ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 1241 by gezelter, Fri Apr 25 15:14:47 2008 UTC vs.
Revision 1929 by gezelter, Mon Aug 19 13:12:00 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
63 <
71 <
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
75 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 <    std::map<int, std::set<int> >::iterator i = container.find(index);
80 <    std::set<int> result;
81 <    if (i != container.end()) {
82 <        result = i->second;
83 <    }
84 <
85 <    return result;
86 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false),
79 <    useAtomicVirial_(true) {
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      if ( (*i)->haveRegion() ) {        
95 >        molStamp->setRegion( (*i)->getRegion() );
96 >      } else {
97 >        // set the region to a disallowed value:
98 >        molStamp->setRegion( -1 );
99 >      }
100  
101 <      MoleculeStamp* molStamp;
99 <      int nMolWithSameStamp;
100 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
101 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
102 <      CutoffGroupStamp* cgStamp;    
103 <      RigidBodyStamp* rbStamp;
104 <      int nRigidAtoms = 0;
105 <      std::vector<Component*> components = simParams->getComponents();
101 >      nMolWithSameStamp = (*i)->getNMol();
102        
103 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
104 <        molStamp = (*i)->getMoleculeStamp();
105 <        nMolWithSameStamp = (*i)->getNMol();
106 <        
107 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
108 <
109 <        //calculate atoms in molecules
110 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
111 <
112 <        //calculate atoms in cutoff groups
113 <        int nAtomsInGroups = 0;
114 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119 <        
120 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 <          cgStamp = molStamp->getCutoffGroupStamp(j);
122 <          nAtomsInGroups += cgStamp->getNMembers();
123 <        }
124 <
125 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
126 <
127 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
128 <
129 <        //calculate atoms in rigid bodies
130 <        int nAtomsInRigidBodies = 0;
131 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
132 <        
133 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
134 <          rbStamp = molStamp->getRigidBodyStamp(j);
135 <          nAtomsInRigidBodies += rbStamp->getNMembers();
136 <        }
137 <
138 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
139 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
140 <        
103 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
104 >      
105 >      //calculate atoms in molecules
106 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
107 >      
108 >      //calculate atoms in cutoff groups
109 >      int nAtomsInGroups = 0;
110 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
111 >      
112 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
113 >        cgStamp = molStamp->getCutoffGroupStamp(j);
114 >        nAtomsInGroups += cgStamp->getNMembers();
115        }
116 <
117 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
118 <      //group therefore the total number of cutoff groups in the system is
119 <      //equal to the total number of atoms minus number of atoms belong to
120 <      //cutoff group defined in meta-data file plus the number of cutoff
121 <      //groups defined in meta-data file
122 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
123 <
124 <      //every free atom (atom does not belong to rigid bodies) is an
125 <      //integrable object therefore the total number of integrable objects
126 <      //in the system is equal to the total number of atoms minus number of
127 <      //atoms belong to rigid body defined in meta-data file plus the number
128 <      //of rigid bodies defined in meta-data file
129 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
130 <                                                + nGlobalRigidBodies_;
131 <  
132 <      nGlobalMols_ = molStampIds_.size();
159 <      molToProcMap_.resize(nGlobalMols_);
116 >      
117 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
118 >      
119 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
120 >      
121 >      //calculate atoms in rigid bodies
122 >      int nAtomsInRigidBodies = 0;
123 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
124 >      
125 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
126 >        rbStamp = molStamp->getRigidBodyStamp(j);
127 >        nAtomsInRigidBodies += rbStamp->getNMembers();
128 >      }
129 >      
130 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
131 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
132 >      
133      }
134 +    
135 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
136 +    //group therefore the total number of cutoff groups in the system is
137 +    //equal to the total number of atoms minus number of atoms belong to
138 +    //cutoff group defined in meta-data file plus the number of cutoff
139 +    //groups defined in meta-data file
140  
141 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
142 +    
143 +    //every free atom (atom does not belong to rigid bodies) is an
144 +    //integrable object therefore the total number of integrable objects
145 +    //in the system is equal to the total number of atoms minus number of
146 +    //atoms belong to rigid body defined in meta-data file plus the number
147 +    //of rigid bodies defined in meta-data file
148 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 +      + nGlobalRigidBodies_;
150 +    
151 +    nGlobalMols_ = molStampIds_.size();
152 +    molToProcMap_.resize(nGlobalMols_);
153 +  }
154 +  
155    SimInfo::~SimInfo() {
156 <    std::map<int, Molecule*>::iterator i;
156 >    map<int, Molecule*>::iterator i;
157      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158        delete i->second;
159      }
# Line 171 | Line 164 | namespace oopse {
164      delete forceField_;
165    }
166  
174  int SimInfo::getNGlobalConstraints() {
175    int nGlobalConstraints;
176 #ifdef IS_MPI
177    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178                  MPI_COMM_WORLD);    
179 #else
180    nGlobalConstraints =  nConstraints_;
181 #endif
182    return nGlobalConstraints;
183  }
167  
168    bool SimInfo::addMolecule(Molecule* mol) {
169      MoleculeIterator i;
170 <
170 >    
171      i = molecules_.find(mol->getGlobalIndex());
172      if (i == molecules_.end() ) {
173 <
174 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 <        
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176        nAtoms_ += mol->getNAtoms();
177        nBonds_ += mol->getNBonds();
178        nBends_ += mol->getNBends();
179        nTorsions_ += mol->getNTorsions();
180 +      nInversions_ += mol->getNInversions();
181        nRigidBodies_ += mol->getNRigidBodies();
182        nIntegrableObjects_ += mol->getNIntegrableObjects();
183        nCutoffGroups_ += mol->getNCutoffGroups();
184        nConstraints_ += mol->getNConstraintPairs();
185 <
186 <      addExcludePairs(mol);
187 <        
185 >      
186 >      addInteractionPairs(mol);
187 >      
188        return true;
189      } else {
190        return false;
191      }
192    }
193 <
193 >  
194    bool SimInfo::removeMolecule(Molecule* mol) {
195      MoleculeIterator i;
196      i = molecules_.find(mol->getGlobalIndex());
# Line 219 | Line 203 | namespace oopse {
203        nBonds_ -= mol->getNBonds();
204        nBends_ -= mol->getNBends();
205        nTorsions_ -= mol->getNTorsions();
206 +      nInversions_ -= mol->getNInversions();
207        nRigidBodies_ -= mol->getNRigidBodies();
208        nIntegrableObjects_ -= mol->getNIntegrableObjects();
209        nCutoffGroups_ -= mol->getNCutoffGroups();
210        nConstraints_ -= mol->getNConstraintPairs();
211  
212 <      removeExcludePairs(mol);
212 >      removeInteractionPairs(mol);
213        molecules_.erase(mol->getGlobalIndex());
214  
215        delete mol;
# Line 233 | Line 218 | namespace oopse {
218      } else {
219        return false;
220      }
236
237
221    }    
222  
223          
# Line 250 | Line 233 | namespace oopse {
233  
234  
235    void SimInfo::calcNdf() {
236 <    int ndf_local;
236 >    int ndf_local, nfq_local;
237      MoleculeIterator i;
238 <    std::vector<StuntDouble*>::iterator j;
238 >    vector<StuntDouble*>::iterator j;
239 >    vector<Atom*>::iterator k;
240 >
241      Molecule* mol;
242 <    StuntDouble* integrableObject;
242 >    StuntDouble* sd;
243 >    Atom* atom;
244  
245      ndf_local = 0;
246 +    nfq_local = 0;
247      
248      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
262      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263           integrableObject = mol->nextIntegrableObject(j)) {
249  
250 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
251 +           sd = mol->nextIntegrableObject(j)) {
252 +
253          ndf_local += 3;
254  
255 <        if (integrableObject->isDirectional()) {
256 <          if (integrableObject->isLinear()) {
255 >        if (sd->isDirectional()) {
256 >          if (sd->isLinear()) {
257              ndf_local += 2;
258            } else {
259              ndf_local += 3;
260            }
261          }
262 <            
262 >      }
263 >
264 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
265 >           atom = mol->nextFluctuatingCharge(k)) {
266 >        if (atom->isFluctuatingCharge()) {
267 >          nfq_local++;
268 >        }
269        }
270      }
271      
272 +    ndfLocal_ = ndf_local;
273 +
274      // n_constraints is local, so subtract them on each processor
275      ndf_local -= nConstraints_;
276  
277   #ifdef IS_MPI
278 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
278 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
279 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
280 >                              MPI::INT, MPI::SUM);
281   #else
282      ndf_ = ndf_local;
283 +    nGlobalFluctuatingCharges_ = nfq_local;
284   #endif
285  
286      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 292 | Line 291 | namespace oopse {
291  
292    int SimInfo::getFdf() {
293   #ifdef IS_MPI
294 <    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
294 >    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
295   #else
296      fdf_ = fdf_local;
297   #endif
298      return fdf_;
299    }
300 +  
301 +  unsigned int SimInfo::getNLocalCutoffGroups(){
302 +    int nLocalCutoffAtoms = 0;
303 +    Molecule* mol;
304 +    MoleculeIterator mi;
305 +    CutoffGroup* cg;
306 +    Molecule::CutoffGroupIterator ci;
307      
308 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
309 +      
310 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
311 +           cg = mol->nextCutoffGroup(ci)) {
312 +        nLocalCutoffAtoms += cg->getNumAtom();
313 +        
314 +      }        
315 +    }
316 +    
317 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
318 +  }
319 +    
320    void SimInfo::calcNdfRaw() {
321      int ndfRaw_local;
322  
323      MoleculeIterator i;
324 <    std::vector<StuntDouble*>::iterator j;
324 >    vector<StuntDouble*>::iterator j;
325      Molecule* mol;
326 <    StuntDouble* integrableObject;
326 >    StuntDouble* sd;
327  
328      // Raw degrees of freedom that we have to set
329      ndfRaw_local = 0;
330      
331      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
314      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
315           integrableObject = mol->nextIntegrableObject(j)) {
332  
333 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
334 +           sd = mol->nextIntegrableObject(j)) {
335 +
336          ndfRaw_local += 3;
337  
338 <        if (integrableObject->isDirectional()) {
339 <          if (integrableObject->isLinear()) {
338 >        if (sd->isDirectional()) {
339 >          if (sd->isLinear()) {
340              ndfRaw_local += 2;
341            } else {
342              ndfRaw_local += 3;
# Line 328 | Line 347 | namespace oopse {
347      }
348      
349   #ifdef IS_MPI
350 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
350 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
351   #else
352      ndfRaw_ = ndfRaw_local;
353   #endif
# Line 341 | Line 360 | namespace oopse {
360  
361  
362   #ifdef IS_MPI
363 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
363 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
364 >                              MPI::INT, MPI::SUM);
365   #else
366      ndfTrans_ = ndfTrans_local;
367   #endif
# Line 350 | Line 370 | namespace oopse {
370  
371    }
372  
373 <  void SimInfo::addExcludePairs(Molecule* mol) {
374 <    std::vector<Bond*>::iterator bondIter;
375 <    std::vector<Bend*>::iterator bendIter;
376 <    std::vector<Torsion*>::iterator torsionIter;
373 >  void SimInfo::addInteractionPairs(Molecule* mol) {
374 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
375 >    vector<Bond*>::iterator bondIter;
376 >    vector<Bend*>::iterator bendIter;
377 >    vector<Torsion*>::iterator torsionIter;
378 >    vector<Inversion*>::iterator inversionIter;
379      Bond* bond;
380      Bend* bend;
381      Torsion* torsion;
382 +    Inversion* inversion;
383      int a;
384      int b;
385      int c;
386      int d;
387  
388 <    std::map<int, std::set<int> > atomGroups;
388 >    // atomGroups can be used to add special interaction maps between
389 >    // groups of atoms that are in two separate rigid bodies.
390 >    // However, most site-site interactions between two rigid bodies
391 >    // are probably not special, just the ones between the physically
392 >    // bonded atoms.  Interactions *within* a single rigid body should
393 >    // always be excluded.  These are done at the bottom of this
394 >    // function.
395  
396 +    map<int, set<int> > atomGroups;
397      Molecule::RigidBodyIterator rbIter;
398      RigidBody* rb;
399      Molecule::IntegrableObjectIterator ii;
400 <    StuntDouble* integrableObject;
400 >    StuntDouble* sd;
401      
402 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
403 <           integrableObject = mol->nextIntegrableObject(ii)) {
404 <
405 <      if (integrableObject->isRigidBody()) {
406 <          rb = static_cast<RigidBody*>(integrableObject);
407 <          std::vector<Atom*> atoms = rb->getAtoms();
408 <          std::set<int> rigidAtoms;
409 <          for (int i = 0; i < atoms.size(); ++i) {
410 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
411 <          }
412 <          for (int i = 0; i < atoms.size(); ++i) {
413 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
414 <          }      
402 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
403 >         sd = mol->nextIntegrableObject(ii)) {
404 >      
405 >      if (sd->isRigidBody()) {
406 >        rb = static_cast<RigidBody*>(sd);
407 >        vector<Atom*> atoms = rb->getAtoms();
408 >        set<int> rigidAtoms;
409 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
410 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
411 >        }
412 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
413 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
414 >        }      
415        } else {
416 <        std::set<int> oneAtomSet;
417 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
418 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
416 >        set<int> oneAtomSet;
417 >        oneAtomSet.insert(sd->getGlobalIndex());
418 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
419        }
420      }  
421 +          
422 +    for (bond= mol->beginBond(bondIter); bond != NULL;
423 +         bond = mol->nextBond(bondIter)) {
424  
392    
393    
394    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
425        a = bond->getAtomA()->getGlobalIndex();
426 <      b = bond->getAtomB()->getGlobalIndex();        
427 <      exclude_.addPair(a, b);
426 >      b = bond->getAtomB()->getGlobalIndex();  
427 >
428 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
429 >        oneTwoInteractions_.addPair(a, b);
430 >      } else {
431 >        excludedInteractions_.addPair(a, b);
432 >      }
433      }
434  
435 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
435 >    for (bend= mol->beginBend(bendIter); bend != NULL;
436 >         bend = mol->nextBend(bendIter)) {
437 >
438        a = bend->getAtomA()->getGlobalIndex();
439        b = bend->getAtomB()->getGlobalIndex();        
440        c = bend->getAtomC()->getGlobalIndex();
404      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
405      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
406      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
407
408      exclude_.addPairs(rigidSetA, rigidSetB);
409      exclude_.addPairs(rigidSetA, rigidSetC);
410      exclude_.addPairs(rigidSetB, rigidSetC);
441        
442 <      //exclude_.addPair(a, b);
443 <      //exclude_.addPair(a, c);
444 <      //exclude_.addPair(b, c);        
442 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
443 >        oneTwoInteractions_.addPair(a, b);      
444 >        oneTwoInteractions_.addPair(b, c);
445 >      } else {
446 >        excludedInteractions_.addPair(a, b);
447 >        excludedInteractions_.addPair(b, c);
448 >      }
449 >
450 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
451 >        oneThreeInteractions_.addPair(a, c);      
452 >      } else {
453 >        excludedInteractions_.addPair(a, c);
454 >      }
455      }
456  
457 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
457 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
458 >         torsion = mol->nextTorsion(torsionIter)) {
459 >
460        a = torsion->getAtomA()->getGlobalIndex();
461        b = torsion->getAtomB()->getGlobalIndex();        
462        c = torsion->getAtomC()->getGlobalIndex();        
463 <      d = torsion->getAtomD()->getGlobalIndex();        
422 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
423 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
424 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
425 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
463 >      d = torsion->getAtomD()->getGlobalIndex();      
464  
465 <      exclude_.addPairs(rigidSetA, rigidSetB);
466 <      exclude_.addPairs(rigidSetA, rigidSetC);
467 <      exclude_.addPairs(rigidSetA, rigidSetD);
468 <      exclude_.addPairs(rigidSetB, rigidSetC);
469 <      exclude_.addPairs(rigidSetB, rigidSetD);
470 <      exclude_.addPairs(rigidSetC, rigidSetD);
465 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
466 >        oneTwoInteractions_.addPair(a, b);      
467 >        oneTwoInteractions_.addPair(b, c);
468 >        oneTwoInteractions_.addPair(c, d);
469 >      } else {
470 >        excludedInteractions_.addPair(a, b);
471 >        excludedInteractions_.addPair(b, c);
472 >        excludedInteractions_.addPair(c, d);
473 >      }
474  
475 <      /*
476 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
477 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
478 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
479 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
480 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
481 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
482 <        
483 <      
484 <      exclude_.addPair(a, b);
485 <      exclude_.addPair(a, c);
486 <      exclude_.addPair(a, d);
487 <      exclude_.addPair(b, c);
447 <      exclude_.addPair(b, d);
448 <      exclude_.addPair(c, d);        
449 <      */
475 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
476 >        oneThreeInteractions_.addPair(a, c);      
477 >        oneThreeInteractions_.addPair(b, d);      
478 >      } else {
479 >        excludedInteractions_.addPair(a, c);
480 >        excludedInteractions_.addPair(b, d);
481 >      }
482 >
483 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
484 >        oneFourInteractions_.addPair(a, d);      
485 >      } else {
486 >        excludedInteractions_.addPair(a, d);
487 >      }
488      }
489  
490 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
491 <      std::vector<Atom*> atoms = rb->getAtoms();
492 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
493 <        for (int j = i + 1; j < atoms.size(); ++j) {
490 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
491 >         inversion = mol->nextInversion(inversionIter)) {
492 >
493 >      a = inversion->getAtomA()->getGlobalIndex();
494 >      b = inversion->getAtomB()->getGlobalIndex();        
495 >      c = inversion->getAtomC()->getGlobalIndex();        
496 >      d = inversion->getAtomD()->getGlobalIndex();        
497 >
498 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
499 >        oneTwoInteractions_.addPair(a, b);      
500 >        oneTwoInteractions_.addPair(a, c);
501 >        oneTwoInteractions_.addPair(a, d);
502 >      } else {
503 >        excludedInteractions_.addPair(a, b);
504 >        excludedInteractions_.addPair(a, c);
505 >        excludedInteractions_.addPair(a, d);
506 >      }
507 >
508 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
509 >        oneThreeInteractions_.addPair(b, c);    
510 >        oneThreeInteractions_.addPair(b, d);    
511 >        oneThreeInteractions_.addPair(c, d);      
512 >      } else {
513 >        excludedInteractions_.addPair(b, c);
514 >        excludedInteractions_.addPair(b, d);
515 >        excludedInteractions_.addPair(c, d);
516 >      }
517 >    }
518 >
519 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
520 >         rb = mol->nextRigidBody(rbIter)) {
521 >      vector<Atom*> atoms = rb->getAtoms();
522 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
523 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
524            a = atoms[i]->getGlobalIndex();
525            b = atoms[j]->getGlobalIndex();
526 <          exclude_.addPair(a, b);
526 >          excludedInteractions_.addPair(a, b);
527          }
528        }
529      }        
530  
531    }
532  
533 <  void SimInfo::removeExcludePairs(Molecule* mol) {
534 <    std::vector<Bond*>::iterator bondIter;
535 <    std::vector<Bend*>::iterator bendIter;
536 <    std::vector<Torsion*>::iterator torsionIter;
533 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
534 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
535 >    vector<Bond*>::iterator bondIter;
536 >    vector<Bend*>::iterator bendIter;
537 >    vector<Torsion*>::iterator torsionIter;
538 >    vector<Inversion*>::iterator inversionIter;
539      Bond* bond;
540      Bend* bend;
541      Torsion* torsion;
542 +    Inversion* inversion;
543      int a;
544      int b;
545      int c;
546      int d;
547  
548 <    std::map<int, std::set<int> > atomGroups;
478 <
548 >    map<int, set<int> > atomGroups;
549      Molecule::RigidBodyIterator rbIter;
550      RigidBody* rb;
551      Molecule::IntegrableObjectIterator ii;
552 <    StuntDouble* integrableObject;
552 >    StuntDouble* sd;
553      
554 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
555 <           integrableObject = mol->nextIntegrableObject(ii)) {
556 <
557 <      if (integrableObject->isRigidBody()) {
558 <          rb = static_cast<RigidBody*>(integrableObject);
559 <          std::vector<Atom*> atoms = rb->getAtoms();
560 <          std::set<int> rigidAtoms;
561 <          for (int i = 0; i < atoms.size(); ++i) {
562 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
563 <          }
564 <          for (int i = 0; i < atoms.size(); ++i) {
565 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
566 <          }      
554 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
555 >         sd = mol->nextIntegrableObject(ii)) {
556 >      
557 >      if (sd->isRigidBody()) {
558 >        rb = static_cast<RigidBody*>(sd);
559 >        vector<Atom*> atoms = rb->getAtoms();
560 >        set<int> rigidAtoms;
561 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
562 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
563 >        }
564 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
565 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
566 >        }      
567        } else {
568 <        std::set<int> oneAtomSet;
569 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
570 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
568 >        set<int> oneAtomSet;
569 >        oneAtomSet.insert(sd->getGlobalIndex());
570 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
571        }
572      }  
573  
574 <    
575 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
574 >    for (bond= mol->beginBond(bondIter); bond != NULL;
575 >         bond = mol->nextBond(bondIter)) {
576 >      
577        a = bond->getAtomA()->getGlobalIndex();
578 <      b = bond->getAtomB()->getGlobalIndex();        
579 <      exclude_.removePair(a, b);
578 >      b = bond->getAtomB()->getGlobalIndex();  
579 >    
580 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581 >        oneTwoInteractions_.removePair(a, b);
582 >      } else {
583 >        excludedInteractions_.removePair(a, b);
584 >      }
585      }
586  
587 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
587 >    for (bend= mol->beginBend(bendIter); bend != NULL;
588 >         bend = mol->nextBend(bendIter)) {
589 >
590        a = bend->getAtomA()->getGlobalIndex();
591        b = bend->getAtomB()->getGlobalIndex();        
592        c = bend->getAtomC()->getGlobalIndex();
515
516      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
517      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
518      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
519
520      exclude_.removePairs(rigidSetA, rigidSetB);
521      exclude_.removePairs(rigidSetA, rigidSetC);
522      exclude_.removePairs(rigidSetB, rigidSetC);
593        
594 <      //exclude_.removePair(a, b);
595 <      //exclude_.removePair(a, c);
596 <      //exclude_.removePair(b, c);        
594 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
595 >        oneTwoInteractions_.removePair(a, b);      
596 >        oneTwoInteractions_.removePair(b, c);
597 >      } else {
598 >        excludedInteractions_.removePair(a, b);
599 >        excludedInteractions_.removePair(b, c);
600 >      }
601 >
602 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
603 >        oneThreeInteractions_.removePair(a, c);      
604 >      } else {
605 >        excludedInteractions_.removePair(a, c);
606 >      }
607      }
608  
609 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
609 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
610 >         torsion = mol->nextTorsion(torsionIter)) {
611 >
612        a = torsion->getAtomA()->getGlobalIndex();
613        b = torsion->getAtomB()->getGlobalIndex();        
614        c = torsion->getAtomC()->getGlobalIndex();        
615 <      d = torsion->getAtomD()->getGlobalIndex();        
615 >      d = torsion->getAtomD()->getGlobalIndex();      
616 >  
617 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
618 >        oneTwoInteractions_.removePair(a, b);      
619 >        oneTwoInteractions_.removePair(b, c);
620 >        oneTwoInteractions_.removePair(c, d);
621 >      } else {
622 >        excludedInteractions_.removePair(a, b);
623 >        excludedInteractions_.removePair(b, c);
624 >        excludedInteractions_.removePair(c, d);
625 >      }
626  
627 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
628 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
629 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
630 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
627 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
628 >        oneThreeInteractions_.removePair(a, c);      
629 >        oneThreeInteractions_.removePair(b, d);      
630 >      } else {
631 >        excludedInteractions_.removePair(a, c);
632 >        excludedInteractions_.removePair(b, d);
633 >      }
634  
635 <      exclude_.removePairs(rigidSetA, rigidSetB);
636 <      exclude_.removePairs(rigidSetA, rigidSetC);
637 <      exclude_.removePairs(rigidSetA, rigidSetD);
638 <      exclude_.removePairs(rigidSetB, rigidSetC);
639 <      exclude_.removePairs(rigidSetB, rigidSetD);
640 <      exclude_.removePairs(rigidSetC, rigidSetD);
635 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
636 >        oneFourInteractions_.removePair(a, d);      
637 >      } else {
638 >        excludedInteractions_.removePair(a, d);
639 >      }
640 >    }
641  
642 <      /*
643 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
549 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
550 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
551 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
552 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
553 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
642 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
643 >         inversion = mol->nextInversion(inversionIter)) {
644  
645 <      
646 <      exclude_.removePair(a, b);
647 <      exclude_.removePair(a, c);
648 <      exclude_.removePair(a, d);
649 <      exclude_.removePair(b, c);
650 <      exclude_.removePair(b, d);
651 <      exclude_.removePair(c, d);        
652 <      */
645 >      a = inversion->getAtomA()->getGlobalIndex();
646 >      b = inversion->getAtomB()->getGlobalIndex();        
647 >      c = inversion->getAtomC()->getGlobalIndex();        
648 >      d = inversion->getAtomD()->getGlobalIndex();        
649 >
650 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
651 >        oneTwoInteractions_.removePair(a, b);      
652 >        oneTwoInteractions_.removePair(a, c);
653 >        oneTwoInteractions_.removePair(a, d);
654 >      } else {
655 >        excludedInteractions_.removePair(a, b);
656 >        excludedInteractions_.removePair(a, c);
657 >        excludedInteractions_.removePair(a, d);
658 >      }
659 >
660 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
661 >        oneThreeInteractions_.removePair(b, c);    
662 >        oneThreeInteractions_.removePair(b, d);    
663 >        oneThreeInteractions_.removePair(c, d);      
664 >      } else {
665 >        excludedInteractions_.removePair(b, c);
666 >        excludedInteractions_.removePair(b, d);
667 >        excludedInteractions_.removePair(c, d);
668 >      }
669      }
670  
671 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
672 <      std::vector<Atom*> atoms = rb->getAtoms();
673 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
674 <        for (int j = i + 1; j < atoms.size(); ++j) {
671 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
672 >         rb = mol->nextRigidBody(rbIter)) {
673 >      vector<Atom*> atoms = rb->getAtoms();
674 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
675 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
676            a = atoms[i]->getGlobalIndex();
677            b = atoms[j]->getGlobalIndex();
678 <          exclude_.removePair(a, b);
678 >          excludedInteractions_.removePair(a, b);
679          }
680        }
681      }        
682 <
682 >    
683    }
684 <
685 <
684 >  
685 >  
686    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
687      int curStampId;
688 <
688 >    
689      //index from 0
690      curStampId = moleculeStamps_.size();
691  
# Line 586 | Line 693 | namespace oopse {
693      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
694    }
695  
589  void SimInfo::update() {
696  
697 <    setupSimType();
698 <
699 < #ifdef IS_MPI
700 <    setupFortranParallel();
701 < #endif
702 <
703 <    setupFortranSim();
704 <
705 <    //setup fortran force field
600 <    /** @deprecate */    
601 <    int isError = 0;
602 <    
603 <    setupCutoff();
604 <    
605 <    setupElectrostaticSummationMethod( isError );
606 <    setupSwitchingFunction();
607 <    setupAccumulateBoxDipole();
608 <
609 <    if(isError){
610 <      sprintf( painCave.errMsg,
611 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
612 <      painCave.isFatal = 1;
613 <      simError();
614 <    }
615 <
697 >  /**
698 >   * update
699 >   *
700 >   *  Performs the global checks and variable settings after the
701 >   *  objects have been created.
702 >   *
703 >   */
704 >  void SimInfo::update() {  
705 >    setupSimVariables();
706      calcNdf();
707      calcNdfRaw();
708      calcNdfTrans();
619
620    fortranInitialized_ = true;
709    }
710 <
711 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
710 >  
711 >  /**
712 >   * getSimulatedAtomTypes
713 >   *
714 >   * Returns an STL set of AtomType* that are actually present in this
715 >   * simulation.  Must query all processors to assemble this information.
716 >   *
717 >   */
718 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
719      SimInfo::MoleculeIterator mi;
720      Molecule* mol;
721      Molecule::AtomIterator ai;
722      Atom* atom;
723 <    std::set<AtomType*> atomTypes;
724 <
723 >    set<AtomType*> atomTypes;
724 >    
725      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
726 <
727 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
726 >      for(atom = mol->beginAtom(ai); atom != NULL;
727 >          atom = mol->nextAtom(ai)) {
728          atomTypes.insert(atom->getAtomType());
729 <      }
730 <        
636 <    }
637 <
638 <    return atomTypes;        
639 <  }
640 <
641 <  void SimInfo::setupSimType() {
642 <    std::set<AtomType*>::iterator i;
643 <    std::set<AtomType*> atomTypes;
644 <    atomTypes = getUniqueAtomTypes();
729 >      }      
730 >    }    
731      
732 <    int useLennardJones = 0;
647 <    int useElectrostatic = 0;
648 <    int useEAM = 0;
649 <    int useSC = 0;
650 <    int useCharge = 0;
651 <    int useDirectional = 0;
652 <    int useDipole = 0;
653 <    int useGayBerne = 0;
654 <    int useSticky = 0;
655 <    int useStickyPower = 0;
656 <    int useShape = 0;
657 <    int useFLARB = 0; //it is not in AtomType yet
658 <    int useDirectionalAtom = 0;    
659 <    int useElectrostatics = 0;
660 <    //usePBC and useRF are from simParams
661 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
662 <    int useRF;
663 <    int useSF;
664 <    int useSP;
665 <    int useBoxDipole;
732 > #ifdef IS_MPI
733  
734 <    std::string myMethod;
735 <
669 <    // set the useRF logical
670 <    useRF = 0;
671 <    useSF = 0;
672 <    useSP = 0;
673 <
674 <
675 <    if (simParams_->haveElectrostaticSummationMethod()) {
676 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
677 <      toUpper(myMethod);
678 <      if (myMethod == "REACTION_FIELD"){
679 <        useRF = 1;
680 <      } else if (myMethod == "SHIFTED_FORCE"){
681 <        useSF = 1;
682 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
683 <        useSP = 1;
684 <      }
685 <    }
734 >    // loop over the found atom types on this processor, and add their
735 >    // numerical idents to a vector:
736      
737 <    if (simParams_->haveAccumulateBoxDipole())
738 <      if (simParams_->getAccumulateBoxDipole())
739 <        useBoxDipole = 1;
737 >    vector<int> foundTypes;
738 >    set<AtomType*>::iterator i;
739 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
740 >      foundTypes.push_back( (*i)->getIdent() );
741  
742 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
742 >    // count_local holds the number of found types on this processor
743 >    int count_local = foundTypes.size();
744  
745 <    //loop over all of the atom types
694 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
695 <      useLennardJones |= (*i)->isLennardJones();
696 <      useElectrostatic |= (*i)->isElectrostatic();
697 <      useEAM |= (*i)->isEAM();
698 <      useSC |= (*i)->isSC();
699 <      useCharge |= (*i)->isCharge();
700 <      useDirectional |= (*i)->isDirectional();
701 <      useDipole |= (*i)->isDipole();
702 <      useGayBerne |= (*i)->isGayBerne();
703 <      useSticky |= (*i)->isSticky();
704 <      useStickyPower |= (*i)->isStickyPower();
705 <      useShape |= (*i)->isShape();
706 <    }
745 >    int nproc = MPI::COMM_WORLD.Get_size();
746  
747 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
748 <      useDirectionalAtom = 1;
749 <    }
747 >    // we need arrays to hold the counts and displacement vectors for
748 >    // all processors
749 >    vector<int> counts(nproc, 0);
750 >    vector<int> disps(nproc, 0);
751  
752 <    if (useCharge || useDipole) {
753 <      useElectrostatics = 1;
752 >    // fill the counts array
753 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
754 >                              1, MPI::INT);
755 >  
756 >    // use the processor counts to compute the displacement array
757 >    disps[0] = 0;    
758 >    int totalCount = counts[0];
759 >    for (int iproc = 1; iproc < nproc; iproc++) {
760 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
761 >      totalCount += counts[iproc];
762      }
763  
764 < #ifdef IS_MPI    
765 <    int temp;
764 >    // we need a (possibly redundant) set of all found types:
765 >    vector<int> ftGlobal(totalCount);
766 >    
767 >    // now spray out the foundTypes to all the other processors:    
768 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
769 >                               &ftGlobal[0], &counts[0], &disps[0],
770 >                               MPI::INT);
771  
772 <    temp = usePBC;
720 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
772 >    vector<int>::iterator j;
773  
774 <    temp = useDirectionalAtom;
775 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
774 >    // foundIdents is a stl set, so inserting an already found ident
775 >    // will have no effect.
776 >    set<int> foundIdents;
777  
778 <    temp = useLennardJones;
779 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
778 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
779 >      foundIdents.insert((*j));
780 >    
781 >    // now iterate over the foundIdents and get the actual atom types
782 >    // that correspond to these:
783 >    set<int>::iterator it;
784 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
785 >      atomTypes.insert( forceField_->getAtomType((*it)) );
786 >
787 > #endif
788  
789 <    temp = useElectrostatics;
790 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
789 >    return atomTypes;        
790 >  }
791  
731    temp = useCharge;
732    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
792  
793 <    temp = useDipole;
794 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
793 >  int getGlobalCountOfType(AtomType* atype) {
794 >    /*
795 >    set<AtomType*> atypes = getSimulatedAtomTypes();
796 >    map<AtomType*, int> counts_;
797  
798 <    temp = useSticky;
799 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
798 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
799 >      for(atom = mol->beginAtom(ai); atom != NULL;
800 >          atom = mol->nextAtom(ai)) {
801 >        atom->getAtomType();
802 >      }      
803 >    }    
804 >    */
805 >    return 0;
806 >  }
807  
808 <    temp = useStickyPower;
809 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
808 >  void SimInfo::setupSimVariables() {
809 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
810 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
811 >    // parameter is true
812 >    calcBoxDipole_ = false;
813 >    if ( simParams_->haveAccumulateBoxDipole() )
814 >      if ( simParams_->getAccumulateBoxDipole() ) {
815 >        calcBoxDipole_ = true;      
816 >      }
817      
818 <    temp = useGayBerne;
819 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
818 >    set<AtomType*>::iterator i;
819 >    set<AtomType*> atomTypes;
820 >    atomTypes = getSimulatedAtomTypes();    
821 >    bool usesElectrostatic = false;
822 >    bool usesMetallic = false;
823 >    bool usesDirectional = false;
824 >    bool usesFluctuatingCharges =  false;
825 >    //loop over all of the atom types
826 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
827 >      usesElectrostatic |= (*i)->isElectrostatic();
828 >      usesMetallic |= (*i)->isMetal();
829 >      usesDirectional |= (*i)->isDirectional();
830 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
831 >    }
832  
833 <    temp = useEAM;
834 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
835 <
836 <    temp = useSC;
837 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
833 > #ifdef IS_MPI
834 >    bool temp;
835 >    temp = usesDirectional;
836 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
837 >                              MPI::LOR);
838 >        
839 >    temp = usesMetallic;
840 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
841 >                              MPI::LOR);
842      
843 <    temp = useShape;
844 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
843 >    temp = usesElectrostatic;
844 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
845 >                              MPI::LOR);
846  
847 <    temp = useFLARB;
848 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
847 >    temp = usesFluctuatingCharges;
848 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
849 >                              MPI::LOR);
850 > #else
851  
852 <    temp = useRF;
853 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
852 >    usesDirectionalAtoms_ = usesDirectional;
853 >    usesMetallicAtoms_ = usesMetallic;
854 >    usesElectrostaticAtoms_ = usesElectrostatic;
855 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
856  
761    temp = useSF;
762    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
763
764    temp = useSP;
765    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766
767    temp = useBoxDipole;
768    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
769
770    temp = useAtomicVirial_;
771    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
772
857   #endif
858 <
859 <    fInfo_.SIM_uses_PBC = usePBC;    
860 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
861 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
778 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
779 <    fInfo_.SIM_uses_Charges = useCharge;
780 <    fInfo_.SIM_uses_Dipoles = useDipole;
781 <    fInfo_.SIM_uses_Sticky = useSticky;
782 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
783 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
784 <    fInfo_.SIM_uses_EAM = useEAM;
785 <    fInfo_.SIM_uses_SC = useSC;
786 <    fInfo_.SIM_uses_Shapes = useShape;
787 <    fInfo_.SIM_uses_FLARB = useFLARB;
788 <    fInfo_.SIM_uses_RF = useRF;
789 <    fInfo_.SIM_uses_SF = useSF;
790 <    fInfo_.SIM_uses_SP = useSP;
791 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
792 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
858 >    
859 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
860 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
861 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
862    }
863  
795  void SimInfo::setupFortranSim() {
796    int isError;
797    int nExclude;
798    std::vector<int> fortranGlobalGroupMembership;
799    
800    nExclude = exclude_.getSize();
801    isError = 0;
864  
865 <    //globalGroupMembership_ is filled by SimCreator    
804 <    for (int i = 0; i < nGlobalAtoms_; i++) {
805 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
806 <    }
807 <
808 <    //calculate mass ratio of cutoff group
809 <    std::vector<RealType> mfact;
865 >  vector<int> SimInfo::getGlobalAtomIndices() {
866      SimInfo::MoleculeIterator mi;
867      Molecule* mol;
812    Molecule::CutoffGroupIterator ci;
813    CutoffGroup* cg;
868      Molecule::AtomIterator ai;
869      Atom* atom;
816    RealType totalMass;
870  
871 <    //to avoid memory reallocation, reserve enough space for mfact
819 <    mfact.reserve(getNCutoffGroups());
871 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
872      
873 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
874 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
875 <
876 <        totalMass = cg->getMass();
825 <        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
826 <          // Check for massless groups - set mfact to 1 if true
827 <          if (totalMass != 0)
828 <            mfact.push_back(atom->getMass()/totalMass);
829 <          else
830 <            mfact.push_back( 1.0 );
831 <        }
832 <
833 <      }      
834 <    }
835 <
836 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
837 <    std::vector<int> identArray;
838 <
839 <    //to avoid memory reallocation, reserve enough space identArray
840 <    identArray.reserve(getNAtoms());
841 <    
842 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
843 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
844 <        identArray.push_back(atom->getIdent());
873 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
874 >      
875 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
876 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
877        }
846    }    
847
848    //fill molMembershipArray
849    //molMembershipArray is filled by SimCreator    
850    std::vector<int> molMembershipArray(nGlobalAtoms_);
851    for (int i = 0; i < nGlobalAtoms_; i++) {
852      molMembershipArray[i] = globalMolMembership_[i] + 1;
878      }
879 <    
855 <    //setup fortran simulation
856 <    int nGlobalExcludes = 0;
857 <    int* globalExcludes = NULL;
858 <    int* excludeList = exclude_.getExcludeList();
859 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
860 <                   &nExclude, excludeList , &nGlobalExcludes, globalExcludes,
861 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
862 <                   &fortranGlobalGroupMembership[0], &isError);
863 <    
864 <    if( isError ){
865 <      
866 <      sprintf( painCave.errMsg,
867 <               "There was an error setting the simulation information in fortran.\n" );
868 <      painCave.isFatal = 1;
869 <      painCave.severity = OOPSE_ERROR;
870 <      simError();
871 <    }
872 <    
873 <    
874 <    sprintf( checkPointMsg,
875 <             "succesfully sent the simulation information to fortran.\n");
876 <    
877 <    errorCheckPoint();
878 <    
879 <    // Setup number of neighbors in neighbor list if present
880 <    if (simParams_->haveNeighborListNeighbors()) {
881 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
882 <      setNeighbors(&nlistNeighbors);
883 <    }
884 <  
885 <
879 >    return GlobalAtomIndices;
880    }
881  
882  
883 <  void SimInfo::setupFortranParallel() {
890 < #ifdef IS_MPI    
891 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
892 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
893 <    std::vector<int> localToGlobalCutoffGroupIndex;
883 >  vector<int> SimInfo::getGlobalGroupIndices() {
884      SimInfo::MoleculeIterator mi;
895    Molecule::AtomIterator ai;
896    Molecule::CutoffGroupIterator ci;
885      Molecule* mol;
886 <    Atom* atom;
886 >    Molecule::CutoffGroupIterator ci;
887      CutoffGroup* cg;
900    mpiSimData parallelData;
901    int isError;
888  
889 +    vector<int> GlobalGroupIndices;
890 +    
891      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
892 <
893 <      //local index(index in DataStorge) of atom is important
894 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
895 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
896 <      }
897 <
910 <      //local index of cutoff group is trivial, it only depends on the order of travesing
911 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
912 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
892 >      
893 >      //local index of cutoff group is trivial, it only depends on the
894 >      //order of travesing
895 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
896 >           cg = mol->nextCutoffGroup(ci)) {
897 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
898        }        
914        
899      }
900 +    return GlobalGroupIndices;
901 +  }
902  
917    //fill up mpiSimData struct
918    parallelData.nMolGlobal = getNGlobalMolecules();
919    parallelData.nMolLocal = getNMolecules();
920    parallelData.nAtomsGlobal = getNGlobalAtoms();
921    parallelData.nAtomsLocal = getNAtoms();
922    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
923    parallelData.nGroupsLocal = getNCutoffGroups();
924    parallelData.myNode = worldRank;
925    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
903  
904 <    //pass mpiSimData struct and index arrays to fortran
928 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
929 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
930 <                    &localToGlobalCutoffGroupIndex[0], &isError);
904 >  void SimInfo::prepareTopology() {
905  
906 <    if (isError) {
907 <      sprintf(painCave.errMsg,
908 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
909 <      painCave.isFatal = 1;
910 <      simError();
911 <    }
906 >    //calculate mass ratio of cutoff group
907 >    SimInfo::MoleculeIterator mi;
908 >    Molecule* mol;
909 >    Molecule::CutoffGroupIterator ci;
910 >    CutoffGroup* cg;
911 >    Molecule::AtomIterator ai;
912 >    Atom* atom;
913 >    RealType totalMass;
914  
915 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
916 <    errorCheckPoint();
917 <
918 < #endif
919 <  }
920 <
921 <  void SimInfo::setupCutoff() {          
915 >    /**
916 >     * The mass factor is the relative mass of an atom to the total
917 >     * mass of the cutoff group it belongs to.  By default, all atoms
918 >     * are their own cutoff groups, and therefore have mass factors of
919 >     * 1.  We need some special handling for massless atoms, which
920 >     * will be treated as carrying the entire mass of the cutoff
921 >     * group.
922 >     */
923 >    massFactors_.clear();
924 >    massFactors_.resize(getNAtoms(), 1.0);
925      
926 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
926 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
927 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
928 >           cg = mol->nextCutoffGroup(ci)) {
929  
930 <    // Check the cutoff policy
931 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
932 <
933 <    // Set LJ shifting bools to false
934 <    ljsp_ = false;
935 <    ljsf_ = false;
936 <
956 <    std::string myPolicy;
957 <    if (forceFieldOptions_.haveCutoffPolicy()){
958 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
959 <    }else if (simParams_->haveCutoffPolicy()) {
960 <      myPolicy = simParams_->getCutoffPolicy();
961 <    }
962 <
963 <    if (!myPolicy.empty()){
964 <      toUpper(myPolicy);
965 <      if (myPolicy == "MIX") {
966 <        cp = MIX_CUTOFF_POLICY;
967 <      } else {
968 <        if (myPolicy == "MAX") {
969 <          cp = MAX_CUTOFF_POLICY;
970 <        } else {
971 <          if (myPolicy == "TRADITIONAL") {            
972 <            cp = TRADITIONAL_CUTOFF_POLICY;
973 <          } else {
974 <            // throw error        
975 <            sprintf( painCave.errMsg,
976 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
977 <            painCave.isFatal = 1;
978 <            simError();
979 <          }    
980 <        }          
981 <      }
982 <    }          
983 <    notifyFortranCutoffPolicy(&cp);
984 <
985 <    // Check the Skin Thickness for neighborlists
986 <    RealType skin;
987 <    if (simParams_->haveSkinThickness()) {
988 <      skin = simParams_->getSkinThickness();
989 <      notifyFortranSkinThickness(&skin);
990 <    }            
991 <        
992 <    // Check if the cutoff was set explicitly:
993 <    if (simParams_->haveCutoffRadius()) {
994 <      rcut_ = simParams_->getCutoffRadius();
995 <      if (simParams_->haveSwitchingRadius()) {
996 <        rsw_  = simParams_->getSwitchingRadius();
997 <      } else {
998 <        if (fInfo_.SIM_uses_Charges |
999 <            fInfo_.SIM_uses_Dipoles |
1000 <            fInfo_.SIM_uses_RF) {
1001 <          
1002 <          rsw_ = 0.85 * rcut_;
1003 <          sprintf(painCave.errMsg,
1004 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1005 <                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1006 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1007 <        painCave.isFatal = 0;
1008 <        simError();
1009 <        } else {
1010 <          rsw_ = rcut_;
1011 <          sprintf(painCave.errMsg,
1012 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1013 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1014 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1015 <          painCave.isFatal = 0;
1016 <          simError();
930 >        totalMass = cg->getMass();
931 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
932 >          // Check for massless groups - set mfact to 1 if true
933 >          if (totalMass != 0)
934 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
935 >          else
936 >            massFactors_[atom->getLocalIndex()] = 1.0;
937          }
938 <      }
1019 <
1020 <      if (simParams_->haveElectrostaticSummationMethod()) {
1021 <        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1022 <        toUpper(myMethod);
1023 <        
1024 <        if (myMethod == "SHIFTED_POTENTIAL") {
1025 <          ljsp_ = true;
1026 <        } else if (myMethod == "SHIFTED_FORCE") {
1027 <          ljsf_ = true;
1028 <        }
1029 <      }
1030 <      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1031 <      
1032 <    } else {
1033 <      
1034 <      // For electrostatic atoms, we'll assume a large safe value:
1035 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1036 <        sprintf(painCave.errMsg,
1037 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1038 <                "\tOOPSE will use a default value of 15.0 angstroms"
1039 <                "\tfor the cutoffRadius.\n");
1040 <        painCave.isFatal = 0;
1041 <        simError();
1042 <        rcut_ = 15.0;
1043 <      
1044 <        if (simParams_->haveElectrostaticSummationMethod()) {
1045 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1046 <          toUpper(myMethod);
1047 <      
1048 <      // For the time being, we're tethering the LJ shifted behavior to the
1049 <      // electrostaticSummationMethod keyword options
1050 <          if (myMethod == "SHIFTED_POTENTIAL") {
1051 <            ljsp_ = true;
1052 <          } else if (myMethod == "SHIFTED_FORCE") {
1053 <            ljsf_ = true;
1054 <          }
1055 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1056 <            if (simParams_->haveSwitchingRadius()){
1057 <              sprintf(painCave.errMsg,
1058 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1059 <                      "\teven though the electrostaticSummationMethod was\n"
1060 <                      "\tset to %s\n", myMethod.c_str());
1061 <              painCave.isFatal = 1;
1062 <              simError();            
1063 <            }
1064 <          }
1065 <        }
1066 <      
1067 <        if (simParams_->haveSwitchingRadius()){
1068 <          rsw_ = simParams_->getSwitchingRadius();
1069 <        } else {        
1070 <          sprintf(painCave.errMsg,
1071 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1072 <                  "\tOOPSE will use a default value of\n"
1073 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1074 <          painCave.isFatal = 0;
1075 <          simError();
1076 <          rsw_ = 0.85 * rcut_;
1077 <        }
1078 <
1079 <        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1080 <
1081 <      } else {
1082 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1083 <        // We'll punt and let fortran figure out the cutoffs later.
1084 <        
1085 <        notifyFortranYouAreOnYourOwn();
1086 <
1087 <      }
938 >      }      
939      }
1089  }
940  
941 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1092 <    
1093 <    int errorOut;
1094 <    int esm =  NONE;
1095 <    int sm = UNDAMPED;
1096 <    RealType alphaVal;
1097 <    RealType dielectric;
1098 <    
1099 <    errorOut = isError;
1100 <
1101 <    if (simParams_->haveElectrostaticSummationMethod()) {
1102 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1103 <      toUpper(myMethod);
1104 <      if (myMethod == "NONE") {
1105 <        esm = NONE;
1106 <      } else {
1107 <        if (myMethod == "SWITCHING_FUNCTION") {
1108 <          esm = SWITCHING_FUNCTION;
1109 <        } else {
1110 <          if (myMethod == "SHIFTED_POTENTIAL") {
1111 <            esm = SHIFTED_POTENTIAL;
1112 <          } else {
1113 <            if (myMethod == "SHIFTED_FORCE") {            
1114 <              esm = SHIFTED_FORCE;
1115 <            } else {
1116 <              if (myMethod == "REACTION_FIELD") {
1117 <                esm = REACTION_FIELD;
1118 <                dielectric = simParams_->getDielectric();
1119 <                if (!simParams_->haveDielectric()) {
1120 <                  // throw warning
1121 <                  sprintf( painCave.errMsg,
1122 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1123 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1124 <                  painCave.isFatal = 0;
1125 <                  simError();
1126 <                }
1127 <              } else {
1128 <                // throw error        
1129 <                sprintf( painCave.errMsg,
1130 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1131 <                         "\t(Input file specified %s .)\n"
1132 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1133 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1134 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1135 <                painCave.isFatal = 1;
1136 <                simError();
1137 <              }    
1138 <            }          
1139 <          }
1140 <        }
1141 <      }
1142 <    }
1143 <    
1144 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1145 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1146 <      toUpper(myScreen);
1147 <      if (myScreen == "UNDAMPED") {
1148 <        sm = UNDAMPED;
1149 <      } else {
1150 <        if (myScreen == "DAMPED") {
1151 <          sm = DAMPED;
1152 <          if (!simParams_->haveDampingAlpha()) {
1153 <            // first set a cutoff dependent alpha value
1154 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1155 <            alphaVal = 0.5125 - rcut_* 0.025;
1156 <            // for values rcut > 20.5, alpha is zero
1157 <            if (alphaVal < 0) alphaVal = 0;
941 >    // Build the identArray_ and regions_
942  
943 <            // throw warning
944 <            sprintf( painCave.errMsg,
945 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
946 <                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
947 <            painCave.isFatal = 0;
948 <            simError();
949 <          } else {
950 <            alphaVal = simParams_->getDampingAlpha();
951 <          }
952 <          
1169 <        } else {
1170 <          // throw error        
1171 <          sprintf( painCave.errMsg,
1172 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1173 <                   "\t(Input file specified %s .)\n"
1174 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1175 <                   "or \"damped\".\n", myScreen.c_str() );
1176 <          painCave.isFatal = 1;
1177 <          simError();
1178 <        }
943 >    identArray_.clear();
944 >    identArray_.reserve(getNAtoms());  
945 >    regions_.clear();
946 >    regions_.reserve(getNAtoms());
947 >
948 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
949 >      int reg = mol->getRegion();      
950 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
951 >        identArray_.push_back(atom->getIdent());
952 >        regions_.push_back(reg);
953        }
954 <    }
955 <    
956 <    // let's pass some summation method variables to fortran
1183 <    setElectrostaticSummationMethod( &esm );
1184 <    setFortranElectrostaticMethod( &esm );
1185 <    setScreeningMethod( &sm );
1186 <    setDampingAlpha( &alphaVal );
1187 <    setReactionFieldDielectric( &dielectric );
1188 <    initFortranFF( &errorOut );
954 >    }    
955 >      
956 >    topologyDone_ = true;
957    }
958  
1191  void SimInfo::setupSwitchingFunction() {    
1192    int ft = CUBIC;
1193
1194    if (simParams_->haveSwitchingFunctionType()) {
1195      std::string funcType = simParams_->getSwitchingFunctionType();
1196      toUpper(funcType);
1197      if (funcType == "CUBIC") {
1198        ft = CUBIC;
1199      } else {
1200        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1201          ft = FIFTH_ORDER_POLY;
1202        } else {
1203          // throw error        
1204          sprintf( painCave.errMsg,
1205                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1206          painCave.isFatal = 1;
1207          simError();
1208        }          
1209      }
1210    }
1211
1212    // send switching function notification to switcheroo
1213    setFunctionType(&ft);
1214
1215  }
1216
1217  void SimInfo::setupAccumulateBoxDipole() {    
1218
1219    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1220    if ( simParams_->haveAccumulateBoxDipole() )
1221      if ( simParams_->getAccumulateBoxDipole() ) {
1222        setAccumulateBoxDipole();
1223        calcBoxDipole_ = true;
1224      }
1225
1226  }
1227
959    void SimInfo::addProperty(GenericData* genData) {
960      properties_.addProperty(genData);  
961    }
962  
963 <  void SimInfo::removeProperty(const std::string& propName) {
963 >  void SimInfo::removeProperty(const string& propName) {
964      properties_.removeProperty(propName);  
965    }
966  
# Line 1237 | Line 968 | namespace oopse {
968      properties_.clearProperties();
969    }
970  
971 <  std::vector<std::string> SimInfo::getPropertyNames() {
971 >  vector<string> SimInfo::getPropertyNames() {
972      return properties_.getPropertyNames();  
973    }
974        
975 <  std::vector<GenericData*> SimInfo::getProperties() {
975 >  vector<GenericData*> SimInfo::getProperties() {
976      return properties_.getProperties();
977    }
978  
979 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
979 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
980      return properties_.getPropertyByName(propName);
981    }
982  
# Line 1259 | Line 990 | namespace oopse {
990      Molecule* mol;
991      RigidBody* rb;
992      Atom* atom;
993 +    CutoffGroup* cg;
994      SimInfo::MoleculeIterator mi;
995      Molecule::RigidBodyIterator rbIter;
996 <    Molecule::AtomIterator atomIter;;
996 >    Molecule::AtomIterator atomIter;
997 >    Molecule::CutoffGroupIterator cgIter;
998  
999      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1000          
1001 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1001 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
1002 >           atom = mol->nextAtom(atomIter)) {
1003          atom->setSnapshotManager(sman_);
1004        }
1005          
1006 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1006 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1007 >           rb = mol->nextRigidBody(rbIter)) {
1008          rb->setSnapshotManager(sman_);
1009        }
1010 +
1011 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1012 +           cg = mol->nextCutoffGroup(cgIter)) {
1013 +        cg->setSnapshotManager(sman_);
1014 +      }
1015      }    
1016      
1017    }
1018  
1279  Vector3d SimInfo::getComVel(){
1280    SimInfo::MoleculeIterator i;
1281    Molecule* mol;
1019  
1020 <    Vector3d comVel(0.0);
1284 <    RealType totalMass = 0.0;
1285 <    
1286 <
1287 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1288 <      RealType mass = mol->getMass();
1289 <      totalMass += mass;
1290 <      comVel += mass * mol->getComVel();
1291 <    }  
1292 <
1293 < #ifdef IS_MPI
1294 <    RealType tmpMass = totalMass;
1295 <    Vector3d tmpComVel(comVel);    
1296 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1297 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1298 < #endif
1299 <
1300 <    comVel /= totalMass;
1301 <
1302 <    return comVel;
1303 <  }
1304 <
1305 <  Vector3d SimInfo::getCom(){
1306 <    SimInfo::MoleculeIterator i;
1307 <    Molecule* mol;
1308 <
1309 <    Vector3d com(0.0);
1310 <    RealType totalMass = 0.0;
1311 <    
1312 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1313 <      RealType mass = mol->getMass();
1314 <      totalMass += mass;
1315 <      com += mass * mol->getCom();
1316 <    }  
1317 <
1318 < #ifdef IS_MPI
1319 <    RealType tmpMass = totalMass;
1320 <    Vector3d tmpCom(com);    
1321 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1322 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1323 < #endif
1324 <
1325 <    com /= totalMass;
1326 <
1327 <    return com;
1328 <
1329 <  }        
1330 <
1331 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1020 >  ostream& operator <<(ostream& o, SimInfo& info) {
1021  
1022      return o;
1023    }
1024    
1025 <  
1337 <   /*
1338 <   Returns center of mass and center of mass velocity in one function call.
1339 <   */
1340 <  
1341 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1342 <      SimInfo::MoleculeIterator i;
1343 <      Molecule* mol;
1344 <      
1345 <    
1346 <      RealType totalMass = 0.0;
1347 <    
1348 <
1349 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1350 <         RealType mass = mol->getMass();
1351 <         totalMass += mass;
1352 <         com += mass * mol->getCom();
1353 <         comVel += mass * mol->getComVel();          
1354 <      }  
1355 <      
1356 < #ifdef IS_MPI
1357 <      RealType tmpMass = totalMass;
1358 <      Vector3d tmpCom(com);  
1359 <      Vector3d tmpComVel(comVel);
1360 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1361 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1362 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1363 < #endif
1364 <      
1365 <      com /= totalMass;
1366 <      comVel /= totalMass;
1367 <   }        
1368 <  
1369 <   /*
1370 <   Return intertia tensor for entire system and angular momentum Vector.
1371 <
1372 <
1373 <       [  Ixx -Ixy  -Ixz ]
1374 <  J =| -Iyx  Iyy  -Iyz |
1375 <       [ -Izx -Iyz   Izz ]
1376 <    */
1377 <
1378 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1379 <      
1380 <
1381 <      RealType xx = 0.0;
1382 <      RealType yy = 0.0;
1383 <      RealType zz = 0.0;
1384 <      RealType xy = 0.0;
1385 <      RealType xz = 0.0;
1386 <      RealType yz = 0.0;
1387 <      Vector3d com(0.0);
1388 <      Vector3d comVel(0.0);
1389 <      
1390 <      getComAll(com, comVel);
1391 <      
1392 <      SimInfo::MoleculeIterator i;
1393 <      Molecule* mol;
1394 <      
1395 <      Vector3d thisq(0.0);
1396 <      Vector3d thisv(0.0);
1397 <
1398 <      RealType thisMass = 0.0;
1399 <    
1400 <      
1401 <      
1402 <  
1403 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1404 <        
1405 <         thisq = mol->getCom()-com;
1406 <         thisv = mol->getComVel()-comVel;
1407 <         thisMass = mol->getMass();
1408 <         // Compute moment of intertia coefficients.
1409 <         xx += thisq[0]*thisq[0]*thisMass;
1410 <         yy += thisq[1]*thisq[1]*thisMass;
1411 <         zz += thisq[2]*thisq[2]*thisMass;
1412 <        
1413 <         // compute products of intertia
1414 <         xy += thisq[0]*thisq[1]*thisMass;
1415 <         xz += thisq[0]*thisq[2]*thisMass;
1416 <         yz += thisq[1]*thisq[2]*thisMass;
1417 <            
1418 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1419 <            
1420 <      }  
1421 <      
1422 <      
1423 <      inertiaTensor(0,0) = yy + zz;
1424 <      inertiaTensor(0,1) = -xy;
1425 <      inertiaTensor(0,2) = -xz;
1426 <      inertiaTensor(1,0) = -xy;
1427 <      inertiaTensor(1,1) = xx + zz;
1428 <      inertiaTensor(1,2) = -yz;
1429 <      inertiaTensor(2,0) = -xz;
1430 <      inertiaTensor(2,1) = -yz;
1431 <      inertiaTensor(2,2) = xx + yy;
1432 <      
1433 < #ifdef IS_MPI
1434 <      Mat3x3d tmpI(inertiaTensor);
1435 <      Vector3d tmpAngMom;
1436 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1437 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1438 < #endif
1439 <              
1440 <      return;
1441 <   }
1442 <
1443 <   //Returns the angular momentum of the system
1444 <   Vector3d SimInfo::getAngularMomentum(){
1445 <      
1446 <      Vector3d com(0.0);
1447 <      Vector3d comVel(0.0);
1448 <      Vector3d angularMomentum(0.0);
1449 <      
1450 <      getComAll(com,comVel);
1451 <      
1452 <      SimInfo::MoleculeIterator i;
1453 <      Molecule* mol;
1454 <      
1455 <      Vector3d thisr(0.0);
1456 <      Vector3d thisp(0.0);
1457 <      
1458 <      RealType thisMass;
1459 <      
1460 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1461 <        thisMass = mol->getMass();
1462 <        thisr = mol->getCom()-com;
1463 <        thisp = (mol->getComVel()-comVel)*thisMass;
1464 <        
1465 <        angularMomentum += cross( thisr, thisp );
1466 <        
1467 <      }  
1468 <      
1469 < #ifdef IS_MPI
1470 <      Vector3d tmpAngMom;
1471 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1472 < #endif
1473 <      
1474 <      return angularMomentum;
1475 <   }
1476 <  
1025 >  
1026    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1027 <    return IOIndexToIntegrableObject.at(index);
1027 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1028 >      sprintf(painCave.errMsg,
1029 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1030 >              "\tindex exceeds number of known objects!\n");
1031 >      painCave.isFatal = 1;
1032 >      simError();
1033 >      return NULL;
1034 >    } else
1035 >      return IOIndexToIntegrableObject.at(index);
1036    }
1037    
1038 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1038 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1039      IOIndexToIntegrableObject= v;
1040    }
1041  
1042 <  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1043 <     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1044 <     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1045 <     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1046 <  */
1047 <  void SimInfo::getGyrationalVolume(RealType &volume){
1048 <    Mat3x3d intTensor;
1049 <    RealType det;
1050 <    Vector3d dummyAngMom;
1494 <    RealType sysconstants;
1495 <    RealType geomCnst;
1496 <
1497 <    geomCnst = 3.0/2.0;
1498 <    /* Get the inertial tensor and angular momentum for free*/
1499 <    getInertiaTensor(intTensor,dummyAngMom);
1500 <    
1501 <    det = intTensor.determinant();
1502 <    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1503 <    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1504 <    return;
1042 >  int SimInfo::getNGlobalConstraints() {
1043 >    int nGlobalConstraints;
1044 > #ifdef IS_MPI
1045 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1046 >                              MPI::INT, MPI::SUM);
1047 > #else
1048 >    nGlobalConstraints =  nConstraints_;
1049 > #endif
1050 >    return nGlobalConstraints;
1051    }
1052  
1053 <  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1508 <    Mat3x3d intTensor;
1509 <    Vector3d dummyAngMom;
1510 <    RealType sysconstants;
1511 <    RealType geomCnst;
1053 > }//end namespace OpenMD
1054  
1513    geomCnst = 3.0/2.0;
1514    /* Get the inertial tensor and angular momentum for free*/
1515    getInertiaTensor(intTensor,dummyAngMom);
1516    
1517    detI = intTensor.determinant();
1518    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1519    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1520    return;
1521  }
1522 /*
1523   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1524      assert( v.size() == nAtoms_ + nRigidBodies_);
1525      sdByGlobalIndex_ = v;
1526    }
1527
1528    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1529      //assert(index < nAtoms_ + nRigidBodies_);
1530      return sdByGlobalIndex_.at(index);
1531    }  
1532 */  
1533 }//end namespace oopse
1534

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 1241 by gezelter, Fri Apr 25 15:14:47 2008 UTC vs.
Revision 1929 by gezelter, Mon Aug 19 13:12:00 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines