583 >        oneAtomSet.insert(sd->getGlobalIndex());
584 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
585 >      }
586 >    }  
587  
588 <  rk[0] = Hmat[0][2];
589 <  rk[1] = Hmat[1][2];
590 <  rk[2] = Hmat[2][2];
588 >    for (bond= mol->beginBond(bondIter); bond != NULL;
589 >         bond = mol->nextBond(bondIter)) {
590 >      
591 >      a = bond->getAtomA()->getGlobalIndex();
592 >      b = bond->getAtomB()->getGlobalIndex();  
593      
594 <  crossProduct3(ri, rj, rij);
595 <  distXY = dotProduct3(rk,rij) / norm3(rij);
594 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
595 >        oneTwoInteractions_.removePair(a, b);
596 >      } else {
597 >        excludedInteractions_.removePair(a, b);
598 >      }
599 >    }
600  
601 <  crossProduct3(rj,rk, rjk);
602 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
601 >    for (bend= mol->beginBend(bendIter); bend != NULL;
602 >         bend = mol->nextBend(bendIter)) {
603  
604 <  crossProduct3(rk,ri, rki);
605 <  distZX = dotProduct3(rj,rki) / norm3(rki);
604 >      a = bend->getAtomA()->getGlobalIndex();
605 >      b = bend->getAtomB()->getGlobalIndex();        
606 >      c = bend->getAtomC()->getGlobalIndex();
607 >      
608 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
609 >        oneTwoInteractions_.removePair(a, b);      
610 >        oneTwoInteractions_.removePair(b, c);
611 >      } else {
612 >        excludedInteractions_.removePair(a, b);
613 >        excludedInteractions_.removePair(b, c);
614 >      }
615  
616 <  minDist = min(min(distXY, distYZ), distZX);
617 <  return minDist/2;
618 <  
619 < }
616 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
617 >        oneThreeInteractions_.removePair(a, c);      
618 >      } else {
619 >        excludedInteractions_.removePair(a, c);
620 >      }
621 >    }
622  
623 < void SimInfo::wrapVector( double thePos[3] ){
623 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
624 >         torsion = mol->nextTorsion(torsionIter)) {
625  
626 <  int i;
627 <  double scaled[3];
626 >      a = torsion->getAtomA()->getGlobalIndex();
627 >      b = torsion->getAtomB()->getGlobalIndex();        
628 >      c = torsion->getAtomC()->getGlobalIndex();        
629 >      d = torsion->getAtomD()->getGlobalIndex();      
630 >  
631 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
632 >        oneTwoInteractions_.removePair(a, b);      
633 >        oneTwoInteractions_.removePair(b, c);
634 >        oneTwoInteractions_.removePair(c, d);
635 >      } else {
636 >        excludedInteractions_.removePair(a, b);
637 >        excludedInteractions_.removePair(b, c);
638 >        excludedInteractions_.removePair(c, d);
639 >      }
640  
641 <  if( !orthoRhombic ){
642 <    // calc the scaled coordinates.
643 <  
641 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
642 >        oneThreeInteractions_.removePair(a, c);      
643 >        oneThreeInteractions_.removePair(b, d);      
644 >      } else {
645 >        excludedInteractions_.removePair(a, c);
646 >        excludedInteractions_.removePair(b, d);
647 >      }
648  
649 <    matVecMul3(HmatInv, thePos, scaled);
650 <    
651 <    for(i=0; i<3; i++)
652 <      scaled[i] -= roundMe(scaled[i]);
653 <    
654 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
306 <    
307 <    matVecMul3(Hmat, scaled, thePos);
649 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
650 >        oneFourInteractions_.removePair(a, d);      
651 >      } else {
652 >        excludedInteractions_.removePair(a, d);
653 >      }
654 >    }
655  
656 <  }
657 <  else{
658 <    // calc the scaled coordinates.
656 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
657 >         inversion = mol->nextInversion(inversionIter)) {
658 >
659 >      a = inversion->getAtomA()->getGlobalIndex();
660 >      b = inversion->getAtomB()->getGlobalIndex();        
661 >      c = inversion->getAtomC()->getGlobalIndex();        
662 >      d = inversion->getAtomD()->getGlobalIndex();        
663 >
664 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
665 >        oneTwoInteractions_.removePair(a, b);      
666 >        oneTwoInteractions_.removePair(a, c);
667 >        oneTwoInteractions_.removePair(a, d);
668 >      } else {
669 >        excludedInteractions_.removePair(a, b);
670 >        excludedInteractions_.removePair(a, c);
671 >        excludedInteractions_.removePair(a, d);
672 >      }
673 >
674 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
675 >        oneThreeInteractions_.removePair(b, c);    
676 >        oneThreeInteractions_.removePair(b, d);    
677 >        oneThreeInteractions_.removePair(c, d);      
678 >      } else {
679 >        excludedInteractions_.removePair(b, c);
680 >        excludedInteractions_.removePair(b, d);
681 >        excludedInteractions_.removePair(c, d);
682 >      }
683 >    }
684 >
685 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
686 >         rb = mol->nextRigidBody(rbIter)) {
687 >      vector<Atom*> atoms = rb->getAtoms();
688 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
689 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
690 >          a = atoms[i]->getGlobalIndex();
691 >          b = atoms[j]->getGlobalIndex();
692 >          excludedInteractions_.removePair(a, b);
693 >        }
694 >      }
695 >    }        
696      
313    for(i=0; i<3; i++)
314      scaled[i] = thePos[i]*HmatInv[i][i];
315    
316    // wrap the scaled coordinates
317    
318    for(i=0; i<3; i++)
319      scaled[i] -= roundMe(scaled[i]);
320    
321    // calc the wrapped real coordinates from the wrapped scaled coordinates
322    
323    for(i=0; i<3; i++)
324      thePos[i] = scaled[i]*Hmat[i][i];
697    }
698 +  
699 +  
700 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
701 +    int curStampId;
702      
703 < }
703 >    //index from 0
704 >    curStampId = moleculeStamps_.size();
705  
706 +    moleculeStamps_.push_back(molStamp);
707 +    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
708 +  }
709  
330 int SimInfo::getNDF(){
331  int ndf_local;
710  
711 <  ndf_local = 0;
712 <  
713 <  for(int i = 0; i < integrableObjects.size(); i++){
714 <    ndf_local += 3;
715 <    if (integrableObjects[i]->isDirectional()) {
716 <      if (integrableObjects[i]->isLinear())
717 <        ndf_local += 2;
718 <      else
719 <        ndf_local += 3;
720 <    }
711 >  /**
712 >   * update
713 >   *
714 >   *  Performs the global checks and variable settings after the
715 >   *  objects have been created.
716 >   *
717 >   */
718 >  void SimInfo::update() {  
719 >    setupSimVariables();
720 >    calcNdf();
721 >    calcNdfRaw();
722 >    calcNdfTrans();
723    }
724 +  
725 +  /**
726 +   * getSimulatedAtomTypes
727 +   *
728 +   * Returns an STL set of AtomType* that are actually present in this
729 +   * simulation.  Must query all processors to assemble this information.
730 +   *
731 +   */
732 +  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
733 +    SimInfo::MoleculeIterator mi;
734 +    Molecule* mol;
735 +    Molecule::AtomIterator ai;
736 +    Atom* atom;
737 +    set<AtomType*> atomTypes;
738 +    
739 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
740 +      for(atom = mol->beginAtom(ai); atom != NULL;
741 +          atom = mol->nextAtom(ai)) {
742 +        atomTypes.insert(atom->getAtomType());
743 +      }      
744 +    }    
745 +    
746 + #ifdef IS_MPI
747  
748 <  // n_constraints is local, so subtract them on each processor:
748 >    // loop over the found atom types on this processor, and add their
749 >    // numerical idents to a vector:
750 >    
751 >    vector<int> foundTypes;
752 >    set<AtomType*>::iterator i;
753 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
754 >      foundTypes.push_back( (*i)->getIdent() );
755  
756 <  ndf_local -= n_constraints;
756 >    // count_local holds the number of found types on this processor
757 >    int count_local = foundTypes.size();
758  
759 < #ifdef IS_MPI
760 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
761 < #else
352 <  ndf = ndf_local;
353 < #endif
759 >    int nproc;
760 >    MPI_Comm_size( MPI_COMM_WORLD, &nproc);
761 >    // int nproc = MPI::COMM_WORLD.Get_size();
762  
763 <  // nZconstraints is global, as are the 3 COM translations for the
764 <  // entire system:
763 >    // we need arrays to hold the counts and displacement vectors for
764 >    // all processors
765 >    vector<int> counts(nproc, 0);
766 >    vector<int> disps(nproc, 0);
767  
768 <  ndf = ndf - 3 - nZconstraints;
768 >    // fill the counts array
769 >    MPI_Allgather(&count_local, 1, MPI_INT, &counts[0],
770 >                  1, MPI_INT, MPI_COMM_WORLD);
771 >    // MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
772 >    //                           1, MPI::INT);
773 >  
774 >    // use the processor counts to compute the displacement array
775 >    disps[0] = 0;    
776 >    int totalCount = counts[0];
777 >    for (int iproc = 1; iproc < nproc; iproc++) {
778 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
779 >      totalCount += counts[iproc];
780 >    }
781  
782 <  return ndf;
783 < }
782 >    // we need a (possibly redundant) set of all found types:
783 >    vector<int> ftGlobal(totalCount);
784 >    
785 >    // now spray out the foundTypes to all the other processors:    
786 >    MPI_Allgatherv(&foundTypes[0], count_local, MPI_INT,
787 >                   &ftGlobal[0], &counts[0], &disps[0],
788 >                   MPI_INT, MPI_COMM_WORLD);
789 >    // MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
790 >    //                            &ftGlobal[0], &counts[0], &disps[0],
791 >    //                            MPI::INT);
792  
793 < int SimInfo::getNDFraw() {
364 <  int ndfRaw_local;
793 >    vector<int>::iterator j;
794  
795 <  // Raw degrees of freedom that we have to set
796 <  ndfRaw_local = 0;
795 >    // foundIdents is a stl set, so inserting an already found ident
796 >    // will have no effect.
797 >    set<int> foundIdents;
798  
799 <  for(int i = 0; i < integrableObjects.size(); i++){
800 <    ndfRaw_local += 3;
371 <    if (integrableObjects[i]->isDirectional()) {
372 <       if (integrableObjects[i]->isLinear())
373 <        ndfRaw_local += 2;
374 <      else
375 <        ndfRaw_local += 3;
376 <    }
377 <  }
799 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
800 >      foundIdents.insert((*j));
801      
802 < #ifdef IS_MPI
803 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
804 < #else
805 <  ndfRaw = ndfRaw_local;
802 >    // now iterate over the foundIdents and get the actual atom types
803 >    // that correspond to these:
804 >    set<int>::iterator it;
805 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
806 >      atomTypes.insert( forceField_->getAtomType((*it)) );
807 >
808   #endif
809  
810 <  return ndfRaw;
811 < }
810 >    return atomTypes;        
811 >  }
812  
388 int SimInfo::getNDFtranslational() {
389  int ndfTrans_local;
813  
814 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
814 >  int getGlobalCountOfType(AtomType* atype) {
815 >    /*
816 >    set<AtomType*> atypes = getSimulatedAtomTypes();
817 >    map<AtomType*, int> counts_;
818  
819 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
820 +      for(atom = mol->beginAtom(ai); atom != NULL;
821 +          atom = mol->nextAtom(ai)) {
822 +        atom->getAtomType();
823 +      }      
824 +    }    
825 +    */
826 +    return 0;
827 +  }
828  
829 +  void SimInfo::setupSimVariables() {
830 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
831 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
832 +    // parameter is true
833 +    calcBoxDipole_ = false;
834 +    if ( simParams_->haveAccumulateBoxDipole() )
835 +      if ( simParams_->getAccumulateBoxDipole() ) {
836 +        calcBoxDipole_ = true;      
837 +      }
838 +    
839 +    set<AtomType*>::iterator i;
840 +    set<AtomType*> atomTypes;
841 +    atomTypes = getSimulatedAtomTypes();    
842 +    bool usesElectrostatic = false;
843 +    bool usesMetallic = false;
844 +    bool usesDirectional = false;
845 +    bool usesFluctuatingCharges =  false;
846 +    //loop over all of the atom types
847 +    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
848 +      usesElectrostatic |= (*i)->isElectrostatic();
849 +      usesMetallic |= (*i)->isMetal();
850 +      usesDirectional |= (*i)->isDirectional();
851 +      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
852 +    }
853 +
854   #ifdef IS_MPI
855 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
396 < #else
397 <  ndfTrans = ndfTrans_local;
398 < #endif
855 >    int temp;
856  
857 <  ndfTrans = ndfTrans - 3 - nZconstraints;
857 >    temp = usesDirectional;
858 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
859 >    usesDirectionalAtoms_ = (temp == 0) ? false : true;
860  
861 <  return ndfTrans;
862 < }
861 >    // MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
862 >    //                           MPI::LOR);
863 >    
864 >    temp = usesMetallic;
865 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
866 >    usesMetallicAtoms_ = (temp == 0) ? false : true;
867  
868 < int SimInfo::getTotIntegrableObjects() {
869 <  int nObjs_local;
870 <  int nObjs;
868 >    // MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
869 >    //                           MPI::LOR);
870 >    
871 >    temp = usesElectrostatic;
872 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
873 >    usesElectrostaticAtoms_ = (temp == 0) ? false : true;
874  
875 <  nObjs_local =  integrableObjects.size();
875 >    // MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
876 >    //                           MPI::LOR);
877  
878 +    temp = usesFluctuatingCharges;
879 +    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
880 +    usesFluctuatingCharges_ = (temp == 0) ? false : true;
881  
882 < #ifdef IS_MPI
883 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
882 >    // MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
883 >    //                           MPI::LOR);
884 >
885   #else
415  nObjs = nObjs_local;
416 #endif
886  
887 +    usesDirectionalAtoms_ = usesDirectional;
888 +    usesMetallicAtoms_ = usesMetallic;
889 +    usesElectrostaticAtoms_ = usesElectrostatic;
890 +    usesFluctuatingCharges_ = usesFluctuatingCharges;
891  
892 <  return nObjs;
893 < }
892 > #endif
893 >    
894 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
895 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
896 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
897 >  }
898  
422 void SimInfo::refreshSim(){
899  
900 <  simtype fInfo;
901 <  int isError;
902 <  int n_global;
903 <  int* excl;
900 >  vector<int> SimInfo::getGlobalAtomIndices() {
901 >    SimInfo::MoleculeIterator mi;
902 >    Molecule* mol;
903 >    Molecule::AtomIterator ai;
904 >    Atom* atom;
905  
906 <  fInfo.dielect = 0.0;
907 <
908 <  if( useDipoles ){
909 <    if( useReactionField )fInfo.dielect = dielectric;
906 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
907 >    
908 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
909 >      
910 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
911 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
912 >      }
913 >    }
914 >    return GlobalAtomIndices;
915    }
916  
435  fInfo.SIM_uses_PBC = usePBC;
436  //fInfo.SIM_uses_LJ = 0;
437  fInfo.SIM_uses_LJ = useLJ;
438  fInfo.SIM_uses_sticky = useSticky;
439  //fInfo.SIM_uses_sticky = 0;
440  fInfo.SIM_uses_charges = useCharges;
441  fInfo.SIM_uses_dipoles = useDipoles;
442  //fInfo.SIM_uses_dipoles = 0;
443  fInfo.SIM_uses_RF = useReactionField;
444  //fInfo.SIM_uses_RF = 0;
445  fInfo.SIM_uses_GB = useGB;
446  fInfo.SIM_uses_EAM = useEAM;
917  
918 <  n_exclude = excludes->getSize();
919 <  excl = excludes->getFortranArray();
920 <  
921 < #ifdef IS_MPI
922 <  n_global = mpiSim->getNAtomsGlobal();
453 < #else
454 <  n_global = n_atoms;
455 < #endif
456 <  
457 <  isError = 0;
458 <  
459 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
460 <  //it may not be a good idea to pass the address of first element in vector
461 <  //since c++ standard does not require vector to be stored continuously in meomory
462 <  //Most of the compilers will organize the memory of vector continuously
463 <  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
464 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
465 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
918 >  vector<int> SimInfo::getGlobalGroupIndices() {
919 >    SimInfo::MoleculeIterator mi;
920 >    Molecule* mol;
921 >    Molecule::CutoffGroupIterator ci;
922 >    CutoffGroup* cg;
923  
924 <  if( isError ){
924 >    vector<int> GlobalGroupIndices;
925      
926 <    sprintf( painCave.errMsg,
927 <             "There was an error setting the simulation information in fortran.\n" );
928 <    painCave.isFatal = 1;
929 <    painCave.severity = OOPSE_ERROR;
930 <    simError();
926 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
927 >      
928 >      //local index of cutoff group is trivial, it only depends on the
929 >      //order of travesing
930 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
931 >           cg = mol->nextCutoffGroup(ci)) {
932 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
933 >      }        
934 >    }
935 >    return GlobalGroupIndices;
936    }
475  
476 #ifdef IS_MPI
477  sprintf( checkPointMsg,
478           "succesfully sent the simulation information to fortran.\n");
479  MPIcheckPoint();
480 #endif // is_mpi
481  
482  this->ndf = this->getNDF();
483  this->ndfRaw = this->getNDFraw();
484  this->ndfTrans = this->getNDFtranslational();
485 }
937  
487 void SimInfo::setDefaultRcut( double theRcut ){
488  
489  haveRcut = 1;
490  rCut = theRcut;
491  rList = rCut + 1.0;
492  
493  notifyFortranCutoffs( &rCut, &rSw, &rList );
494 }
938  
939 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
939 >  void SimInfo::prepareTopology() {
940  
941 <  rSw = theRsw;
942 <  setDefaultRcut( theRcut );
943 < }
941 >    //calculate mass ratio of cutoff group
942 >    SimInfo::MoleculeIterator mi;
943 >    Molecule* mol;
944 >    Molecule::CutoffGroupIterator ci;
945 >    CutoffGroup* cg;
946 >    Molecule::AtomIterator ai;
947 >    Atom* atom;
948 >    RealType totalMass;
949  
950 <
951 < void SimInfo::checkCutOffs( void ){
952 <  
953 <  if( boxIsInit ){
950 >    /**
951 >     * The mass factor is the relative mass of an atom to the total
952 >     * mass of the cutoff group it belongs to.  By default, all atoms
953 >     * are their own cutoff groups, and therefore have mass factors of
954 >     * 1.  We need some special handling for massless atoms, which
955 >     * will be treated as carrying the entire mass of the cutoff
956 >     * group.
957 >     */
958 >    massFactors_.clear();
959 >    massFactors_.resize(getNAtoms(), 1.0);
960      
961 <    //we need to check cutOffs against the box
962 <    
963 <    if( rCut > maxCutoff ){
964 <      sprintf( painCave.errMsg,
965 <               "cutoffRadius is too large for the current periodic box.\n"
966 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
967 <               "\tThis is larger than half of at least one of the\n"
968 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
969 <               "\n"
970 <               "\t[ %G %G %G ]\n"
971 <               "\t[ %G %G %G ]\n"
972 <               "\t[ %G %G %G ]\n",
973 <               rCut, currentTime,
974 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
975 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
976 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
977 <      painCave.severity = OOPSE_ERROR;
978 <      painCave.isFatal = 1;
979 <      simError();
961 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
962 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
963 >           cg = mol->nextCutoffGroup(ci)) {
964 >
965 >        totalMass = cg->getMass();
966 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
967 >          // Check for massless groups - set mfact to 1 if true
968 >          if (totalMass != 0)
969 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
970 >          else
971 >            massFactors_[atom->getLocalIndex()] = 1.0;
972 >        }
973 >      }      
974 >    }
975 >
976 >    // Build the identArray_ and regions_
977 >
978 >    identArray_.clear();
979 >    identArray_.reserve(getNAtoms());  
980 >    regions_.clear();
981 >    regions_.reserve(getNAtoms());
982 >
983 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
984 >      int reg = mol->getRegion();      
985 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
986 >        identArray_.push_back(atom->getIdent());
987 >        regions_.push_back(reg);
988 >      }
989      }    
990 <  } else {
991 <    // initialize this stuff before using it, OK?
529 <    sprintf( painCave.errMsg,
530 <             "Trying to check cutoffs without a box.\n"
531 <             "\tOOPSE should have better programmers than that.\n" );
532 <    painCave.severity = OOPSE_ERROR;
533 <    painCave.isFatal = 1;
534 <    simError();      
990 >      
991 >    topologyDone_ = true;
992    }
536  
537 }
993  
994 < void SimInfo::addProperty(GenericData* prop){
994 >  void SimInfo::addProperty(GenericData* genData) {
995 >    properties_.addProperty(genData);  
996 >  }
997  
998 <  map<string, GenericData*>::iterator result;
999 <  result = properties.find(prop->getID());
543 <  
544 <  //we can't simply use  properties[prop->getID()] = prop,
545 <  //it will cause memory leak if we already contain a propery which has the same name of prop
546 <  
547 <  if(result != properties.end()){
548 <    
549 <    delete (*result).second;
550 <    (*result).second = prop;
551 <      
998 >  void SimInfo::removeProperty(const string& propName) {
999 >    properties_.removeProperty(propName);  
1000    }
553  else{
1001  
1002 <    properties[prop->getID()] = prop;
1002 >  void SimInfo::clearProperties() {
1003 >    properties_.clearProperties();
1004 >  }
1005  
1006 +  vector<string> SimInfo::getPropertyNames() {
1007 +    return properties_.getPropertyNames();  
1008    }
1009 <    
1010 < }
1009 >      
1010 >  vector<GenericData*> SimInfo::getProperties() {
1011 >    return properties_.getProperties();
1012 >  }
1013  
1014 < GenericData* SimInfo::getProperty(const string& propName){
1014 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
1015 >    return properties_.getPropertyByName(propName);
1016 >  }
1017 >
1018 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1019 >    if (sman_ == sman) {
1020 >      return;
1021 >    }    
1022 >    delete sman_;
1023 >    sman_ = sman;
1024 >
1025 >    SimInfo::MoleculeIterator mi;
1026 >    Molecule::AtomIterator ai;
1027 >    Molecule::RigidBodyIterator rbIter;
1028 >    Molecule::CutoffGroupIterator cgIter;
1029 >    Molecule::BondIterator bondIter;
1030 >    Molecule::BendIterator bendIter;
1031 >    Molecule::TorsionIterator torsionIter;
1032 >    Molecule::InversionIterator inversionIter;
1033  
1034 <  map<string, GenericData*>::iterator result;
1035 <  
1036 <  //string lowerCaseName = ();
1037 <  
1038 <  result = properties.find(propName);
1039 <  
1040 <  if(result != properties.end())
1041 <    return (*result).second;  
571 <  else  
572 <    return NULL;  
573 < }
1034 >    Molecule* mol;
1035 >    Atom* atom;
1036 >    RigidBody* rb;
1037 >    CutoffGroup* cg;
1038 >    Bond* bond;
1039 >    Bend* bend;
1040 >    Torsion* torsion;
1041 >    Inversion* inversion;    
1042  
1043 +    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1044 +        
1045 +      for (atom = mol->beginAtom(ai); atom != NULL;
1046 +           atom = mol->nextAtom(ai)) {
1047 +        atom->setSnapshotManager(sman_);
1048 +      }        
1049 +      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1050 +           rb = mol->nextRigidBody(rbIter)) {
1051 +        rb->setSnapshotManager(sman_);
1052 +      }
1053 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1054 +           cg = mol->nextCutoffGroup(cgIter)) {
1055 +        cg->setSnapshotManager(sman_);
1056 +      }
1057 +      for (bond = mol->beginBond(bondIter); bond != NULL;
1058 +           bond = mol->nextBond(bondIter)) {
1059 +        bond->setSnapshotManager(sman_);
1060 +      }
1061 +      for (bend = mol->beginBend(bendIter); bend != NULL;
1062 +           bend = mol->nextBend(bendIter)) {
1063 +        bend->setSnapshotManager(sman_);
1064 +      }
1065 +      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
1066 +           torsion = mol->nextTorsion(torsionIter)) {
1067 +        torsion->setSnapshotManager(sman_);
1068 +      }
1069 +      for (inversion = mol->beginInversion(inversionIter); inversion != NULL;
1070 +           inversion = mol->nextInversion(inversionIter)) {
1071 +        inversion->setSnapshotManager(sman_);
1072 +      }
1073 +    }
1074 +  }
1075  
1076 < void SimInfo::getFortranGroupArrays(SimInfo* info,
1077 <                                    vector<int>& FglobalGroupMembership,
1078 <                                    vector<double>& mfact){
1076 >
1077 >  ostream& operator <<(ostream& o, SimInfo& info) {
1078 >
1079 >    return o;
1080 >  }
1081 >  
1082    
1083 <  Molecule* myMols;
1084 <  Atom** myAtoms;
1085 <  int numAtom;
1086 <  double mtot;
1087 <  int numMol;
1088 <  int numCutoffGroups;
1089 <  CutoffGroup* myCutoffGroup;
1090 <  vector<CutoffGroup*>::iterator iterCutoff;
1091 <  Atom* cutoffAtom;
1092 <  vector<Atom*>::iterator iterAtom;
1093 <  int atomIndex;
591 <  double totalMass;
1083 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1084 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1085 >      sprintf(painCave.errMsg,
1086 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1087 >              "\tindex exceeds number of known objects!\n");
1088 >      painCave.isFatal = 1;
1089 >      simError();
1090 >      return NULL;
1091 >    } else
1092 >      return IOIndexToIntegrableObject.at(index);
1093 >  }
1094    
1095 <  mfact.clear();
1096 <  FglobalGroupMembership.clear();
1097 <  
1095 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1096 >    IOIndexToIntegrableObject= v;
1097 >  }
1098  
1099 <  // Fix the silly fortran indexing problem
1099 >  int SimInfo::getNGlobalConstraints() {
1100 >    int nGlobalConstraints;
1101   #ifdef IS_MPI
1102 <  numAtom = mpiSim->getNAtomsGlobal();
1102 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1,  
1103 >                              MPI_INT, MPI_SUM, MPI_COMM_WORLD);
1104 >    // MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1105 >    //                           MPI::INT, MPI::SUM);
1106   #else
1107 <  numAtom = n_atoms;
1107 >    nGlobalConstraints =  nConstraints_;
1108   #endif
1109 <  for (int i = 0; i < numAtom; i++)
604 <    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
605 <  
606 <
607 <  myMols = info->molecules;
608 <  numMol = info->n_mol;
609 <  for(int i  = 0; i < numMol; i++){
610 <    numCutoffGroups = myMols[i].getNCutoffGroups();
611 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
612 <        myCutoffGroup != NULL;
613 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
614 <
615 <      totalMass = myCutoffGroup->getMass();
616 <      
617 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
618 <          cutoffAtom != NULL;
619 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
620 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
621 <      }  
622 <    }
1109 >    return nGlobalConstraints;
1110    }
1111  
1112 < }
1112 > }//end namespace OpenMD
1113 >

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 124 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
Revision 1969 by gezelter, Wed Feb 26 14:14:50 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines