ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC vs.
Revision 1940 by gezelter, Fri Nov 1 19:31:41 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 46 | Line 47
47   * @version 1.0
48   */
49  
50 + #ifdef IS_MPI
51 + #include <mpi.h>
52 + #endif
53   #include <algorithm>
54   #include <set>
55   #include <map>
# Line 54 | Line 58
58   #include "math/Vector3.hpp"
59   #include "primitives/Molecule.hpp"
60   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
61   #include "utils/MemoryUtils.hpp"
62   #include "utils/simError.h"
63   #include "selection/SelectionManager.hpp"
64   #include "io/ForceFieldOptions.hpp"
65 < #include "UseTheForce/ForceField.hpp"
65 > #include "brains/ForceField.hpp"
66 > #include "nonbonded/SwitchingFunction.hpp"
67  
68 <
72 < #ifdef IS_MPI
73 < #include "UseTheForce/mpiComponentPlan.h"
74 < #include "UseTheForce/DarkSide/simParallel_interface.h"
75 < #endif
76 <
68 > using namespace std;
69   namespace OpenMD {
78  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79    std::map<int, std::set<int> >::iterator i = container.find(index);
80    std::set<int> result;
81    if (i != container.end()) {
82        result = i->second;
83    }
84
85    return result;
86  }
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
79 <    calcBoxDipole_(false), useAtomicVirial_(true) {
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      if ( (*i)->haveRegion() ) {        
95 >        molStamp->setRegion( (*i)->getRegion() );
96 >      } else {
97 >        // set the region to a disallowed value:
98 >        molStamp->setRegion( -1 );
99 >      }
100  
101 <
99 <      MoleculeStamp* molStamp;
100 <      int nMolWithSameStamp;
101 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
102 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
103 <      CutoffGroupStamp* cgStamp;    
104 <      RigidBodyStamp* rbStamp;
105 <      int nRigidAtoms = 0;
106 <
107 <      std::vector<Component*> components = simParams->getComponents();
101 >      nMolWithSameStamp = (*i)->getNMol();
102        
103 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
104 <        molStamp = (*i)->getMoleculeStamp();
105 <        nMolWithSameStamp = (*i)->getNMol();
106 <        
107 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
108 <
109 <        //calculate atoms in molecules
110 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
111 <
112 <        //calculate atoms in cutoff groups
113 <        int nAtomsInGroups = 0;
114 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
121 <        
122 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
123 <          cgStamp = molStamp->getCutoffGroupStamp(j);
124 <          nAtomsInGroups += cgStamp->getNMembers();
125 <        }
126 <
127 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128 <
129 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
130 <
131 <        //calculate atoms in rigid bodies
132 <        int nAtomsInRigidBodies = 0;
133 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134 <        
135 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
136 <          rbStamp = molStamp->getRigidBodyStamp(j);
137 <          nAtomsInRigidBodies += rbStamp->getNMembers();
138 <        }
139 <
140 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
142 <        
103 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
104 >      
105 >      //calculate atoms in molecules
106 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
107 >      
108 >      //calculate atoms in cutoff groups
109 >      int nAtomsInGroups = 0;
110 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
111 >      
112 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
113 >        cgStamp = molStamp->getCutoffGroupStamp(j);
114 >        nAtomsInGroups += cgStamp->getNMembers();
115        }
116 <
117 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
118 <      //group therefore the total number of cutoff groups in the system is
119 <      //equal to the total number of atoms minus number of atoms belong to
120 <      //cutoff group defined in meta-data file plus the number of cutoff
121 <      //groups defined in meta-data file
122 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
123 <
124 <      //every free atom (atom does not belong to rigid bodies) is an
125 <      //integrable object therefore the total number of integrable objects
126 <      //in the system is equal to the total number of atoms minus number of
127 <      //atoms belong to rigid body defined in meta-data file plus the number
128 <      //of rigid bodies defined in meta-data file
129 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
130 <                                                + nGlobalRigidBodies_;
131 <  
132 <      nGlobalMols_ = molStampIds_.size();
161 <      molToProcMap_.resize(nGlobalMols_);
116 >      
117 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
118 >      
119 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
120 >      
121 >      //calculate atoms in rigid bodies
122 >      int nAtomsInRigidBodies = 0;
123 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
124 >      
125 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
126 >        rbStamp = molStamp->getRigidBodyStamp(j);
127 >        nAtomsInRigidBodies += rbStamp->getNMembers();
128 >      }
129 >      
130 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
131 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
132 >      
133      }
134 +    
135 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
136 +    //group therefore the total number of cutoff groups in the system is
137 +    //equal to the total number of atoms minus number of atoms belong to
138 +    //cutoff group defined in meta-data file plus the number of cutoff
139 +    //groups defined in meta-data file
140  
141 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
142 +    
143 +    //every free atom (atom does not belong to rigid bodies) is an
144 +    //integrable object therefore the total number of integrable objects
145 +    //in the system is equal to the total number of atoms minus number of
146 +    //atoms belong to rigid body defined in meta-data file plus the number
147 +    //of rigid bodies defined in meta-data file
148 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 +      + nGlobalRigidBodies_;
150 +    
151 +    nGlobalMols_ = molStampIds_.size();
152 +    molToProcMap_.resize(nGlobalMols_);
153 +  }
154 +  
155    SimInfo::~SimInfo() {
156 <    std::map<int, Molecule*>::iterator i;
156 >    map<int, Molecule*>::iterator i;
157      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158        delete i->second;
159      }
# Line 173 | Line 164 | namespace OpenMD {
164      delete forceField_;
165    }
166  
176  int SimInfo::getNGlobalConstraints() {
177    int nGlobalConstraints;
178 #ifdef IS_MPI
179    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180                  MPI_COMM_WORLD);    
181 #else
182    nGlobalConstraints =  nConstraints_;
183 #endif
184    return nGlobalConstraints;
185  }
167  
168    bool SimInfo::addMolecule(Molecule* mol) {
169      MoleculeIterator i;
170 <
170 >    
171      i = molecules_.find(mol->getGlobalIndex());
172      if (i == molecules_.end() ) {
173 <
174 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 <        
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176        nAtoms_ += mol->getNAtoms();
177        nBonds_ += mol->getNBonds();
178        nBends_ += mol->getNBends();
# Line 201 | Line 182 | namespace OpenMD {
182        nIntegrableObjects_ += mol->getNIntegrableObjects();
183        nCutoffGroups_ += mol->getNCutoffGroups();
184        nConstraints_ += mol->getNConstraintPairs();
185 <
185 >      
186        addInteractionPairs(mol);
187 <  
187 >      
188        return true;
189      } else {
190        return false;
191      }
192    }
193 <
193 >  
194    bool SimInfo::removeMolecule(Molecule* mol) {
195      MoleculeIterator i;
196      i = molecules_.find(mol->getGlobalIndex());
# Line 237 | Line 218 | namespace OpenMD {
218      } else {
219        return false;
220      }
240
241
221    }    
222  
223          
# Line 254 | Line 233 | namespace OpenMD {
233  
234  
235    void SimInfo::calcNdf() {
236 <    int ndf_local;
236 >    int ndf_local, nfq_local;
237      MoleculeIterator i;
238 <    std::vector<StuntDouble*>::iterator j;
238 >    vector<StuntDouble*>::iterator j;
239 >    vector<Atom*>::iterator k;
240 >
241      Molecule* mol;
242 <    StuntDouble* integrableObject;
242 >    StuntDouble* sd;
243 >    Atom* atom;
244  
245      ndf_local = 0;
246 +    nfq_local = 0;
247      
248      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267           integrableObject = mol->nextIntegrableObject(j)) {
249  
250 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
251 +           sd = mol->nextIntegrableObject(j)) {
252 +
253          ndf_local += 3;
254  
255 <        if (integrableObject->isDirectional()) {
256 <          if (integrableObject->isLinear()) {
255 >        if (sd->isDirectional()) {
256 >          if (sd->isLinear()) {
257              ndf_local += 2;
258            } else {
259              ndf_local += 3;
260            }
261          }
278            
262        }
263 +
264 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
265 +           atom = mol->nextFluctuatingCharge(k)) {
266 +        if (atom->isFluctuatingCharge()) {
267 +          nfq_local++;
268 +        }
269 +      }
270      }
271      
272 +    ndfLocal_ = ndf_local;
273 +
274      // n_constraints is local, so subtract them on each processor
275      ndf_local -= nConstraints_;
276  
277   #ifdef IS_MPI
278 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
278 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
279 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
280 >                              MPI::INT, MPI::SUM);
281   #else
282      ndf_ = ndf_local;
283 +    nGlobalFluctuatingCharges_ = nfq_local;
284   #endif
285  
286      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 296 | Line 291 | namespace OpenMD {
291  
292    int SimInfo::getFdf() {
293   #ifdef IS_MPI
294 <    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
294 >    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
295   #else
296      fdf_ = fdf_local;
297   #endif
298      return fdf_;
299    }
300 +  
301 +  unsigned int SimInfo::getNLocalCutoffGroups(){
302 +    int nLocalCutoffAtoms = 0;
303 +    Molecule* mol;
304 +    MoleculeIterator mi;
305 +    CutoffGroup* cg;
306 +    Molecule::CutoffGroupIterator ci;
307      
308 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
309 +      
310 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
311 +           cg = mol->nextCutoffGroup(ci)) {
312 +        nLocalCutoffAtoms += cg->getNumAtom();
313 +        
314 +      }        
315 +    }
316 +    
317 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
318 +  }
319 +    
320    void SimInfo::calcNdfRaw() {
321      int ndfRaw_local;
322  
323      MoleculeIterator i;
324 <    std::vector<StuntDouble*>::iterator j;
324 >    vector<StuntDouble*>::iterator j;
325      Molecule* mol;
326 <    StuntDouble* integrableObject;
326 >    StuntDouble* sd;
327  
328      // Raw degrees of freedom that we have to set
329      ndfRaw_local = 0;
330      
331      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319           integrableObject = mol->nextIntegrableObject(j)) {
332  
333 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
334 +           sd = mol->nextIntegrableObject(j)) {
335 +
336          ndfRaw_local += 3;
337  
338 <        if (integrableObject->isDirectional()) {
339 <          if (integrableObject->isLinear()) {
338 >        if (sd->isDirectional()) {
339 >          if (sd->isLinear()) {
340              ndfRaw_local += 2;
341            } else {
342              ndfRaw_local += 3;
# Line 332 | Line 347 | namespace OpenMD {
347      }
348      
349   #ifdef IS_MPI
350 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
350 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
351   #else
352      ndfRaw_ = ndfRaw_local;
353   #endif
# Line 345 | Line 360 | namespace OpenMD {
360  
361  
362   #ifdef IS_MPI
363 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
363 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
364 >                              MPI::INT, MPI::SUM);
365   #else
366      ndfTrans_ = ndfTrans_local;
367   #endif
# Line 356 | Line 372 | namespace OpenMD {
372  
373    void SimInfo::addInteractionPairs(Molecule* mol) {
374      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
375 <    std::vector<Bond*>::iterator bondIter;
376 <    std::vector<Bend*>::iterator bendIter;
377 <    std::vector<Torsion*>::iterator torsionIter;
378 <    std::vector<Inversion*>::iterator inversionIter;
375 >    vector<Bond*>::iterator bondIter;
376 >    vector<Bend*>::iterator bendIter;
377 >    vector<Torsion*>::iterator torsionIter;
378 >    vector<Inversion*>::iterator inversionIter;
379      Bond* bond;
380      Bend* bend;
381      Torsion* torsion;
# Line 377 | Line 393 | namespace OpenMD {
393      // always be excluded.  These are done at the bottom of this
394      // function.
395  
396 <    std::map<int, std::set<int> > atomGroups;
396 >    map<int, set<int> > atomGroups;
397      Molecule::RigidBodyIterator rbIter;
398      RigidBody* rb;
399      Molecule::IntegrableObjectIterator ii;
400 <    StuntDouble* integrableObject;
400 >    StuntDouble* sd;
401      
402 <    for (integrableObject = mol->beginIntegrableObject(ii);
403 <         integrableObject != NULL;
388 <         integrableObject = mol->nextIntegrableObject(ii)) {
402 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
403 >         sd = mol->nextIntegrableObject(ii)) {
404        
405 <      if (integrableObject->isRigidBody()) {
406 <        rb = static_cast<RigidBody*>(integrableObject);
407 <        std::vector<Atom*> atoms = rb->getAtoms();
408 <        std::set<int> rigidAtoms;
405 >      if (sd->isRigidBody()) {
406 >        rb = static_cast<RigidBody*>(sd);
407 >        vector<Atom*> atoms = rb->getAtoms();
408 >        set<int> rigidAtoms;
409          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
410            rigidAtoms.insert(atoms[i]->getGlobalIndex());
411          }
412          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
413 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
413 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
414          }      
415        } else {
416 <        std::set<int> oneAtomSet;
417 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
418 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
416 >        set<int> oneAtomSet;
417 >        oneAtomSet.insert(sd->getGlobalIndex());
418 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
419        }
420      }  
421 +
422            
423      for (bond= mol->beginBond(bondIter); bond != NULL;
424           bond = mol->nextBond(bondIter)) {
425  
426        a = bond->getAtomA()->getGlobalIndex();
427        b = bond->getAtomB()->getGlobalIndex();  
428 <    
428 >
429        if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
430          oneTwoInteractions_.addPair(a, b);
431        } else {
# Line 503 | Line 519 | namespace OpenMD {
519  
520      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
521           rb = mol->nextRigidBody(rbIter)) {
522 <      std::vector<Atom*> atoms = rb->getAtoms();
522 >      vector<Atom*> atoms = rb->getAtoms();
523        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
524          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
525            a = atoms[i]->getGlobalIndex();
# Line 517 | Line 533 | namespace OpenMD {
533  
534    void SimInfo::removeInteractionPairs(Molecule* mol) {
535      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
536 <    std::vector<Bond*>::iterator bondIter;
537 <    std::vector<Bend*>::iterator bendIter;
538 <    std::vector<Torsion*>::iterator torsionIter;
539 <    std::vector<Inversion*>::iterator inversionIter;
536 >    vector<Bond*>::iterator bondIter;
537 >    vector<Bend*>::iterator bendIter;
538 >    vector<Torsion*>::iterator torsionIter;
539 >    vector<Inversion*>::iterator inversionIter;
540      Bond* bond;
541      Bend* bend;
542      Torsion* torsion;
# Line 530 | Line 546 | namespace OpenMD {
546      int c;
547      int d;
548  
549 <    std::map<int, std::set<int> > atomGroups;
549 >    map<int, set<int> > atomGroups;
550      Molecule::RigidBodyIterator rbIter;
551      RigidBody* rb;
552      Molecule::IntegrableObjectIterator ii;
553 <    StuntDouble* integrableObject;
553 >    StuntDouble* sd;
554      
555 <    for (integrableObject = mol->beginIntegrableObject(ii);
556 <         integrableObject != NULL;
541 <         integrableObject = mol->nextIntegrableObject(ii)) {
555 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
556 >         sd = mol->nextIntegrableObject(ii)) {
557        
558 <      if (integrableObject->isRigidBody()) {
559 <        rb = static_cast<RigidBody*>(integrableObject);
560 <        std::vector<Atom*> atoms = rb->getAtoms();
561 <        std::set<int> rigidAtoms;
558 >      if (sd->isRigidBody()) {
559 >        rb = static_cast<RigidBody*>(sd);
560 >        vector<Atom*> atoms = rb->getAtoms();
561 >        set<int> rigidAtoms;
562          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
563            rigidAtoms.insert(atoms[i]->getGlobalIndex());
564          }
565          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
566 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
566 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
567          }      
568        } else {
569 <        std::set<int> oneAtomSet;
570 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
571 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
569 >        set<int> oneAtomSet;
570 >        oneAtomSet.insert(sd->getGlobalIndex());
571 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
572        }
573      }  
574  
# Line 656 | Line 671 | namespace OpenMD {
671  
672      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
673           rb = mol->nextRigidBody(rbIter)) {
674 <      std::vector<Atom*> atoms = rb->getAtoms();
674 >      vector<Atom*> atoms = rb->getAtoms();
675        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
676          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
677            a = atoms[i]->getGlobalIndex();
# Line 679 | Line 694 | namespace OpenMD {
694      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
695    }
696  
682  void SimInfo::update() {
697  
698 <    setupSimType();
699 <
700 < #ifdef IS_MPI
701 <    setupFortranParallel();
702 < #endif
703 <
704 <    setupFortranSim();
705 <
706 <    //setup fortran force field
693 <    /** @deprecate */    
694 <    int isError = 0;
695 <    
696 <    setupCutoff();
697 <    
698 <    setupElectrostaticSummationMethod( isError );
699 <    setupSwitchingFunction();
700 <    setupAccumulateBoxDipole();
701 <
702 <    if(isError){
703 <      sprintf( painCave.errMsg,
704 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
705 <      painCave.isFatal = 1;
706 <      simError();
707 <    }
708 <
698 >  /**
699 >   * update
700 >   *
701 >   *  Performs the global checks and variable settings after the
702 >   *  objects have been created.
703 >   *
704 >   */
705 >  void SimInfo::update() {  
706 >    setupSimVariables();
707      calcNdf();
708      calcNdfRaw();
709      calcNdfTrans();
712
713    fortranInitialized_ = true;
710    }
711 <
712 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
711 >  
712 >  /**
713 >   * getSimulatedAtomTypes
714 >   *
715 >   * Returns an STL set of AtomType* that are actually present in this
716 >   * simulation.  Must query all processors to assemble this information.
717 >   *
718 >   */
719 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
720      SimInfo::MoleculeIterator mi;
721      Molecule* mol;
722      Molecule::AtomIterator ai;
723      Atom* atom;
724 <    std::set<AtomType*> atomTypes;
725 <
724 >    set<AtomType*> atomTypes;
725 >    
726      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
727 <
728 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
727 >      for(atom = mol->beginAtom(ai); atom != NULL;
728 >          atom = mol->nextAtom(ai)) {
729          atomTypes.insert(atom->getAtomType());
730 <      }
731 <        
729 <    }
730 <
731 <    return atomTypes;        
732 <  }
733 <
734 <  void SimInfo::setupSimType() {
735 <    std::set<AtomType*>::iterator i;
736 <    std::set<AtomType*> atomTypes;
737 <    atomTypes = getUniqueAtomTypes();
730 >      }      
731 >    }    
732      
733 <    int useLennardJones = 0;
740 <    int useElectrostatic = 0;
741 <    int useEAM = 0;
742 <    int useSC = 0;
743 <    int useCharge = 0;
744 <    int useDirectional = 0;
745 <    int useDipole = 0;
746 <    int useGayBerne = 0;
747 <    int useSticky = 0;
748 <    int useStickyPower = 0;
749 <    int useShape = 0;
750 <    int useFLARB = 0; //it is not in AtomType yet
751 <    int useDirectionalAtom = 0;    
752 <    int useElectrostatics = 0;
753 <    //usePBC and useRF are from simParams
754 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
755 <    int useRF;
756 <    int useSF;
757 <    int useSP;
758 <    int useBoxDipole;
733 > #ifdef IS_MPI
734  
735 <    std::string myMethod;
736 <
762 <    // set the useRF logical
763 <    useRF = 0;
764 <    useSF = 0;
765 <    useSP = 0;
766 <    useBoxDipole = 0;
767 <
768 <
769 <    if (simParams_->haveElectrostaticSummationMethod()) {
770 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
771 <      toUpper(myMethod);
772 <      if (myMethod == "REACTION_FIELD"){
773 <        useRF = 1;
774 <      } else if (myMethod == "SHIFTED_FORCE"){
775 <        useSF = 1;
776 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
777 <        useSP = 1;
778 <      }
779 <    }
735 >    // loop over the found atom types on this processor, and add their
736 >    // numerical idents to a vector:
737      
738 <    if (simParams_->haveAccumulateBoxDipole())
739 <      if (simParams_->getAccumulateBoxDipole())
740 <        useBoxDipole = 1;
738 >    vector<int> foundTypes;
739 >    set<AtomType*>::iterator i;
740 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
741 >      foundTypes.push_back( (*i)->getIdent() );
742  
743 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
743 >    // count_local holds the number of found types on this processor
744 >    int count_local = foundTypes.size();
745  
746 <    //loop over all of the atom types
788 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
789 <      useLennardJones |= (*i)->isLennardJones();
790 <      useElectrostatic |= (*i)->isElectrostatic();
791 <      useEAM |= (*i)->isEAM();
792 <      useSC |= (*i)->isSC();
793 <      useCharge |= (*i)->isCharge();
794 <      useDirectional |= (*i)->isDirectional();
795 <      useDipole |= (*i)->isDipole();
796 <      useGayBerne |= (*i)->isGayBerne();
797 <      useSticky |= (*i)->isSticky();
798 <      useStickyPower |= (*i)->isStickyPower();
799 <      useShape |= (*i)->isShape();
800 <    }
746 >    int nproc = MPI::COMM_WORLD.Get_size();
747  
748 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
749 <      useDirectionalAtom = 1;
750 <    }
748 >    // we need arrays to hold the counts and displacement vectors for
749 >    // all processors
750 >    vector<int> counts(nproc, 0);
751 >    vector<int> disps(nproc, 0);
752  
753 <    if (useCharge || useDipole) {
754 <      useElectrostatics = 1;
753 >    // fill the counts array
754 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
755 >                              1, MPI::INT);
756 >  
757 >    // use the processor counts to compute the displacement array
758 >    disps[0] = 0;    
759 >    int totalCount = counts[0];
760 >    for (int iproc = 1; iproc < nproc; iproc++) {
761 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
762 >      totalCount += counts[iproc];
763      }
764  
765 < #ifdef IS_MPI    
766 <    int temp;
765 >    // we need a (possibly redundant) set of all found types:
766 >    vector<int> ftGlobal(totalCount);
767 >    
768 >    // now spray out the foundTypes to all the other processors:    
769 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
770 >                               &ftGlobal[0], &counts[0], &disps[0],
771 >                               MPI::INT);
772  
773 <    temp = usePBC;
814 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
773 >    vector<int>::iterator j;
774  
775 <    temp = useDirectionalAtom;
776 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
775 >    // foundIdents is a stl set, so inserting an already found ident
776 >    // will have no effect.
777 >    set<int> foundIdents;
778  
779 <    temp = useLennardJones;
780 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
779 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
780 >      foundIdents.insert((*j));
781 >    
782 >    // now iterate over the foundIdents and get the actual atom types
783 >    // that correspond to these:
784 >    set<int>::iterator it;
785 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
786 >      atomTypes.insert( forceField_->getAtomType((*it)) );
787 >
788 > #endif
789  
790 <    temp = useElectrostatics;
791 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
790 >    return atomTypes;        
791 >  }
792  
825    temp = useCharge;
826    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
793  
794 <    temp = useDipole;
795 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
794 >  int getGlobalCountOfType(AtomType* atype) {
795 >    /*
796 >    set<AtomType*> atypes = getSimulatedAtomTypes();
797 >    map<AtomType*, int> counts_;
798  
799 <    temp = useSticky;
800 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
799 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
800 >      for(atom = mol->beginAtom(ai); atom != NULL;
801 >          atom = mol->nextAtom(ai)) {
802 >        atom->getAtomType();
803 >      }      
804 >    }    
805 >    */
806 >    return 0;
807 >  }
808  
809 <    temp = useStickyPower;
810 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
809 >  void SimInfo::setupSimVariables() {
810 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
811 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
812 >    // parameter is true
813 >    calcBoxDipole_ = false;
814 >    if ( simParams_->haveAccumulateBoxDipole() )
815 >      if ( simParams_->getAccumulateBoxDipole() ) {
816 >        calcBoxDipole_ = true;      
817 >      }
818      
819 <    temp = useGayBerne;
820 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
819 >    set<AtomType*>::iterator i;
820 >    set<AtomType*> atomTypes;
821 >    atomTypes = getSimulatedAtomTypes();    
822 >    bool usesElectrostatic = false;
823 >    bool usesMetallic = false;
824 >    bool usesDirectional = false;
825 >    bool usesFluctuatingCharges =  false;
826 >    //loop over all of the atom types
827 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
828 >      usesElectrostatic |= (*i)->isElectrostatic();
829 >      usesMetallic |= (*i)->isMetal();
830 >      usesDirectional |= (*i)->isDirectional();
831 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
832 >    }
833  
834 <    temp = useEAM;
835 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
836 <
837 <    temp = useSC;
838 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
834 > #ifdef IS_MPI
835 >    bool temp;
836 >    temp = usesDirectional;
837 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
838 >                              MPI::LOR);
839 >        
840 >    temp = usesMetallic;
841 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
842 >                              MPI::LOR);
843      
844 <    temp = useShape;
845 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
844 >    temp = usesElectrostatic;
845 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
846 >                              MPI::LOR);
847  
848 <    temp = useFLARB;
849 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
848 >    temp = usesFluctuatingCharges;
849 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
850 >                              MPI::LOR);
851 > #else
852  
853 <    temp = useRF;
854 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
853 >    usesDirectionalAtoms_ = usesDirectional;
854 >    usesMetallicAtoms_ = usesMetallic;
855 >    usesElectrostaticAtoms_ = usesElectrostatic;
856 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
857  
858 <    temp = useSF;
859 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
858 > #endif
859 >    
860 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
861 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
862 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
863 >  }
864  
858    temp = useSP;
859    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
865  
866 <    temp = useBoxDipole;
867 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
866 >  vector<int> SimInfo::getGlobalAtomIndices() {
867 >    SimInfo::MoleculeIterator mi;
868 >    Molecule* mol;
869 >    Molecule::AtomIterator ai;
870 >    Atom* atom;
871  
872 <    temp = useAtomicVirial_;
873 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
872 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
873 >    
874 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
875 >      
876 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
877 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
878 >      }
879 >    }
880 >    return GlobalAtomIndices;
881 >  }
882  
867 #endif
883  
884 <    fInfo_.SIM_uses_PBC = usePBC;    
885 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
886 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
887 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
888 <    fInfo_.SIM_uses_Charges = useCharge;
874 <    fInfo_.SIM_uses_Dipoles = useDipole;
875 <    fInfo_.SIM_uses_Sticky = useSticky;
876 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
877 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
878 <    fInfo_.SIM_uses_EAM = useEAM;
879 <    fInfo_.SIM_uses_SC = useSC;
880 <    fInfo_.SIM_uses_Shapes = useShape;
881 <    fInfo_.SIM_uses_FLARB = useFLARB;
882 <    fInfo_.SIM_uses_RF = useRF;
883 <    fInfo_.SIM_uses_SF = useSF;
884 <    fInfo_.SIM_uses_SP = useSP;
885 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
886 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
887 <  }
884 >  vector<int> SimInfo::getGlobalGroupIndices() {
885 >    SimInfo::MoleculeIterator mi;
886 >    Molecule* mol;
887 >    Molecule::CutoffGroupIterator ci;
888 >    CutoffGroup* cg;
889  
890 <  void SimInfo::setupFortranSim() {
890 <    int isError;
891 <    int nExclude, nOneTwo, nOneThree, nOneFour;
892 <    std::vector<int> fortranGlobalGroupMembership;
890 >    vector<int> GlobalGroupIndices;
891      
892 <    isError = 0;
893 <
894 <    //globalGroupMembership_ is filled by SimCreator    
895 <    for (int i = 0; i < nGlobalAtoms_; i++) {
896 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
892 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
893 >      
894 >      //local index of cutoff group is trivial, it only depends on the
895 >      //order of travesing
896 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
897 >           cg = mol->nextCutoffGroup(ci)) {
898 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
899 >      }        
900      }
901 +    return GlobalGroupIndices;
902 +  }
903  
904 +
905 +  void SimInfo::prepareTopology() {
906 +
907      //calculate mass ratio of cutoff group
902    std::vector<RealType> mfact;
908      SimInfo::MoleculeIterator mi;
909      Molecule* mol;
910      Molecule::CutoffGroupIterator ci;
# Line 908 | Line 913 | namespace OpenMD {
913      Atom* atom;
914      RealType totalMass;
915  
916 <    //to avoid memory reallocation, reserve enough space for mfact
917 <    mfact.reserve(getNCutoffGroups());
916 >    /**
917 >     * The mass factor is the relative mass of an atom to the total
918 >     * mass of the cutoff group it belongs to.  By default, all atoms
919 >     * are their own cutoff groups, and therefore have mass factors of
920 >     * 1.  We need some special handling for massless atoms, which
921 >     * will be treated as carrying the entire mass of the cutoff
922 >     * group.
923 >     */
924 >    massFactors_.clear();
925 >    massFactors_.resize(getNAtoms(), 1.0);
926      
927      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
928 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
928 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
929 >           cg = mol->nextCutoffGroup(ci)) {
930  
931          totalMass = cg->getMass();
932          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
933            // Check for massless groups - set mfact to 1 if true
934 <          if (totalMass != 0)
935 <            mfact.push_back(atom->getMass()/totalMass);
934 >          if (totalMass != 0)
935 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
936            else
937 <            mfact.push_back( 1.0 );
937 >            massFactors_[atom->getLocalIndex()] = 1.0;
938          }
939        }      
940      }
941  
942 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
929 <    std::vector<int> identArray;
942 >    // Build the identArray_ and regions_
943  
944 <    //to avoid memory reallocation, reserve enough space identArray
945 <    identArray.reserve(getNAtoms());
946 <    
947 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
944 >    identArray_.clear();
945 >    identArray_.reserve(getNAtoms());  
946 >    regions_.clear();
947 >    regions_.reserve(getNAtoms());
948 >
949 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
950 >      int reg = mol->getRegion();      
951        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
952 <        identArray.push_back(atom->getIdent());
952 >        identArray_.push_back(atom->getIdent());
953 >        regions_.push_back(reg);
954        }
955      }    
956 +      
957 +    topologyDone_ = true;
958 +  }
959  
960 <    //fill molMembershipArray
961 <    //molMembershipArray is filled by SimCreator    
962 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
943 <    for (int i = 0; i < nGlobalAtoms_; i++) {
944 <      molMembershipArray[i] = globalMolMembership_[i] + 1;
945 <    }
946 <    
947 <    //setup fortran simulation
960 >  void SimInfo::addProperty(GenericData* genData) {
961 >    properties_.addProperty(genData);  
962 >  }
963  
964 <    nExclude = excludedInteractions_.getSize();
965 <    nOneTwo = oneTwoInteractions_.getSize();
966 <    nOneThree = oneThreeInteractions_.getSize();
952 <    nOneFour = oneFourInteractions_.getSize();
964 >  void SimInfo::removeProperty(const string& propName) {
965 >    properties_.removeProperty(propName);  
966 >  }
967  
968 <    int* excludeList = excludedInteractions_.getPairList();
969 <    int* oneTwoList = oneTwoInteractions_.getPairList();
970 <    int* oneThreeList = oneThreeInteractions_.getPairList();
957 <    int* oneFourList = oneFourInteractions_.getPairList();
968 >  void SimInfo::clearProperties() {
969 >    properties_.clearProperties();
970 >  }
971  
972 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
973 <                   &nExclude, excludeList,
974 <                   &nOneTwo, oneTwoList,
962 <                   &nOneThree, oneThreeList,
963 <                   &nOneFour, oneFourList,
964 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
965 <                   &fortranGlobalGroupMembership[0], &isError);
966 <    
967 <    if( isError ){
972 >  vector<string> SimInfo::getPropertyNames() {
973 >    return properties_.getPropertyNames();  
974 >  }
975        
976 <      sprintf( painCave.errMsg,
977 <               "There was an error setting the simulation information in fortran.\n" );
978 <      painCave.isFatal = 1;
972 <      painCave.severity = OPENMD_ERROR;
973 <      simError();
974 <    }
975 <    
976 <    
977 <    sprintf( checkPointMsg,
978 <             "succesfully sent the simulation information to fortran.\n");
979 <    
980 <    errorCheckPoint();
981 <    
982 <    // Setup number of neighbors in neighbor list if present
983 <    if (simParams_->haveNeighborListNeighbors()) {
984 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
985 <      setNeighbors(&nlistNeighbors);
986 <    }
987 <  
976 >  vector<GenericData*> SimInfo::getProperties() {
977 >    return properties_.getProperties();
978 >  }
979  
980 +  GenericData* SimInfo::getPropertyByName(const string& propName) {
981 +    return properties_.getPropertyByName(propName);
982    }
983  
984 +  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
985 +    if (sman_ == sman) {
986 +      return;
987 +    }    
988 +    delete sman_;
989 +    sman_ = sman;
990  
992  void SimInfo::setupFortranParallel() {
993 #ifdef IS_MPI    
994    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
995    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
996    std::vector<int> localToGlobalCutoffGroupIndex;
997    SimInfo::MoleculeIterator mi;
998    Molecule::AtomIterator ai;
999    Molecule::CutoffGroupIterator ci;
991      Molecule* mol;
992 +    RigidBody* rb;
993      Atom* atom;
994      CutoffGroup* cg;
995 <    mpiSimData parallelData;
996 <    int isError;
997 <
998 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
999 <
1000 <      //local index(index in DataStorge) of atom is important
1009 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1010 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1011 <      }
1012 <
1013 <      //local index of cutoff group is trivial, it only depends on the order of travesing
1014 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1015 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1016 <      }        
995 >    SimInfo::MoleculeIterator mi;
996 >    Molecule::RigidBodyIterator rbIter;
997 >    Molecule::AtomIterator atomIter;
998 >    Molecule::CutoffGroupIterator cgIter;
999 >
1000 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1001          
1002 <    }
1003 <
1004 <    //fill up mpiSimData struct
1021 <    parallelData.nMolGlobal = getNGlobalMolecules();
1022 <    parallelData.nMolLocal = getNMolecules();
1023 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
1024 <    parallelData.nAtomsLocal = getNAtoms();
1025 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1026 <    parallelData.nGroupsLocal = getNCutoffGroups();
1027 <    parallelData.myNode = worldRank;
1028 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1029 <
1030 <    //pass mpiSimData struct and index arrays to fortran
1031 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1032 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
1033 <                    &localToGlobalCutoffGroupIndex[0], &isError);
1034 <
1035 <    if (isError) {
1036 <      sprintf(painCave.errMsg,
1037 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1038 <      painCave.isFatal = 1;
1039 <      simError();
1040 <    }
1041 <
1042 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
1043 <    errorCheckPoint();
1044 <
1045 < #endif
1046 <  }
1047 <
1048 <  void SimInfo::setupCutoff() {          
1049 <    
1050 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1051 <
1052 <    // Check the cutoff policy
1053 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1054 <
1055 <    // Set LJ shifting bools to false
1056 <    ljsp_ = 0;
1057 <    ljsf_ = 0;
1058 <
1059 <    std::string myPolicy;
1060 <    if (forceFieldOptions_.haveCutoffPolicy()){
1061 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
1062 <    }else if (simParams_->haveCutoffPolicy()) {
1063 <      myPolicy = simParams_->getCutoffPolicy();
1064 <    }
1065 <
1066 <    if (!myPolicy.empty()){
1067 <      toUpper(myPolicy);
1068 <      if (myPolicy == "MIX") {
1069 <        cp = MIX_CUTOFF_POLICY;
1070 <      } else {
1071 <        if (myPolicy == "MAX") {
1072 <          cp = MAX_CUTOFF_POLICY;
1073 <        } else {
1074 <          if (myPolicy == "TRADITIONAL") {            
1075 <            cp = TRADITIONAL_CUTOFF_POLICY;
1076 <          } else {
1077 <            // throw error        
1078 <            sprintf( painCave.errMsg,
1079 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1080 <            painCave.isFatal = 1;
1081 <            simError();
1082 <          }    
1083 <        }          
1002 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
1003 >           atom = mol->nextAtom(atomIter)) {
1004 >        atom->setSnapshotManager(sman_);
1005        }
1085    }          
1086    notifyFortranCutoffPolicy(&cp);
1087
1088    // Check the Skin Thickness for neighborlists
1089    RealType skin;
1090    if (simParams_->haveSkinThickness()) {
1091      skin = simParams_->getSkinThickness();
1092      notifyFortranSkinThickness(&skin);
1093    }            
1006          
1007 <    // Check if the cutoff was set explicitly:
1008 <    if (simParams_->haveCutoffRadius()) {
1009 <      rcut_ = simParams_->getCutoffRadius();
1098 <      if (simParams_->haveSwitchingRadius()) {
1099 <        rsw_  = simParams_->getSwitchingRadius();
1100 <      } else {
1101 <        if (fInfo_.SIM_uses_Charges |
1102 <            fInfo_.SIM_uses_Dipoles |
1103 <            fInfo_.SIM_uses_RF) {
1104 <          
1105 <          rsw_ = 0.85 * rcut_;
1106 <          sprintf(painCave.errMsg,
1107 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1108 <                  "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
1109 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1110 <        painCave.isFatal = 0;
1111 <        simError();
1112 <        } else {
1113 <          rsw_ = rcut_;
1114 <          sprintf(painCave.errMsg,
1115 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1116 <                  "\tOpenMD will use the same value as the cutoffRadius.\n"
1117 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1118 <          painCave.isFatal = 0;
1119 <          simError();
1120 <        }
1007 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1008 >           rb = mol->nextRigidBody(rbIter)) {
1009 >        rb->setSnapshotManager(sman_);
1010        }
1011  
1012 <      if (simParams_->haveElectrostaticSummationMethod()) {
1013 <        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1014 <        toUpper(myMethod);
1126 <        
1127 <        if (myMethod == "SHIFTED_POTENTIAL") {
1128 <          ljsp_ = 1;
1129 <        } else if (myMethod == "SHIFTED_FORCE") {
1130 <          ljsf_ = 1;
1131 <        }
1012 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1013 >           cg = mol->nextCutoffGroup(cgIter)) {
1014 >        cg->setSnapshotManager(sman_);
1015        }
1016 <
1017 <      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1135 <      
1136 <    } else {
1137 <      
1138 <      // For electrostatic atoms, we'll assume a large safe value:
1139 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1140 <        sprintf(painCave.errMsg,
1141 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1142 <                "\tOpenMD will use a default value of 15.0 angstroms"
1143 <                "\tfor the cutoffRadius.\n");
1144 <        painCave.isFatal = 0;
1145 <        simError();
1146 <        rcut_ = 15.0;
1147 <      
1148 <        if (simParams_->haveElectrostaticSummationMethod()) {
1149 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1150 <          toUpper(myMethod);
1151 <      
1152 <      // For the time being, we're tethering the LJ shifted behavior to the
1153 <      // electrostaticSummationMethod keyword options
1154 <          if (myMethod == "SHIFTED_POTENTIAL") {
1155 <            ljsp_ = 1;
1156 <          } else if (myMethod == "SHIFTED_FORCE") {
1157 <            ljsf_ = 1;
1158 <          }
1159 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1160 <            if (simParams_->haveSwitchingRadius()){
1161 <              sprintf(painCave.errMsg,
1162 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1163 <                      "\teven though the electrostaticSummationMethod was\n"
1164 <                      "\tset to %s\n", myMethod.c_str());
1165 <              painCave.isFatal = 1;
1166 <              simError();            
1167 <            }
1168 <          }
1169 <        }
1170 <      
1171 <        if (simParams_->haveSwitchingRadius()){
1172 <          rsw_ = simParams_->getSwitchingRadius();
1173 <        } else {        
1174 <          sprintf(painCave.errMsg,
1175 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1176 <                  "\tOpenMD will use a default value of\n"
1177 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1178 <          painCave.isFatal = 0;
1179 <          simError();
1180 <          rsw_ = 0.85 * rcut_;
1181 <        }
1182 <
1183 <        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1184 <
1185 <      } else {
1186 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1187 <        // We'll punt and let fortran figure out the cutoffs later.
1188 <        
1189 <        notifyFortranYouAreOnYourOwn();
1190 <
1191 <      }
1192 <    }
1016 >    }    
1017 >    
1018    }
1019  
1195  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1196    
1197    int errorOut;
1198    int esm =  NONE;
1199    int sm = UNDAMPED;
1200    RealType alphaVal;
1201    RealType dielectric;
1202    
1203    errorOut = isError;
1020  
1021 <    if (simParams_->haveElectrostaticSummationMethod()) {
1206 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1207 <      toUpper(myMethod);
1208 <      if (myMethod == "NONE") {
1209 <        esm = NONE;
1210 <      } else {
1211 <        if (myMethod == "SWITCHING_FUNCTION") {
1212 <          esm = SWITCHING_FUNCTION;
1213 <        } else {
1214 <          if (myMethod == "SHIFTED_POTENTIAL") {
1215 <            esm = SHIFTED_POTENTIAL;
1216 <          } else {
1217 <            if (myMethod == "SHIFTED_FORCE") {            
1218 <              esm = SHIFTED_FORCE;
1219 <            } else {
1220 <              if (myMethod == "REACTION_FIELD") {
1221 <                esm = REACTION_FIELD;
1222 <                dielectric = simParams_->getDielectric();
1223 <                if (!simParams_->haveDielectric()) {
1224 <                  // throw warning
1225 <                  sprintf( painCave.errMsg,
1226 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1227 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1228 <                  painCave.isFatal = 0;
1229 <                  simError();
1230 <                }
1231 <              } else {
1232 <                // throw error        
1233 <                sprintf( painCave.errMsg,
1234 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1235 <                         "\t(Input file specified %s .)\n"
1236 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1237 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1238 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1239 <                painCave.isFatal = 1;
1240 <                simError();
1241 <              }    
1242 <            }          
1243 <          }
1244 <        }
1245 <      }
1246 <    }
1247 <    
1248 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1249 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1250 <      toUpper(myScreen);
1251 <      if (myScreen == "UNDAMPED") {
1252 <        sm = UNDAMPED;
1253 <      } else {
1254 <        if (myScreen == "DAMPED") {
1255 <          sm = DAMPED;
1256 <          if (!simParams_->haveDampingAlpha()) {
1257 <            // first set a cutoff dependent alpha value
1258 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1259 <            alphaVal = 0.5125 - rcut_* 0.025;
1260 <            // for values rcut > 20.5, alpha is zero
1261 <            if (alphaVal < 0) alphaVal = 0;
1021 >  ostream& operator <<(ostream& o, SimInfo& info) {
1022  
1263            // throw warning
1264            sprintf( painCave.errMsg,
1265                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1266                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1267            painCave.isFatal = 0;
1268            simError();
1269          } else {
1270            alphaVal = simParams_->getDampingAlpha();
1271          }
1272          
1273        } else {
1274          // throw error        
1275          sprintf( painCave.errMsg,
1276                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1277                   "\t(Input file specified %s .)\n"
1278                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1279                   "or \"damped\".\n", myScreen.c_str() );
1280          painCave.isFatal = 1;
1281          simError();
1282        }
1283      }
1284    }
1285    
1286    // let's pass some summation method variables to fortran
1287    setElectrostaticSummationMethod( &esm );
1288    setFortranElectrostaticMethod( &esm );
1289    setScreeningMethod( &sm );
1290    setDampingAlpha( &alphaVal );
1291    setReactionFieldDielectric( &dielectric );
1292    initFortranFF( &errorOut );
1293  }
1294
1295  void SimInfo::setupSwitchingFunction() {    
1296    int ft = CUBIC;
1297
1298    if (simParams_->haveSwitchingFunctionType()) {
1299      std::string funcType = simParams_->getSwitchingFunctionType();
1300      toUpper(funcType);
1301      if (funcType == "CUBIC") {
1302        ft = CUBIC;
1303      } else {
1304        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1305          ft = FIFTH_ORDER_POLY;
1306        } else {
1307          // throw error        
1308          sprintf( painCave.errMsg,
1309                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1310          painCave.isFatal = 1;
1311          simError();
1312        }          
1313      }
1314    }
1315
1316    // send switching function notification to switcheroo
1317    setFunctionType(&ft);
1318
1319  }
1320
1321  void SimInfo::setupAccumulateBoxDipole() {    
1322
1323    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1324    if ( simParams_->haveAccumulateBoxDipole() )
1325      if ( simParams_->getAccumulateBoxDipole() ) {
1326        setAccumulateBoxDipole();
1327        calcBoxDipole_ = true;
1328      }
1329
1330  }
1331
1332  void SimInfo::addProperty(GenericData* genData) {
1333    properties_.addProperty(genData);  
1334  }
1335
1336  void SimInfo::removeProperty(const std::string& propName) {
1337    properties_.removeProperty(propName);  
1338  }
1339
1340  void SimInfo::clearProperties() {
1341    properties_.clearProperties();
1342  }
1343
1344  std::vector<std::string> SimInfo::getPropertyNames() {
1345    return properties_.getPropertyNames();  
1346  }
1347      
1348  std::vector<GenericData*> SimInfo::getProperties() {
1349    return properties_.getProperties();
1350  }
1351
1352  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1353    return properties_.getPropertyByName(propName);
1354  }
1355
1356  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1357    if (sman_ == sman) {
1358      return;
1359    }    
1360    delete sman_;
1361    sman_ = sman;
1362
1363    Molecule* mol;
1364    RigidBody* rb;
1365    Atom* atom;
1366    SimInfo::MoleculeIterator mi;
1367    Molecule::RigidBodyIterator rbIter;
1368    Molecule::AtomIterator atomIter;;
1369
1370    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1371        
1372      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1373        atom->setSnapshotManager(sman_);
1374      }
1375        
1376      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1377        rb->setSnapshotManager(sman_);
1378      }
1379    }    
1380    
1381  }
1382
1383  Vector3d SimInfo::getComVel(){
1384    SimInfo::MoleculeIterator i;
1385    Molecule* mol;
1386
1387    Vector3d comVel(0.0);
1388    RealType totalMass = 0.0;
1389    
1390
1391    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1392      RealType mass = mol->getMass();
1393      totalMass += mass;
1394      comVel += mass * mol->getComVel();
1395    }  
1396
1397 #ifdef IS_MPI
1398    RealType tmpMass = totalMass;
1399    Vector3d tmpComVel(comVel);    
1400    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1401    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1402 #endif
1403
1404    comVel /= totalMass;
1405
1406    return comVel;
1407  }
1408
1409  Vector3d SimInfo::getCom(){
1410    SimInfo::MoleculeIterator i;
1411    Molecule* mol;
1412
1413    Vector3d com(0.0);
1414    RealType totalMass = 0.0;
1415    
1416    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1417      RealType mass = mol->getMass();
1418      totalMass += mass;
1419      com += mass * mol->getCom();
1420    }  
1421
1422 #ifdef IS_MPI
1423    RealType tmpMass = totalMass;
1424    Vector3d tmpCom(com);    
1425    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1426    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1427 #endif
1428
1429    com /= totalMass;
1430
1431    return com;
1432
1433  }        
1434
1435  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1436
1023      return o;
1024    }
1025    
1026 <  
1441 <   /*
1442 <   Returns center of mass and center of mass velocity in one function call.
1443 <   */
1444 <  
1445 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1446 <      SimInfo::MoleculeIterator i;
1447 <      Molecule* mol;
1448 <      
1449 <    
1450 <      RealType totalMass = 0.0;
1451 <    
1452 <
1453 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1454 <         RealType mass = mol->getMass();
1455 <         totalMass += mass;
1456 <         com += mass * mol->getCom();
1457 <         comVel += mass * mol->getComVel();          
1458 <      }  
1459 <      
1460 < #ifdef IS_MPI
1461 <      RealType tmpMass = totalMass;
1462 <      Vector3d tmpCom(com);  
1463 <      Vector3d tmpComVel(comVel);
1464 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1465 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1466 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1467 < #endif
1468 <      
1469 <      com /= totalMass;
1470 <      comVel /= totalMass;
1471 <   }        
1472 <  
1473 <   /*
1474 <   Return intertia tensor for entire system and angular momentum Vector.
1475 <
1476 <
1477 <       [  Ixx -Ixy  -Ixz ]
1478 <  J =| -Iyx  Iyy  -Iyz |
1479 <       [ -Izx -Iyz   Izz ]
1480 <    */
1481 <
1482 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1483 <      
1484 <
1485 <      RealType xx = 0.0;
1486 <      RealType yy = 0.0;
1487 <      RealType zz = 0.0;
1488 <      RealType xy = 0.0;
1489 <      RealType xz = 0.0;
1490 <      RealType yz = 0.0;
1491 <      Vector3d com(0.0);
1492 <      Vector3d comVel(0.0);
1493 <      
1494 <      getComAll(com, comVel);
1495 <      
1496 <      SimInfo::MoleculeIterator i;
1497 <      Molecule* mol;
1498 <      
1499 <      Vector3d thisq(0.0);
1500 <      Vector3d thisv(0.0);
1501 <
1502 <      RealType thisMass = 0.0;
1503 <    
1504 <      
1505 <      
1506 <  
1507 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1508 <        
1509 <         thisq = mol->getCom()-com;
1510 <         thisv = mol->getComVel()-comVel;
1511 <         thisMass = mol->getMass();
1512 <         // Compute moment of intertia coefficients.
1513 <         xx += thisq[0]*thisq[0]*thisMass;
1514 <         yy += thisq[1]*thisq[1]*thisMass;
1515 <         zz += thisq[2]*thisq[2]*thisMass;
1516 <        
1517 <         // compute products of intertia
1518 <         xy += thisq[0]*thisq[1]*thisMass;
1519 <         xz += thisq[0]*thisq[2]*thisMass;
1520 <         yz += thisq[1]*thisq[2]*thisMass;
1521 <            
1522 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1523 <            
1524 <      }  
1525 <      
1526 <      
1527 <      inertiaTensor(0,0) = yy + zz;
1528 <      inertiaTensor(0,1) = -xy;
1529 <      inertiaTensor(0,2) = -xz;
1530 <      inertiaTensor(1,0) = -xy;
1531 <      inertiaTensor(1,1) = xx + zz;
1532 <      inertiaTensor(1,2) = -yz;
1533 <      inertiaTensor(2,0) = -xz;
1534 <      inertiaTensor(2,1) = -yz;
1535 <      inertiaTensor(2,2) = xx + yy;
1536 <      
1537 < #ifdef IS_MPI
1538 <      Mat3x3d tmpI(inertiaTensor);
1539 <      Vector3d tmpAngMom;
1540 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1541 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1542 < #endif
1543 <              
1544 <      return;
1545 <   }
1546 <
1547 <   //Returns the angular momentum of the system
1548 <   Vector3d SimInfo::getAngularMomentum(){
1549 <      
1550 <      Vector3d com(0.0);
1551 <      Vector3d comVel(0.0);
1552 <      Vector3d angularMomentum(0.0);
1553 <      
1554 <      getComAll(com,comVel);
1555 <      
1556 <      SimInfo::MoleculeIterator i;
1557 <      Molecule* mol;
1558 <      
1559 <      Vector3d thisr(0.0);
1560 <      Vector3d thisp(0.0);
1561 <      
1562 <      RealType thisMass;
1563 <      
1564 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1565 <        thisMass = mol->getMass();
1566 <        thisr = mol->getCom()-com;
1567 <        thisp = (mol->getComVel()-comVel)*thisMass;
1568 <        
1569 <        angularMomentum += cross( thisr, thisp );
1570 <        
1571 <      }  
1572 <      
1573 < #ifdef IS_MPI
1574 <      Vector3d tmpAngMom;
1575 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1576 < #endif
1577 <      
1578 <      return angularMomentum;
1579 <   }
1580 <  
1026 >  
1027    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1028 <    return IOIndexToIntegrableObject.at(index);
1028 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1029 >      sprintf(painCave.errMsg,
1030 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1031 >              "\tindex exceeds number of known objects!\n");
1032 >      painCave.isFatal = 1;
1033 >      simError();
1034 >      return NULL;
1035 >    } else
1036 >      return IOIndexToIntegrableObject.at(index);
1037    }
1038    
1039 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1039 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1040      IOIndexToIntegrableObject= v;
1041    }
1042  
1043 <  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1044 <     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1045 <     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1046 <     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1047 <  */
1048 <  void SimInfo::getGyrationalVolume(RealType &volume){
1049 <    Mat3x3d intTensor;
1050 <    RealType det;
1051 <    Vector3d dummyAngMom;
1598 <    RealType sysconstants;
1599 <    RealType geomCnst;
1600 <
1601 <    geomCnst = 3.0/2.0;
1602 <    /* Get the inertial tensor and angular momentum for free*/
1603 <    getInertiaTensor(intTensor,dummyAngMom);
1604 <    
1605 <    det = intTensor.determinant();
1606 <    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1607 <    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1608 <    return;
1043 >  int SimInfo::getNGlobalConstraints() {
1044 >    int nGlobalConstraints;
1045 > #ifdef IS_MPI
1046 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1047 >                              MPI::INT, MPI::SUM);
1048 > #else
1049 >    nGlobalConstraints =  nConstraints_;
1050 > #endif
1051 >    return nGlobalConstraints;
1052    }
1053  
1611  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1612    Mat3x3d intTensor;
1613    Vector3d dummyAngMom;
1614    RealType sysconstants;
1615    RealType geomCnst;
1616
1617    geomCnst = 3.0/2.0;
1618    /* Get the inertial tensor and angular momentum for free*/
1619    getInertiaTensor(intTensor,dummyAngMom);
1620    
1621    detI = intTensor.determinant();
1622    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1623    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1624    return;
1625  }
1626 /*
1627   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1628      assert( v.size() == nAtoms_ + nRigidBodies_);
1629      sdByGlobalIndex_ = v;
1630    }
1631
1632    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1633      //assert(index < nAtoms_ + nRigidBodies_);
1634      return sdByGlobalIndex_.at(index);
1635    }  
1636 */  
1054   }//end namespace OpenMD
1055  

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC vs.
Revision 1940 by gezelter, Fri Nov 1 19:31:41 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines