ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 764 by gezelter, Mon Nov 21 22:59:21 2005 UTC vs.
Revision 1953 by gezelter, Thu Dec 5 18:19:26 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 46 | Line 47
47   * @version 1.0
48   */
49  
50 + #ifdef IS_MPI
51 + #include <mpi.h>
52 + #endif
53   #include <algorithm>
54   #include <set>
55   #include <map>
# Line 53 | Line 57
57   #include "brains/SimInfo.hpp"
58   #include "math/Vector3.hpp"
59   #include "primitives/Molecule.hpp"
60 < #include "UseTheForce/fCutoffPolicy.h"
57 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 < #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 < #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 < #include "UseTheForce/doForces_interface.h"
61 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 < #include "UseTheForce/DarkSide/switcheroo_interface.h"
60 > #include "primitives/StuntDouble.hpp"
61   #include "utils/MemoryUtils.hpp"
62   #include "utils/simError.h"
63   #include "selection/SelectionManager.hpp"
64 + #include "io/ForceFieldOptions.hpp"
65 + #include "brains/ForceField.hpp"
66 + #include "nonbonded/SwitchingFunction.hpp"
67  
68 < #ifdef IS_MPI
69 < #include "UseTheForce/mpiComponentPlan.h"
69 < #include "UseTheForce/DarkSide/simParallel_interface.h"
70 < #endif
71 <
72 < namespace oopse {
73 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
74 <    std::map<int, std::set<int> >::iterator i = container.find(index);
75 <    std::set<int> result;
76 <    if (i != container.end()) {
77 <        result = i->second;
78 <    }
79 <
80 <    return result;
81 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 <                   ForceField* ff, Globals* simParams) :
73 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
86 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false) {
79 <
80 <            
81 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
95 <      MoleculeStamp* molStamp;
96 <      int nMolWithSameStamp;
97 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
98 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
99 <      CutoffGroupStamp* cgStamp;    
100 <      RigidBodyStamp* rbStamp;
101 <      int nRigidAtoms = 0;
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 >    nGlobalFluctuatingCharges_(0), nGlobalBonds_(0), nGlobalBends_(0),
77 >    nGlobalTorsions_(0), nGlobalInversions_(0), nAtoms_(0), nBonds_(0),
78 >    nBends_(0), nTorsions_(0), nInversions_(0), nRigidBodies_(0),
79 >    nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
80 >    nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
81 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
82      
83 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
84 <        molStamp = i->first;
85 <        nMolWithSameStamp = i->second;
86 <        
87 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
88 <
89 <        //calculate atoms in molecules
90 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
91 <
92 <
93 <        //calculate atoms in cutoff groups
94 <        int nAtomsInGroups = 0;
95 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
96 <        
97 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
98 <          cgStamp = molStamp->getCutoffGroup(j);
99 <          nAtomsInGroups += cgStamp->getNMembers();
100 <        }
121 <
122 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
123 <
124 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
125 <
126 <        //calculate atoms in rigid bodies
127 <        int nAtomsInRigidBodies = 0;
128 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
129 <        
130 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
131 <          rbStamp = molStamp->getRigidBody(j);
132 <          nAtomsInRigidBodies += rbStamp->getNMembers();
133 <        }
134 <
135 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
136 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
137 <        
83 >    MoleculeStamp* molStamp;
84 >    int nMolWithSameStamp;
85 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
87 >    CutoffGroupStamp* cgStamp;    
88 >    RigidBodyStamp* rbStamp;
89 >    int nRigidAtoms = 0;
90 >    
91 >    vector<Component*> components = simParams->getComponents();
92 >    
93 >    for (vector<Component*>::iterator i = components.begin();
94 >         i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      if ( (*i)->haveRegion() ) {        
97 >        molStamp->setRegion( (*i)->getRegion() );
98 >      } else {
99 >        // set the region to a disallowed value:
100 >        molStamp->setRegion( -1 );
101        }
102  
103 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
104 <      //group therefore the total number of cutoff groups in the system is
105 <      //equal to the total number of atoms minus number of atoms belong to
106 <      //cutoff group defined in meta-data file plus the number of cutoff
107 <      //groups defined in meta-data file
108 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
109 <
110 <      //every free atom (atom does not belong to rigid bodies) is an
111 <      //integrable object therefore the total number of integrable objects
112 <      //in the system is equal to the total number of atoms minus number of
113 <      //atoms belong to rigid body defined in meta-data file plus the number
114 <      //of rigid bodies defined in meta-data file
115 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
116 <                                                + nGlobalRigidBodies_;
117 <  
118 <      nGlobalMols_ = molStampIds_.size();
119 <
120 < #ifdef IS_MPI    
121 <      molToProcMap_.resize(nGlobalMols_);
122 < #endif
123 <
103 >      nMolWithSameStamp = (*i)->getNMol();
104 >      
105 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
106 >      
107 >      //calculate atoms in molecules
108 >      nGlobalAtoms_ += molStamp->getNAtoms() * nMolWithSameStamp;
109 >      nGlobalBonds_ += molStamp->getNBonds() * nMolWithSameStamp;
110 >      nGlobalBends_ += molStamp->getNBends() * nMolWithSameStamp;
111 >      nGlobalTorsions_ += molStamp->getNTorsions() * nMolWithSameStamp;
112 >      nGlobalInversions_ += molStamp->getNInversions() * nMolWithSameStamp;
113 >      
114 >      //calculate atoms in cutoff groups
115 >      int nAtomsInGroups = 0;
116 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
117 >      
118 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
119 >        cgStamp = molStamp->getCutoffGroupStamp(j);
120 >        nAtomsInGroups += cgStamp->getNMembers();
121 >      }
122 >      
123 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
124 >      
125 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
126 >      
127 >      //calculate atoms in rigid bodies
128 >      int nAtomsInRigidBodies = 0;
129 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
130 >      
131 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
132 >        rbStamp = molStamp->getRigidBodyStamp(j);
133 >        nAtomsInRigidBodies += rbStamp->getNMembers();
134 >      }
135 >      
136 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
137 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
138 >      
139      }
140 +    
141 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
142 +    //group therefore the total number of cutoff groups in the system is
143 +    //equal to the total number of atoms minus number of atoms belong to
144 +    //cutoff group defined in meta-data file plus the number of cutoff
145 +    //groups defined in meta-data file
146  
147 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
148 +    
149 +    //every free atom (atom does not belong to rigid bodies) is an
150 +    //integrable object therefore the total number of integrable objects
151 +    //in the system is equal to the total number of atoms minus number of
152 +    //atoms belong to rigid body defined in meta-data file plus the number
153 +    //of rigid bodies defined in meta-data file
154 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
155 +      + nGlobalRigidBodies_;
156 +    
157 +    nGlobalMols_ = molStampIds_.size();
158 +    molToProcMap_.resize(nGlobalMols_);
159 +  }
160 +  
161    SimInfo::~SimInfo() {
162 <    std::map<int, Molecule*>::iterator i;
162 >    map<int, Molecule*>::iterator i;
163      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
164        delete i->second;
165      }
166      molecules_.clear();
167        
170    delete stamps_;
168      delete sman_;
169      delete simParams_;
170      delete forceField_;
171    }
172  
176  int SimInfo::getNGlobalConstraints() {
177    int nGlobalConstraints;
178 #ifdef IS_MPI
179    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180                  MPI_COMM_WORLD);    
181 #else
182    nGlobalConstraints =  nConstraints_;
183 #endif
184    return nGlobalConstraints;
185  }
173  
174    bool SimInfo::addMolecule(Molecule* mol) {
175      MoleculeIterator i;
176 <
176 >    
177      i = molecules_.find(mol->getGlobalIndex());
178      if (i == molecules_.end() ) {
179 <
180 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
181 <        
179 >      
180 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
181 >      
182        nAtoms_ += mol->getNAtoms();
183        nBonds_ += mol->getNBonds();
184        nBends_ += mol->getNBends();
185        nTorsions_ += mol->getNTorsions();
186 +      nInversions_ += mol->getNInversions();
187        nRigidBodies_ += mol->getNRigidBodies();
188        nIntegrableObjects_ += mol->getNIntegrableObjects();
189        nCutoffGroups_ += mol->getNCutoffGroups();
190        nConstraints_ += mol->getNConstraintPairs();
191 <
192 <      addExcludePairs(mol);
193 <        
191 >      
192 >      addInteractionPairs(mol);
193 >      
194        return true;
195      } else {
196        return false;
197      }
198    }
199 <
199 >  
200    bool SimInfo::removeMolecule(Molecule* mol) {
201      MoleculeIterator i;
202      i = molecules_.find(mol->getGlobalIndex());
# Line 221 | Line 209 | namespace oopse {
209        nBonds_ -= mol->getNBonds();
210        nBends_ -= mol->getNBends();
211        nTorsions_ -= mol->getNTorsions();
212 +      nInversions_ -= mol->getNInversions();
213        nRigidBodies_ -= mol->getNRigidBodies();
214        nIntegrableObjects_ -= mol->getNIntegrableObjects();
215        nCutoffGroups_ -= mol->getNCutoffGroups();
216        nConstraints_ -= mol->getNConstraintPairs();
217  
218 <      removeExcludePairs(mol);
218 >      removeInteractionPairs(mol);
219        molecules_.erase(mol->getGlobalIndex());
220  
221        delete mol;
# Line 235 | Line 224 | namespace oopse {
224      } else {
225        return false;
226      }
238
239
227    }    
228  
229          
# Line 252 | Line 239 | namespace oopse {
239  
240  
241    void SimInfo::calcNdf() {
242 <    int ndf_local;
242 >    int ndf_local, nfq_local;
243      MoleculeIterator i;
244 <    std::vector<StuntDouble*>::iterator j;
244 >    vector<StuntDouble*>::iterator j;
245 >    vector<Atom*>::iterator k;
246 >
247      Molecule* mol;
248 <    StuntDouble* integrableObject;
248 >    StuntDouble* sd;
249 >    Atom* atom;
250  
251      ndf_local = 0;
252 +    nfq_local = 0;
253      
254      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
264      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
265           integrableObject = mol->nextIntegrableObject(j)) {
255  
256 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
257 +           sd = mol->nextIntegrableObject(j)) {
258 +
259          ndf_local += 3;
260  
261 <        if (integrableObject->isDirectional()) {
262 <          if (integrableObject->isLinear()) {
261 >        if (sd->isDirectional()) {
262 >          if (sd->isLinear()) {
263              ndf_local += 2;
264            } else {
265              ndf_local += 3;
266            }
267          }
268 <            
269 <      }//end for (integrableObject)
270 <    }// end for (mol)
268 >      }
269 >
270 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
271 >           atom = mol->nextFluctuatingCharge(k)) {
272 >        if (atom->isFluctuatingCharge()) {
273 >          nfq_local++;
274 >        }
275 >      }
276 >    }
277      
278 +    ndfLocal_ = ndf_local;
279 +
280      // n_constraints is local, so subtract them on each processor
281      ndf_local -= nConstraints_;
282  
283   #ifdef IS_MPI
284 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
284 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
285 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
286 >                              MPI::INT, MPI::SUM);
287   #else
288      ndf_ = ndf_local;
289 +    nGlobalFluctuatingCharges_ = nfq_local;
290   #endif
291  
292      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 292 | Line 295 | namespace oopse {
295  
296    }
297  
298 +  int SimInfo::getFdf() {
299 + #ifdef IS_MPI
300 +    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
301 + #else
302 +    fdf_ = fdf_local;
303 + #endif
304 +    return fdf_;
305 +  }
306 +  
307 +  unsigned int SimInfo::getNLocalCutoffGroups(){
308 +    int nLocalCutoffAtoms = 0;
309 +    Molecule* mol;
310 +    MoleculeIterator mi;
311 +    CutoffGroup* cg;
312 +    Molecule::CutoffGroupIterator ci;
313 +    
314 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
315 +      
316 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
317 +           cg = mol->nextCutoffGroup(ci)) {
318 +        nLocalCutoffAtoms += cg->getNumAtom();
319 +        
320 +      }        
321 +    }
322 +    
323 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
324 +  }
325 +    
326    void SimInfo::calcNdfRaw() {
327      int ndfRaw_local;
328  
329      MoleculeIterator i;
330 <    std::vector<StuntDouble*>::iterator j;
330 >    vector<StuntDouble*>::iterator j;
331      Molecule* mol;
332 <    StuntDouble* integrableObject;
332 >    StuntDouble* sd;
333  
334      // Raw degrees of freedom that we have to set
335      ndfRaw_local = 0;
336      
337      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
307      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
308           integrableObject = mol->nextIntegrableObject(j)) {
338  
339 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
340 +           sd = mol->nextIntegrableObject(j)) {
341 +
342          ndfRaw_local += 3;
343  
344 <        if (integrableObject->isDirectional()) {
345 <          if (integrableObject->isLinear()) {
344 >        if (sd->isDirectional()) {
345 >          if (sd->isLinear()) {
346              ndfRaw_local += 2;
347            } else {
348              ndfRaw_local += 3;
# Line 321 | Line 353 | namespace oopse {
353      }
354      
355   #ifdef IS_MPI
356 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
356 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
357   #else
358      ndfRaw_ = ndfRaw_local;
359   #endif
# Line 334 | Line 366 | namespace oopse {
366  
367  
368   #ifdef IS_MPI
369 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
369 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
370 >                              MPI::INT, MPI::SUM);
371   #else
372      ndfTrans_ = ndfTrans_local;
373   #endif
# Line 343 | Line 376 | namespace oopse {
376  
377    }
378  
379 <  void SimInfo::addExcludePairs(Molecule* mol) {
380 <    std::vector<Bond*>::iterator bondIter;
381 <    std::vector<Bend*>::iterator bendIter;
382 <    std::vector<Torsion*>::iterator torsionIter;
379 >  void SimInfo::addInteractionPairs(Molecule* mol) {
380 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
381 >    vector<Bond*>::iterator bondIter;
382 >    vector<Bend*>::iterator bendIter;
383 >    vector<Torsion*>::iterator torsionIter;
384 >    vector<Inversion*>::iterator inversionIter;
385      Bond* bond;
386      Bend* bend;
387      Torsion* torsion;
388 +    Inversion* inversion;
389      int a;
390      int b;
391      int c;
392      int d;
393  
394 <    std::map<int, std::set<int> > atomGroups;
394 >    // atomGroups can be used to add special interaction maps between
395 >    // groups of atoms that are in two separate rigid bodies.
396 >    // However, most site-site interactions between two rigid bodies
397 >    // are probably not special, just the ones between the physically
398 >    // bonded atoms.  Interactions *within* a single rigid body should
399 >    // always be excluded.  These are done at the bottom of this
400 >    // function.
401  
402 +    map<int, set<int> > atomGroups;
403      Molecule::RigidBodyIterator rbIter;
404      RigidBody* rb;
405      Molecule::IntegrableObjectIterator ii;
406 <    StuntDouble* integrableObject;
406 >    StuntDouble* sd;
407      
408 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
409 <           integrableObject = mol->nextIntegrableObject(ii)) {
410 <
411 <      if (integrableObject->isRigidBody()) {
412 <          rb = static_cast<RigidBody*>(integrableObject);
413 <          std::vector<Atom*> atoms = rb->getAtoms();
414 <          std::set<int> rigidAtoms;
415 <          for (int i = 0; i < atoms.size(); ++i) {
416 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
417 <          }
418 <          for (int i = 0; i < atoms.size(); ++i) {
419 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
420 <          }      
408 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
409 >         sd = mol->nextIntegrableObject(ii)) {
410 >      
411 >      if (sd->isRigidBody()) {
412 >        rb = static_cast<RigidBody*>(sd);
413 >        vector<Atom*> atoms = rb->getAtoms();
414 >        set<int> rigidAtoms;
415 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
416 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
417 >        }
418 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
419 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
420 >        }      
421        } else {
422 <        std::set<int> oneAtomSet;
423 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
424 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
422 >        set<int> oneAtomSet;
423 >        oneAtomSet.insert(sd->getGlobalIndex());
424 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
425        }
426      }  
427  
428 <    
429 <    
430 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
428 >          
429 >    for (bond= mol->beginBond(bondIter); bond != NULL;
430 >         bond = mol->nextBond(bondIter)) {
431 >
432        a = bond->getAtomA()->getGlobalIndex();
433 <      b = bond->getAtomB()->getGlobalIndex();        
434 <      exclude_.addPair(a, b);
433 >      b = bond->getAtomB()->getGlobalIndex();  
434 >
435 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
436 >        oneTwoInteractions_.addPair(a, b);
437 >      } else {
438 >        excludedInteractions_.addPair(a, b);
439 >      }
440      }
441  
442 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
442 >    for (bend= mol->beginBend(bendIter); bend != NULL;
443 >         bend = mol->nextBend(bendIter)) {
444 >
445        a = bend->getAtomA()->getGlobalIndex();
446        b = bend->getAtomB()->getGlobalIndex();        
447        c = bend->getAtomC()->getGlobalIndex();
397      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
398      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
399      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
400
401      exclude_.addPairs(rigidSetA, rigidSetB);
402      exclude_.addPairs(rigidSetA, rigidSetC);
403      exclude_.addPairs(rigidSetB, rigidSetC);
448        
449 <      //exclude_.addPair(a, b);
450 <      //exclude_.addPair(a, c);
451 <      //exclude_.addPair(b, c);        
449 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
450 >        oneTwoInteractions_.addPair(a, b);      
451 >        oneTwoInteractions_.addPair(b, c);
452 >      } else {
453 >        excludedInteractions_.addPair(a, b);
454 >        excludedInteractions_.addPair(b, c);
455 >      }
456 >
457 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
458 >        oneThreeInteractions_.addPair(a, c);      
459 >      } else {
460 >        excludedInteractions_.addPair(a, c);
461 >      }
462      }
463  
464 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
464 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
465 >         torsion = mol->nextTorsion(torsionIter)) {
466 >
467        a = torsion->getAtomA()->getGlobalIndex();
468        b = torsion->getAtomB()->getGlobalIndex();        
469        c = torsion->getAtomC()->getGlobalIndex();        
470 <      d = torsion->getAtomD()->getGlobalIndex();        
415 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
416 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
417 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
418 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
470 >      d = torsion->getAtomD()->getGlobalIndex();      
471  
472 <      exclude_.addPairs(rigidSetA, rigidSetB);
473 <      exclude_.addPairs(rigidSetA, rigidSetC);
474 <      exclude_.addPairs(rigidSetA, rigidSetD);
475 <      exclude_.addPairs(rigidSetB, rigidSetC);
476 <      exclude_.addPairs(rigidSetB, rigidSetD);
477 <      exclude_.addPairs(rigidSetC, rigidSetD);
472 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
473 >        oneTwoInteractions_.addPair(a, b);      
474 >        oneTwoInteractions_.addPair(b, c);
475 >        oneTwoInteractions_.addPair(c, d);
476 >      } else {
477 >        excludedInteractions_.addPair(a, b);
478 >        excludedInteractions_.addPair(b, c);
479 >        excludedInteractions_.addPair(c, d);
480 >      }
481  
482 <      /*
483 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
484 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
485 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
486 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
487 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
488 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
489 <        
490 <      
491 <      exclude_.addPair(a, b);
492 <      exclude_.addPair(a, c);
493 <      exclude_.addPair(a, d);
494 <      exclude_.addPair(b, c);
440 <      exclude_.addPair(b, d);
441 <      exclude_.addPair(c, d);        
442 <      */
482 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
483 >        oneThreeInteractions_.addPair(a, c);      
484 >        oneThreeInteractions_.addPair(b, d);      
485 >      } else {
486 >        excludedInteractions_.addPair(a, c);
487 >        excludedInteractions_.addPair(b, d);
488 >      }
489 >
490 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
491 >        oneFourInteractions_.addPair(a, d);      
492 >      } else {
493 >        excludedInteractions_.addPair(a, d);
494 >      }
495      }
496  
497 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
498 <      std::vector<Atom*> atoms = rb->getAtoms();
499 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
500 <        for (int j = i + 1; j < atoms.size(); ++j) {
497 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
498 >         inversion = mol->nextInversion(inversionIter)) {
499 >
500 >      a = inversion->getAtomA()->getGlobalIndex();
501 >      b = inversion->getAtomB()->getGlobalIndex();        
502 >      c = inversion->getAtomC()->getGlobalIndex();        
503 >      d = inversion->getAtomD()->getGlobalIndex();        
504 >
505 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
506 >        oneTwoInteractions_.addPair(a, b);      
507 >        oneTwoInteractions_.addPair(a, c);
508 >        oneTwoInteractions_.addPair(a, d);
509 >      } else {
510 >        excludedInteractions_.addPair(a, b);
511 >        excludedInteractions_.addPair(a, c);
512 >        excludedInteractions_.addPair(a, d);
513 >      }
514 >
515 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
516 >        oneThreeInteractions_.addPair(b, c);    
517 >        oneThreeInteractions_.addPair(b, d);    
518 >        oneThreeInteractions_.addPair(c, d);      
519 >      } else {
520 >        excludedInteractions_.addPair(b, c);
521 >        excludedInteractions_.addPair(b, d);
522 >        excludedInteractions_.addPair(c, d);
523 >      }
524 >    }
525 >
526 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
527 >         rb = mol->nextRigidBody(rbIter)) {
528 >      vector<Atom*> atoms = rb->getAtoms();
529 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
530 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
531            a = atoms[i]->getGlobalIndex();
532            b = atoms[j]->getGlobalIndex();
533 <          exclude_.addPair(a, b);
533 >          excludedInteractions_.addPair(a, b);
534          }
535        }
536      }        
537  
538    }
539  
540 <  void SimInfo::removeExcludePairs(Molecule* mol) {
541 <    std::vector<Bond*>::iterator bondIter;
542 <    std::vector<Bend*>::iterator bendIter;
543 <    std::vector<Torsion*>::iterator torsionIter;
540 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
541 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
542 >    vector<Bond*>::iterator bondIter;
543 >    vector<Bend*>::iterator bendIter;
544 >    vector<Torsion*>::iterator torsionIter;
545 >    vector<Inversion*>::iterator inversionIter;
546      Bond* bond;
547      Bend* bend;
548      Torsion* torsion;
549 +    Inversion* inversion;
550      int a;
551      int b;
552      int c;
553      int d;
554  
555 <    std::map<int, std::set<int> > atomGroups;
471 <
555 >    map<int, set<int> > atomGroups;
556      Molecule::RigidBodyIterator rbIter;
557      RigidBody* rb;
558      Molecule::IntegrableObjectIterator ii;
559 <    StuntDouble* integrableObject;
559 >    StuntDouble* sd;
560      
561 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
562 <           integrableObject = mol->nextIntegrableObject(ii)) {
563 <
564 <      if (integrableObject->isRigidBody()) {
565 <          rb = static_cast<RigidBody*>(integrableObject);
566 <          std::vector<Atom*> atoms = rb->getAtoms();
567 <          std::set<int> rigidAtoms;
568 <          for (int i = 0; i < atoms.size(); ++i) {
569 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
570 <          }
571 <          for (int i = 0; i < atoms.size(); ++i) {
572 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
573 <          }      
561 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
562 >         sd = mol->nextIntegrableObject(ii)) {
563 >      
564 >      if (sd->isRigidBody()) {
565 >        rb = static_cast<RigidBody*>(sd);
566 >        vector<Atom*> atoms = rb->getAtoms();
567 >        set<int> rigidAtoms;
568 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
569 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
570 >        }
571 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
572 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
573 >        }      
574        } else {
575 <        std::set<int> oneAtomSet;
576 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
577 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
575 >        set<int> oneAtomSet;
576 >        oneAtomSet.insert(sd->getGlobalIndex());
577 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
578        }
579      }  
580  
581 <    
582 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
581 >    for (bond= mol->beginBond(bondIter); bond != NULL;
582 >         bond = mol->nextBond(bondIter)) {
583 >      
584        a = bond->getAtomA()->getGlobalIndex();
585 <      b = bond->getAtomB()->getGlobalIndex();        
586 <      exclude_.removePair(a, b);
585 >      b = bond->getAtomB()->getGlobalIndex();  
586 >    
587 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
588 >        oneTwoInteractions_.removePair(a, b);
589 >      } else {
590 >        excludedInteractions_.removePair(a, b);
591 >      }
592      }
593  
594 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
594 >    for (bend= mol->beginBend(bendIter); bend != NULL;
595 >         bend = mol->nextBend(bendIter)) {
596 >
597        a = bend->getAtomA()->getGlobalIndex();
598        b = bend->getAtomB()->getGlobalIndex();        
599        c = bend->getAtomC()->getGlobalIndex();
508
509      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
510      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
511      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
512
513      exclude_.removePairs(rigidSetA, rigidSetB);
514      exclude_.removePairs(rigidSetA, rigidSetC);
515      exclude_.removePairs(rigidSetB, rigidSetC);
600        
601 <      //exclude_.removePair(a, b);
602 <      //exclude_.removePair(a, c);
603 <      //exclude_.removePair(b, c);        
601 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
602 >        oneTwoInteractions_.removePair(a, b);      
603 >        oneTwoInteractions_.removePair(b, c);
604 >      } else {
605 >        excludedInteractions_.removePair(a, b);
606 >        excludedInteractions_.removePair(b, c);
607 >      }
608 >
609 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
610 >        oneThreeInteractions_.removePair(a, c);      
611 >      } else {
612 >        excludedInteractions_.removePair(a, c);
613 >      }
614      }
615  
616 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
616 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
617 >         torsion = mol->nextTorsion(torsionIter)) {
618 >
619        a = torsion->getAtomA()->getGlobalIndex();
620        b = torsion->getAtomB()->getGlobalIndex();        
621        c = torsion->getAtomC()->getGlobalIndex();        
622 <      d = torsion->getAtomD()->getGlobalIndex();        
622 >      d = torsion->getAtomD()->getGlobalIndex();      
623 >  
624 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
625 >        oneTwoInteractions_.removePair(a, b);      
626 >        oneTwoInteractions_.removePair(b, c);
627 >        oneTwoInteractions_.removePair(c, d);
628 >      } else {
629 >        excludedInteractions_.removePair(a, b);
630 >        excludedInteractions_.removePair(b, c);
631 >        excludedInteractions_.removePair(c, d);
632 >      }
633  
634 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
635 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
636 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
637 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
634 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
635 >        oneThreeInteractions_.removePair(a, c);      
636 >        oneThreeInteractions_.removePair(b, d);      
637 >      } else {
638 >        excludedInteractions_.removePair(a, c);
639 >        excludedInteractions_.removePair(b, d);
640 >      }
641  
642 <      exclude_.removePairs(rigidSetA, rigidSetB);
643 <      exclude_.removePairs(rigidSetA, rigidSetC);
644 <      exclude_.removePairs(rigidSetA, rigidSetD);
645 <      exclude_.removePairs(rigidSetB, rigidSetC);
646 <      exclude_.removePairs(rigidSetB, rigidSetD);
647 <      exclude_.removePairs(rigidSetC, rigidSetD);
539 <
540 <      /*
541 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
542 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
543 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
544 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
545 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
546 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
642 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
643 >        oneFourInteractions_.removePair(a, d);      
644 >      } else {
645 >        excludedInteractions_.removePair(a, d);
646 >      }
647 >    }
648  
649 <      
650 <      exclude_.removePair(a, b);
651 <      exclude_.removePair(a, c);
652 <      exclude_.removePair(a, d);
653 <      exclude_.removePair(b, c);
654 <      exclude_.removePair(b, d);
655 <      exclude_.removePair(c, d);        
656 <      */
649 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
650 >         inversion = mol->nextInversion(inversionIter)) {
651 >
652 >      a = inversion->getAtomA()->getGlobalIndex();
653 >      b = inversion->getAtomB()->getGlobalIndex();        
654 >      c = inversion->getAtomC()->getGlobalIndex();        
655 >      d = inversion->getAtomD()->getGlobalIndex();        
656 >
657 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
658 >        oneTwoInteractions_.removePair(a, b);      
659 >        oneTwoInteractions_.removePair(a, c);
660 >        oneTwoInteractions_.removePair(a, d);
661 >      } else {
662 >        excludedInteractions_.removePair(a, b);
663 >        excludedInteractions_.removePair(a, c);
664 >        excludedInteractions_.removePair(a, d);
665 >      }
666 >
667 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
668 >        oneThreeInteractions_.removePair(b, c);    
669 >        oneThreeInteractions_.removePair(b, d);    
670 >        oneThreeInteractions_.removePair(c, d);      
671 >      } else {
672 >        excludedInteractions_.removePair(b, c);
673 >        excludedInteractions_.removePair(b, d);
674 >        excludedInteractions_.removePair(c, d);
675 >      }
676      }
677  
678 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
679 <      std::vector<Atom*> atoms = rb->getAtoms();
680 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
681 <        for (int j = i + 1; j < atoms.size(); ++j) {
678 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
679 >         rb = mol->nextRigidBody(rbIter)) {
680 >      vector<Atom*> atoms = rb->getAtoms();
681 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
682 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
683            a = atoms[i]->getGlobalIndex();
684            b = atoms[j]->getGlobalIndex();
685 <          exclude_.removePair(a, b);
685 >          excludedInteractions_.removePair(a, b);
686          }
687        }
688      }        
689 <
689 >    
690    }
691 <
692 <
691 >  
692 >  
693    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
694      int curStampId;
695 <
695 >    
696      //index from 0
697      curStampId = moleculeStamps_.size();
698  
# Line 579 | Line 700 | namespace oopse {
700      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
701    }
702  
582  void SimInfo::update() {
703  
704 <    setupSimType();
705 <
706 < #ifdef IS_MPI
707 <    setupFortranParallel();
708 < #endif
709 <
710 <    setupFortranSim();
711 <
712 <    //setup fortran force field
593 <    /** @deprecate */    
594 <    int isError = 0;
595 <    
596 <    setupElectrostaticSummationMethod( isError );
597 <    setupSwitchingFunction();
598 <
599 <    if(isError){
600 <      sprintf( painCave.errMsg,
601 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
602 <      painCave.isFatal = 1;
603 <      simError();
604 <    }
605 <  
606 <    
607 <    setupCutoff();
608 <
704 >  /**
705 >   * update
706 >   *
707 >   *  Performs the global checks and variable settings after the
708 >   *  objects have been created.
709 >   *
710 >   */
711 >  void SimInfo::update() {  
712 >    setupSimVariables();
713      calcNdf();
714      calcNdfRaw();
715      calcNdfTrans();
612
613    fortranInitialized_ = true;
716    }
717 <
718 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
717 >  
718 >  /**
719 >   * getSimulatedAtomTypes
720 >   *
721 >   * Returns an STL set of AtomType* that are actually present in this
722 >   * simulation.  Must query all processors to assemble this information.
723 >   *
724 >   */
725 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
726      SimInfo::MoleculeIterator mi;
727      Molecule* mol;
728      Molecule::AtomIterator ai;
729      Atom* atom;
730 <    std::set<AtomType*> atomTypes;
731 <
730 >    set<AtomType*> atomTypes;
731 >    
732      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
733 <
734 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
733 >      for(atom = mol->beginAtom(ai); atom != NULL;
734 >          atom = mol->nextAtom(ai)) {
735          atomTypes.insert(atom->getAtomType());
736 <      }
737 <        
736 >      }      
737 >    }    
738 >    
739 > #ifdef IS_MPI
740 >
741 >    // loop over the found atom types on this processor, and add their
742 >    // numerical idents to a vector:
743 >    
744 >    vector<int> foundTypes;
745 >    set<AtomType*>::iterator i;
746 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
747 >      foundTypes.push_back( (*i)->getIdent() );
748 >
749 >    // count_local holds the number of found types on this processor
750 >    int count_local = foundTypes.size();
751 >
752 >    int nproc = MPI::COMM_WORLD.Get_size();
753 >
754 >    // we need arrays to hold the counts and displacement vectors for
755 >    // all processors
756 >    vector<int> counts(nproc, 0);
757 >    vector<int> disps(nproc, 0);
758 >
759 >    // fill the counts array
760 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
761 >                              1, MPI::INT);
762 >  
763 >    // use the processor counts to compute the displacement array
764 >    disps[0] = 0;    
765 >    int totalCount = counts[0];
766 >    for (int iproc = 1; iproc < nproc; iproc++) {
767 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
768 >      totalCount += counts[iproc];
769      }
770  
771 +    // we need a (possibly redundant) set of all found types:
772 +    vector<int> ftGlobal(totalCount);
773 +    
774 +    // now spray out the foundTypes to all the other processors:    
775 +    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
776 +                               &ftGlobal[0], &counts[0], &disps[0],
777 +                               MPI::INT);
778 +
779 +    vector<int>::iterator j;
780 +
781 +    // foundIdents is a stl set, so inserting an already found ident
782 +    // will have no effect.
783 +    set<int> foundIdents;
784 +
785 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
786 +      foundIdents.insert((*j));
787 +    
788 +    // now iterate over the foundIdents and get the actual atom types
789 +    // that correspond to these:
790 +    set<int>::iterator it;
791 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
792 +      atomTypes.insert( forceField_->getAtomType((*it)) );
793 +
794 + #endif
795 +
796      return atomTypes;        
797    }
798  
634  void SimInfo::setupSimType() {
635    std::set<AtomType*>::iterator i;
636    std::set<AtomType*> atomTypes;
637    atomTypes = getUniqueAtomTypes();
638    
639    int useLennardJones = 0;
640    int useElectrostatic = 0;
641    int useEAM = 0;
642    int useSC = 0;
643    int useCharge = 0;
644    int useDirectional = 0;
645    int useDipole = 0;
646    int useGayBerne = 0;
647    int useSticky = 0;
648    int useStickyPower = 0;
649    int useShape = 0;
650    int useFLARB = 0; //it is not in AtomType yet
651    int useDirectionalAtom = 0;    
652    int useElectrostatics = 0;
653    //usePBC and useRF are from simParams
654    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
655    int useRF;
656    int useSF;
657    std::string myMethod;
799  
800 <    // set the useRF logical
801 <    useRF = 0;
802 <    useSF = 0;
800 >  int getGlobalCountOfType(AtomType* atype) {
801 >    /*
802 >    set<AtomType*> atypes = getSimulatedAtomTypes();
803 >    map<AtomType*, int> counts_;
804  
805 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
806 +      for(atom = mol->beginAtom(ai); atom != NULL;
807 +          atom = mol->nextAtom(ai)) {
808 +        atom->getAtomType();
809 +      }      
810 +    }    
811 +    */
812 +    return 0;
813 +  }
814  
815 <    if (simParams_->haveElectrostaticSummationMethod()) {
816 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
817 <      toUpper(myMethod);
818 <      if (myMethod == "REACTION_FIELD") {
819 <        useRF=1;
820 <      } else {
821 <        if (myMethod == "SHIFTED_FORCE") {
822 <          useSF = 1;
672 <        }
815 >  void SimInfo::setupSimVariables() {
816 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
817 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
818 >    // parameter is true
819 >    calcBoxDipole_ = false;
820 >    if ( simParams_->haveAccumulateBoxDipole() )
821 >      if ( simParams_->getAccumulateBoxDipole() ) {
822 >        calcBoxDipole_ = true;      
823        }
824 <    }
825 <
824 >    
825 >    set<AtomType*>::iterator i;
826 >    set<AtomType*> atomTypes;
827 >    atomTypes = getSimulatedAtomTypes();    
828 >    bool usesElectrostatic = false;
829 >    bool usesMetallic = false;
830 >    bool usesDirectional = false;
831 >    bool usesFluctuatingCharges =  false;
832      //loop over all of the atom types
833      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
834 <      useLennardJones |= (*i)->isLennardJones();
835 <      useElectrostatic |= (*i)->isElectrostatic();
836 <      useEAM |= (*i)->isEAM();
837 <      useSC |= (*i)->isSC();
682 <      useCharge |= (*i)->isCharge();
683 <      useDirectional |= (*i)->isDirectional();
684 <      useDipole |= (*i)->isDipole();
685 <      useGayBerne |= (*i)->isGayBerne();
686 <      useSticky |= (*i)->isSticky();
687 <      useStickyPower |= (*i)->isStickyPower();
688 <      useShape |= (*i)->isShape();
834 >      usesElectrostatic |= (*i)->isElectrostatic();
835 >      usesMetallic |= (*i)->isMetal();
836 >      usesDirectional |= (*i)->isDirectional();
837 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
838      }
839  
840 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
841 <      useDirectionalAtom = 1;
842 <    }
840 > #ifdef IS_MPI
841 >    bool temp;
842 >    temp = usesDirectional;
843 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
844 >                              MPI::LOR);
845 >        
846 >    temp = usesMetallic;
847 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
848 >                              MPI::LOR);
849 >    
850 >    temp = usesElectrostatic;
851 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
852 >                              MPI::LOR);
853  
854 <    if (useCharge || useDipole) {
855 <      useElectrostatics = 1;
856 <    }
854 >    temp = usesFluctuatingCharges;
855 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
856 >                              MPI::LOR);
857 > #else
858  
859 < #ifdef IS_MPI    
860 <    int temp;
859 >    usesDirectionalAtoms_ = usesDirectional;
860 >    usesMetallicAtoms_ = usesMetallic;
861 >    usesElectrostaticAtoms_ = usesElectrostatic;
862 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
863  
864 <    temp = usePBC;
865 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
864 > #endif
865 >    
866 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
867 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
868 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
869 >  }
870  
705    temp = useDirectionalAtom;
706    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
871  
872 <    temp = useLennardJones;
873 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
872 >  vector<int> SimInfo::getGlobalAtomIndices() {
873 >    SimInfo::MoleculeIterator mi;
874 >    Molecule* mol;
875 >    Molecule::AtomIterator ai;
876 >    Atom* atom;
877  
878 <    temp = useElectrostatics;
712 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
713 <
714 <    temp = useCharge;
715 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
716 <
717 <    temp = useDipole;
718 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
719 <
720 <    temp = useSticky;
721 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
722 <
723 <    temp = useStickyPower;
724 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
878 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
879      
880 <    temp = useGayBerne;
881 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
880 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
881 >      
882 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
883 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
884 >      }
885 >    }
886 >    return GlobalAtomIndices;
887 >  }
888  
729    temp = useEAM;
730    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
889  
890 <    temp = useSC;
891 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
892 <    
893 <    temp = useShape;
894 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
890 >  vector<int> SimInfo::getGlobalGroupIndices() {
891 >    SimInfo::MoleculeIterator mi;
892 >    Molecule* mol;
893 >    Molecule::CutoffGroupIterator ci;
894 >    CutoffGroup* cg;
895  
896 <    temp = useFLARB;
897 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
898 <
741 <    temp = useRF;
742 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
743 <
744 <    temp = useSF;
745 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
746 <
747 < #endif
748 <
749 <    fInfo_.SIM_uses_PBC = usePBC;    
750 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
751 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
752 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
753 <    fInfo_.SIM_uses_Charges = useCharge;
754 <    fInfo_.SIM_uses_Dipoles = useDipole;
755 <    fInfo_.SIM_uses_Sticky = useSticky;
756 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
757 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
758 <    fInfo_.SIM_uses_EAM = useEAM;
759 <    fInfo_.SIM_uses_SC = useSC;
760 <    fInfo_.SIM_uses_Shapes = useShape;
761 <    fInfo_.SIM_uses_FLARB = useFLARB;
762 <    fInfo_.SIM_uses_RF = useRF;
763 <    fInfo_.SIM_uses_SF = useSF;
764 <
765 <    if( myMethod == "REACTION_FIELD") {
896 >    vector<int> GlobalGroupIndices;
897 >    
898 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
899        
900 <      if (simParams_->haveDielectric()) {
901 <        fInfo_.dielect = simParams_->getDielectric();
902 <      } else {
903 <        sprintf(painCave.errMsg,
904 <                "SimSetup Error: No Dielectric constant was set.\n"
905 <                "\tYou are trying to use Reaction Field without"
773 <                "\tsetting a dielectric constant!\n");
774 <        painCave.isFatal = 1;
775 <        simError();
776 <      }      
900 >      //local index of cutoff group is trivial, it only depends on the
901 >      //order of travesing
902 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
903 >           cg = mol->nextCutoffGroup(ci)) {
904 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
905 >      }        
906      }
907 <
907 >    return GlobalGroupIndices;
908    }
909  
781  void SimInfo::setupFortranSim() {
782    int isError;
783    int nExclude;
784    std::vector<int> fortranGlobalGroupMembership;
785    
786    nExclude = exclude_.getSize();
787    isError = 0;
910  
911 <    //globalGroupMembership_ is filled by SimCreator    
790 <    for (int i = 0; i < nGlobalAtoms_; i++) {
791 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
792 <    }
911 >  void SimInfo::prepareTopology() {
912  
913      //calculate mass ratio of cutoff group
795    std::vector<double> mfact;
914      SimInfo::MoleculeIterator mi;
915      Molecule* mol;
916      Molecule::CutoffGroupIterator ci;
917      CutoffGroup* cg;
918      Molecule::AtomIterator ai;
919      Atom* atom;
920 <    double totalMass;
920 >    RealType totalMass;
921  
922 <    //to avoid memory reallocation, reserve enough space for mfact
923 <    mfact.reserve(getNCutoffGroups());
922 >    /**
923 >     * The mass factor is the relative mass of an atom to the total
924 >     * mass of the cutoff group it belongs to.  By default, all atoms
925 >     * are their own cutoff groups, and therefore have mass factors of
926 >     * 1.  We need some special handling for massless atoms, which
927 >     * will be treated as carrying the entire mass of the cutoff
928 >     * group.
929 >     */
930 >    massFactors_.clear();
931 >    massFactors_.resize(getNAtoms(), 1.0);
932      
933      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
934 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
934 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
935 >           cg = mol->nextCutoffGroup(ci)) {
936  
937          totalMass = cg->getMass();
938          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
939            // Check for massless groups - set mfact to 1 if true
940 <          if (totalMass != 0)
941 <            mfact.push_back(atom->getMass()/totalMass);
940 >          if (totalMass != 0)
941 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
942            else
943 <            mfact.push_back( 1.0 );
943 >            massFactors_[atom->getLocalIndex()] = 1.0;
944          }
818
945        }      
946      }
947  
948 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
823 <    std::vector<int> identArray;
948 >    // Build the identArray_ and regions_
949  
950 <    //to avoid memory reallocation, reserve enough space identArray
951 <    identArray.reserve(getNAtoms());
952 <    
953 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
950 >    identArray_.clear();
951 >    identArray_.reserve(getNAtoms());  
952 >    regions_.clear();
953 >    regions_.reserve(getNAtoms());
954 >
955 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
956 >      int reg = mol->getRegion();      
957        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
958 <        identArray.push_back(atom->getIdent());
958 >        identArray_.push_back(atom->getIdent());
959 >        regions_.push_back(reg);
960        }
961      }    
962 <
963 <    //fill molMembershipArray
835 <    //molMembershipArray is filled by SimCreator    
836 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
837 <    for (int i = 0; i < nGlobalAtoms_; i++) {
838 <      molMembershipArray[i] = globalMolMembership_[i] + 1;
839 <    }
840 <    
841 <    //setup fortran simulation
842 <    int nGlobalExcludes = 0;
843 <    int* globalExcludes = NULL;
844 <    int* excludeList = exclude_.getExcludeList();
845 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
846 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
847 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
848 <
849 <    if( isError ){
850 <
851 <      sprintf( painCave.errMsg,
852 <               "There was an error setting the simulation information in fortran.\n" );
853 <      painCave.isFatal = 1;
854 <      painCave.severity = OOPSE_ERROR;
855 <      simError();
856 <    }
857 <
858 < #ifdef IS_MPI
859 <    sprintf( checkPointMsg,
860 <             "succesfully sent the simulation information to fortran.\n");
861 <    MPIcheckPoint();
862 < #endif // is_mpi
863 <  }
864 <
865 <
866 < #ifdef IS_MPI
867 <  void SimInfo::setupFortranParallel() {
868 <    
869 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
870 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
871 <    std::vector<int> localToGlobalCutoffGroupIndex;
872 <    SimInfo::MoleculeIterator mi;
873 <    Molecule::AtomIterator ai;
874 <    Molecule::CutoffGroupIterator ci;
875 <    Molecule* mol;
876 <    Atom* atom;
877 <    CutoffGroup* cg;
878 <    mpiSimData parallelData;
879 <    int isError;
880 <
881 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
882 <
883 <      //local index(index in DataStorge) of atom is important
884 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
885 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
886 <      }
887 <
888 <      //local index of cutoff group is trivial, it only depends on the order of travesing
889 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
890 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
891 <      }        
892 <        
893 <    }
894 <
895 <    //fill up mpiSimData struct
896 <    parallelData.nMolGlobal = getNGlobalMolecules();
897 <    parallelData.nMolLocal = getNMolecules();
898 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
899 <    parallelData.nAtomsLocal = getNAtoms();
900 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
901 <    parallelData.nGroupsLocal = getNCutoffGroups();
902 <    parallelData.myNode = worldRank;
903 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
904 <
905 <    //pass mpiSimData struct and index arrays to fortran
906 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
907 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
908 <                    &localToGlobalCutoffGroupIndex[0], &isError);
909 <
910 <    if (isError) {
911 <      sprintf(painCave.errMsg,
912 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
913 <      painCave.isFatal = 1;
914 <      simError();
915 <    }
916 <
917 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
918 <    MPIcheckPoint();
919 <
920 <
921 <  }
922 <
923 < #endif
924 <
925 <  void SimInfo::setupCutoff() {          
926 <    
927 <    // Check the cutoff policy
928 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
929 <    if (simParams_->haveCutoffPolicy()) {
930 <      std::string myPolicy = simParams_->getCutoffPolicy();
931 <      toUpper(myPolicy);
932 <      if (myPolicy == "MIX") {
933 <        cp = MIX_CUTOFF_POLICY;
934 <      } else {
935 <        if (myPolicy == "MAX") {
936 <          cp = MAX_CUTOFF_POLICY;
937 <        } else {
938 <          if (myPolicy == "TRADITIONAL") {            
939 <            cp = TRADITIONAL_CUTOFF_POLICY;
940 <          } else {
941 <            // throw error        
942 <            sprintf( painCave.errMsg,
943 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
944 <            painCave.isFatal = 1;
945 <            simError();
946 <          }    
947 <        }          
948 <      }
949 <    }          
950 <    notifyFortranCutoffPolicy(&cp);
951 <
952 <    // Check the Skin Thickness for neighborlists
953 <    double skin;
954 <    if (simParams_->haveSkinThickness()) {
955 <      skin = simParams_->getSkinThickness();
956 <      notifyFortranSkinThickness(&skin);
957 <    }            
958 <        
959 <    // Check if the cutoff was set explicitly:
960 <    if (simParams_->haveCutoffRadius()) {
961 <      rcut_ = simParams_->getCutoffRadius();
962 <      if (simParams_->haveSwitchingRadius()) {
963 <        rsw_  = simParams_->getSwitchingRadius();
964 <      } else {
965 <        rsw_ = rcut_;
966 <      }
967 <      notifyFortranCutoffs(&rcut_, &rsw_);
968 <      
969 <    } else {
970 <      
971 <      // For electrostatic atoms, we'll assume a large safe value:
972 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
973 <        sprintf(painCave.errMsg,
974 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
975 <                "\tOOPSE will use a default value of 15.0 angstroms"
976 <                "\tfor the cutoffRadius.\n");
977 <        painCave.isFatal = 0;
978 <        simError();
979 <        rcut_ = 15.0;
980 <      
981 <        if (simParams_->haveElectrostaticSummationMethod()) {
982 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
983 <          toUpper(myMethod);
984 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
985 <            if (simParams_->haveSwitchingRadius()){
986 <              sprintf(painCave.errMsg,
987 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
988 <                      "\teven though the electrostaticSummationMethod was\n"
989 <                      "\tset to %s\n", myMethod.c_str());
990 <              painCave.isFatal = 1;
991 <              simError();            
992 <            }
993 <          }
994 <        }
995 <      
996 <        if (simParams_->haveSwitchingRadius()){
997 <          rsw_ = simParams_->getSwitchingRadius();
998 <        } else {        
999 <          sprintf(painCave.errMsg,
1000 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1001 <                  "\tOOPSE will use a default value of\n"
1002 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1003 <          painCave.isFatal = 0;
1004 <          simError();
1005 <          rsw_ = 0.85 * rcut_;
1006 <        }
1007 <        notifyFortranCutoffs(&rcut_, &rsw_);
1008 <      } else {
1009 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1010 <        // We'll punt and let fortran figure out the cutoffs later.
1011 <        
1012 <        notifyFortranYouAreOnYourOwn();
1013 <
1014 <      }
1015 <    }
962 >      
963 >    topologyDone_ = true;
964    }
965  
1018  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1019    
1020    int errorOut;
1021    int esm =  NONE;
1022    int sm = UNDAMPED;
1023    double alphaVal;
1024    double dielectric;
1025
1026    errorOut = isError;
1027    alphaVal = simParams_->getDampingAlpha();
1028    dielectric = simParams_->getDielectric();
1029
1030    if (simParams_->haveElectrostaticSummationMethod()) {
1031      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1032      toUpper(myMethod);
1033      if (myMethod == "NONE") {
1034        esm = NONE;
1035      } else {
1036        if (myMethod == "SWITCHING_FUNCTION") {
1037          esm = SWITCHING_FUNCTION;
1038        } else {
1039          if (myMethod == "SHIFTED_POTENTIAL") {
1040            esm = SHIFTED_POTENTIAL;
1041          } else {
1042            if (myMethod == "SHIFTED_FORCE") {            
1043              esm = SHIFTED_FORCE;
1044            } else {
1045              if (myMethod == "REACTION_FIELD") {            
1046                esm = REACTION_FIELD;
1047              } else {
1048                // throw error        
1049                sprintf( painCave.errMsg,
1050                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1051                         "\t(Input file specified %s .)\n"
1052                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1053                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1054                         "\t\"reaction_field\".\n", myMethod.c_str() );
1055                painCave.isFatal = 1;
1056                simError();
1057              }    
1058            }          
1059          }
1060        }
1061      }
1062    }
1063    
1064    if (simParams_->haveElectrostaticScreeningMethod()) {
1065      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1066      toUpper(myScreen);
1067      if (myScreen == "UNDAMPED") {
1068        sm = UNDAMPED;
1069      } else {
1070        if (myScreen == "DAMPED") {
1071          sm = DAMPED;
1072          if (!simParams_->haveDampingAlpha()) {
1073            //throw error
1074            sprintf( painCave.errMsg,
1075                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1076                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1077            painCave.isFatal = 0;
1078            simError();
1079          }
1080        } else {
1081          // throw error        
1082          sprintf( painCave.errMsg,
1083                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1084                   "\t(Input file specified %s .)\n"
1085                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1086                   "or \"damped\".\n", myScreen.c_str() );
1087          painCave.isFatal = 1;
1088          simError();
1089        }
1090      }
1091    }
1092    
1093    // let's pass some summation method variables to fortran
1094    setElectrostaticSummationMethod( &esm );
1095    notifyFortranElectrostaticMethod( &esm );
1096    setScreeningMethod( &sm );
1097    setDampingAlpha( &alphaVal );
1098    setReactionFieldDielectric( &dielectric );
1099    initFortranFF( &errorOut );
1100  }
1101
1102  void SimInfo::setupSwitchingFunction() {    
1103    int ft = CUBIC;
1104
1105    if (simParams_->haveSwitchingFunctionType()) {
1106      std::string funcType = simParams_->getSwitchingFunctionType();
1107      toUpper(funcType);
1108      if (funcType == "CUBIC") {
1109        ft = CUBIC;
1110      } else {
1111        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1112          ft = FIFTH_ORDER_POLY;
1113        } else {
1114          // throw error        
1115          sprintf( painCave.errMsg,
1116                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1117          painCave.isFatal = 1;
1118          simError();
1119        }          
1120      }
1121    }
1122
1123    // send switching function notification to switcheroo
1124    setFunctionType(&ft);
1125
1126  }
1127
966    void SimInfo::addProperty(GenericData* genData) {
967      properties_.addProperty(genData);  
968    }
969  
970 <  void SimInfo::removeProperty(const std::string& propName) {
970 >  void SimInfo::removeProperty(const string& propName) {
971      properties_.removeProperty(propName);  
972    }
973  
# Line 1137 | Line 975 | namespace oopse {
975      properties_.clearProperties();
976    }
977  
978 <  std::vector<std::string> SimInfo::getPropertyNames() {
978 >  vector<string> SimInfo::getPropertyNames() {
979      return properties_.getPropertyNames();  
980    }
981        
982 <  std::vector<GenericData*> SimInfo::getProperties() {
982 >  vector<GenericData*> SimInfo::getProperties() {
983      return properties_.getProperties();
984    }
985  
986 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
986 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
987      return properties_.getPropertyByName(propName);
988    }
989  
# Line 1156 | Line 994 | namespace oopse {
994      delete sman_;
995      sman_ = sman;
996  
1159    Molecule* mol;
1160    RigidBody* rb;
1161    Atom* atom;
997      SimInfo::MoleculeIterator mi;
998 +    Molecule::AtomIterator ai;
999      Molecule::RigidBodyIterator rbIter;
1000 <    Molecule::AtomIterator atomIter;;
1000 >    Molecule::CutoffGroupIterator cgIter;
1001 >    Molecule::BondIterator bondIter;
1002 >    Molecule::BendIterator bendIter;
1003 >    Molecule::TorsionIterator torsionIter;
1004 >    Molecule::InversionIterator inversionIter;
1005  
1006 +    Molecule* mol;
1007 +    Atom* atom;
1008 +    RigidBody* rb;
1009 +    CutoffGroup* cg;
1010 +    Bond* bond;
1011 +    Bend* bend;
1012 +    Torsion* torsion;
1013 +    Inversion* inversion;    
1014 +
1015      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1016          
1017 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1017 >      for (atom = mol->beginAtom(ai); atom != NULL;
1018 >           atom = mol->nextAtom(ai)) {
1019          atom->setSnapshotManager(sman_);
1020 <      }
1021 <        
1022 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1020 >      }        
1021 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1022 >           rb = mol->nextRigidBody(rbIter)) {
1023          rb->setSnapshotManager(sman_);
1024        }
1025 <    }    
1026 <    
1025 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1026 >           cg = mol->nextCutoffGroup(cgIter)) {
1027 >        cg->setSnapshotManager(sman_);
1028 >      }
1029 >      for (bond = mol->beginBond(bondIter); bond != NULL;
1030 >           bond = mol->nextBond(bondIter)) {
1031 >        bond->setSnapshotManager(sman_);
1032 >      }
1033 >      for (bend = mol->beginBend(bendIter); bend != NULL;
1034 >           bend = mol->nextBend(bendIter)) {
1035 >        bend->setSnapshotManager(sman_);
1036 >      }
1037 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
1038 >           torsion = mol->nextTorsion(torsionIter)) {
1039 >        torsion->setSnapshotManager(sman_);
1040 >      }
1041 >      for (inversion = mol->beginInversion(inversionIter); inversion != NULL;
1042 >           inversion = mol->nextInversion(inversionIter)) {
1043 >        inversion->setSnapshotManager(sman_);
1044 >      }
1045 >    }
1046    }
1047  
1179  Vector3d SimInfo::getComVel(){
1180    SimInfo::MoleculeIterator i;
1181    Molecule* mol;
1048  
1049 <    Vector3d comVel(0.0);
1184 <    double totalMass = 0.0;
1185 <    
1186 <
1187 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1188 <      double mass = mol->getMass();
1189 <      totalMass += mass;
1190 <      comVel += mass * mol->getComVel();
1191 <    }  
1049 >  ostream& operator <<(ostream& o, SimInfo& info) {
1050  
1193 #ifdef IS_MPI
1194    double tmpMass = totalMass;
1195    Vector3d tmpComVel(comVel);    
1196    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1197    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1198 #endif
1199
1200    comVel /= totalMass;
1201
1202    return comVel;
1203  }
1204
1205  Vector3d SimInfo::getCom(){
1206    SimInfo::MoleculeIterator i;
1207    Molecule* mol;
1208
1209    Vector3d com(0.0);
1210    double totalMass = 0.0;
1211    
1212    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1213      double mass = mol->getMass();
1214      totalMass += mass;
1215      com += mass * mol->getCom();
1216    }  
1217
1218 #ifdef IS_MPI
1219    double tmpMass = totalMass;
1220    Vector3d tmpCom(com);    
1221    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1222    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1223 #endif
1224
1225    com /= totalMass;
1226
1227    return com;
1228
1229  }        
1230
1231  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1232
1051      return o;
1052    }
1053    
1054 <  
1055 <   /*
1056 <   Returns center of mass and center of mass velocity in one function call.
1057 <   */
1058 <  
1059 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1060 <      SimInfo::MoleculeIterator i;
1061 <      Molecule* mol;
1062 <      
1063 <    
1064 <      double totalMass = 0.0;
1065 <    
1054 >  
1055 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1056 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1057 >      sprintf(painCave.errMsg,
1058 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1059 >              "\tindex exceeds number of known objects!\n");
1060 >      painCave.isFatal = 1;
1061 >      simError();
1062 >      return NULL;
1063 >    } else
1064 >      return IOIndexToIntegrableObject.at(index);
1065 >  }
1066 >  
1067 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1068 >    IOIndexToIntegrableObject= v;
1069 >  }
1070  
1071 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1072 <         double mass = mol->getMass();
1251 <         totalMass += mass;
1252 <         com += mass * mol->getCom();
1253 <         comVel += mass * mol->getComVel();          
1254 <      }  
1255 <      
1071 >  int SimInfo::getNGlobalConstraints() {
1072 >    int nGlobalConstraints;
1073   #ifdef IS_MPI
1074 <      double tmpMass = totalMass;
1075 <      Vector3d tmpCom(com);  
1076 <      Vector3d tmpComVel(comVel);
1077 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1261 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1262 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1074 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1075 >                              MPI::INT, MPI::SUM);
1076 > #else
1077 >    nGlobalConstraints =  nConstraints_;
1078   #endif
1079 <      
1080 <      com /= totalMass;
1266 <      comVel /= totalMass;
1267 <   }        
1268 <  
1269 <   /*
1270 <   Return intertia tensor for entire system and angular momentum Vector.
1079 >    return nGlobalConstraints;
1080 >  }
1081  
1082 + }//end namespace OpenMD
1083  
1273       [  Ixx -Ixy  -Ixz ]
1274  J =| -Iyx  Iyy  -Iyz |
1275       [ -Izx -Iyz   Izz ]
1276    */
1277
1278   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1279      
1280
1281      double xx = 0.0;
1282      double yy = 0.0;
1283      double zz = 0.0;
1284      double xy = 0.0;
1285      double xz = 0.0;
1286      double yz = 0.0;
1287      Vector3d com(0.0);
1288      Vector3d comVel(0.0);
1289      
1290      getComAll(com, comVel);
1291      
1292      SimInfo::MoleculeIterator i;
1293      Molecule* mol;
1294      
1295      Vector3d thisq(0.0);
1296      Vector3d thisv(0.0);
1297
1298      double thisMass = 0.0;
1299    
1300      
1301      
1302  
1303      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1304        
1305         thisq = mol->getCom()-com;
1306         thisv = mol->getComVel()-comVel;
1307         thisMass = mol->getMass();
1308         // Compute moment of intertia coefficients.
1309         xx += thisq[0]*thisq[0]*thisMass;
1310         yy += thisq[1]*thisq[1]*thisMass;
1311         zz += thisq[2]*thisq[2]*thisMass;
1312        
1313         // compute products of intertia
1314         xy += thisq[0]*thisq[1]*thisMass;
1315         xz += thisq[0]*thisq[2]*thisMass;
1316         yz += thisq[1]*thisq[2]*thisMass;
1317            
1318         angularMomentum += cross( thisq, thisv ) * thisMass;
1319            
1320      }  
1321      
1322      
1323      inertiaTensor(0,0) = yy + zz;
1324      inertiaTensor(0,1) = -xy;
1325      inertiaTensor(0,2) = -xz;
1326      inertiaTensor(1,0) = -xy;
1327      inertiaTensor(1,1) = xx + zz;
1328      inertiaTensor(1,2) = -yz;
1329      inertiaTensor(2,0) = -xz;
1330      inertiaTensor(2,1) = -yz;
1331      inertiaTensor(2,2) = xx + yy;
1332      
1333 #ifdef IS_MPI
1334      Mat3x3d tmpI(inertiaTensor);
1335      Vector3d tmpAngMom;
1336      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1337      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1338 #endif
1339              
1340      return;
1341   }
1342
1343   //Returns the angular momentum of the system
1344   Vector3d SimInfo::getAngularMomentum(){
1345      
1346      Vector3d com(0.0);
1347      Vector3d comVel(0.0);
1348      Vector3d angularMomentum(0.0);
1349      
1350      getComAll(com,comVel);
1351      
1352      SimInfo::MoleculeIterator i;
1353      Molecule* mol;
1354      
1355      Vector3d thisr(0.0);
1356      Vector3d thisp(0.0);
1357      
1358      double thisMass;
1359      
1360      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1361        thisMass = mol->getMass();
1362        thisr = mol->getCom()-com;
1363        thisp = (mol->getComVel()-comVel)*thisMass;
1364        
1365        angularMomentum += cross( thisr, thisp );
1366        
1367      }  
1368      
1369 #ifdef IS_MPI
1370      Vector3d tmpAngMom;
1371      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1372 #endif
1373      
1374      return angularMomentum;
1375   }
1376  
1377  
1378 }//end namespace oopse
1379

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 764 by gezelter, Mon Nov 21 22:59:21 2005 UTC vs.
Revision 1953 by gezelter, Thu Dec 5 18:19:26 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines