ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 749 by tim, Wed Nov 16 23:10:02 2005 UTC vs.
Revision 1953 by gezelter, Thu Dec 5 18:19:26 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 46 | Line 47
47   * @version 1.0
48   */
49  
50 + #ifdef IS_MPI
51 + #include <mpi.h>
52 + #endif
53   #include <algorithm>
54   #include <set>
55   #include <map>
# Line 53 | Line 57
57   #include "brains/SimInfo.hpp"
58   #include "math/Vector3.hpp"
59   #include "primitives/Molecule.hpp"
60 < #include "UseTheForce/fCutoffPolicy.h"
57 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 < #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 < #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 < #include "UseTheForce/doForces_interface.h"
61 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 < #include "UseTheForce/notifyCutoffs_interface.h"
63 < #include "UseTheForce/DarkSide/switcheroo_interface.h"
60 > #include "primitives/StuntDouble.hpp"
61   #include "utils/MemoryUtils.hpp"
62   #include "utils/simError.h"
63   #include "selection/SelectionManager.hpp"
64 + #include "io/ForceFieldOptions.hpp"
65 + #include "brains/ForceField.hpp"
66 + #include "nonbonded/SwitchingFunction.hpp"
67  
68 < #ifdef IS_MPI
69 < #include "UseTheForce/mpiComponentPlan.h"
70 < #include "UseTheForce/DarkSide/simParallel_interface.h"
71 < #endif
72 <
73 < namespace oopse {
74 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
75 <    std::map<int, std::set<int> >::iterator i = container.find(index);
76 <    std::set<int> result;
77 <    if (i != container.end()) {
78 <        result = i->second;
79 <    }
80 <
81 <    return result;
82 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 <                   ForceField* ff, Globals* simParams) :
73 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
87 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false) {
79 <
80 <            
81 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
96 <      MoleculeStamp* molStamp;
97 <      int nMolWithSameStamp;
98 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
99 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
100 <      CutoffGroupStamp* cgStamp;    
101 <      RigidBodyStamp* rbStamp;
102 <      int nRigidAtoms = 0;
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 >    nGlobalFluctuatingCharges_(0), nGlobalBonds_(0), nGlobalBends_(0),
77 >    nGlobalTorsions_(0), nGlobalInversions_(0), nAtoms_(0), nBonds_(0),
78 >    nBends_(0), nTorsions_(0), nInversions_(0), nRigidBodies_(0),
79 >    nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
80 >    nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
81 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
82      
83 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
84 <        molStamp = i->first;
85 <        nMolWithSameStamp = i->second;
86 <        
87 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
88 <
89 <        //calculate atoms in molecules
90 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
91 <
92 <
93 <        //calculate atoms in cutoff groups
94 <        int nAtomsInGroups = 0;
95 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
96 <        
97 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
98 <          cgStamp = molStamp->getCutoffGroup(j);
99 <          nAtomsInGroups += cgStamp->getNMembers();
100 <        }
122 <
123 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
124 <
125 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
126 <
127 <        //calculate atoms in rigid bodies
128 <        int nAtomsInRigidBodies = 0;
129 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
130 <        
131 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
132 <          rbStamp = molStamp->getRigidBody(j);
133 <          nAtomsInRigidBodies += rbStamp->getNMembers();
134 <        }
135 <
136 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
137 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
138 <        
83 >    MoleculeStamp* molStamp;
84 >    int nMolWithSameStamp;
85 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
87 >    CutoffGroupStamp* cgStamp;    
88 >    RigidBodyStamp* rbStamp;
89 >    int nRigidAtoms = 0;
90 >    
91 >    vector<Component*> components = simParams->getComponents();
92 >    
93 >    for (vector<Component*>::iterator i = components.begin();
94 >         i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      if ( (*i)->haveRegion() ) {        
97 >        molStamp->setRegion( (*i)->getRegion() );
98 >      } else {
99 >        // set the region to a disallowed value:
100 >        molStamp->setRegion( -1 );
101        }
102  
103 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
104 <      //group therefore the total number of cutoff groups in the system is
105 <      //equal to the total number of atoms minus number of atoms belong to
106 <      //cutoff group defined in meta-data file plus the number of cutoff
107 <      //groups defined in meta-data file
108 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
109 <
110 <      //every free atom (atom does not belong to rigid bodies) is an
111 <      //integrable object therefore the total number of integrable objects
112 <      //in the system is equal to the total number of atoms minus number of
113 <      //atoms belong to rigid body defined in meta-data file plus the number
114 <      //of rigid bodies defined in meta-data file
115 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
116 <                                                + nGlobalRigidBodies_;
117 <  
118 <      nGlobalMols_ = molStampIds_.size();
119 <
120 < #ifdef IS_MPI    
121 <      molToProcMap_.resize(nGlobalMols_);
122 < #endif
123 <
103 >      nMolWithSameStamp = (*i)->getNMol();
104 >      
105 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
106 >      
107 >      //calculate atoms in molecules
108 >      nGlobalAtoms_ += molStamp->getNAtoms() * nMolWithSameStamp;
109 >      nGlobalBonds_ += molStamp->getNBonds() * nMolWithSameStamp;
110 >      nGlobalBends_ += molStamp->getNBends() * nMolWithSameStamp;
111 >      nGlobalTorsions_ += molStamp->getNTorsions() * nMolWithSameStamp;
112 >      nGlobalInversions_ += molStamp->getNInversions() * nMolWithSameStamp;
113 >      
114 >      //calculate atoms in cutoff groups
115 >      int nAtomsInGroups = 0;
116 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
117 >      
118 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
119 >        cgStamp = molStamp->getCutoffGroupStamp(j);
120 >        nAtomsInGroups += cgStamp->getNMembers();
121 >      }
122 >      
123 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
124 >      
125 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
126 >      
127 >      //calculate atoms in rigid bodies
128 >      int nAtomsInRigidBodies = 0;
129 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
130 >      
131 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
132 >        rbStamp = molStamp->getRigidBodyStamp(j);
133 >        nAtomsInRigidBodies += rbStamp->getNMembers();
134 >      }
135 >      
136 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
137 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
138 >      
139      }
140 +    
141 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
142 +    //group therefore the total number of cutoff groups in the system is
143 +    //equal to the total number of atoms minus number of atoms belong to
144 +    //cutoff group defined in meta-data file plus the number of cutoff
145 +    //groups defined in meta-data file
146  
147 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
148 +    
149 +    //every free atom (atom does not belong to rigid bodies) is an
150 +    //integrable object therefore the total number of integrable objects
151 +    //in the system is equal to the total number of atoms minus number of
152 +    //atoms belong to rigid body defined in meta-data file plus the number
153 +    //of rigid bodies defined in meta-data file
154 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
155 +      + nGlobalRigidBodies_;
156 +    
157 +    nGlobalMols_ = molStampIds_.size();
158 +    molToProcMap_.resize(nGlobalMols_);
159 +  }
160 +  
161    SimInfo::~SimInfo() {
162 <    std::map<int, Molecule*>::iterator i;
162 >    map<int, Molecule*>::iterator i;
163      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
164        delete i->second;
165      }
166      molecules_.clear();
167        
171    delete stamps_;
168      delete sman_;
169      delete simParams_;
170      delete forceField_;
171    }
172  
177  int SimInfo::getNGlobalConstraints() {
178    int nGlobalConstraints;
179 #ifdef IS_MPI
180    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
181                  MPI_COMM_WORLD);    
182 #else
183    nGlobalConstraints =  nConstraints_;
184 #endif
185    return nGlobalConstraints;
186  }
173  
174    bool SimInfo::addMolecule(Molecule* mol) {
175      MoleculeIterator i;
176 <
176 >    
177      i = molecules_.find(mol->getGlobalIndex());
178      if (i == molecules_.end() ) {
179 <
180 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
181 <        
179 >      
180 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
181 >      
182        nAtoms_ += mol->getNAtoms();
183        nBonds_ += mol->getNBonds();
184        nBends_ += mol->getNBends();
185        nTorsions_ += mol->getNTorsions();
186 +      nInversions_ += mol->getNInversions();
187        nRigidBodies_ += mol->getNRigidBodies();
188        nIntegrableObjects_ += mol->getNIntegrableObjects();
189        nCutoffGroups_ += mol->getNCutoffGroups();
190        nConstraints_ += mol->getNConstraintPairs();
191 <
192 <      addExcludePairs(mol);
193 <        
191 >      
192 >      addInteractionPairs(mol);
193 >      
194        return true;
195      } else {
196        return false;
197      }
198    }
199 <
199 >  
200    bool SimInfo::removeMolecule(Molecule* mol) {
201      MoleculeIterator i;
202      i = molecules_.find(mol->getGlobalIndex());
# Line 222 | Line 209 | namespace oopse {
209        nBonds_ -= mol->getNBonds();
210        nBends_ -= mol->getNBends();
211        nTorsions_ -= mol->getNTorsions();
212 +      nInversions_ -= mol->getNInversions();
213        nRigidBodies_ -= mol->getNRigidBodies();
214        nIntegrableObjects_ -= mol->getNIntegrableObjects();
215        nCutoffGroups_ -= mol->getNCutoffGroups();
216        nConstraints_ -= mol->getNConstraintPairs();
217  
218 <      removeExcludePairs(mol);
218 >      removeInteractionPairs(mol);
219        molecules_.erase(mol->getGlobalIndex());
220  
221        delete mol;
# Line 236 | Line 224 | namespace oopse {
224      } else {
225        return false;
226      }
239
240
227    }    
228  
229          
# Line 253 | Line 239 | namespace oopse {
239  
240  
241    void SimInfo::calcNdf() {
242 <    int ndf_local;
242 >    int ndf_local, nfq_local;
243      MoleculeIterator i;
244 <    std::vector<StuntDouble*>::iterator j;
244 >    vector<StuntDouble*>::iterator j;
245 >    vector<Atom*>::iterator k;
246 >
247      Molecule* mol;
248 <    StuntDouble* integrableObject;
248 >    StuntDouble* sd;
249 >    Atom* atom;
250  
251      ndf_local = 0;
252 +    nfq_local = 0;
253      
254      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
265      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
266           integrableObject = mol->nextIntegrableObject(j)) {
255  
256 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
257 +           sd = mol->nextIntegrableObject(j)) {
258 +
259          ndf_local += 3;
260  
261 <        if (integrableObject->isDirectional()) {
262 <          if (integrableObject->isLinear()) {
261 >        if (sd->isDirectional()) {
262 >          if (sd->isLinear()) {
263              ndf_local += 2;
264            } else {
265              ndf_local += 3;
266            }
267          }
268 <            
269 <      }//end for (integrableObject)
270 <    }// end for (mol)
268 >      }
269 >
270 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
271 >           atom = mol->nextFluctuatingCharge(k)) {
272 >        if (atom->isFluctuatingCharge()) {
273 >          nfq_local++;
274 >        }
275 >      }
276 >    }
277      
278 +    ndfLocal_ = ndf_local;
279 +
280      // n_constraints is local, so subtract them on each processor
281      ndf_local -= nConstraints_;
282  
283   #ifdef IS_MPI
284 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
284 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
285 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
286 >                              MPI::INT, MPI::SUM);
287   #else
288      ndf_ = ndf_local;
289 +    nGlobalFluctuatingCharges_ = nfq_local;
290   #endif
291  
292      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 293 | Line 295 | namespace oopse {
295  
296    }
297  
298 +  int SimInfo::getFdf() {
299 + #ifdef IS_MPI
300 +    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
301 + #else
302 +    fdf_ = fdf_local;
303 + #endif
304 +    return fdf_;
305 +  }
306 +  
307 +  unsigned int SimInfo::getNLocalCutoffGroups(){
308 +    int nLocalCutoffAtoms = 0;
309 +    Molecule* mol;
310 +    MoleculeIterator mi;
311 +    CutoffGroup* cg;
312 +    Molecule::CutoffGroupIterator ci;
313 +    
314 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
315 +      
316 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
317 +           cg = mol->nextCutoffGroup(ci)) {
318 +        nLocalCutoffAtoms += cg->getNumAtom();
319 +        
320 +      }        
321 +    }
322 +    
323 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
324 +  }
325 +    
326    void SimInfo::calcNdfRaw() {
327      int ndfRaw_local;
328  
329      MoleculeIterator i;
330 <    std::vector<StuntDouble*>::iterator j;
330 >    vector<StuntDouble*>::iterator j;
331      Molecule* mol;
332 <    StuntDouble* integrableObject;
332 >    StuntDouble* sd;
333  
334      // Raw degrees of freedom that we have to set
335      ndfRaw_local = 0;
336      
337      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
308      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
309           integrableObject = mol->nextIntegrableObject(j)) {
338  
339 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
340 +           sd = mol->nextIntegrableObject(j)) {
341 +
342          ndfRaw_local += 3;
343  
344 <        if (integrableObject->isDirectional()) {
345 <          if (integrableObject->isLinear()) {
344 >        if (sd->isDirectional()) {
345 >          if (sd->isLinear()) {
346              ndfRaw_local += 2;
347            } else {
348              ndfRaw_local += 3;
# Line 322 | Line 353 | namespace oopse {
353      }
354      
355   #ifdef IS_MPI
356 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
356 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
357   #else
358      ndfRaw_ = ndfRaw_local;
359   #endif
# Line 335 | Line 366 | namespace oopse {
366  
367  
368   #ifdef IS_MPI
369 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
369 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
370 >                              MPI::INT, MPI::SUM);
371   #else
372      ndfTrans_ = ndfTrans_local;
373   #endif
# Line 344 | Line 376 | namespace oopse {
376  
377    }
378  
379 <  void SimInfo::addExcludePairs(Molecule* mol) {
380 <    std::vector<Bond*>::iterator bondIter;
381 <    std::vector<Bend*>::iterator bendIter;
382 <    std::vector<Torsion*>::iterator torsionIter;
379 >  void SimInfo::addInteractionPairs(Molecule* mol) {
380 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
381 >    vector<Bond*>::iterator bondIter;
382 >    vector<Bend*>::iterator bendIter;
383 >    vector<Torsion*>::iterator torsionIter;
384 >    vector<Inversion*>::iterator inversionIter;
385      Bond* bond;
386      Bend* bend;
387      Torsion* torsion;
388 +    Inversion* inversion;
389      int a;
390      int b;
391      int c;
392      int d;
393  
394 <    std::map<int, std::set<int> > atomGroups;
394 >    // atomGroups can be used to add special interaction maps between
395 >    // groups of atoms that are in two separate rigid bodies.
396 >    // However, most site-site interactions between two rigid bodies
397 >    // are probably not special, just the ones between the physically
398 >    // bonded atoms.  Interactions *within* a single rigid body should
399 >    // always be excluded.  These are done at the bottom of this
400 >    // function.
401  
402 +    map<int, set<int> > atomGroups;
403      Molecule::RigidBodyIterator rbIter;
404      RigidBody* rb;
405      Molecule::IntegrableObjectIterator ii;
406 <    StuntDouble* integrableObject;
406 >    StuntDouble* sd;
407      
408 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
409 <           integrableObject = mol->nextIntegrableObject(ii)) {
410 <
411 <      if (integrableObject->isRigidBody()) {
412 <          rb = static_cast<RigidBody*>(integrableObject);
413 <          std::vector<Atom*> atoms = rb->getAtoms();
414 <          std::set<int> rigidAtoms;
415 <          for (int i = 0; i < atoms.size(); ++i) {
416 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
417 <          }
418 <          for (int i = 0; i < atoms.size(); ++i) {
419 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
420 <          }      
408 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
409 >         sd = mol->nextIntegrableObject(ii)) {
410 >      
411 >      if (sd->isRigidBody()) {
412 >        rb = static_cast<RigidBody*>(sd);
413 >        vector<Atom*> atoms = rb->getAtoms();
414 >        set<int> rigidAtoms;
415 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
416 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
417 >        }
418 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
419 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
420 >        }      
421        } else {
422 <        std::set<int> oneAtomSet;
423 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
424 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
422 >        set<int> oneAtomSet;
423 >        oneAtomSet.insert(sd->getGlobalIndex());
424 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
425        }
426      }  
427  
428 <    
429 <    
430 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
428 >          
429 >    for (bond= mol->beginBond(bondIter); bond != NULL;
430 >         bond = mol->nextBond(bondIter)) {
431 >
432        a = bond->getAtomA()->getGlobalIndex();
433 <      b = bond->getAtomB()->getGlobalIndex();        
434 <      exclude_.addPair(a, b);
433 >      b = bond->getAtomB()->getGlobalIndex();  
434 >
435 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
436 >        oneTwoInteractions_.addPair(a, b);
437 >      } else {
438 >        excludedInteractions_.addPair(a, b);
439 >      }
440      }
441  
442 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
442 >    for (bend= mol->beginBend(bendIter); bend != NULL;
443 >         bend = mol->nextBend(bendIter)) {
444 >
445        a = bend->getAtomA()->getGlobalIndex();
446        b = bend->getAtomB()->getGlobalIndex();        
447        c = bend->getAtomC()->getGlobalIndex();
398      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
399      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
400      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
401
402      exclude_.addPairs(rigidSetA, rigidSetB);
403      exclude_.addPairs(rigidSetA, rigidSetC);
404      exclude_.addPairs(rigidSetB, rigidSetC);
448        
449 <      //exclude_.addPair(a, b);
450 <      //exclude_.addPair(a, c);
451 <      //exclude_.addPair(b, c);        
449 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
450 >        oneTwoInteractions_.addPair(a, b);      
451 >        oneTwoInteractions_.addPair(b, c);
452 >      } else {
453 >        excludedInteractions_.addPair(a, b);
454 >        excludedInteractions_.addPair(b, c);
455 >      }
456 >
457 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
458 >        oneThreeInteractions_.addPair(a, c);      
459 >      } else {
460 >        excludedInteractions_.addPair(a, c);
461 >      }
462      }
463  
464 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
464 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
465 >         torsion = mol->nextTorsion(torsionIter)) {
466 >
467        a = torsion->getAtomA()->getGlobalIndex();
468        b = torsion->getAtomB()->getGlobalIndex();        
469        c = torsion->getAtomC()->getGlobalIndex();        
470 <      d = torsion->getAtomD()->getGlobalIndex();        
416 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
417 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
418 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
419 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
470 >      d = torsion->getAtomD()->getGlobalIndex();      
471  
472 <      exclude_.addPairs(rigidSetA, rigidSetB);
473 <      exclude_.addPairs(rigidSetA, rigidSetC);
474 <      exclude_.addPairs(rigidSetA, rigidSetD);
475 <      exclude_.addPairs(rigidSetB, rigidSetC);
476 <      exclude_.addPairs(rigidSetB, rigidSetD);
477 <      exclude_.addPairs(rigidSetC, rigidSetD);
472 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
473 >        oneTwoInteractions_.addPair(a, b);      
474 >        oneTwoInteractions_.addPair(b, c);
475 >        oneTwoInteractions_.addPair(c, d);
476 >      } else {
477 >        excludedInteractions_.addPair(a, b);
478 >        excludedInteractions_.addPair(b, c);
479 >        excludedInteractions_.addPair(c, d);
480 >      }
481  
482 <      /*
483 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
484 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
485 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
486 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
487 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
488 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
489 <        
490 <      
491 <      exclude_.addPair(a, b);
492 <      exclude_.addPair(a, c);
493 <      exclude_.addPair(a, d);
494 <      exclude_.addPair(b, c);
441 <      exclude_.addPair(b, d);
442 <      exclude_.addPair(c, d);        
443 <      */
482 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
483 >        oneThreeInteractions_.addPair(a, c);      
484 >        oneThreeInteractions_.addPair(b, d);      
485 >      } else {
486 >        excludedInteractions_.addPair(a, c);
487 >        excludedInteractions_.addPair(b, d);
488 >      }
489 >
490 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
491 >        oneFourInteractions_.addPair(a, d);      
492 >      } else {
493 >        excludedInteractions_.addPair(a, d);
494 >      }
495      }
496  
497 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
498 <      std::vector<Atom*> atoms = rb->getAtoms();
499 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
500 <        for (int j = i + 1; j < atoms.size(); ++j) {
497 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
498 >         inversion = mol->nextInversion(inversionIter)) {
499 >
500 >      a = inversion->getAtomA()->getGlobalIndex();
501 >      b = inversion->getAtomB()->getGlobalIndex();        
502 >      c = inversion->getAtomC()->getGlobalIndex();        
503 >      d = inversion->getAtomD()->getGlobalIndex();        
504 >
505 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
506 >        oneTwoInteractions_.addPair(a, b);      
507 >        oneTwoInteractions_.addPair(a, c);
508 >        oneTwoInteractions_.addPair(a, d);
509 >      } else {
510 >        excludedInteractions_.addPair(a, b);
511 >        excludedInteractions_.addPair(a, c);
512 >        excludedInteractions_.addPair(a, d);
513 >      }
514 >
515 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
516 >        oneThreeInteractions_.addPair(b, c);    
517 >        oneThreeInteractions_.addPair(b, d);    
518 >        oneThreeInteractions_.addPair(c, d);      
519 >      } else {
520 >        excludedInteractions_.addPair(b, c);
521 >        excludedInteractions_.addPair(b, d);
522 >        excludedInteractions_.addPair(c, d);
523 >      }
524 >    }
525 >
526 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
527 >         rb = mol->nextRigidBody(rbIter)) {
528 >      vector<Atom*> atoms = rb->getAtoms();
529 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
530 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
531            a = atoms[i]->getGlobalIndex();
532            b = atoms[j]->getGlobalIndex();
533 <          exclude_.addPair(a, b);
533 >          excludedInteractions_.addPair(a, b);
534          }
535        }
536      }        
537  
538    }
539  
540 <  void SimInfo::removeExcludePairs(Molecule* mol) {
541 <    std::vector<Bond*>::iterator bondIter;
542 <    std::vector<Bend*>::iterator bendIter;
543 <    std::vector<Torsion*>::iterator torsionIter;
540 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
541 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
542 >    vector<Bond*>::iterator bondIter;
543 >    vector<Bend*>::iterator bendIter;
544 >    vector<Torsion*>::iterator torsionIter;
545 >    vector<Inversion*>::iterator inversionIter;
546      Bond* bond;
547      Bend* bend;
548      Torsion* torsion;
549 +    Inversion* inversion;
550      int a;
551      int b;
552      int c;
553      int d;
554  
555 <    std::map<int, std::set<int> > atomGroups;
472 <
555 >    map<int, set<int> > atomGroups;
556      Molecule::RigidBodyIterator rbIter;
557      RigidBody* rb;
558      Molecule::IntegrableObjectIterator ii;
559 <    StuntDouble* integrableObject;
559 >    StuntDouble* sd;
560      
561 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
562 <           integrableObject = mol->nextIntegrableObject(ii)) {
563 <
564 <      if (integrableObject->isRigidBody()) {
565 <          rb = static_cast<RigidBody*>(integrableObject);
566 <          std::vector<Atom*> atoms = rb->getAtoms();
567 <          std::set<int> rigidAtoms;
568 <          for (int i = 0; i < atoms.size(); ++i) {
569 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
570 <          }
571 <          for (int i = 0; i < atoms.size(); ++i) {
572 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
573 <          }      
561 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
562 >         sd = mol->nextIntegrableObject(ii)) {
563 >      
564 >      if (sd->isRigidBody()) {
565 >        rb = static_cast<RigidBody*>(sd);
566 >        vector<Atom*> atoms = rb->getAtoms();
567 >        set<int> rigidAtoms;
568 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
569 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
570 >        }
571 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
572 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
573 >        }      
574        } else {
575 <        std::set<int> oneAtomSet;
576 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
577 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
575 >        set<int> oneAtomSet;
576 >        oneAtomSet.insert(sd->getGlobalIndex());
577 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
578        }
579      }  
580  
581 <    
582 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
581 >    for (bond= mol->beginBond(bondIter); bond != NULL;
582 >         bond = mol->nextBond(bondIter)) {
583 >      
584        a = bond->getAtomA()->getGlobalIndex();
585 <      b = bond->getAtomB()->getGlobalIndex();        
586 <      exclude_.removePair(a, b);
585 >      b = bond->getAtomB()->getGlobalIndex();  
586 >    
587 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
588 >        oneTwoInteractions_.removePair(a, b);
589 >      } else {
590 >        excludedInteractions_.removePair(a, b);
591 >      }
592      }
593  
594 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
594 >    for (bend= mol->beginBend(bendIter); bend != NULL;
595 >         bend = mol->nextBend(bendIter)) {
596 >
597        a = bend->getAtomA()->getGlobalIndex();
598        b = bend->getAtomB()->getGlobalIndex();        
599        c = bend->getAtomC()->getGlobalIndex();
509
510      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
511      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
512      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
513
514      exclude_.removePairs(rigidSetA, rigidSetB);
515      exclude_.removePairs(rigidSetA, rigidSetC);
516      exclude_.removePairs(rigidSetB, rigidSetC);
600        
601 <      //exclude_.removePair(a, b);
602 <      //exclude_.removePair(a, c);
603 <      //exclude_.removePair(b, c);        
601 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
602 >        oneTwoInteractions_.removePair(a, b);      
603 >        oneTwoInteractions_.removePair(b, c);
604 >      } else {
605 >        excludedInteractions_.removePair(a, b);
606 >        excludedInteractions_.removePair(b, c);
607 >      }
608 >
609 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
610 >        oneThreeInteractions_.removePair(a, c);      
611 >      } else {
612 >        excludedInteractions_.removePair(a, c);
613 >      }
614      }
615  
616 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
616 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
617 >         torsion = mol->nextTorsion(torsionIter)) {
618 >
619        a = torsion->getAtomA()->getGlobalIndex();
620        b = torsion->getAtomB()->getGlobalIndex();        
621        c = torsion->getAtomC()->getGlobalIndex();        
622 <      d = torsion->getAtomD()->getGlobalIndex();        
622 >      d = torsion->getAtomD()->getGlobalIndex();      
623 >  
624 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
625 >        oneTwoInteractions_.removePair(a, b);      
626 >        oneTwoInteractions_.removePair(b, c);
627 >        oneTwoInteractions_.removePair(c, d);
628 >      } else {
629 >        excludedInteractions_.removePair(a, b);
630 >        excludedInteractions_.removePair(b, c);
631 >        excludedInteractions_.removePair(c, d);
632 >      }
633  
634 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
635 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
636 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
637 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
634 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
635 >        oneThreeInteractions_.removePair(a, c);      
636 >        oneThreeInteractions_.removePair(b, d);      
637 >      } else {
638 >        excludedInteractions_.removePair(a, c);
639 >        excludedInteractions_.removePair(b, d);
640 >      }
641  
642 <      exclude_.removePairs(rigidSetA, rigidSetB);
643 <      exclude_.removePairs(rigidSetA, rigidSetC);
644 <      exclude_.removePairs(rigidSetA, rigidSetD);
645 <      exclude_.removePairs(rigidSetB, rigidSetC);
646 <      exclude_.removePairs(rigidSetB, rigidSetD);
647 <      exclude_.removePairs(rigidSetC, rigidSetD);
642 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
643 >        oneFourInteractions_.removePair(a, d);      
644 >      } else {
645 >        excludedInteractions_.removePair(a, d);
646 >      }
647 >    }
648  
649 <      /*
650 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
651 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
652 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
653 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
654 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
655 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
649 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
650 >         inversion = mol->nextInversion(inversionIter)) {
651 >
652 >      a = inversion->getAtomA()->getGlobalIndex();
653 >      b = inversion->getAtomB()->getGlobalIndex();        
654 >      c = inversion->getAtomC()->getGlobalIndex();        
655 >      d = inversion->getAtomD()->getGlobalIndex();        
656  
657 <      
658 <      exclude_.removePair(a, b);
659 <      exclude_.removePair(a, c);
660 <      exclude_.removePair(a, d);
661 <      exclude_.removePair(b, c);
662 <      exclude_.removePair(b, d);
663 <      exclude_.removePair(c, d);        
664 <      */
657 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
658 >        oneTwoInteractions_.removePair(a, b);      
659 >        oneTwoInteractions_.removePair(a, c);
660 >        oneTwoInteractions_.removePair(a, d);
661 >      } else {
662 >        excludedInteractions_.removePair(a, b);
663 >        excludedInteractions_.removePair(a, c);
664 >        excludedInteractions_.removePair(a, d);
665 >      }
666 >
667 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
668 >        oneThreeInteractions_.removePair(b, c);    
669 >        oneThreeInteractions_.removePair(b, d);    
670 >        oneThreeInteractions_.removePair(c, d);      
671 >      } else {
672 >        excludedInteractions_.removePair(b, c);
673 >        excludedInteractions_.removePair(b, d);
674 >        excludedInteractions_.removePair(c, d);
675 >      }
676      }
677  
678 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
679 <      std::vector<Atom*> atoms = rb->getAtoms();
680 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
681 <        for (int j = i + 1; j < atoms.size(); ++j) {
678 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
679 >         rb = mol->nextRigidBody(rbIter)) {
680 >      vector<Atom*> atoms = rb->getAtoms();
681 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
682 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
683            a = atoms[i]->getGlobalIndex();
684            b = atoms[j]->getGlobalIndex();
685 <          exclude_.removePair(a, b);
685 >          excludedInteractions_.removePair(a, b);
686          }
687        }
688      }        
689 <
689 >    
690    }
691 <
692 <
691 >  
692 >  
693    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
694      int curStampId;
695 <
695 >    
696      //index from 0
697      curStampId = moleculeStamps_.size();
698  
# Line 580 | Line 700 | namespace oopse {
700      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
701    }
702  
583  void SimInfo::update() {
703  
704 <    setupSimType();
705 <
706 < #ifdef IS_MPI
707 <    setupFortranParallel();
708 < #endif
709 <
710 <    setupFortranSim();
711 <
712 <    //setup fortran force field
594 <    /** @deprecate */    
595 <    int isError = 0;
596 <    
597 <    setupElectrostaticSummationMethod( isError );
598 <    setupSwitchingFunction();
599 <
600 <    if(isError){
601 <      sprintf( painCave.errMsg,
602 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
603 <      painCave.isFatal = 1;
604 <      simError();
605 <    }
606 <  
607 <    
608 <    setupCutoff();
609 <
704 >  /**
705 >   * update
706 >   *
707 >   *  Performs the global checks and variable settings after the
708 >   *  objects have been created.
709 >   *
710 >   */
711 >  void SimInfo::update() {  
712 >    setupSimVariables();
713      calcNdf();
714      calcNdfRaw();
715      calcNdfTrans();
613
614    fortranInitialized_ = true;
716    }
717 <
718 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
717 >  
718 >  /**
719 >   * getSimulatedAtomTypes
720 >   *
721 >   * Returns an STL set of AtomType* that are actually present in this
722 >   * simulation.  Must query all processors to assemble this information.
723 >   *
724 >   */
725 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
726      SimInfo::MoleculeIterator mi;
727      Molecule* mol;
728      Molecule::AtomIterator ai;
729      Atom* atom;
730 <    std::set<AtomType*> atomTypes;
731 <
730 >    set<AtomType*> atomTypes;
731 >    
732      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
733 <
734 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
733 >      for(atom = mol->beginAtom(ai); atom != NULL;
734 >          atom = mol->nextAtom(ai)) {
735          atomTypes.insert(atom->getAtomType());
736 <      }
737 <        
736 >      }      
737 >    }    
738 >    
739 > #ifdef IS_MPI
740 >
741 >    // loop over the found atom types on this processor, and add their
742 >    // numerical idents to a vector:
743 >    
744 >    vector<int> foundTypes;
745 >    set<AtomType*>::iterator i;
746 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
747 >      foundTypes.push_back( (*i)->getIdent() );
748 >
749 >    // count_local holds the number of found types on this processor
750 >    int count_local = foundTypes.size();
751 >
752 >    int nproc = MPI::COMM_WORLD.Get_size();
753 >
754 >    // we need arrays to hold the counts and displacement vectors for
755 >    // all processors
756 >    vector<int> counts(nproc, 0);
757 >    vector<int> disps(nproc, 0);
758 >
759 >    // fill the counts array
760 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
761 >                              1, MPI::INT);
762 >  
763 >    // use the processor counts to compute the displacement array
764 >    disps[0] = 0;    
765 >    int totalCount = counts[0];
766 >    for (int iproc = 1; iproc < nproc; iproc++) {
767 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
768 >      totalCount += counts[iproc];
769      }
770  
771 +    // we need a (possibly redundant) set of all found types:
772 +    vector<int> ftGlobal(totalCount);
773 +    
774 +    // now spray out the foundTypes to all the other processors:    
775 +    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
776 +                               &ftGlobal[0], &counts[0], &disps[0],
777 +                               MPI::INT);
778 +
779 +    vector<int>::iterator j;
780 +
781 +    // foundIdents is a stl set, so inserting an already found ident
782 +    // will have no effect.
783 +    set<int> foundIdents;
784 +
785 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
786 +      foundIdents.insert((*j));
787 +    
788 +    // now iterate over the foundIdents and get the actual atom types
789 +    // that correspond to these:
790 +    set<int>::iterator it;
791 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
792 +      atomTypes.insert( forceField_->getAtomType((*it)) );
793 +
794 + #endif
795 +
796      return atomTypes;        
797    }
798  
635  void SimInfo::setupSimType() {
636    std::set<AtomType*>::iterator i;
637    std::set<AtomType*> atomTypes;
638    atomTypes = getUniqueAtomTypes();
639    
640    int useLennardJones = 0;
641    int useElectrostatic = 0;
642    int useEAM = 0;
643    int useSC = 0;
644    int useCharge = 0;
645    int useDirectional = 0;
646    int useDipole = 0;
647    int useGayBerne = 0;
648    int useSticky = 0;
649    int useStickyPower = 0;
650    int useShape = 0;
651    int useFLARB = 0; //it is not in AtomType yet
652    int useDirectionalAtom = 0;    
653    int useElectrostatics = 0;
654    //usePBC and useRF are from simParams
655    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
656    int useRF;
657    int useSF;
658    std::string myMethod;
799  
800 <    // set the useRF logical
801 <    useRF = 0;
802 <    useSF = 0;
800 >  int getGlobalCountOfType(AtomType* atype) {
801 >    /*
802 >    set<AtomType*> atypes = getSimulatedAtomTypes();
803 >    map<AtomType*, int> counts_;
804  
805 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
806 +      for(atom = mol->beginAtom(ai); atom != NULL;
807 +          atom = mol->nextAtom(ai)) {
808 +        atom->getAtomType();
809 +      }      
810 +    }    
811 +    */
812 +    return 0;
813 +  }
814  
815 <    if (simParams_->haveElectrostaticSummationMethod()) {
816 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
817 <      toUpper(myMethod);
818 <      if (myMethod == "REACTION_FIELD") {
819 <        useRF=1;
820 <      } else {
821 <        if (myMethod == "SHIFTED_FORCE") {
822 <          useSF = 1;
673 <        }
815 >  void SimInfo::setupSimVariables() {
816 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
817 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
818 >    // parameter is true
819 >    calcBoxDipole_ = false;
820 >    if ( simParams_->haveAccumulateBoxDipole() )
821 >      if ( simParams_->getAccumulateBoxDipole() ) {
822 >        calcBoxDipole_ = true;      
823        }
824 <    }
825 <
824 >    
825 >    set<AtomType*>::iterator i;
826 >    set<AtomType*> atomTypes;
827 >    atomTypes = getSimulatedAtomTypes();    
828 >    bool usesElectrostatic = false;
829 >    bool usesMetallic = false;
830 >    bool usesDirectional = false;
831 >    bool usesFluctuatingCharges =  false;
832      //loop over all of the atom types
833      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
834 <      useLennardJones |= (*i)->isLennardJones();
835 <      useElectrostatic |= (*i)->isElectrostatic();
836 <      useEAM |= (*i)->isEAM();
837 <      useSC |= (*i)->isSC();
683 <      useCharge |= (*i)->isCharge();
684 <      useDirectional |= (*i)->isDirectional();
685 <      useDipole |= (*i)->isDipole();
686 <      useGayBerne |= (*i)->isGayBerne();
687 <      useSticky |= (*i)->isSticky();
688 <      useStickyPower |= (*i)->isStickyPower();
689 <      useShape |= (*i)->isShape();
834 >      usesElectrostatic |= (*i)->isElectrostatic();
835 >      usesMetallic |= (*i)->isMetal();
836 >      usesDirectional |= (*i)->isDirectional();
837 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
838      }
839  
840 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
841 <      useDirectionalAtom = 1;
842 <    }
840 > #ifdef IS_MPI
841 >    bool temp;
842 >    temp = usesDirectional;
843 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
844 >                              MPI::LOR);
845 >        
846 >    temp = usesMetallic;
847 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
848 >                              MPI::LOR);
849 >    
850 >    temp = usesElectrostatic;
851 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
852 >                              MPI::LOR);
853  
854 <    if (useCharge || useDipole) {
855 <      useElectrostatics = 1;
856 <    }
854 >    temp = usesFluctuatingCharges;
855 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
856 >                              MPI::LOR);
857 > #else
858  
859 < #ifdef IS_MPI    
860 <    int temp;
859 >    usesDirectionalAtoms_ = usesDirectional;
860 >    usesMetallicAtoms_ = usesMetallic;
861 >    usesElectrostaticAtoms_ = usesElectrostatic;
862 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
863  
864 <    temp = usePBC;
865 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
864 > #endif
865 >    
866 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
867 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
868 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
869 >  }
870  
706    temp = useDirectionalAtom;
707    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
871  
872 <    temp = useLennardJones;
873 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
872 >  vector<int> SimInfo::getGlobalAtomIndices() {
873 >    SimInfo::MoleculeIterator mi;
874 >    Molecule* mol;
875 >    Molecule::AtomIterator ai;
876 >    Atom* atom;
877  
878 <    temp = useElectrostatics;
713 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
714 <
715 <    temp = useCharge;
716 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
717 <
718 <    temp = useDipole;
719 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
720 <
721 <    temp = useSticky;
722 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
723 <
724 <    temp = useStickyPower;
725 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
878 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
879      
880 <    temp = useGayBerne;
881 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
880 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
881 >      
882 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
883 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
884 >      }
885 >    }
886 >    return GlobalAtomIndices;
887 >  }
888  
730    temp = useEAM;
731    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
889  
890 <    temp = useSC;
891 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
892 <    
893 <    temp = useShape;
894 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
890 >  vector<int> SimInfo::getGlobalGroupIndices() {
891 >    SimInfo::MoleculeIterator mi;
892 >    Molecule* mol;
893 >    Molecule::CutoffGroupIterator ci;
894 >    CutoffGroup* cg;
895  
896 <    temp = useFLARB;
897 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
898 <
742 <    temp = useRF;
743 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
744 <
745 <    temp = useSF;
746 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
747 <
748 < #endif
749 <
750 <    fInfo_.SIM_uses_PBC = usePBC;    
751 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
752 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
753 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
754 <    fInfo_.SIM_uses_Charges = useCharge;
755 <    fInfo_.SIM_uses_Dipoles = useDipole;
756 <    fInfo_.SIM_uses_Sticky = useSticky;
757 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
758 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
759 <    fInfo_.SIM_uses_EAM = useEAM;
760 <    fInfo_.SIM_uses_SC = useSC;
761 <    fInfo_.SIM_uses_Shapes = useShape;
762 <    fInfo_.SIM_uses_FLARB = useFLARB;
763 <    fInfo_.SIM_uses_RF = useRF;
764 <    fInfo_.SIM_uses_SF = useSF;
765 <
766 <    if( myMethod == "REACTION_FIELD") {
896 >    vector<int> GlobalGroupIndices;
897 >    
898 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
899        
900 <      if (simParams_->haveDielectric()) {
901 <        fInfo_.dielect = simParams_->getDielectric();
902 <      } else {
903 <        sprintf(painCave.errMsg,
904 <                "SimSetup Error: No Dielectric constant was set.\n"
905 <                "\tYou are trying to use Reaction Field without"
774 <                "\tsetting a dielectric constant!\n");
775 <        painCave.isFatal = 1;
776 <        simError();
777 <      }      
900 >      //local index of cutoff group is trivial, it only depends on the
901 >      //order of travesing
902 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
903 >           cg = mol->nextCutoffGroup(ci)) {
904 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
905 >      }        
906      }
907 <
907 >    return GlobalGroupIndices;
908    }
909  
782  void SimInfo::setupFortranSim() {
783    int isError;
784    int nExclude;
785    std::vector<int> fortranGlobalGroupMembership;
786    
787    nExclude = exclude_.getSize();
788    isError = 0;
910  
911 <    //globalGroupMembership_ is filled by SimCreator    
791 <    for (int i = 0; i < nGlobalAtoms_; i++) {
792 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
793 <    }
911 >  void SimInfo::prepareTopology() {
912  
913      //calculate mass ratio of cutoff group
796    std::vector<double> mfact;
914      SimInfo::MoleculeIterator mi;
915      Molecule* mol;
916      Molecule::CutoffGroupIterator ci;
917      CutoffGroup* cg;
918      Molecule::AtomIterator ai;
919      Atom* atom;
920 <    double totalMass;
920 >    RealType totalMass;
921  
922 <    //to avoid memory reallocation, reserve enough space for mfact
923 <    mfact.reserve(getNCutoffGroups());
922 >    /**
923 >     * The mass factor is the relative mass of an atom to the total
924 >     * mass of the cutoff group it belongs to.  By default, all atoms
925 >     * are their own cutoff groups, and therefore have mass factors of
926 >     * 1.  We need some special handling for massless atoms, which
927 >     * will be treated as carrying the entire mass of the cutoff
928 >     * group.
929 >     */
930 >    massFactors_.clear();
931 >    massFactors_.resize(getNAtoms(), 1.0);
932      
933      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
934 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
934 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
935 >           cg = mol->nextCutoffGroup(ci)) {
936  
937          totalMass = cg->getMass();
938          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
939            // Check for massless groups - set mfact to 1 if true
940 <          if (totalMass != 0)
941 <            mfact.push_back(atom->getMass()/totalMass);
940 >          if (totalMass != 0)
941 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
942            else
943 <            mfact.push_back( 1.0 );
943 >            massFactors_[atom->getLocalIndex()] = 1.0;
944          }
819
945        }      
946      }
947  
948 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
824 <    std::vector<int> identArray;
948 >    // Build the identArray_ and regions_
949  
950 <    //to avoid memory reallocation, reserve enough space identArray
951 <    identArray.reserve(getNAtoms());
952 <    
953 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
950 >    identArray_.clear();
951 >    identArray_.reserve(getNAtoms());  
952 >    regions_.clear();
953 >    regions_.reserve(getNAtoms());
954 >
955 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
956 >      int reg = mol->getRegion();      
957        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
958 <        identArray.push_back(atom->getIdent());
958 >        identArray_.push_back(atom->getIdent());
959 >        regions_.push_back(reg);
960        }
961      }    
962 <
963 <    //fill molMembershipArray
836 <    //molMembershipArray is filled by SimCreator    
837 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
838 <    for (int i = 0; i < nGlobalAtoms_; i++) {
839 <      molMembershipArray[i] = globalMolMembership_[i] + 1;
840 <    }
841 <    
842 <    //setup fortran simulation
843 <    int nGlobalExcludes = 0;
844 <    int* globalExcludes = NULL;
845 <    int* excludeList = exclude_.getExcludeList();
846 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
847 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
848 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
849 <
850 <    if( isError ){
851 <
852 <      sprintf( painCave.errMsg,
853 <               "There was an error setting the simulation information in fortran.\n" );
854 <      painCave.isFatal = 1;
855 <      painCave.severity = OOPSE_ERROR;
856 <      simError();
857 <    }
858 <
859 < #ifdef IS_MPI
860 <    sprintf( checkPointMsg,
861 <             "succesfully sent the simulation information to fortran.\n");
862 <    MPIcheckPoint();
863 < #endif // is_mpi
864 <  }
865 <
866 <
867 < #ifdef IS_MPI
868 <  void SimInfo::setupFortranParallel() {
869 <    
870 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
871 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
872 <    std::vector<int> localToGlobalCutoffGroupIndex;
873 <    SimInfo::MoleculeIterator mi;
874 <    Molecule::AtomIterator ai;
875 <    Molecule::CutoffGroupIterator ci;
876 <    Molecule* mol;
877 <    Atom* atom;
878 <    CutoffGroup* cg;
879 <    mpiSimData parallelData;
880 <    int isError;
881 <
882 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
883 <
884 <      //local index(index in DataStorge) of atom is important
885 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
886 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
887 <      }
888 <
889 <      //local index of cutoff group is trivial, it only depends on the order of travesing
890 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
891 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
892 <      }        
893 <        
894 <    }
895 <
896 <    //fill up mpiSimData struct
897 <    parallelData.nMolGlobal = getNGlobalMolecules();
898 <    parallelData.nMolLocal = getNMolecules();
899 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
900 <    parallelData.nAtomsLocal = getNAtoms();
901 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
902 <    parallelData.nGroupsLocal = getNCutoffGroups();
903 <    parallelData.myNode = worldRank;
904 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
905 <
906 <    //pass mpiSimData struct and index arrays to fortran
907 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
908 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
909 <                    &localToGlobalCutoffGroupIndex[0], &isError);
910 <
911 <    if (isError) {
912 <      sprintf(painCave.errMsg,
913 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
914 <      painCave.isFatal = 1;
915 <      simError();
916 <    }
917 <
918 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
919 <    MPIcheckPoint();
920 <
921 <
922 <  }
923 <
924 < #endif
925 <
926 <  double SimInfo::calcMaxCutoffRadius() {
927 <
928 <
929 <    std::set<AtomType*> atomTypes;
930 <    std::set<AtomType*>::iterator i;
931 <    std::vector<double> cutoffRadius;
932 <
933 <    //get the unique atom types
934 <    atomTypes = getUniqueAtomTypes();
935 <
936 <    //query the max cutoff radius among these atom types
937 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
938 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
939 <    }
940 <
941 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
942 < #ifdef IS_MPI
943 <    //pick the max cutoff radius among the processors
944 < #endif
945 <
946 <    return maxCutoffRadius;
947 <  }
948 <
949 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
950 <    
951 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
952 <        
953 <      if (!simParams_->haveCutoffRadius()){
954 <        sprintf(painCave.errMsg,
955 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
956 <                "\tOOPSE will use a default value of 15.0 angstroms"
957 <                "\tfor the cutoffRadius.\n");
958 <        painCave.isFatal = 0;
959 <        simError();
960 <        rcut = 15.0;
961 <      } else{
962 <        rcut = simParams_->getCutoffRadius();
963 <      }
964 <
965 <      if (!simParams_->haveSwitchingRadius()){
966 <        sprintf(painCave.errMsg,
967 <                "SimCreator Warning: No value was set for switchingRadius.\n"
968 <                "\tOOPSE will use a default value of\n"
969 <                "\t0.85 * cutoffRadius for the switchingRadius\n");
970 <        painCave.isFatal = 0;
971 <        simError();
972 <        rsw = 0.85 * rcut;
973 <      } else{
974 <        rsw = simParams_->getSwitchingRadius();
975 <      }
976 <
977 <    } else {
978 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
979 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
980 <        
981 <      if (simParams_->haveCutoffRadius()) {
982 <        rcut = simParams_->getCutoffRadius();
983 <      } else {
984 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
985 <        rcut = calcMaxCutoffRadius();
986 <      }
987 <
988 <      if (simParams_->haveSwitchingRadius()) {
989 <        rsw  = simParams_->getSwitchingRadius();
990 <      } else {
991 <        rsw = rcut;
992 <      }
993 <    
994 <    }
995 <  }
996 <
997 <  void SimInfo::setupCutoff() {    
998 <    getCutoff(rcut_, rsw_);    
999 <    double rnblist = rcut_ + 1; // skin of neighbor list
1000 <
1001 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1002 <    
1003 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
1004 <    if (simParams_->haveCutoffPolicy()) {
1005 <      std::string myPolicy = simParams_->getCutoffPolicy();
1006 <      toUpper(myPolicy);
1007 <      if (myPolicy == "MIX") {
1008 <        cp = MIX_CUTOFF_POLICY;
1009 <      } else {
1010 <        if (myPolicy == "MAX") {
1011 <          cp = MAX_CUTOFF_POLICY;
1012 <        } else {
1013 <          if (myPolicy == "TRADITIONAL") {            
1014 <            cp = TRADITIONAL_CUTOFF_POLICY;
1015 <          } else {
1016 <            // throw error        
1017 <            sprintf( painCave.errMsg,
1018 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1019 <            painCave.isFatal = 1;
1020 <            simError();
1021 <          }    
1022 <        }          
1023 <      }
1024 <    }
1025 <
1026 <
1027 <    if (simParams_->haveSkinThickness()) {
1028 <      double skinThickness = simParams_->getSkinThickness();
1029 <    }
1030 <
1031 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
1032 <    // also send cutoff notification to electrostatics
1033 <    setElectrostaticCutoffRadius(&rcut_, &rsw_);
962 >      
963 >    topologyDone_ = true;
964    }
965  
1036  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1037    
1038    int errorOut;
1039    int esm =  NONE;
1040    int sm = UNDAMPED;
1041    double alphaVal;
1042    double dielectric;
1043
1044    errorOut = isError;
1045    alphaVal = simParams_->getDampingAlpha();
1046    dielectric = simParams_->getDielectric();
1047
1048    if (simParams_->haveElectrostaticSummationMethod()) {
1049      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1050      toUpper(myMethod);
1051      if (myMethod == "NONE") {
1052        esm = NONE;
1053      } else {
1054        if (myMethod == "SWITCHING_FUNCTION") {
1055          esm = SWITCHING_FUNCTION;
1056        } else {
1057          if (myMethod == "SHIFTED_POTENTIAL") {
1058            esm = SHIFTED_POTENTIAL;
1059          } else {
1060            if (myMethod == "SHIFTED_FORCE") {            
1061              esm = SHIFTED_FORCE;
1062            } else {
1063              if (myMethod == "REACTION_FIELD") {            
1064                esm = REACTION_FIELD;
1065              } else {
1066                // throw error        
1067                sprintf( painCave.errMsg,
1068                         "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
1069                painCave.isFatal = 1;
1070                simError();
1071              }    
1072            }          
1073          }
1074        }
1075      }
1076    }
1077    
1078    if (simParams_->haveElectrostaticScreeningMethod()) {
1079      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1080      toUpper(myScreen);
1081      if (myScreen == "UNDAMPED") {
1082        sm = UNDAMPED;
1083      } else {
1084        if (myScreen == "DAMPED") {
1085          sm = DAMPED;
1086          if (!simParams_->haveDampingAlpha()) {
1087            //throw error
1088            sprintf( painCave.errMsg,
1089                     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
1090            painCave.isFatal = 0;
1091            simError();
1092          }
1093        } else {
1094          // throw error        
1095          sprintf( painCave.errMsg,
1096                   "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
1097          painCave.isFatal = 1;
1098          simError();
1099        }
1100      }
1101    }
1102    
1103    // let's pass some summation method variables to fortran
1104    setElectrostaticSummationMethod( &esm );
1105    setScreeningMethod( &sm );
1106    setDampingAlpha( &alphaVal );
1107    setReactionFieldDielectric( &dielectric );
1108    initFortranFF( &esm, &errorOut );
1109  }
1110
1111  void SimInfo::setupSwitchingFunction() {    
1112    int ft = CUBIC;
1113
1114    if (simParams_->haveSwitchingFunctionType()) {
1115      std::string funcType = simParams_->getSwitchingFunctionType();
1116      toUpper(funcType);
1117      if (funcType == "CUBIC") {
1118        ft = CUBIC;
1119      } else {
1120        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1121          ft = FIFTH_ORDER_POLY;
1122        } else {
1123          // throw error        
1124          sprintf( painCave.errMsg,
1125                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1126          painCave.isFatal = 1;
1127          simError();
1128        }          
1129      }
1130    }
1131
1132    // send switching function notification to switcheroo
1133    setFunctionType(&ft);
1134
1135  }
1136
966    void SimInfo::addProperty(GenericData* genData) {
967      properties_.addProperty(genData);  
968    }
969  
970 <  void SimInfo::removeProperty(const std::string& propName) {
970 >  void SimInfo::removeProperty(const string& propName) {
971      properties_.removeProperty(propName);  
972    }
973  
# Line 1146 | Line 975 | namespace oopse {
975      properties_.clearProperties();
976    }
977  
978 <  std::vector<std::string> SimInfo::getPropertyNames() {
978 >  vector<string> SimInfo::getPropertyNames() {
979      return properties_.getPropertyNames();  
980    }
981        
982 <  std::vector<GenericData*> SimInfo::getProperties() {
982 >  vector<GenericData*> SimInfo::getProperties() {
983      return properties_.getProperties();
984    }
985  
986 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
986 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
987      return properties_.getPropertyByName(propName);
988    }
989  
# Line 1165 | Line 994 | namespace oopse {
994      delete sman_;
995      sman_ = sman;
996  
1168    Molecule* mol;
1169    RigidBody* rb;
1170    Atom* atom;
997      SimInfo::MoleculeIterator mi;
998 +    Molecule::AtomIterator ai;
999      Molecule::RigidBodyIterator rbIter;
1000 <    Molecule::AtomIterator atomIter;;
1000 >    Molecule::CutoffGroupIterator cgIter;
1001 >    Molecule::BondIterator bondIter;
1002 >    Molecule::BendIterator bendIter;
1003 >    Molecule::TorsionIterator torsionIter;
1004 >    Molecule::InversionIterator inversionIter;
1005  
1006 +    Molecule* mol;
1007 +    Atom* atom;
1008 +    RigidBody* rb;
1009 +    CutoffGroup* cg;
1010 +    Bond* bond;
1011 +    Bend* bend;
1012 +    Torsion* torsion;
1013 +    Inversion* inversion;    
1014 +
1015      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1016          
1017 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1017 >      for (atom = mol->beginAtom(ai); atom != NULL;
1018 >           atom = mol->nextAtom(ai)) {
1019          atom->setSnapshotManager(sman_);
1020 <      }
1021 <        
1022 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1020 >      }        
1021 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1022 >           rb = mol->nextRigidBody(rbIter)) {
1023          rb->setSnapshotManager(sman_);
1024        }
1025 <    }    
1026 <    
1025 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1026 >           cg = mol->nextCutoffGroup(cgIter)) {
1027 >        cg->setSnapshotManager(sman_);
1028 >      }
1029 >      for (bond = mol->beginBond(bondIter); bond != NULL;
1030 >           bond = mol->nextBond(bondIter)) {
1031 >        bond->setSnapshotManager(sman_);
1032 >      }
1033 >      for (bend = mol->beginBend(bendIter); bend != NULL;
1034 >           bend = mol->nextBend(bendIter)) {
1035 >        bend->setSnapshotManager(sman_);
1036 >      }
1037 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
1038 >           torsion = mol->nextTorsion(torsionIter)) {
1039 >        torsion->setSnapshotManager(sman_);
1040 >      }
1041 >      for (inversion = mol->beginInversion(inversionIter); inversion != NULL;
1042 >           inversion = mol->nextInversion(inversionIter)) {
1043 >        inversion->setSnapshotManager(sman_);
1044 >      }
1045 >    }
1046    }
1047  
1188  Vector3d SimInfo::getComVel(){
1189    SimInfo::MoleculeIterator i;
1190    Molecule* mol;
1048  
1049 <    Vector3d comVel(0.0);
1193 <    double totalMass = 0.0;
1194 <    
1195 <
1196 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1197 <      double mass = mol->getMass();
1198 <      totalMass += mass;
1199 <      comVel += mass * mol->getComVel();
1200 <    }  
1049 >  ostream& operator <<(ostream& o, SimInfo& info) {
1050  
1202 #ifdef IS_MPI
1203    double tmpMass = totalMass;
1204    Vector3d tmpComVel(comVel);    
1205    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1206    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1207 #endif
1208
1209    comVel /= totalMass;
1210
1211    return comVel;
1212  }
1213
1214  Vector3d SimInfo::getCom(){
1215    SimInfo::MoleculeIterator i;
1216    Molecule* mol;
1217
1218    Vector3d com(0.0);
1219    double totalMass = 0.0;
1220    
1221    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1222      double mass = mol->getMass();
1223      totalMass += mass;
1224      com += mass * mol->getCom();
1225    }  
1226
1227 #ifdef IS_MPI
1228    double tmpMass = totalMass;
1229    Vector3d tmpCom(com);    
1230    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1231    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1232 #endif
1233
1234    com /= totalMass;
1235
1236    return com;
1237
1238  }        
1239
1240  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1241
1051      return o;
1052    }
1053    
1054 <  
1055 <   /*
1056 <   Returns center of mass and center of mass velocity in one function call.
1057 <   */
1058 <  
1059 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1060 <      SimInfo::MoleculeIterator i;
1061 <      Molecule* mol;
1062 <      
1063 <    
1064 <      double totalMass = 0.0;
1065 <    
1054 >  
1055 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1056 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1057 >      sprintf(painCave.errMsg,
1058 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1059 >              "\tindex exceeds number of known objects!\n");
1060 >      painCave.isFatal = 1;
1061 >      simError();
1062 >      return NULL;
1063 >    } else
1064 >      return IOIndexToIntegrableObject.at(index);
1065 >  }
1066 >  
1067 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1068 >    IOIndexToIntegrableObject= v;
1069 >  }
1070  
1071 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1072 <         double mass = mol->getMass();
1260 <         totalMass += mass;
1261 <         com += mass * mol->getCom();
1262 <         comVel += mass * mol->getComVel();          
1263 <      }  
1264 <      
1071 >  int SimInfo::getNGlobalConstraints() {
1072 >    int nGlobalConstraints;
1073   #ifdef IS_MPI
1074 <      double tmpMass = totalMass;
1075 <      Vector3d tmpCom(com);  
1076 <      Vector3d tmpComVel(comVel);
1077 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1270 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1271 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1074 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1075 >                              MPI::INT, MPI::SUM);
1076 > #else
1077 >    nGlobalConstraints =  nConstraints_;
1078   #endif
1079 <      
1080 <      com /= totalMass;
1275 <      comVel /= totalMass;
1276 <   }        
1277 <  
1278 <   /*
1279 <   Return intertia tensor for entire system and angular momentum Vector.
1079 >    return nGlobalConstraints;
1080 >  }
1081  
1082 + }//end namespace OpenMD
1083  
1282       [  Ixx -Ixy  -Ixz ]
1283  J =| -Iyx  Iyy  -Iyz |
1284       [ -Izx -Iyz   Izz ]
1285    */
1286
1287   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1288      
1289
1290      double xx = 0.0;
1291      double yy = 0.0;
1292      double zz = 0.0;
1293      double xy = 0.0;
1294      double xz = 0.0;
1295      double yz = 0.0;
1296      Vector3d com(0.0);
1297      Vector3d comVel(0.0);
1298      
1299      getComAll(com, comVel);
1300      
1301      SimInfo::MoleculeIterator i;
1302      Molecule* mol;
1303      
1304      Vector3d thisq(0.0);
1305      Vector3d thisv(0.0);
1306
1307      double thisMass = 0.0;
1308    
1309      
1310      
1311  
1312      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1313        
1314         thisq = mol->getCom()-com;
1315         thisv = mol->getComVel()-comVel;
1316         thisMass = mol->getMass();
1317         // Compute moment of intertia coefficients.
1318         xx += thisq[0]*thisq[0]*thisMass;
1319         yy += thisq[1]*thisq[1]*thisMass;
1320         zz += thisq[2]*thisq[2]*thisMass;
1321        
1322         // compute products of intertia
1323         xy += thisq[0]*thisq[1]*thisMass;
1324         xz += thisq[0]*thisq[2]*thisMass;
1325         yz += thisq[1]*thisq[2]*thisMass;
1326            
1327         angularMomentum += cross( thisq, thisv ) * thisMass;
1328            
1329      }  
1330      
1331      
1332      inertiaTensor(0,0) = yy + zz;
1333      inertiaTensor(0,1) = -xy;
1334      inertiaTensor(0,2) = -xz;
1335      inertiaTensor(1,0) = -xy;
1336      inertiaTensor(1,1) = xx + zz;
1337      inertiaTensor(1,2) = -yz;
1338      inertiaTensor(2,0) = -xz;
1339      inertiaTensor(2,1) = -yz;
1340      inertiaTensor(2,2) = xx + yy;
1341      
1342 #ifdef IS_MPI
1343      Mat3x3d tmpI(inertiaTensor);
1344      Vector3d tmpAngMom;
1345      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1346      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1347 #endif
1348              
1349      return;
1350   }
1351
1352   //Returns the angular momentum of the system
1353   Vector3d SimInfo::getAngularMomentum(){
1354      
1355      Vector3d com(0.0);
1356      Vector3d comVel(0.0);
1357      Vector3d angularMomentum(0.0);
1358      
1359      getComAll(com,comVel);
1360      
1361      SimInfo::MoleculeIterator i;
1362      Molecule* mol;
1363      
1364      Vector3d thisr(0.0);
1365      Vector3d thisp(0.0);
1366      
1367      double thisMass;
1368      
1369      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1370        thisMass = mol->getMass();
1371        thisr = mol->getCom()-com;
1372        thisp = (mol->getComVel()-comVel)*thisMass;
1373        
1374        angularMomentum += cross( thisr, thisp );
1375        
1376      }  
1377      
1378 #ifdef IS_MPI
1379      Vector3d tmpAngMom;
1380      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1381 #endif
1382      
1383      return angularMomentum;
1384   }
1385  
1386  
1387 }//end namespace oopse
1388

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 749 by tim, Wed Nov 16 23:10:02 2005 UTC vs.
Revision 1953 by gezelter, Thu Dec 5 18:19:26 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines