ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 1290 by cli2, Wed Sep 10 19:51:45 2008 UTC vs.
Revision 1969 by gezelter, Wed Feb 26 14:14:50 2014 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 46 | Line 47
47   * @version 1.0
48   */
49  
50 + #ifdef IS_MPI
51 + #include <mpi.h>
52 + #endif
53   #include <algorithm>
54   #include <set>
55   #include <map>
# Line 54 | Line 58
58   #include "math/Vector3.hpp"
59   #include "primitives/Molecule.hpp"
60   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
61   #include "utils/MemoryUtils.hpp"
62   #include "utils/simError.h"
63   #include "selection/SelectionManager.hpp"
64   #include "io/ForceFieldOptions.hpp"
65 < #include "UseTheForce/ForceField.hpp"
65 > #include "brains/ForceField.hpp"
66 > #include "nonbonded/SwitchingFunction.hpp"
67  
68 <
69 < #ifdef IS_MPI
73 < #include "UseTheForce/mpiComponentPlan.h"
74 < #include "UseTheForce/DarkSide/simParallel_interface.h"
75 < #endif
76 <
77 < namespace oopse {
78 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 <    std::map<int, std::set<int> >::iterator i = container.find(index);
80 <    std::set<int> result;
81 <    if (i != container.end()) {
82 <        result = i->second;
83 <    }
84 <
85 <    return result;
86 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 <    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
79 <    calcBoxDipole_(false), useAtomicVirial_(true) {
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 >    nGlobalFluctuatingCharges_(0), nGlobalBonds_(0), nGlobalBends_(0),
77 >    nGlobalTorsions_(0), nGlobalInversions_(0), nAtoms_(0), nBonds_(0),
78 >    nBends_(0), nTorsions_(0), nInversions_(0), nRigidBodies_(0),
79 >    nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
80 >    nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
81 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
82 >    
83 >    MoleculeStamp* molStamp;
84 >    int nMolWithSameStamp;
85 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
87 >    CutoffGroupStamp* cgStamp;    
88 >    RigidBodyStamp* rbStamp;
89 >    int nRigidAtoms = 0;
90 >    
91 >    vector<Component*> components = simParams->getComponents();
92 >    
93 >    for (vector<Component*>::iterator i = components.begin();
94 >         i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      if ( (*i)->haveRegion() ) {        
97 >        molStamp->setRegion( (*i)->getRegion() );
98 >      } else {
99 >        // set the region to a disallowed value:
100 >        molStamp->setRegion( -1 );
101 >      }
102  
103 <
99 <      MoleculeStamp* molStamp;
100 <      int nMolWithSameStamp;
101 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
102 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
103 <      CutoffGroupStamp* cgStamp;    
104 <      RigidBodyStamp* rbStamp;
105 <      int nRigidAtoms = 0;
106 <
107 <      std::vector<Component*> components = simParams->getComponents();
103 >      nMolWithSameStamp = (*i)->getNMol();
104        
105 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
106 <        molStamp = (*i)->getMoleculeStamp();
107 <        nMolWithSameStamp = (*i)->getNMol();
108 <        
109 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
110 <
111 <        //calculate atoms in molecules
112 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
113 <
114 <        //calculate atoms in cutoff groups
115 <        int nAtomsInGroups = 0;
116 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
117 <        
118 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
119 <          cgStamp = molStamp->getCutoffGroupStamp(j);
120 <          nAtomsInGroups += cgStamp->getNMembers();
125 <        }
126 <
127 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128 <
129 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
130 <
131 <        //calculate atoms in rigid bodies
132 <        int nAtomsInRigidBodies = 0;
133 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134 <        
135 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
136 <          rbStamp = molStamp->getRigidBodyStamp(j);
137 <          nAtomsInRigidBodies += rbStamp->getNMembers();
138 <        }
139 <
140 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
142 <        
105 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
106 >      
107 >      //calculate atoms in molecules
108 >      nGlobalAtoms_ += molStamp->getNAtoms() * nMolWithSameStamp;
109 >      nGlobalBonds_ += molStamp->getNBonds() * nMolWithSameStamp;
110 >      nGlobalBends_ += molStamp->getNBends() * nMolWithSameStamp;
111 >      nGlobalTorsions_ += molStamp->getNTorsions() * nMolWithSameStamp;
112 >      nGlobalInversions_ += molStamp->getNInversions() * nMolWithSameStamp;
113 >      
114 >      //calculate atoms in cutoff groups
115 >      int nAtomsInGroups = 0;
116 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
117 >      
118 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
119 >        cgStamp = molStamp->getCutoffGroupStamp(j);
120 >        nAtomsInGroups += cgStamp->getNMembers();
121        }
122 <
123 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
124 <      //group therefore the total number of cutoff groups in the system is
125 <      //equal to the total number of atoms minus number of atoms belong to
126 <      //cutoff group defined in meta-data file plus the number of cutoff
127 <      //groups defined in meta-data file
128 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
129 <
130 <      //every free atom (atom does not belong to rigid bodies) is an
131 <      //integrable object therefore the total number of integrable objects
132 <      //in the system is equal to the total number of atoms minus number of
133 <      //atoms belong to rigid body defined in meta-data file plus the number
134 <      //of rigid bodies defined in meta-data file
135 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
136 <                                                + nGlobalRigidBodies_;
137 <  
138 <      nGlobalMols_ = molStampIds_.size();
161 <      molToProcMap_.resize(nGlobalMols_);
122 >      
123 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
124 >      
125 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
126 >      
127 >      //calculate atoms in rigid bodies
128 >      int nAtomsInRigidBodies = 0;
129 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
130 >      
131 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
132 >        rbStamp = molStamp->getRigidBodyStamp(j);
133 >        nAtomsInRigidBodies += rbStamp->getNMembers();
134 >      }
135 >      
136 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
137 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
138 >      
139      }
140 +    
141 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
142 +    //group therefore the total number of cutoff groups in the system is
143 +    //equal to the total number of atoms minus number of atoms belong to
144 +    //cutoff group defined in meta-data file plus the number of cutoff
145 +    //groups defined in meta-data file
146  
147 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
148 +    
149 +    //every free atom (atom does not belong to rigid bodies) is an
150 +    //integrable object therefore the total number of integrable objects
151 +    //in the system is equal to the total number of atoms minus number of
152 +    //atoms belong to rigid body defined in meta-data file plus the number
153 +    //of rigid bodies defined in meta-data file
154 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
155 +      + nGlobalRigidBodies_;
156 +    
157 +    nGlobalMols_ = molStampIds_.size();
158 +    molToProcMap_.resize(nGlobalMols_);
159 +  }
160 +  
161    SimInfo::~SimInfo() {
162 <    std::map<int, Molecule*>::iterator i;
162 >    map<int, Molecule*>::iterator i;
163      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
164        delete i->second;
165      }
# Line 173 | Line 170 | namespace oopse {
170      delete forceField_;
171    }
172  
176  int SimInfo::getNGlobalConstraints() {
177    int nGlobalConstraints;
178 #ifdef IS_MPI
179    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180                  MPI_COMM_WORLD);    
181 #else
182    nGlobalConstraints =  nConstraints_;
183 #endif
184    return nGlobalConstraints;
185  }
173  
174    bool SimInfo::addMolecule(Molecule* mol) {
175      MoleculeIterator i;
176 <
176 >    
177      i = molecules_.find(mol->getGlobalIndex());
178      if (i == molecules_.end() ) {
179 <
180 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
181 <        
179 >      
180 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
181 >      
182        nAtoms_ += mol->getNAtoms();
183        nBonds_ += mol->getNBonds();
184        nBends_ += mol->getNBends();
# Line 201 | Line 188 | namespace oopse {
188        nIntegrableObjects_ += mol->getNIntegrableObjects();
189        nCutoffGroups_ += mol->getNCutoffGroups();
190        nConstraints_ += mol->getNConstraintPairs();
191 <
191 >      
192        addInteractionPairs(mol);
193 <  
193 >      
194        return true;
195      } else {
196        return false;
197      }
198    }
199 <
199 >  
200    bool SimInfo::removeMolecule(Molecule* mol) {
201      MoleculeIterator i;
202      i = molecules_.find(mol->getGlobalIndex());
# Line 237 | Line 224 | namespace oopse {
224      } else {
225        return false;
226      }
240
241
227    }    
228  
229          
# Line 254 | Line 239 | namespace oopse {
239  
240  
241    void SimInfo::calcNdf() {
242 <    int ndf_local;
242 >    int ndf_local, nfq_local;
243      MoleculeIterator i;
244 <    std::vector<StuntDouble*>::iterator j;
244 >    vector<StuntDouble*>::iterator j;
245 >    vector<Atom*>::iterator k;
246 >
247      Molecule* mol;
248 <    StuntDouble* integrableObject;
248 >    StuntDouble* sd;
249 >    Atom* atom;
250  
251      ndf_local = 0;
252 +    nfq_local = 0;
253      
254      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267           integrableObject = mol->nextIntegrableObject(j)) {
255  
256 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
257 +           sd = mol->nextIntegrableObject(j)) {
258 +
259          ndf_local += 3;
260  
261 <        if (integrableObject->isDirectional()) {
262 <          if (integrableObject->isLinear()) {
261 >        if (sd->isDirectional()) {
262 >          if (sd->isLinear()) {
263              ndf_local += 2;
264            } else {
265              ndf_local += 3;
266            }
267          }
278            
268        }
269 +
270 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
271 +           atom = mol->nextFluctuatingCharge(k)) {
272 +        if (atom->isFluctuatingCharge()) {
273 +          nfq_local++;
274 +        }
275 +      }
276      }
277      
278 +    ndfLocal_ = ndf_local;
279 +
280      // n_constraints is local, so subtract them on each processor
281      ndf_local -= nConstraints_;
282  
283   #ifdef IS_MPI
284 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
284 >    MPI_Allreduce(&ndf_local, &ndf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
285 >    MPI_Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
286 >      MPI_INT, MPI_SUM, MPI_COMM_WORLD);
287 >    // MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
288 >    // MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
289 >    //                           MPI::INT, MPI::SUM);
290   #else
291      ndf_ = ndf_local;
292 +    nGlobalFluctuatingCharges_ = nfq_local;
293   #endif
294  
295      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 296 | Line 300 | namespace oopse {
300  
301    int SimInfo::getFdf() {
302   #ifdef IS_MPI
303 <    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
303 >    MPI_Allreduce(&fdf_local, &fdf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
304 >    // MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
305   #else
306      fdf_ = fdf_local;
307   #endif
308      return fdf_;
309    }
310 +  
311 +  unsigned int SimInfo::getNLocalCutoffGroups(){
312 +    int nLocalCutoffAtoms = 0;
313 +    Molecule* mol;
314 +    MoleculeIterator mi;
315 +    CutoffGroup* cg;
316 +    Molecule::CutoffGroupIterator ci;
317      
318 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
319 +      
320 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
321 +           cg = mol->nextCutoffGroup(ci)) {
322 +        nLocalCutoffAtoms += cg->getNumAtom();
323 +        
324 +      }        
325 +    }
326 +    
327 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
328 +  }
329 +    
330    void SimInfo::calcNdfRaw() {
331      int ndfRaw_local;
332  
333      MoleculeIterator i;
334 <    std::vector<StuntDouble*>::iterator j;
334 >    vector<StuntDouble*>::iterator j;
335      Molecule* mol;
336 <    StuntDouble* integrableObject;
336 >    StuntDouble* sd;
337  
338      // Raw degrees of freedom that we have to set
339      ndfRaw_local = 0;
340      
341      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319           integrableObject = mol->nextIntegrableObject(j)) {
342  
343 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
344 +           sd = mol->nextIntegrableObject(j)) {
345 +
346          ndfRaw_local += 3;
347  
348 <        if (integrableObject->isDirectional()) {
349 <          if (integrableObject->isLinear()) {
348 >        if (sd->isDirectional()) {
349 >          if (sd->isLinear()) {
350              ndfRaw_local += 2;
351            } else {
352              ndfRaw_local += 3;
# Line 332 | Line 357 | namespace oopse {
357      }
358      
359   #ifdef IS_MPI
360 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
360 >    MPI_Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
361 >    // MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
362   #else
363      ndfRaw_ = ndfRaw_local;
364   #endif
# Line 345 | Line 371 | namespace oopse {
371  
372  
373   #ifdef IS_MPI
374 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
374 >    MPI_Allreduce(&ndfTrans_local, &ndfTrans_, 1,
375 >      MPI_INT, MPI_SUM, MPI_COMM_WORLD);
376 >    // MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
377 >    //                           MPI::INT, MPI::SUM);
378   #else
379      ndfTrans_ = ndfTrans_local;
380   #endif
# Line 356 | Line 385 | namespace oopse {
385  
386    void SimInfo::addInteractionPairs(Molecule* mol) {
387      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
388 <    std::vector<Bond*>::iterator bondIter;
389 <    std::vector<Bend*>::iterator bendIter;
390 <    std::vector<Torsion*>::iterator torsionIter;
391 <    std::vector<Inversion*>::iterator inversionIter;
388 >    vector<Bond*>::iterator bondIter;
389 >    vector<Bend*>::iterator bendIter;
390 >    vector<Torsion*>::iterator torsionIter;
391 >    vector<Inversion*>::iterator inversionIter;
392      Bond* bond;
393      Bend* bend;
394      Torsion* torsion;
# Line 377 | Line 406 | namespace oopse {
406      // always be excluded.  These are done at the bottom of this
407      // function.
408  
409 <    std::map<int, std::set<int> > atomGroups;
409 >    map<int, set<int> > atomGroups;
410      Molecule::RigidBodyIterator rbIter;
411      RigidBody* rb;
412      Molecule::IntegrableObjectIterator ii;
413 <    StuntDouble* integrableObject;
413 >    StuntDouble* sd;
414      
415 <    for (integrableObject = mol->beginIntegrableObject(ii);
416 <         integrableObject != NULL;
388 <         integrableObject = mol->nextIntegrableObject(ii)) {
415 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
416 >         sd = mol->nextIntegrableObject(ii)) {
417        
418 <      if (integrableObject->isRigidBody()) {
419 <        rb = static_cast<RigidBody*>(integrableObject);
420 <        std::vector<Atom*> atoms = rb->getAtoms();
421 <        std::set<int> rigidAtoms;
418 >      if (sd->isRigidBody()) {
419 >        rb = static_cast<RigidBody*>(sd);
420 >        vector<Atom*> atoms = rb->getAtoms();
421 >        set<int> rigidAtoms;
422          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
423            rigidAtoms.insert(atoms[i]->getGlobalIndex());
424          }
425          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
426 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
426 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
427          }      
428        } else {
429 <        std::set<int> oneAtomSet;
430 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
431 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
429 >        set<int> oneAtomSet;
430 >        oneAtomSet.insert(sd->getGlobalIndex());
431 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
432        }
433      }  
434 +
435            
436      for (bond= mol->beginBond(bondIter); bond != NULL;
437           bond = mol->nextBond(bondIter)) {
438  
439        a = bond->getAtomA()->getGlobalIndex();
440        b = bond->getAtomB()->getGlobalIndex();  
441 <    
441 >
442        if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
443          oneTwoInteractions_.addPair(a, b);
444        } else {
# Line 503 | Line 532 | namespace oopse {
532  
533      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
534           rb = mol->nextRigidBody(rbIter)) {
535 <      std::vector<Atom*> atoms = rb->getAtoms();
535 >      vector<Atom*> atoms = rb->getAtoms();
536        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
537          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
538            a = atoms[i]->getGlobalIndex();
# Line 517 | Line 546 | namespace oopse {
546  
547    void SimInfo::removeInteractionPairs(Molecule* mol) {
548      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
549 <    std::vector<Bond*>::iterator bondIter;
550 <    std::vector<Bend*>::iterator bendIter;
551 <    std::vector<Torsion*>::iterator torsionIter;
552 <    std::vector<Inversion*>::iterator inversionIter;
549 >    vector<Bond*>::iterator bondIter;
550 >    vector<Bend*>::iterator bendIter;
551 >    vector<Torsion*>::iterator torsionIter;
552 >    vector<Inversion*>::iterator inversionIter;
553      Bond* bond;
554      Bend* bend;
555      Torsion* torsion;
# Line 530 | Line 559 | namespace oopse {
559      int c;
560      int d;
561  
562 <    std::map<int, std::set<int> > atomGroups;
562 >    map<int, set<int> > atomGroups;
563      Molecule::RigidBodyIterator rbIter;
564      RigidBody* rb;
565      Molecule::IntegrableObjectIterator ii;
566 <    StuntDouble* integrableObject;
566 >    StuntDouble* sd;
567      
568 <    for (integrableObject = mol->beginIntegrableObject(ii);
569 <         integrableObject != NULL;
541 <         integrableObject = mol->nextIntegrableObject(ii)) {
568 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
569 >         sd = mol->nextIntegrableObject(ii)) {
570        
571 <      if (integrableObject->isRigidBody()) {
572 <        rb = static_cast<RigidBody*>(integrableObject);
573 <        std::vector<Atom*> atoms = rb->getAtoms();
574 <        std::set<int> rigidAtoms;
571 >      if (sd->isRigidBody()) {
572 >        rb = static_cast<RigidBody*>(sd);
573 >        vector<Atom*> atoms = rb->getAtoms();
574 >        set<int> rigidAtoms;
575          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
576            rigidAtoms.insert(atoms[i]->getGlobalIndex());
577          }
578          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
579 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
579 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
580          }      
581        } else {
582 <        std::set<int> oneAtomSet;
583 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
584 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
582 >        set<int> oneAtomSet;
583 >        oneAtomSet.insert(sd->getGlobalIndex());
584 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
585        }
586      }  
587  
# Line 656 | Line 684 | namespace oopse {
684  
685      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
686           rb = mol->nextRigidBody(rbIter)) {
687 <      std::vector<Atom*> atoms = rb->getAtoms();
687 >      vector<Atom*> atoms = rb->getAtoms();
688        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
689          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
690            a = atoms[i]->getGlobalIndex();
# Line 679 | Line 707 | namespace oopse {
707      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
708    }
709  
682  void SimInfo::update() {
710  
711 <    setupSimType();
712 <
713 < #ifdef IS_MPI
714 <    setupFortranParallel();
715 < #endif
716 <
717 <    setupFortranSim();
718 <
719 <    //setup fortran force field
693 <    /** @deprecate */    
694 <    int isError = 0;
695 <    
696 <    setupCutoff();
697 <    
698 <    setupElectrostaticSummationMethod( isError );
699 <    setupSwitchingFunction();
700 <    setupAccumulateBoxDipole();
701 <
702 <    if(isError){
703 <      sprintf( painCave.errMsg,
704 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
705 <      painCave.isFatal = 1;
706 <      simError();
707 <    }
708 <
711 >  /**
712 >   * update
713 >   *
714 >   *  Performs the global checks and variable settings after the
715 >   *  objects have been created.
716 >   *
717 >   */
718 >  void SimInfo::update() {  
719 >    setupSimVariables();
720      calcNdf();
721      calcNdfRaw();
722      calcNdfTrans();
712
713    fortranInitialized_ = true;
723    }
724 <
725 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
724 >  
725 >  /**
726 >   * getSimulatedAtomTypes
727 >   *
728 >   * Returns an STL set of AtomType* that are actually present in this
729 >   * simulation.  Must query all processors to assemble this information.
730 >   *
731 >   */
732 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
733      SimInfo::MoleculeIterator mi;
734      Molecule* mol;
735      Molecule::AtomIterator ai;
736      Atom* atom;
737 <    std::set<AtomType*> atomTypes;
738 <
737 >    set<AtomType*> atomTypes;
738 >    
739      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
740 <
741 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
740 >      for(atom = mol->beginAtom(ai); atom != NULL;
741 >          atom = mol->nextAtom(ai)) {
742          atomTypes.insert(atom->getAtomType());
743 <      }
744 <        
745 <    }
743 >      }      
744 >    }    
745 >    
746 > #ifdef IS_MPI
747  
748 <    return atomTypes;        
749 <  }
733 <
734 <  void SimInfo::setupSimType() {
735 <    std::set<AtomType*>::iterator i;
736 <    std::set<AtomType*> atomTypes;
737 <    atomTypes = getUniqueAtomTypes();
748 >    // loop over the found atom types on this processor, and add their
749 >    // numerical idents to a vector:
750      
751 <    int useLennardJones = 0;
752 <    int useElectrostatic = 0;
753 <    int useEAM = 0;
754 <    int useSC = 0;
743 <    int useCharge = 0;
744 <    int useDirectional = 0;
745 <    int useDipole = 0;
746 <    int useGayBerne = 0;
747 <    int useSticky = 0;
748 <    int useStickyPower = 0;
749 <    int useShape = 0;
750 <    int useFLARB = 0; //it is not in AtomType yet
751 <    int useDirectionalAtom = 0;    
752 <    int useElectrostatics = 0;
753 <    //usePBC and useRF are from simParams
754 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
755 <    int useRF;
756 <    int useSF;
757 <    int useSP;
758 <    int useBoxDipole;
751 >    vector<int> foundTypes;
752 >    set<AtomType*>::iterator i;
753 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
754 >      foundTypes.push_back( (*i)->getIdent() );
755  
756 <    std::string myMethod;
756 >    // count_local holds the number of found types on this processor
757 >    int count_local = foundTypes.size();
758  
759 <    // set the useRF logical
760 <    useRF = 0;
761 <    useSF = 0;
765 <    useSP = 0;
759 >    int nproc;
760 >    MPI_Comm_size( MPI_COMM_WORLD, &nproc);
761 >    // int nproc = MPI::COMM_WORLD.Get_size();
762  
763 +    // we need arrays to hold the counts and displacement vectors for
764 +    // all processors
765 +    vector<int> counts(nproc, 0);
766 +    vector<int> disps(nproc, 0);
767  
768 <    if (simParams_->haveElectrostaticSummationMethod()) {
769 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
770 <      toUpper(myMethod);
771 <      if (myMethod == "REACTION_FIELD"){
772 <        useRF = 1;
773 <      } else if (myMethod == "SHIFTED_FORCE"){
774 <        useSF = 1;
775 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
776 <        useSP = 1;
777 <      }
768 >    // fill the counts array
769 >    MPI_Allgather(&count_local, 1, MPI_INT, &counts[0],
770 >                  1, MPI_INT, MPI_COMM_WORLD);
771 >    // MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
772 >    //                           1, MPI::INT);
773 >  
774 >    // use the processor counts to compute the displacement array
775 >    disps[0] = 0;    
776 >    int totalCount = counts[0];
777 >    for (int iproc = 1; iproc < nproc; iproc++) {
778 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
779 >      totalCount += counts[iproc];
780      }
781 +
782 +    // we need a (possibly redundant) set of all found types:
783 +    vector<int> ftGlobal(totalCount);
784      
785 <    if (simParams_->haveAccumulateBoxDipole())
786 <      if (simParams_->getAccumulateBoxDipole())
787 <        useBoxDipole = 1;
785 >    // now spray out the foundTypes to all the other processors:    
786 >    MPI_Allgatherv(&foundTypes[0], count_local, MPI_INT,
787 >                   &ftGlobal[0], &counts[0], &disps[0],
788 >                   MPI_INT, MPI_COMM_WORLD);
789 >    // MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
790 >    //                            &ftGlobal[0], &counts[0], &disps[0],
791 >    //                            MPI::INT);
792  
793 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
793 >    vector<int>::iterator j;
794  
795 <    //loop over all of the atom types
796 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
797 <      useLennardJones |= (*i)->isLennardJones();
789 <      useElectrostatic |= (*i)->isElectrostatic();
790 <      useEAM |= (*i)->isEAM();
791 <      useSC |= (*i)->isSC();
792 <      useCharge |= (*i)->isCharge();
793 <      useDirectional |= (*i)->isDirectional();
794 <      useDipole |= (*i)->isDipole();
795 <      useGayBerne |= (*i)->isGayBerne();
796 <      useSticky |= (*i)->isSticky();
797 <      useStickyPower |= (*i)->isStickyPower();
798 <      useShape |= (*i)->isShape();
799 <    }
795 >    // foundIdents is a stl set, so inserting an already found ident
796 >    // will have no effect.
797 >    set<int> foundIdents;
798  
799 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
800 <      useDirectionalAtom = 1;
801 <    }
799 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
800 >      foundIdents.insert((*j));
801 >    
802 >    // now iterate over the foundIdents and get the actual atom types
803 >    // that correspond to these:
804 >    set<int>::iterator it;
805 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
806 >      atomTypes.insert( forceField_->getAtomType((*it)) );
807 >
808 > #endif
809  
810 <    if (useCharge || useDipole) {
811 <      useElectrostatics = 1;
807 <    }
810 >    return atomTypes;        
811 >  }
812  
809 #ifdef IS_MPI    
810    int temp;
813  
814 <    temp = usePBC;
815 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
814 >  int getGlobalCountOfType(AtomType* atype) {
815 >    /*
816 >    set<AtomType*> atypes = getSimulatedAtomTypes();
817 >    map<AtomType*, int> counts_;
818  
819 <    temp = useDirectionalAtom;
820 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
819 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
820 >      for(atom = mol->beginAtom(ai); atom != NULL;
821 >          atom = mol->nextAtom(ai)) {
822 >        atom->getAtomType();
823 >      }      
824 >    }    
825 >    */
826 >    return 0;
827 >  }
828  
829 <    temp = useLennardJones;
830 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
829 >  void SimInfo::setupSimVariables() {
830 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
831 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
832 >    // parameter is true
833 >    calcBoxDipole_ = false;
834 >    if ( simParams_->haveAccumulateBoxDipole() )
835 >      if ( simParams_->getAccumulateBoxDipole() ) {
836 >        calcBoxDipole_ = true;      
837 >      }
838 >    
839 >    set<AtomType*>::iterator i;
840 >    set<AtomType*> atomTypes;
841 >    atomTypes = getSimulatedAtomTypes();    
842 >    bool usesElectrostatic = false;
843 >    bool usesMetallic = false;
844 >    bool usesDirectional = false;
845 >    bool usesFluctuatingCharges =  false;
846 >    //loop over all of the atom types
847 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
848 >      usesElectrostatic |= (*i)->isElectrostatic();
849 >      usesMetallic |= (*i)->isMetal();
850 >      usesDirectional |= (*i)->isDirectional();
851 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
852 >    }
853  
854 <    temp = useElectrostatics;
855 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
854 > #ifdef IS_MPI
855 >    int temp;
856  
857 <    temp = useCharge;
858 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
857 >    temp = usesDirectional;
858 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
859 >    usesDirectionalAtoms_ = (temp == 0) ? false : true;
860  
861 <    temp = useDipole;
862 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
829 <
830 <    temp = useSticky;
831 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
832 <
833 <    temp = useStickyPower;
834 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
861 >    // MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
862 >    //                           MPI::LOR);
863      
864 <    temp = useGayBerne;
865 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
864 >    temp = usesMetallic;
865 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
866 >    usesMetallicAtoms_ = (temp == 0) ? false : true;
867  
868 <    temp = useEAM;
869 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
841 <
842 <    temp = useSC;
843 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
868 >    // MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
869 >    //                           MPI::LOR);
870      
871 <    temp = useShape;
872 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
871 >    temp = usesElectrostatic;
872 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
873 >    usesElectrostaticAtoms_ = (temp == 0) ? false : true;
874  
875 <    temp = useFLARB;
876 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
875 >    // MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
876 >    //                           MPI::LOR);
877  
878 <    temp = useRF;
879 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
878 >    temp = usesFluctuatingCharges;
879 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
880 >    usesFluctuatingCharges_ = (temp == 0) ? false : true;
881  
882 <    temp = useSF;
883 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
882 >    // MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
883 >    //                           MPI::LOR);
884  
885 <    temp = useSP;
858 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
885 > #else
886  
887 <    temp = useBoxDipole;
888 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
887 >    usesDirectionalAtoms_ = usesDirectional;
888 >    usesMetallicAtoms_ = usesMetallic;
889 >    usesElectrostaticAtoms_ = usesElectrostatic;
890 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
891  
863    temp = useAtomicVirial_;
864    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
865
892   #endif
893 <
894 <    fInfo_.SIM_uses_PBC = usePBC;    
895 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
896 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
871 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
872 <    fInfo_.SIM_uses_Charges = useCharge;
873 <    fInfo_.SIM_uses_Dipoles = useDipole;
874 <    fInfo_.SIM_uses_Sticky = useSticky;
875 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
876 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
877 <    fInfo_.SIM_uses_EAM = useEAM;
878 <    fInfo_.SIM_uses_SC = useSC;
879 <    fInfo_.SIM_uses_Shapes = useShape;
880 <    fInfo_.SIM_uses_FLARB = useFLARB;
881 <    fInfo_.SIM_uses_RF = useRF;
882 <    fInfo_.SIM_uses_SF = useSF;
883 <    fInfo_.SIM_uses_SP = useSP;
884 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
885 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
893 >    
894 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
895 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
896 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
897    }
898  
899 <  void SimInfo::setupFortranSim() {
900 <    int isError;
901 <    int nExclude, nOneTwo, nOneThree, nOneFour;
902 <    std::vector<int> fortranGlobalGroupMembership;
899 >
900 >  vector<int> SimInfo::getGlobalAtomIndices() {
901 >    SimInfo::MoleculeIterator mi;
902 >    Molecule* mol;
903 >    Molecule::AtomIterator ai;
904 >    Atom* atom;
905 >
906 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
907      
908 <    isError = 0;
908 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
909 >      
910 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
911 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
912 >      }
913 >    }
914 >    return GlobalAtomIndices;
915 >  }
916  
917 <    //globalGroupMembership_ is filled by SimCreator    
918 <    for (int i = 0; i < nGlobalAtoms_; i++) {
919 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
917 >
918 >  vector<int> SimInfo::getGlobalGroupIndices() {
919 >    SimInfo::MoleculeIterator mi;
920 >    Molecule* mol;
921 >    Molecule::CutoffGroupIterator ci;
922 >    CutoffGroup* cg;
923 >
924 >    vector<int> GlobalGroupIndices;
925 >    
926 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
927 >      
928 >      //local index of cutoff group is trivial, it only depends on the
929 >      //order of travesing
930 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
931 >           cg = mol->nextCutoffGroup(ci)) {
932 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
933 >      }        
934      }
935 +    return GlobalGroupIndices;
936 +  }
937  
938 +
939 +  void SimInfo::prepareTopology() {
940 +
941      //calculate mass ratio of cutoff group
901    std::vector<RealType> mfact;
942      SimInfo::MoleculeIterator mi;
943      Molecule* mol;
944      Molecule::CutoffGroupIterator ci;
# Line 907 | Line 947 | namespace oopse {
947      Atom* atom;
948      RealType totalMass;
949  
950 <    //to avoid memory reallocation, reserve enough space for mfact
951 <    mfact.reserve(getNCutoffGroups());
950 >    /**
951 >     * The mass factor is the relative mass of an atom to the total
952 >     * mass of the cutoff group it belongs to.  By default, all atoms
953 >     * are their own cutoff groups, and therefore have mass factors of
954 >     * 1.  We need some special handling for massless atoms, which
955 >     * will be treated as carrying the entire mass of the cutoff
956 >     * group.
957 >     */
958 >    massFactors_.clear();
959 >    massFactors_.resize(getNAtoms(), 1.0);
960      
961      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
962 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
962 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
963 >           cg = mol->nextCutoffGroup(ci)) {
964  
965          totalMass = cg->getMass();
966          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
967            // Check for massless groups - set mfact to 1 if true
968 <          if (totalMass != 0)
969 <            mfact.push_back(atom->getMass()/totalMass);
968 >          if (totalMass != 0)
969 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
970            else
971 <            mfact.push_back( 1.0 );
971 >            massFactors_[atom->getLocalIndex()] = 1.0;
972          }
973        }      
974      }
975  
976 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
928 <    std::vector<int> identArray;
976 >    // Build the identArray_ and regions_
977  
978 <    //to avoid memory reallocation, reserve enough space identArray
979 <    identArray.reserve(getNAtoms());
980 <    
981 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
978 >    identArray_.clear();
979 >    identArray_.reserve(getNAtoms());  
980 >    regions_.clear();
981 >    regions_.reserve(getNAtoms());
982 >
983 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
984 >      int reg = mol->getRegion();      
985        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
986 <        identArray.push_back(atom->getIdent());
986 >        identArray_.push_back(atom->getIdent());
987 >        regions_.push_back(reg);
988        }
989      }    
990 +      
991 +    topologyDone_ = true;
992 +  }
993  
994 <    //fill molMembershipArray
995 <    //molMembershipArray is filled by SimCreator    
996 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
942 <    for (int i = 0; i < nGlobalAtoms_; i++) {
943 <      molMembershipArray[i] = globalMolMembership_[i] + 1;
944 <    }
945 <    
946 <    //setup fortran simulation
994 >  void SimInfo::addProperty(GenericData* genData) {
995 >    properties_.addProperty(genData);  
996 >  }
997  
998 <    nExclude = excludedInteractions_.getSize();
999 <    nOneTwo = oneTwoInteractions_.getSize();
1000 <    nOneThree = oneThreeInteractions_.getSize();
951 <    nOneFour = oneFourInteractions_.getSize();
998 >  void SimInfo::removeProperty(const string& propName) {
999 >    properties_.removeProperty(propName);  
1000 >  }
1001  
1002 <    std::cerr << "excludedInteractions contains: " << excludedInteractions_.getSize() << " pairs \n";
1003 <    std::cerr << "oneTwoInteractions contains: " << oneTwoInteractions_.getSize() << " pairs \n";
1004 <    std::cerr << "oneThreeInteractions contains: " << oneThreeInteractions_.getSize() << " pairs \n";
956 <    std::cerr << "oneFourInteractions contains: " << oneFourInteractions_.getSize() << " pairs \n";
1002 >  void SimInfo::clearProperties() {
1003 >    properties_.clearProperties();
1004 >  }
1005  
1006 <    int* excludeList = excludedInteractions_.getPairList();
1007 <    int* oneTwoList = oneTwoInteractions_.getPairList();
1008 <    int* oneThreeList = oneThreeInteractions_.getPairList();
961 <    int* oneFourList = oneFourInteractions_.getPairList();
962 <
963 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
964 <                   &nExclude, excludeList,
965 <                   &nOneTwo, oneTwoList,
966 <                   &nOneThree, oneThreeList,
967 <                   &nOneFour, oneFourList,
968 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
969 <                   &fortranGlobalGroupMembership[0], &isError);
970 <    
971 <    if( isError ){
1006 >  vector<string> SimInfo::getPropertyNames() {
1007 >    return properties_.getPropertyNames();  
1008 >  }
1009        
1010 <      sprintf( painCave.errMsg,
1011 <               "There was an error setting the simulation information in fortran.\n" );
1012 <      painCave.isFatal = 1;
976 <      painCave.severity = OOPSE_ERROR;
977 <      simError();
978 <    }
979 <    
980 <    
981 <    sprintf( checkPointMsg,
982 <             "succesfully sent the simulation information to fortran.\n");
983 <    
984 <    errorCheckPoint();
985 <    
986 <    // Setup number of neighbors in neighbor list if present
987 <    if (simParams_->haveNeighborListNeighbors()) {
988 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
989 <      setNeighbors(&nlistNeighbors);
990 <    }
991 <  
1010 >  vector<GenericData*> SimInfo::getProperties() {
1011 >    return properties_.getProperties();
1012 >  }
1013  
1014 +  GenericData* SimInfo::getPropertyByName(const string& propName) {
1015 +    return properties_.getPropertyByName(propName);
1016    }
1017  
1018 +  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1019 +    if (sman_ == sman) {
1020 +      return;
1021 +    }    
1022 +    delete sman_;
1023 +    sman_ = sman;
1024  
996  void SimInfo::setupFortranParallel() {
997 #ifdef IS_MPI    
998    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
999    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1000    std::vector<int> localToGlobalCutoffGroupIndex;
1025      SimInfo::MoleculeIterator mi;
1026      Molecule::AtomIterator ai;
1027 <    Molecule::CutoffGroupIterator ci;
1027 >    Molecule::RigidBodyIterator rbIter;
1028 >    Molecule::CutoffGroupIterator cgIter;
1029 >    Molecule::BondIterator bondIter;
1030 >    Molecule::BendIterator bendIter;
1031 >    Molecule::TorsionIterator torsionIter;
1032 >    Molecule::InversionIterator inversionIter;
1033 >
1034      Molecule* mol;
1035      Atom* atom;
1036 +    RigidBody* rb;
1037      CutoffGroup* cg;
1038 <    mpiSimData parallelData;
1039 <    int isError;
1038 >    Bond* bond;
1039 >    Bend* bend;
1040 >    Torsion* torsion;
1041 >    Inversion* inversion;    
1042  
1043 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
1011 <
1012 <      //local index(index in DataStorge) of atom is important
1013 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1014 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1015 <      }
1016 <
1017 <      //local index of cutoff group is trivial, it only depends on the order of travesing
1018 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1019 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1020 <      }        
1043 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1044          
1045 <    }
1046 <
1047 <    //fill up mpiSimData struct
1048 <    parallelData.nMolGlobal = getNGlobalMolecules();
1049 <    parallelData.nMolLocal = getNMolecules();
1050 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
1051 <    parallelData.nAtomsLocal = getNAtoms();
1029 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1030 <    parallelData.nGroupsLocal = getNCutoffGroups();
1031 <    parallelData.myNode = worldRank;
1032 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1033 <
1034 <    //pass mpiSimData struct and index arrays to fortran
1035 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1036 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
1037 <                    &localToGlobalCutoffGroupIndex[0], &isError);
1038 <
1039 <    if (isError) {
1040 <      sprintf(painCave.errMsg,
1041 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1042 <      painCave.isFatal = 1;
1043 <      simError();
1044 <    }
1045 <
1046 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
1047 <    errorCheckPoint();
1048 <
1049 < #endif
1050 <  }
1051 <
1052 <  void SimInfo::setupCutoff() {          
1053 <    
1054 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1055 <
1056 <    // Check the cutoff policy
1057 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1058 <
1059 <    // Set LJ shifting bools to false
1060 <    ljsp_ = false;
1061 <    ljsf_ = false;
1062 <
1063 <    std::string myPolicy;
1064 <    if (forceFieldOptions_.haveCutoffPolicy()){
1065 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
1066 <    }else if (simParams_->haveCutoffPolicy()) {
1067 <      myPolicy = simParams_->getCutoffPolicy();
1068 <    }
1069 <
1070 <    if (!myPolicy.empty()){
1071 <      toUpper(myPolicy);
1072 <      if (myPolicy == "MIX") {
1073 <        cp = MIX_CUTOFF_POLICY;
1074 <      } else {
1075 <        if (myPolicy == "MAX") {
1076 <          cp = MAX_CUTOFF_POLICY;
1077 <        } else {
1078 <          if (myPolicy == "TRADITIONAL") {            
1079 <            cp = TRADITIONAL_CUTOFF_POLICY;
1080 <          } else {
1081 <            // throw error        
1082 <            sprintf( painCave.errMsg,
1083 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1084 <            painCave.isFatal = 1;
1085 <            simError();
1086 <          }    
1087 <        }          
1045 >      for (atom = mol->beginAtom(ai); atom != NULL;
1046 >           atom = mol->nextAtom(ai)) {
1047 >        atom->setSnapshotManager(sman_);
1048 >      }        
1049 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1050 >           rb = mol->nextRigidBody(rbIter)) {
1051 >        rb->setSnapshotManager(sman_);
1052        }
1053 <    }          
1054 <    notifyFortranCutoffPolicy(&cp);
1055 <
1092 <    // Check the Skin Thickness for neighborlists
1093 <    RealType skin;
1094 <    if (simParams_->haveSkinThickness()) {
1095 <      skin = simParams_->getSkinThickness();
1096 <      notifyFortranSkinThickness(&skin);
1097 <    }            
1098 <        
1099 <    // Check if the cutoff was set explicitly:
1100 <    if (simParams_->haveCutoffRadius()) {
1101 <      rcut_ = simParams_->getCutoffRadius();
1102 <      if (simParams_->haveSwitchingRadius()) {
1103 <        rsw_  = simParams_->getSwitchingRadius();
1104 <      } else {
1105 <        if (fInfo_.SIM_uses_Charges |
1106 <            fInfo_.SIM_uses_Dipoles |
1107 <            fInfo_.SIM_uses_RF) {
1108 <          
1109 <          rsw_ = 0.85 * rcut_;
1110 <          sprintf(painCave.errMsg,
1111 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1112 <                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1113 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1114 <        painCave.isFatal = 0;
1115 <        simError();
1116 <        } else {
1117 <          rsw_ = rcut_;
1118 <          sprintf(painCave.errMsg,
1119 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1120 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1121 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1122 <          painCave.isFatal = 0;
1123 <          simError();
1124 <        }
1053 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1054 >           cg = mol->nextCutoffGroup(cgIter)) {
1055 >        cg->setSnapshotManager(sman_);
1056        }
1057 <
1058 <      if (simParams_->haveElectrostaticSummationMethod()) {
1059 <        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1129 <        toUpper(myMethod);
1130 <        
1131 <        if (myMethod == "SHIFTED_POTENTIAL") {
1132 <          ljsp_ = true;
1133 <        } else if (myMethod == "SHIFTED_FORCE") {
1134 <          ljsf_ = true;
1135 <        }
1057 >      for (bond = mol->beginBond(bondIter); bond != NULL;
1058 >           bond = mol->nextBond(bondIter)) {
1059 >        bond->setSnapshotManager(sman_);
1060        }
1061 <      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1062 <      
1063 <    } else {
1140 <      
1141 <      // For electrostatic atoms, we'll assume a large safe value:
1142 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1143 <        sprintf(painCave.errMsg,
1144 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1145 <                "\tOOPSE will use a default value of 15.0 angstroms"
1146 <                "\tfor the cutoffRadius.\n");
1147 <        painCave.isFatal = 0;
1148 <        simError();
1149 <        rcut_ = 15.0;
1150 <      
1151 <        if (simParams_->haveElectrostaticSummationMethod()) {
1152 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1153 <          toUpper(myMethod);
1154 <      
1155 <      // For the time being, we're tethering the LJ shifted behavior to the
1156 <      // electrostaticSummationMethod keyword options
1157 <          if (myMethod == "SHIFTED_POTENTIAL") {
1158 <            ljsp_ = true;
1159 <          } else if (myMethod == "SHIFTED_FORCE") {
1160 <            ljsf_ = true;
1161 <          }
1162 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1163 <            if (simParams_->haveSwitchingRadius()){
1164 <              sprintf(painCave.errMsg,
1165 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1166 <                      "\teven though the electrostaticSummationMethod was\n"
1167 <                      "\tset to %s\n", myMethod.c_str());
1168 <              painCave.isFatal = 1;
1169 <              simError();            
1170 <            }
1171 <          }
1172 <        }
1173 <      
1174 <        if (simParams_->haveSwitchingRadius()){
1175 <          rsw_ = simParams_->getSwitchingRadius();
1176 <        } else {        
1177 <          sprintf(painCave.errMsg,
1178 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1179 <                  "\tOOPSE will use a default value of\n"
1180 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1181 <          painCave.isFatal = 0;
1182 <          simError();
1183 <          rsw_ = 0.85 * rcut_;
1184 <        }
1185 <
1186 <        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1187 <
1188 <      } else {
1189 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1190 <        // We'll punt and let fortran figure out the cutoffs later.
1191 <        
1192 <        notifyFortranYouAreOnYourOwn();
1193 <
1061 >      for (bend = mol->beginBend(bendIter); bend != NULL;
1062 >           bend = mol->nextBend(bendIter)) {
1063 >        bend->setSnapshotManager(sman_);
1064        }
1065 +      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
1066 +           torsion = mol->nextTorsion(torsionIter)) {
1067 +        torsion->setSnapshotManager(sman_);
1068 +      }
1069 +      for (inversion = mol->beginInversion(inversionIter); inversion != NULL;
1070 +           inversion = mol->nextInversion(inversionIter)) {
1071 +        inversion->setSnapshotManager(sman_);
1072 +      }
1073      }
1074    }
1075  
1198  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1199    
1200    int errorOut;
1201    int esm =  NONE;
1202    int sm = UNDAMPED;
1203    RealType alphaVal;
1204    RealType dielectric;
1205    
1206    errorOut = isError;
1076  
1077 <    if (simParams_->haveElectrostaticSummationMethod()) {
1209 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1210 <      toUpper(myMethod);
1211 <      if (myMethod == "NONE") {
1212 <        esm = NONE;
1213 <      } else {
1214 <        if (myMethod == "SWITCHING_FUNCTION") {
1215 <          esm = SWITCHING_FUNCTION;
1216 <        } else {
1217 <          if (myMethod == "SHIFTED_POTENTIAL") {
1218 <            esm = SHIFTED_POTENTIAL;
1219 <          } else {
1220 <            if (myMethod == "SHIFTED_FORCE") {            
1221 <              esm = SHIFTED_FORCE;
1222 <            } else {
1223 <              if (myMethod == "REACTION_FIELD") {
1224 <                esm = REACTION_FIELD;
1225 <                dielectric = simParams_->getDielectric();
1226 <                if (!simParams_->haveDielectric()) {
1227 <                  // throw warning
1228 <                  sprintf( painCave.errMsg,
1229 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1230 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1231 <                  painCave.isFatal = 0;
1232 <                  simError();
1233 <                }
1234 <              } else {
1235 <                // throw error        
1236 <                sprintf( painCave.errMsg,
1237 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1238 <                         "\t(Input file specified %s .)\n"
1239 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1240 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1241 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1242 <                painCave.isFatal = 1;
1243 <                simError();
1244 <              }    
1245 <            }          
1246 <          }
1247 <        }
1248 <      }
1249 <    }
1250 <    
1251 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1252 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1253 <      toUpper(myScreen);
1254 <      if (myScreen == "UNDAMPED") {
1255 <        sm = UNDAMPED;
1256 <      } else {
1257 <        if (myScreen == "DAMPED") {
1258 <          sm = DAMPED;
1259 <          if (!simParams_->haveDampingAlpha()) {
1260 <            // first set a cutoff dependent alpha value
1261 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1262 <            alphaVal = 0.5125 - rcut_* 0.025;
1263 <            // for values rcut > 20.5, alpha is zero
1264 <            if (alphaVal < 0) alphaVal = 0;
1077 >  ostream& operator <<(ostream& o, SimInfo& info) {
1078  
1266            // throw warning
1267            sprintf( painCave.errMsg,
1268                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1269                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1270            painCave.isFatal = 0;
1271            simError();
1272          } else {
1273            alphaVal = simParams_->getDampingAlpha();
1274          }
1275          
1276        } else {
1277          // throw error        
1278          sprintf( painCave.errMsg,
1279                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1280                   "\t(Input file specified %s .)\n"
1281                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1282                   "or \"damped\".\n", myScreen.c_str() );
1283          painCave.isFatal = 1;
1284          simError();
1285        }
1286      }
1287    }
1288    
1289    // let's pass some summation method variables to fortran
1290    setElectrostaticSummationMethod( &esm );
1291    setFortranElectrostaticMethod( &esm );
1292    setScreeningMethod( &sm );
1293    setDampingAlpha( &alphaVal );
1294    setReactionFieldDielectric( &dielectric );
1295    initFortranFF( &errorOut );
1296  }
1297
1298  void SimInfo::setupSwitchingFunction() {    
1299    int ft = CUBIC;
1300
1301    if (simParams_->haveSwitchingFunctionType()) {
1302      std::string funcType = simParams_->getSwitchingFunctionType();
1303      toUpper(funcType);
1304      if (funcType == "CUBIC") {
1305        ft = CUBIC;
1306      } else {
1307        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1308          ft = FIFTH_ORDER_POLY;
1309        } else {
1310          // throw error        
1311          sprintf( painCave.errMsg,
1312                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1313          painCave.isFatal = 1;
1314          simError();
1315        }          
1316      }
1317    }
1318
1319    // send switching function notification to switcheroo
1320    setFunctionType(&ft);
1321
1322  }
1323
1324  void SimInfo::setupAccumulateBoxDipole() {    
1325
1326    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1327    if ( simParams_->haveAccumulateBoxDipole() )
1328      if ( simParams_->getAccumulateBoxDipole() ) {
1329        setAccumulateBoxDipole();
1330        calcBoxDipole_ = true;
1331      }
1332
1333  }
1334
1335  void SimInfo::addProperty(GenericData* genData) {
1336    properties_.addProperty(genData);  
1337  }
1338
1339  void SimInfo::removeProperty(const std::string& propName) {
1340    properties_.removeProperty(propName);  
1341  }
1342
1343  void SimInfo::clearProperties() {
1344    properties_.clearProperties();
1345  }
1346
1347  std::vector<std::string> SimInfo::getPropertyNames() {
1348    return properties_.getPropertyNames();  
1349  }
1350      
1351  std::vector<GenericData*> SimInfo::getProperties() {
1352    return properties_.getProperties();
1353  }
1354
1355  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1356    return properties_.getPropertyByName(propName);
1357  }
1358
1359  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1360    if (sman_ == sman) {
1361      return;
1362    }    
1363    delete sman_;
1364    sman_ = sman;
1365
1366    Molecule* mol;
1367    RigidBody* rb;
1368    Atom* atom;
1369    SimInfo::MoleculeIterator mi;
1370    Molecule::RigidBodyIterator rbIter;
1371    Molecule::AtomIterator atomIter;;
1372
1373    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1374        
1375      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1376        atom->setSnapshotManager(sman_);
1377      }
1378        
1379      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1380        rb->setSnapshotManager(sman_);
1381      }
1382    }    
1383    
1384  }
1385
1386  Vector3d SimInfo::getComVel(){
1387    SimInfo::MoleculeIterator i;
1388    Molecule* mol;
1389
1390    Vector3d comVel(0.0);
1391    RealType totalMass = 0.0;
1392    
1393
1394    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1395      RealType mass = mol->getMass();
1396      totalMass += mass;
1397      comVel += mass * mol->getComVel();
1398    }  
1399
1400 #ifdef IS_MPI
1401    RealType tmpMass = totalMass;
1402    Vector3d tmpComVel(comVel);    
1403    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1404    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1405 #endif
1406
1407    comVel /= totalMass;
1408
1409    return comVel;
1410  }
1411
1412  Vector3d SimInfo::getCom(){
1413    SimInfo::MoleculeIterator i;
1414    Molecule* mol;
1415
1416    Vector3d com(0.0);
1417    RealType totalMass = 0.0;
1418    
1419    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1420      RealType mass = mol->getMass();
1421      totalMass += mass;
1422      com += mass * mol->getCom();
1423    }  
1424
1425 #ifdef IS_MPI
1426    RealType tmpMass = totalMass;
1427    Vector3d tmpCom(com);    
1428    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1429    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1430 #endif
1431
1432    com /= totalMass;
1433
1434    return com;
1435
1436  }        
1437
1438  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1439
1079      return o;
1080    }
1081    
1082 <  
1444 <   /*
1445 <   Returns center of mass and center of mass velocity in one function call.
1446 <   */
1447 <  
1448 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1449 <      SimInfo::MoleculeIterator i;
1450 <      Molecule* mol;
1451 <      
1452 <    
1453 <      RealType totalMass = 0.0;
1454 <    
1455 <
1456 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1457 <         RealType mass = mol->getMass();
1458 <         totalMass += mass;
1459 <         com += mass * mol->getCom();
1460 <         comVel += mass * mol->getComVel();          
1461 <      }  
1462 <      
1463 < #ifdef IS_MPI
1464 <      RealType tmpMass = totalMass;
1465 <      Vector3d tmpCom(com);  
1466 <      Vector3d tmpComVel(comVel);
1467 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1468 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1469 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1470 < #endif
1471 <      
1472 <      com /= totalMass;
1473 <      comVel /= totalMass;
1474 <   }        
1475 <  
1476 <   /*
1477 <   Return intertia tensor for entire system and angular momentum Vector.
1478 <
1479 <
1480 <       [  Ixx -Ixy  -Ixz ]
1481 <  J =| -Iyx  Iyy  -Iyz |
1482 <       [ -Izx -Iyz   Izz ]
1483 <    */
1484 <
1485 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1486 <      
1487 <
1488 <      RealType xx = 0.0;
1489 <      RealType yy = 0.0;
1490 <      RealType zz = 0.0;
1491 <      RealType xy = 0.0;
1492 <      RealType xz = 0.0;
1493 <      RealType yz = 0.0;
1494 <      Vector3d com(0.0);
1495 <      Vector3d comVel(0.0);
1496 <      
1497 <      getComAll(com, comVel);
1498 <      
1499 <      SimInfo::MoleculeIterator i;
1500 <      Molecule* mol;
1501 <      
1502 <      Vector3d thisq(0.0);
1503 <      Vector3d thisv(0.0);
1504 <
1505 <      RealType thisMass = 0.0;
1506 <    
1507 <      
1508 <      
1509 <  
1510 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1511 <        
1512 <         thisq = mol->getCom()-com;
1513 <         thisv = mol->getComVel()-comVel;
1514 <         thisMass = mol->getMass();
1515 <         // Compute moment of intertia coefficients.
1516 <         xx += thisq[0]*thisq[0]*thisMass;
1517 <         yy += thisq[1]*thisq[1]*thisMass;
1518 <         zz += thisq[2]*thisq[2]*thisMass;
1519 <        
1520 <         // compute products of intertia
1521 <         xy += thisq[0]*thisq[1]*thisMass;
1522 <         xz += thisq[0]*thisq[2]*thisMass;
1523 <         yz += thisq[1]*thisq[2]*thisMass;
1524 <            
1525 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1526 <            
1527 <      }  
1528 <      
1529 <      
1530 <      inertiaTensor(0,0) = yy + zz;
1531 <      inertiaTensor(0,1) = -xy;
1532 <      inertiaTensor(0,2) = -xz;
1533 <      inertiaTensor(1,0) = -xy;
1534 <      inertiaTensor(1,1) = xx + zz;
1535 <      inertiaTensor(1,2) = -yz;
1536 <      inertiaTensor(2,0) = -xz;
1537 <      inertiaTensor(2,1) = -yz;
1538 <      inertiaTensor(2,2) = xx + yy;
1539 <      
1540 < #ifdef IS_MPI
1541 <      Mat3x3d tmpI(inertiaTensor);
1542 <      Vector3d tmpAngMom;
1543 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1544 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1545 < #endif
1546 <              
1547 <      return;
1548 <   }
1549 <
1550 <   //Returns the angular momentum of the system
1551 <   Vector3d SimInfo::getAngularMomentum(){
1552 <      
1553 <      Vector3d com(0.0);
1554 <      Vector3d comVel(0.0);
1555 <      Vector3d angularMomentum(0.0);
1556 <      
1557 <      getComAll(com,comVel);
1558 <      
1559 <      SimInfo::MoleculeIterator i;
1560 <      Molecule* mol;
1561 <      
1562 <      Vector3d thisr(0.0);
1563 <      Vector3d thisp(0.0);
1564 <      
1565 <      RealType thisMass;
1566 <      
1567 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1568 <        thisMass = mol->getMass();
1569 <        thisr = mol->getCom()-com;
1570 <        thisp = (mol->getComVel()-comVel)*thisMass;
1571 <        
1572 <        angularMomentum += cross( thisr, thisp );
1573 <        
1574 <      }  
1575 <      
1576 < #ifdef IS_MPI
1577 <      Vector3d tmpAngMom;
1578 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1579 < #endif
1580 <      
1581 <      return angularMomentum;
1582 <   }
1583 <  
1082 >  
1083    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1084 <    return IOIndexToIntegrableObject.at(index);
1084 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1085 >      sprintf(painCave.errMsg,
1086 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1087 >              "\tindex exceeds number of known objects!\n");
1088 >      painCave.isFatal = 1;
1089 >      simError();
1090 >      return NULL;
1091 >    } else
1092 >      return IOIndexToIntegrableObject.at(index);
1093    }
1094    
1095 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1095 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1096      IOIndexToIntegrableObject= v;
1097    }
1098  
1099 <  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1100 <     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1101 <     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1102 <     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1103 <  */
1104 <  void SimInfo::getGyrationalVolume(RealType &volume){
1105 <    Mat3x3d intTensor;
1106 <    RealType det;
1107 <    Vector3d dummyAngMom;
1108 <    RealType sysconstants;
1109 <    RealType geomCnst;
1603 <
1604 <    geomCnst = 3.0/2.0;
1605 <    /* Get the inertial tensor and angular momentum for free*/
1606 <    getInertiaTensor(intTensor,dummyAngMom);
1607 <    
1608 <    det = intTensor.determinant();
1609 <    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1610 <    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1611 <    return;
1099 >  int SimInfo::getNGlobalConstraints() {
1100 >    int nGlobalConstraints;
1101 > #ifdef IS_MPI
1102 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1,  
1103 >                              MPI_INT, MPI_SUM, MPI_COMM_WORLD);
1104 >    // MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1105 >    //                           MPI::INT, MPI::SUM);
1106 > #else
1107 >    nGlobalConstraints =  nConstraints_;
1108 > #endif
1109 >    return nGlobalConstraints;
1110    }
1111  
1112 <  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1615 <    Mat3x3d intTensor;
1616 <    Vector3d dummyAngMom;
1617 <    RealType sysconstants;
1618 <    RealType geomCnst;
1112 > }//end namespace OpenMD
1113  
1620    geomCnst = 3.0/2.0;
1621    /* Get the inertial tensor and angular momentum for free*/
1622    getInertiaTensor(intTensor,dummyAngMom);
1623    
1624    detI = intTensor.determinant();
1625    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1626    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1627    return;
1628  }
1629 /*
1630   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1631      assert( v.size() == nAtoms_ + nRigidBodies_);
1632      sdByGlobalIndex_ = v;
1633    }
1634
1635    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1636      //assert(index < nAtoms_ + nRigidBodies_);
1637      return sdByGlobalIndex_.at(index);
1638    }  
1639 */  
1640 }//end namespace oopse
1641

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 1290 by cli2, Wed Sep 10 19:51:45 2008 UTC vs.
Revision 1969 by gezelter, Wed Feb 26 14:14:50 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines