ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 1277 by gezelter, Mon Jul 14 12:35:58 2008 UTC vs.
Revision 1969 by gezelter, Wed Feb 26 14:14:50 2014 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 46 | Line 47
47   * @version 1.0
48   */
49  
50 + #ifdef IS_MPI
51 + #include <mpi.h>
52 + #endif
53   #include <algorithm>
54   #include <set>
55   #include <map>
# Line 54 | Line 58
58   #include "math/Vector3.hpp"
59   #include "primitives/Molecule.hpp"
60   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
61   #include "utils/MemoryUtils.hpp"
62   #include "utils/simError.h"
63   #include "selection/SelectionManager.hpp"
64   #include "io/ForceFieldOptions.hpp"
65 < #include "UseTheForce/ForceField.hpp"
65 > #include "brains/ForceField.hpp"
66 > #include "nonbonded/SwitchingFunction.hpp"
67  
68 <
69 < #ifdef IS_MPI
73 < #include "UseTheForce/mpiComponentPlan.h"
74 < #include "UseTheForce/DarkSide/simParallel_interface.h"
75 < #endif
76 <
77 < namespace oopse {
78 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 <    std::map<int, std::set<int> >::iterator i = container.find(index);
80 <    std::set<int> result;
81 <    if (i != container.end()) {
82 <        result = i->second;
83 <    }
84 <
85 <    return result;
86 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 <    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
79 <    calcBoxDipole_(false), useAtomicVirial_(true) {
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 >    nGlobalFluctuatingCharges_(0), nGlobalBonds_(0), nGlobalBends_(0),
77 >    nGlobalTorsions_(0), nGlobalInversions_(0), nAtoms_(0), nBonds_(0),
78 >    nBends_(0), nTorsions_(0), nInversions_(0), nRigidBodies_(0),
79 >    nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
80 >    nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
81 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
82 >    
83 >    MoleculeStamp* molStamp;
84 >    int nMolWithSameStamp;
85 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
87 >    CutoffGroupStamp* cgStamp;    
88 >    RigidBodyStamp* rbStamp;
89 >    int nRigidAtoms = 0;
90 >    
91 >    vector<Component*> components = simParams->getComponents();
92 >    
93 >    for (vector<Component*>::iterator i = components.begin();
94 >         i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      if ( (*i)->haveRegion() ) {        
97 >        molStamp->setRegion( (*i)->getRegion() );
98 >      } else {
99 >        // set the region to a disallowed value:
100 >        molStamp->setRegion( -1 );
101 >      }
102  
103 <
99 <      MoleculeStamp* molStamp;
100 <      int nMolWithSameStamp;
101 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
102 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
103 <      CutoffGroupStamp* cgStamp;    
104 <      RigidBodyStamp* rbStamp;
105 <      int nRigidAtoms = 0;
106 <
107 <      std::vector<Component*> components = simParams->getComponents();
103 >      nMolWithSameStamp = (*i)->getNMol();
104        
105 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
106 <        molStamp = (*i)->getMoleculeStamp();
107 <        nMolWithSameStamp = (*i)->getNMol();
108 <        
109 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
110 <
111 <        //calculate atoms in molecules
112 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
113 <
114 <        //calculate atoms in cutoff groups
115 <        int nAtomsInGroups = 0;
116 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
117 <        
118 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
119 <          cgStamp = molStamp->getCutoffGroupStamp(j);
120 <          nAtomsInGroups += cgStamp->getNMembers();
125 <        }
126 <
127 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128 <
129 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
130 <
131 <        //calculate atoms in rigid bodies
132 <        int nAtomsInRigidBodies = 0;
133 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134 <        
135 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
136 <          rbStamp = molStamp->getRigidBodyStamp(j);
137 <          nAtomsInRigidBodies += rbStamp->getNMembers();
138 <        }
139 <
140 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
142 <        
105 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
106 >      
107 >      //calculate atoms in molecules
108 >      nGlobalAtoms_ += molStamp->getNAtoms() * nMolWithSameStamp;
109 >      nGlobalBonds_ += molStamp->getNBonds() * nMolWithSameStamp;
110 >      nGlobalBends_ += molStamp->getNBends() * nMolWithSameStamp;
111 >      nGlobalTorsions_ += molStamp->getNTorsions() * nMolWithSameStamp;
112 >      nGlobalInversions_ += molStamp->getNInversions() * nMolWithSameStamp;
113 >      
114 >      //calculate atoms in cutoff groups
115 >      int nAtomsInGroups = 0;
116 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
117 >      
118 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
119 >        cgStamp = molStamp->getCutoffGroupStamp(j);
120 >        nAtomsInGroups += cgStamp->getNMembers();
121        }
122 <
123 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
124 <      //group therefore the total number of cutoff groups in the system is
125 <      //equal to the total number of atoms minus number of atoms belong to
126 <      //cutoff group defined in meta-data file plus the number of cutoff
127 <      //groups defined in meta-data file
128 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
129 <
130 <      //every free atom (atom does not belong to rigid bodies) is an
131 <      //integrable object therefore the total number of integrable objects
132 <      //in the system is equal to the total number of atoms minus number of
133 <      //atoms belong to rigid body defined in meta-data file plus the number
134 <      //of rigid bodies defined in meta-data file
135 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
136 <                                                + nGlobalRigidBodies_;
137 <  
138 <      nGlobalMols_ = molStampIds_.size();
161 <      molToProcMap_.resize(nGlobalMols_);
122 >      
123 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
124 >      
125 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
126 >      
127 >      //calculate atoms in rigid bodies
128 >      int nAtomsInRigidBodies = 0;
129 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
130 >      
131 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
132 >        rbStamp = molStamp->getRigidBodyStamp(j);
133 >        nAtomsInRigidBodies += rbStamp->getNMembers();
134 >      }
135 >      
136 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
137 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
138 >      
139      }
140 +    
141 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
142 +    //group therefore the total number of cutoff groups in the system is
143 +    //equal to the total number of atoms minus number of atoms belong to
144 +    //cutoff group defined in meta-data file plus the number of cutoff
145 +    //groups defined in meta-data file
146  
147 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
148 +    
149 +    //every free atom (atom does not belong to rigid bodies) is an
150 +    //integrable object therefore the total number of integrable objects
151 +    //in the system is equal to the total number of atoms minus number of
152 +    //atoms belong to rigid body defined in meta-data file plus the number
153 +    //of rigid bodies defined in meta-data file
154 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
155 +      + nGlobalRigidBodies_;
156 +    
157 +    nGlobalMols_ = molStampIds_.size();
158 +    molToProcMap_.resize(nGlobalMols_);
159 +  }
160 +  
161    SimInfo::~SimInfo() {
162 <    std::map<int, Molecule*>::iterator i;
162 >    map<int, Molecule*>::iterator i;
163      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
164        delete i->second;
165      }
# Line 173 | Line 170 | namespace oopse {
170      delete forceField_;
171    }
172  
176  int SimInfo::getNGlobalConstraints() {
177    int nGlobalConstraints;
178 #ifdef IS_MPI
179    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180                  MPI_COMM_WORLD);    
181 #else
182    nGlobalConstraints =  nConstraints_;
183 #endif
184    return nGlobalConstraints;
185  }
173  
174    bool SimInfo::addMolecule(Molecule* mol) {
175      MoleculeIterator i;
176 <
176 >    
177      i = molecules_.find(mol->getGlobalIndex());
178      if (i == molecules_.end() ) {
179 <
180 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
181 <        
179 >      
180 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
181 >      
182        nAtoms_ += mol->getNAtoms();
183        nBonds_ += mol->getNBonds();
184        nBends_ += mol->getNBends();
# Line 201 | Line 188 | namespace oopse {
188        nIntegrableObjects_ += mol->getNIntegrableObjects();
189        nCutoffGroups_ += mol->getNCutoffGroups();
190        nConstraints_ += mol->getNConstraintPairs();
191 <
192 <      addExcludePairs(mol);
193 <        
191 >      
192 >      addInteractionPairs(mol);
193 >      
194        return true;
195      } else {
196        return false;
197      }
198    }
199 <
199 >  
200    bool SimInfo::removeMolecule(Molecule* mol) {
201      MoleculeIterator i;
202      i = molecules_.find(mol->getGlobalIndex());
# Line 228 | Line 215 | namespace oopse {
215        nCutoffGroups_ -= mol->getNCutoffGroups();
216        nConstraints_ -= mol->getNConstraintPairs();
217  
218 <      removeExcludePairs(mol);
218 >      removeInteractionPairs(mol);
219        molecules_.erase(mol->getGlobalIndex());
220  
221        delete mol;
# Line 237 | Line 224 | namespace oopse {
224      } else {
225        return false;
226      }
240
241
227    }    
228  
229          
# Line 254 | Line 239 | namespace oopse {
239  
240  
241    void SimInfo::calcNdf() {
242 <    int ndf_local;
242 >    int ndf_local, nfq_local;
243      MoleculeIterator i;
244 <    std::vector<StuntDouble*>::iterator j;
244 >    vector<StuntDouble*>::iterator j;
245 >    vector<Atom*>::iterator k;
246 >
247      Molecule* mol;
248 <    StuntDouble* integrableObject;
248 >    StuntDouble* sd;
249 >    Atom* atom;
250  
251      ndf_local = 0;
252 +    nfq_local = 0;
253      
254      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267           integrableObject = mol->nextIntegrableObject(j)) {
255  
256 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
257 +           sd = mol->nextIntegrableObject(j)) {
258 +
259          ndf_local += 3;
260  
261 <        if (integrableObject->isDirectional()) {
262 <          if (integrableObject->isLinear()) {
261 >        if (sd->isDirectional()) {
262 >          if (sd->isLinear()) {
263              ndf_local += 2;
264            } else {
265              ndf_local += 3;
266            }
267          }
278            
268        }
269 +
270 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
271 +           atom = mol->nextFluctuatingCharge(k)) {
272 +        if (atom->isFluctuatingCharge()) {
273 +          nfq_local++;
274 +        }
275 +      }
276      }
277      
278 +    ndfLocal_ = ndf_local;
279 +
280      // n_constraints is local, so subtract them on each processor
281      ndf_local -= nConstraints_;
282  
283   #ifdef IS_MPI
284 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
284 >    MPI_Allreduce(&ndf_local, &ndf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
285 >    MPI_Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
286 >      MPI_INT, MPI_SUM, MPI_COMM_WORLD);
287 >    // MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
288 >    // MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
289 >    //                           MPI::INT, MPI::SUM);
290   #else
291      ndf_ = ndf_local;
292 +    nGlobalFluctuatingCharges_ = nfq_local;
293   #endif
294  
295      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 296 | Line 300 | namespace oopse {
300  
301    int SimInfo::getFdf() {
302   #ifdef IS_MPI
303 <    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
303 >    MPI_Allreduce(&fdf_local, &fdf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
304 >    // MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
305   #else
306      fdf_ = fdf_local;
307   #endif
308      return fdf_;
309    }
310 +  
311 +  unsigned int SimInfo::getNLocalCutoffGroups(){
312 +    int nLocalCutoffAtoms = 0;
313 +    Molecule* mol;
314 +    MoleculeIterator mi;
315 +    CutoffGroup* cg;
316 +    Molecule::CutoffGroupIterator ci;
317      
318 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
319 +      
320 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
321 +           cg = mol->nextCutoffGroup(ci)) {
322 +        nLocalCutoffAtoms += cg->getNumAtom();
323 +        
324 +      }        
325 +    }
326 +    
327 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
328 +  }
329 +    
330    void SimInfo::calcNdfRaw() {
331      int ndfRaw_local;
332  
333      MoleculeIterator i;
334 <    std::vector<StuntDouble*>::iterator j;
334 >    vector<StuntDouble*>::iterator j;
335      Molecule* mol;
336 <    StuntDouble* integrableObject;
336 >    StuntDouble* sd;
337  
338      // Raw degrees of freedom that we have to set
339      ndfRaw_local = 0;
340      
341      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319           integrableObject = mol->nextIntegrableObject(j)) {
342  
343 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
344 +           sd = mol->nextIntegrableObject(j)) {
345 +
346          ndfRaw_local += 3;
347  
348 <        if (integrableObject->isDirectional()) {
349 <          if (integrableObject->isLinear()) {
348 >        if (sd->isDirectional()) {
349 >          if (sd->isLinear()) {
350              ndfRaw_local += 2;
351            } else {
352              ndfRaw_local += 3;
# Line 332 | Line 357 | namespace oopse {
357      }
358      
359   #ifdef IS_MPI
360 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
360 >    MPI_Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
361 >    // MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
362   #else
363      ndfRaw_ = ndfRaw_local;
364   #endif
# Line 345 | Line 371 | namespace oopse {
371  
372  
373   #ifdef IS_MPI
374 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
374 >    MPI_Allreduce(&ndfTrans_local, &ndfTrans_, 1,
375 >      MPI_INT, MPI_SUM, MPI_COMM_WORLD);
376 >    // MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
377 >    //                           MPI::INT, MPI::SUM);
378   #else
379      ndfTrans_ = ndfTrans_local;
380   #endif
# Line 354 | Line 383 | namespace oopse {
383  
384    }
385  
386 <  void SimInfo::addExcludePairs(Molecule* mol) {
387 <    std::vector<Bond*>::iterator bondIter;
388 <    std::vector<Bend*>::iterator bendIter;
389 <    std::vector<Torsion*>::iterator torsionIter;
390 <    std::vector<Inversion*>::iterator inversionIter;
386 >  void SimInfo::addInteractionPairs(Molecule* mol) {
387 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
388 >    vector<Bond*>::iterator bondIter;
389 >    vector<Bend*>::iterator bendIter;
390 >    vector<Torsion*>::iterator torsionIter;
391 >    vector<Inversion*>::iterator inversionIter;
392      Bond* bond;
393      Bend* bend;
394      Torsion* torsion;
# Line 368 | Line 398 | namespace oopse {
398      int c;
399      int d;
400  
401 <    std::map<int, std::set<int> > atomGroups;
401 >    // atomGroups can be used to add special interaction maps between
402 >    // groups of atoms that are in two separate rigid bodies.
403 >    // However, most site-site interactions between two rigid bodies
404 >    // are probably not special, just the ones between the physically
405 >    // bonded atoms.  Interactions *within* a single rigid body should
406 >    // always be excluded.  These are done at the bottom of this
407 >    // function.
408  
409 +    map<int, set<int> > atomGroups;
410      Molecule::RigidBodyIterator rbIter;
411      RigidBody* rb;
412      Molecule::IntegrableObjectIterator ii;
413 <    StuntDouble* integrableObject;
413 >    StuntDouble* sd;
414      
415 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
416 <           integrableObject = mol->nextIntegrableObject(ii)) {
417 <
418 <      if (integrableObject->isRigidBody()) {
419 <          rb = static_cast<RigidBody*>(integrableObject);
420 <          std::vector<Atom*> atoms = rb->getAtoms();
421 <          std::set<int> rigidAtoms;
422 <          for (int i = 0; i < atoms.size(); ++i) {
423 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
424 <          }
425 <          for (int i = 0; i < atoms.size(); ++i) {
426 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
427 <          }      
415 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
416 >         sd = mol->nextIntegrableObject(ii)) {
417 >      
418 >      if (sd->isRigidBody()) {
419 >        rb = static_cast<RigidBody*>(sd);
420 >        vector<Atom*> atoms = rb->getAtoms();
421 >        set<int> rigidAtoms;
422 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
423 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
424 >        }
425 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
426 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
427 >        }      
428        } else {
429 <        std::set<int> oneAtomSet;
430 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
431 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
429 >        set<int> oneAtomSet;
430 >        oneAtomSet.insert(sd->getGlobalIndex());
431 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
432        }
433      }  
434  
435 <    
436 <    
437 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
435 >          
436 >    for (bond= mol->beginBond(bondIter); bond != NULL;
437 >         bond = mol->nextBond(bondIter)) {
438 >
439        a = bond->getAtomA()->getGlobalIndex();
440 <      b = bond->getAtomB()->getGlobalIndex();        
441 <      exclude_.addPair(a, b);
440 >      b = bond->getAtomB()->getGlobalIndex();  
441 >
442 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
443 >        oneTwoInteractions_.addPair(a, b);
444 >      } else {
445 >        excludedInteractions_.addPair(a, b);
446 >      }
447      }
448  
449 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
449 >    for (bend= mol->beginBend(bendIter); bend != NULL;
450 >         bend = mol->nextBend(bendIter)) {
451 >
452        a = bend->getAtomA()->getGlobalIndex();
453        b = bend->getAtomB()->getGlobalIndex();        
454        c = bend->getAtomC()->getGlobalIndex();
410      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
411      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
412      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
413
414      exclude_.addPairs(rigidSetA, rigidSetB);
415      exclude_.addPairs(rigidSetA, rigidSetC);
416      exclude_.addPairs(rigidSetB, rigidSetC);
455        
456 <      //exclude_.addPair(a, b);
457 <      //exclude_.addPair(a, c);
458 <      //exclude_.addPair(b, c);        
456 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
457 >        oneTwoInteractions_.addPair(a, b);      
458 >        oneTwoInteractions_.addPair(b, c);
459 >      } else {
460 >        excludedInteractions_.addPair(a, b);
461 >        excludedInteractions_.addPair(b, c);
462 >      }
463 >
464 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
465 >        oneThreeInteractions_.addPair(a, c);      
466 >      } else {
467 >        excludedInteractions_.addPair(a, c);
468 >      }
469      }
470  
471 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
471 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
472 >         torsion = mol->nextTorsion(torsionIter)) {
473 >
474        a = torsion->getAtomA()->getGlobalIndex();
475        b = torsion->getAtomB()->getGlobalIndex();        
476        c = torsion->getAtomC()->getGlobalIndex();        
477 <      d = torsion->getAtomD()->getGlobalIndex();        
428 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
429 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
430 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
431 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
477 >      d = torsion->getAtomD()->getGlobalIndex();      
478  
479 <      exclude_.addPairs(rigidSetA, rigidSetB);
480 <      exclude_.addPairs(rigidSetA, rigidSetC);
481 <      exclude_.addPairs(rigidSetA, rigidSetD);
482 <      exclude_.addPairs(rigidSetB, rigidSetC);
483 <      exclude_.addPairs(rigidSetB, rigidSetD);
484 <      exclude_.addPairs(rigidSetC, rigidSetD);
479 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
480 >        oneTwoInteractions_.addPair(a, b);      
481 >        oneTwoInteractions_.addPair(b, c);
482 >        oneTwoInteractions_.addPair(c, d);
483 >      } else {
484 >        excludedInteractions_.addPair(a, b);
485 >        excludedInteractions_.addPair(b, c);
486 >        excludedInteractions_.addPair(c, d);
487 >      }
488  
489 <      /*
490 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
491 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
492 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
493 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
494 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
495 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
496 <        
497 <      
498 <      exclude_.addPair(a, b);
499 <      exclude_.addPair(a, c);
500 <      exclude_.addPair(a, d);
501 <      exclude_.addPair(b, c);
453 <      exclude_.addPair(b, d);
454 <      exclude_.addPair(c, d);        
455 <      */
489 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
490 >        oneThreeInteractions_.addPair(a, c);      
491 >        oneThreeInteractions_.addPair(b, d);      
492 >      } else {
493 >        excludedInteractions_.addPair(a, c);
494 >        excludedInteractions_.addPair(b, d);
495 >      }
496 >
497 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
498 >        oneFourInteractions_.addPair(a, d);      
499 >      } else {
500 >        excludedInteractions_.addPair(a, d);
501 >      }
502      }
503  
504      for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
505           inversion = mol->nextInversion(inversionIter)) {
506 +
507        a = inversion->getAtomA()->getGlobalIndex();
508        b = inversion->getAtomB()->getGlobalIndex();        
509        c = inversion->getAtomC()->getGlobalIndex();        
510        d = inversion->getAtomD()->getGlobalIndex();        
464      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
465      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
466      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
467      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
511  
512 <      exclude_.addPairs(rigidSetA, rigidSetB);
513 <      exclude_.addPairs(rigidSetA, rigidSetC);
514 <      exclude_.addPairs(rigidSetA, rigidSetD);
515 <      exclude_.addPairs(rigidSetB, rigidSetC);
516 <      exclude_.addPairs(rigidSetB, rigidSetD);
517 <      exclude_.addPairs(rigidSetC, rigidSetD);
512 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
513 >        oneTwoInteractions_.addPair(a, b);      
514 >        oneTwoInteractions_.addPair(a, c);
515 >        oneTwoInteractions_.addPair(a, d);
516 >      } else {
517 >        excludedInteractions_.addPair(a, b);
518 >        excludedInteractions_.addPair(a, c);
519 >        excludedInteractions_.addPair(a, d);
520 >      }
521  
522 <      /*
523 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
524 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
525 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
526 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
527 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
528 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
529 <        
530 <      
485 <      exclude_.addPair(a, b);
486 <      exclude_.addPair(a, c);
487 <      exclude_.addPair(a, d);
488 <      exclude_.addPair(b, c);
489 <      exclude_.addPair(b, d);
490 <      exclude_.addPair(c, d);        
491 <      */
522 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
523 >        oneThreeInteractions_.addPair(b, c);    
524 >        oneThreeInteractions_.addPair(b, d);    
525 >        oneThreeInteractions_.addPair(c, d);      
526 >      } else {
527 >        excludedInteractions_.addPair(b, c);
528 >        excludedInteractions_.addPair(b, d);
529 >        excludedInteractions_.addPair(c, d);
530 >      }
531      }
532  
533 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
534 <      std::vector<Atom*> atoms = rb->getAtoms();
535 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
536 <        for (int j = i + 1; j < atoms.size(); ++j) {
533 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
534 >         rb = mol->nextRigidBody(rbIter)) {
535 >      vector<Atom*> atoms = rb->getAtoms();
536 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
537 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
538            a = atoms[i]->getGlobalIndex();
539            b = atoms[j]->getGlobalIndex();
540 <          exclude_.addPair(a, b);
540 >          excludedInteractions_.addPair(a, b);
541          }
542        }
543      }        
544  
545    }
546  
547 <  void SimInfo::removeExcludePairs(Molecule* mol) {
548 <    std::vector<Bond*>::iterator bondIter;
549 <    std::vector<Bend*>::iterator bendIter;
550 <    std::vector<Torsion*>::iterator torsionIter;
551 <    std::vector<Inversion*>::iterator inversionIter;
547 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
548 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
549 >    vector<Bond*>::iterator bondIter;
550 >    vector<Bend*>::iterator bendIter;
551 >    vector<Torsion*>::iterator torsionIter;
552 >    vector<Inversion*>::iterator inversionIter;
553      Bond* bond;
554      Bend* bend;
555      Torsion* torsion;
# Line 518 | Line 559 | namespace oopse {
559      int c;
560      int d;
561  
562 <    std::map<int, std::set<int> > atomGroups;
522 <
562 >    map<int, set<int> > atomGroups;
563      Molecule::RigidBodyIterator rbIter;
564      RigidBody* rb;
565      Molecule::IntegrableObjectIterator ii;
566 <    StuntDouble* integrableObject;
566 >    StuntDouble* sd;
567      
568 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
569 <           integrableObject = mol->nextIntegrableObject(ii)) {
570 <
571 <      if (integrableObject->isRigidBody()) {
572 <          rb = static_cast<RigidBody*>(integrableObject);
573 <          std::vector<Atom*> atoms = rb->getAtoms();
574 <          std::set<int> rigidAtoms;
575 <          for (int i = 0; i < atoms.size(); ++i) {
576 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
577 <          }
578 <          for (int i = 0; i < atoms.size(); ++i) {
579 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
580 <          }      
568 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
569 >         sd = mol->nextIntegrableObject(ii)) {
570 >      
571 >      if (sd->isRigidBody()) {
572 >        rb = static_cast<RigidBody*>(sd);
573 >        vector<Atom*> atoms = rb->getAtoms();
574 >        set<int> rigidAtoms;
575 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
576 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
577 >        }
578 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
579 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
580 >        }      
581        } else {
582 <        std::set<int> oneAtomSet;
583 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
584 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
582 >        set<int> oneAtomSet;
583 >        oneAtomSet.insert(sd->getGlobalIndex());
584 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
585        }
586      }  
587  
588 <    
589 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
588 >    for (bond= mol->beginBond(bondIter); bond != NULL;
589 >         bond = mol->nextBond(bondIter)) {
590 >      
591        a = bond->getAtomA()->getGlobalIndex();
592 <      b = bond->getAtomB()->getGlobalIndex();        
593 <      exclude_.removePair(a, b);
592 >      b = bond->getAtomB()->getGlobalIndex();  
593 >    
594 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
595 >        oneTwoInteractions_.removePair(a, b);
596 >      } else {
597 >        excludedInteractions_.removePair(a, b);
598 >      }
599      }
600  
601 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
601 >    for (bend= mol->beginBend(bendIter); bend != NULL;
602 >         bend = mol->nextBend(bendIter)) {
603 >
604        a = bend->getAtomA()->getGlobalIndex();
605        b = bend->getAtomB()->getGlobalIndex();        
606        c = bend->getAtomC()->getGlobalIndex();
559
560      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
561      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
562      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
563
564      exclude_.removePairs(rigidSetA, rigidSetB);
565      exclude_.removePairs(rigidSetA, rigidSetC);
566      exclude_.removePairs(rigidSetB, rigidSetC);
607        
608 <      //exclude_.removePair(a, b);
609 <      //exclude_.removePair(a, c);
610 <      //exclude_.removePair(b, c);        
608 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
609 >        oneTwoInteractions_.removePair(a, b);      
610 >        oneTwoInteractions_.removePair(b, c);
611 >      } else {
612 >        excludedInteractions_.removePair(a, b);
613 >        excludedInteractions_.removePair(b, c);
614 >      }
615 >
616 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
617 >        oneThreeInteractions_.removePair(a, c);      
618 >      } else {
619 >        excludedInteractions_.removePair(a, c);
620 >      }
621      }
622  
623 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
623 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
624 >         torsion = mol->nextTorsion(torsionIter)) {
625 >
626        a = torsion->getAtomA()->getGlobalIndex();
627        b = torsion->getAtomB()->getGlobalIndex();        
628        c = torsion->getAtomC()->getGlobalIndex();        
629 <      d = torsion->getAtomD()->getGlobalIndex();        
629 >      d = torsion->getAtomD()->getGlobalIndex();      
630 >  
631 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
632 >        oneTwoInteractions_.removePair(a, b);      
633 >        oneTwoInteractions_.removePair(b, c);
634 >        oneTwoInteractions_.removePair(c, d);
635 >      } else {
636 >        excludedInteractions_.removePair(a, b);
637 >        excludedInteractions_.removePair(b, c);
638 >        excludedInteractions_.removePair(c, d);
639 >      }
640  
641 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
642 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
643 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
644 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
641 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
642 >        oneThreeInteractions_.removePair(a, c);      
643 >        oneThreeInteractions_.removePair(b, d);      
644 >      } else {
645 >        excludedInteractions_.removePair(a, c);
646 >        excludedInteractions_.removePair(b, d);
647 >      }
648  
649 <      exclude_.removePairs(rigidSetA, rigidSetB);
650 <      exclude_.removePairs(rigidSetA, rigidSetC);
651 <      exclude_.removePairs(rigidSetA, rigidSetD);
652 <      exclude_.removePairs(rigidSetB, rigidSetC);
653 <      exclude_.removePairs(rigidSetB, rigidSetD);
589 <      exclude_.removePairs(rigidSetC, rigidSetD);
590 <
591 <      /*
592 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
593 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
594 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
595 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
596 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
597 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
598 <
599 <      
600 <      exclude_.removePair(a, b);
601 <      exclude_.removePair(a, c);
602 <      exclude_.removePair(a, d);
603 <      exclude_.removePair(b, c);
604 <      exclude_.removePair(b, d);
605 <      exclude_.removePair(c, d);        
606 <      */
649 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
650 >        oneFourInteractions_.removePair(a, d);      
651 >      } else {
652 >        excludedInteractions_.removePair(a, d);
653 >      }
654      }
655  
656 <    for (inversion= mol->beginInversion(inversionIter); inversion != NULL; inversion = mol->nextInversion(inversionIter)) {
656 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
657 >         inversion = mol->nextInversion(inversionIter)) {
658 >
659        a = inversion->getAtomA()->getGlobalIndex();
660        b = inversion->getAtomB()->getGlobalIndex();        
661        c = inversion->getAtomC()->getGlobalIndex();        
662        d = inversion->getAtomD()->getGlobalIndex();        
663  
664 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
665 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
666 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
667 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
664 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
665 >        oneTwoInteractions_.removePair(a, b);      
666 >        oneTwoInteractions_.removePair(a, c);
667 >        oneTwoInteractions_.removePair(a, d);
668 >      } else {
669 >        excludedInteractions_.removePair(a, b);
670 >        excludedInteractions_.removePair(a, c);
671 >        excludedInteractions_.removePair(a, d);
672 >      }
673  
674 <      exclude_.removePairs(rigidSetA, rigidSetB);
675 <      exclude_.removePairs(rigidSetA, rigidSetC);
676 <      exclude_.removePairs(rigidSetA, rigidSetD);
677 <      exclude_.removePairs(rigidSetB, rigidSetC);
678 <      exclude_.removePairs(rigidSetB, rigidSetD);
679 <      exclude_.removePairs(rigidSetC, rigidSetD);
680 <
681 <      /*
682 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
629 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
630 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
631 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
632 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
633 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
634 <
635 <      
636 <      exclude_.removePair(a, b);
637 <      exclude_.removePair(a, c);
638 <      exclude_.removePair(a, d);
639 <      exclude_.removePair(b, c);
640 <      exclude_.removePair(b, d);
641 <      exclude_.removePair(c, d);        
642 <      */
674 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
675 >        oneThreeInteractions_.removePair(b, c);    
676 >        oneThreeInteractions_.removePair(b, d);    
677 >        oneThreeInteractions_.removePair(c, d);      
678 >      } else {
679 >        excludedInteractions_.removePair(b, c);
680 >        excludedInteractions_.removePair(b, d);
681 >        excludedInteractions_.removePair(c, d);
682 >      }
683      }
684  
685 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
686 <      std::vector<Atom*> atoms = rb->getAtoms();
687 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
688 <        for (int j = i + 1; j < atoms.size(); ++j) {
685 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
686 >         rb = mol->nextRigidBody(rbIter)) {
687 >      vector<Atom*> atoms = rb->getAtoms();
688 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
689 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
690            a = atoms[i]->getGlobalIndex();
691            b = atoms[j]->getGlobalIndex();
692 <          exclude_.removePair(a, b);
692 >          excludedInteractions_.removePair(a, b);
693          }
694        }
695      }        
696 <
696 >    
697    }
698 <
699 <
698 >  
699 >  
700    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
701      int curStampId;
702 <
702 >    
703      //index from 0
704      curStampId = moleculeStamps_.size();
705  
# Line 666 | Line 707 | namespace oopse {
707      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
708    }
709  
669  void SimInfo::update() {
710  
711 <    setupSimType();
712 <
713 < #ifdef IS_MPI
714 <    setupFortranParallel();
715 < #endif
716 <
717 <    setupFortranSim();
718 <
719 <    //setup fortran force field
680 <    /** @deprecate */    
681 <    int isError = 0;
682 <    
683 <    setupCutoff();
684 <    
685 <    setupElectrostaticSummationMethod( isError );
686 <    setupSwitchingFunction();
687 <    setupAccumulateBoxDipole();
688 <
689 <    if(isError){
690 <      sprintf( painCave.errMsg,
691 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
692 <      painCave.isFatal = 1;
693 <      simError();
694 <    }
695 <
711 >  /**
712 >   * update
713 >   *
714 >   *  Performs the global checks and variable settings after the
715 >   *  objects have been created.
716 >   *
717 >   */
718 >  void SimInfo::update() {  
719 >    setupSimVariables();
720      calcNdf();
721      calcNdfRaw();
722      calcNdfTrans();
699
700    fortranInitialized_ = true;
723    }
724 <
725 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
724 >  
725 >  /**
726 >   * getSimulatedAtomTypes
727 >   *
728 >   * Returns an STL set of AtomType* that are actually present in this
729 >   * simulation.  Must query all processors to assemble this information.
730 >   *
731 >   */
732 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
733      SimInfo::MoleculeIterator mi;
734      Molecule* mol;
735      Molecule::AtomIterator ai;
736      Atom* atom;
737 <    std::set<AtomType*> atomTypes;
738 <
737 >    set<AtomType*> atomTypes;
738 >    
739      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
740 <
741 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
740 >      for(atom = mol->beginAtom(ai); atom != NULL;
741 >          atom = mol->nextAtom(ai)) {
742          atomTypes.insert(atom->getAtomType());
743 <      }
744 <        
716 <    }
717 <
718 <    return atomTypes;        
719 <  }
720 <
721 <  void SimInfo::setupSimType() {
722 <    std::set<AtomType*>::iterator i;
723 <    std::set<AtomType*> atomTypes;
724 <    atomTypes = getUniqueAtomTypes();
743 >      }      
744 >    }    
745      
746 <    int useLennardJones = 0;
727 <    int useElectrostatic = 0;
728 <    int useEAM = 0;
729 <    int useSC = 0;
730 <    int useCharge = 0;
731 <    int useDirectional = 0;
732 <    int useDipole = 0;
733 <    int useGayBerne = 0;
734 <    int useSticky = 0;
735 <    int useStickyPower = 0;
736 <    int useShape = 0;
737 <    int useFLARB = 0; //it is not in AtomType yet
738 <    int useDirectionalAtom = 0;    
739 <    int useElectrostatics = 0;
740 <    //usePBC and useRF are from simParams
741 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
742 <    int useRF;
743 <    int useSF;
744 <    int useSP;
745 <    int useBoxDipole;
746 > #ifdef IS_MPI
747  
748 <    std::string myMethod;
749 <
749 <    // set the useRF logical
750 <    useRF = 0;
751 <    useSF = 0;
752 <    useSP = 0;
753 <
754 <
755 <    if (simParams_->haveElectrostaticSummationMethod()) {
756 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
757 <      toUpper(myMethod);
758 <      if (myMethod == "REACTION_FIELD"){
759 <        useRF = 1;
760 <      } else if (myMethod == "SHIFTED_FORCE"){
761 <        useSF = 1;
762 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
763 <        useSP = 1;
764 <      }
765 <    }
748 >    // loop over the found atom types on this processor, and add their
749 >    // numerical idents to a vector:
750      
751 <    if (simParams_->haveAccumulateBoxDipole())
752 <      if (simParams_->getAccumulateBoxDipole())
753 <        useBoxDipole = 1;
751 >    vector<int> foundTypes;
752 >    set<AtomType*>::iterator i;
753 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
754 >      foundTypes.push_back( (*i)->getIdent() );
755  
756 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
756 >    // count_local holds the number of found types on this processor
757 >    int count_local = foundTypes.size();
758  
759 <    //loop over all of the atom types
760 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
761 <      useLennardJones |= (*i)->isLennardJones();
776 <      useElectrostatic |= (*i)->isElectrostatic();
777 <      useEAM |= (*i)->isEAM();
778 <      useSC |= (*i)->isSC();
779 <      useCharge |= (*i)->isCharge();
780 <      useDirectional |= (*i)->isDirectional();
781 <      useDipole |= (*i)->isDipole();
782 <      useGayBerne |= (*i)->isGayBerne();
783 <      useSticky |= (*i)->isSticky();
784 <      useStickyPower |= (*i)->isStickyPower();
785 <      useShape |= (*i)->isShape();
786 <    }
759 >    int nproc;
760 >    MPI_Comm_size( MPI_COMM_WORLD, &nproc);
761 >    // int nproc = MPI::COMM_WORLD.Get_size();
762  
763 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
764 <      useDirectionalAtom = 1;
765 <    }
763 >    // we need arrays to hold the counts and displacement vectors for
764 >    // all processors
765 >    vector<int> counts(nproc, 0);
766 >    vector<int> disps(nproc, 0);
767  
768 <    if (useCharge || useDipole) {
769 <      useElectrostatics = 1;
768 >    // fill the counts array
769 >    MPI_Allgather(&count_local, 1, MPI_INT, &counts[0],
770 >                  1, MPI_INT, MPI_COMM_WORLD);
771 >    // MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
772 >    //                           1, MPI::INT);
773 >  
774 >    // use the processor counts to compute the displacement array
775 >    disps[0] = 0;    
776 >    int totalCount = counts[0];
777 >    for (int iproc = 1; iproc < nproc; iproc++) {
778 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
779 >      totalCount += counts[iproc];
780      }
781  
782 < #ifdef IS_MPI    
783 <    int temp;
782 >    // we need a (possibly redundant) set of all found types:
783 >    vector<int> ftGlobal(totalCount);
784 >    
785 >    // now spray out the foundTypes to all the other processors:    
786 >    MPI_Allgatherv(&foundTypes[0], count_local, MPI_INT,
787 >                   &ftGlobal[0], &counts[0], &disps[0],
788 >                   MPI_INT, MPI_COMM_WORLD);
789 >    // MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
790 >    //                            &ftGlobal[0], &counts[0], &disps[0],
791 >    //                            MPI::INT);
792  
793 <    temp = usePBC;
800 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
793 >    vector<int>::iterator j;
794  
795 <    temp = useDirectionalAtom;
796 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
795 >    // foundIdents is a stl set, so inserting an already found ident
796 >    // will have no effect.
797 >    set<int> foundIdents;
798  
799 <    temp = useLennardJones;
800 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
799 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
800 >      foundIdents.insert((*j));
801 >    
802 >    // now iterate over the foundIdents and get the actual atom types
803 >    // that correspond to these:
804 >    set<int>::iterator it;
805 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
806 >      atomTypes.insert( forceField_->getAtomType((*it)) );
807 >
808 > #endif
809  
810 <    temp = useElectrostatics;
811 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810 >    return atomTypes;        
811 >  }
812  
811    temp = useCharge;
812    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813  
814 <    temp = useDipole;
815 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
816 <
817 <    temp = useSticky;
818 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
814 >  int getGlobalCountOfType(AtomType* atype) {
815 >    /*
816 >    set<AtomType*> atypes = getSimulatedAtomTypes();
817 >    map<AtomType*, int> counts_;
818  
819 <    temp = useStickyPower;
820 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
819 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
820 >      for(atom = mol->beginAtom(ai); atom != NULL;
821 >          atom = mol->nextAtom(ai)) {
822 >        atom->getAtomType();
823 >      }      
824 >    }    
825 >    */
826 >    return 0;
827 >  }
828 >
829 >  void SimInfo::setupSimVariables() {
830 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
831 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
832 >    // parameter is true
833 >    calcBoxDipole_ = false;
834 >    if ( simParams_->haveAccumulateBoxDipole() )
835 >      if ( simParams_->getAccumulateBoxDipole() ) {
836 >        calcBoxDipole_ = true;      
837 >      }
838      
839 <    temp = useGayBerne;
840 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
839 >    set<AtomType*>::iterator i;
840 >    set<AtomType*> atomTypes;
841 >    atomTypes = getSimulatedAtomTypes();    
842 >    bool usesElectrostatic = false;
843 >    bool usesMetallic = false;
844 >    bool usesDirectional = false;
845 >    bool usesFluctuatingCharges =  false;
846 >    //loop over all of the atom types
847 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
848 >      usesElectrostatic |= (*i)->isElectrostatic();
849 >      usesMetallic |= (*i)->isMetal();
850 >      usesDirectional |= (*i)->isDirectional();
851 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
852 >    }
853  
854 <    temp = useEAM;
855 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
854 > #ifdef IS_MPI
855 >    int temp;
856  
857 <    temp = useSC;
858 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
857 >    temp = usesDirectional;
858 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
859 >    usesDirectionalAtoms_ = (temp == 0) ? false : true;
860 >
861 >    // MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
862 >    //                           MPI::LOR);
863      
864 <    temp = useShape;
865 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
864 >    temp = usesMetallic;
865 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
866 >    usesMetallicAtoms_ = (temp == 0) ? false : true;
867  
868 <    temp = useFLARB;
869 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
868 >    // MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
869 >    //                           MPI::LOR);
870 >    
871 >    temp = usesElectrostatic;
872 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
873 >    usesElectrostaticAtoms_ = (temp == 0) ? false : true;
874  
875 <    temp = useRF;
876 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
875 >    // MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
876 >    //                           MPI::LOR);
877  
878 <    temp = useSF;
879 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
878 >    temp = usesFluctuatingCharges;
879 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
880 >    usesFluctuatingCharges_ = (temp == 0) ? false : true;
881  
882 <    temp = useSP;
883 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
882 >    // MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
883 >    //                           MPI::LOR);
884  
885 <    temp = useBoxDipole;
848 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
885 > #else
886  
887 <    temp = useAtomicVirial_;
888 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
887 >    usesDirectionalAtoms_ = usesDirectional;
888 >    usesMetallicAtoms_ = usesMetallic;
889 >    usesElectrostaticAtoms_ = usesElectrostatic;
890 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
891  
892   #endif
893 <
894 <    fInfo_.SIM_uses_PBC = usePBC;    
895 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
896 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
858 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
859 <    fInfo_.SIM_uses_Charges = useCharge;
860 <    fInfo_.SIM_uses_Dipoles = useDipole;
861 <    fInfo_.SIM_uses_Sticky = useSticky;
862 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
863 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
864 <    fInfo_.SIM_uses_EAM = useEAM;
865 <    fInfo_.SIM_uses_SC = useSC;
866 <    fInfo_.SIM_uses_Shapes = useShape;
867 <    fInfo_.SIM_uses_FLARB = useFLARB;
868 <    fInfo_.SIM_uses_RF = useRF;
869 <    fInfo_.SIM_uses_SF = useSF;
870 <    fInfo_.SIM_uses_SP = useSP;
871 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
872 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
893 >    
894 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
895 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
896 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
897    }
898  
899 <  void SimInfo::setupFortranSim() {
900 <    int isError;
901 <    int nExclude;
902 <    std::vector<int> fortranGlobalGroupMembership;
899 >
900 >  vector<int> SimInfo::getGlobalAtomIndices() {
901 >    SimInfo::MoleculeIterator mi;
902 >    Molecule* mol;
903 >    Molecule::AtomIterator ai;
904 >    Atom* atom;
905 >
906 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
907      
908 <    nExclude = exclude_.getSize();
909 <    isError = 0;
908 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
909 >      
910 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
911 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
912 >      }
913 >    }
914 >    return GlobalAtomIndices;
915 >  }
916  
917 <    //globalGroupMembership_ is filled by SimCreator    
918 <    for (int i = 0; i < nGlobalAtoms_; i++) {
919 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
917 >
918 >  vector<int> SimInfo::getGlobalGroupIndices() {
919 >    SimInfo::MoleculeIterator mi;
920 >    Molecule* mol;
921 >    Molecule::CutoffGroupIterator ci;
922 >    CutoffGroup* cg;
923 >
924 >    vector<int> GlobalGroupIndices;
925 >    
926 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
927 >      
928 >      //local index of cutoff group is trivial, it only depends on the
929 >      //order of travesing
930 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
931 >           cg = mol->nextCutoffGroup(ci)) {
932 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
933 >      }        
934      }
935 +    return GlobalGroupIndices;
936 +  }
937  
938 +
939 +  void SimInfo::prepareTopology() {
940 +
941      //calculate mass ratio of cutoff group
889    std::vector<RealType> mfact;
942      SimInfo::MoleculeIterator mi;
943      Molecule* mol;
944      Molecule::CutoffGroupIterator ci;
# Line 895 | Line 947 | namespace oopse {
947      Atom* atom;
948      RealType totalMass;
949  
950 <    //to avoid memory reallocation, reserve enough space for mfact
951 <    mfact.reserve(getNCutoffGroups());
950 >    /**
951 >     * The mass factor is the relative mass of an atom to the total
952 >     * mass of the cutoff group it belongs to.  By default, all atoms
953 >     * are their own cutoff groups, and therefore have mass factors of
954 >     * 1.  We need some special handling for massless atoms, which
955 >     * will be treated as carrying the entire mass of the cutoff
956 >     * group.
957 >     */
958 >    massFactors_.clear();
959 >    massFactors_.resize(getNAtoms(), 1.0);
960      
961      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
962 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
962 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
963 >           cg = mol->nextCutoffGroup(ci)) {
964  
965          totalMass = cg->getMass();
966          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
967            // Check for massless groups - set mfact to 1 if true
968 <          if (totalMass != 0)
969 <            mfact.push_back(atom->getMass()/totalMass);
968 >          if (totalMass != 0)
969 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
970            else
971 <            mfact.push_back( 1.0 );
971 >            massFactors_[atom->getLocalIndex()] = 1.0;
972          }
912
973        }      
914    }
915
916    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
917    std::vector<int> identArray;
918
919    //to avoid memory reallocation, reserve enough space identArray
920    identArray.reserve(getNAtoms());
921    
922    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
923      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
924        identArray.push_back(atom->getIdent());
925      }
926    }    
927
928    //fill molMembershipArray
929    //molMembershipArray is filled by SimCreator    
930    std::vector<int> molMembershipArray(nGlobalAtoms_);
931    for (int i = 0; i < nGlobalAtoms_; i++) {
932      molMembershipArray[i] = globalMolMembership_[i] + 1;
933    }
934    
935    //setup fortran simulation
936    int nGlobalExcludes = 0;
937    int* globalExcludes = NULL;
938    int* excludeList = exclude_.getExcludeList();
939    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
940                   &nExclude, excludeList , &nGlobalExcludes, globalExcludes,
941                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
942                   &fortranGlobalGroupMembership[0], &isError);
943    
944    if( isError ){
945      
946      sprintf( painCave.errMsg,
947               "There was an error setting the simulation information in fortran.\n" );
948      painCave.isFatal = 1;
949      painCave.severity = OOPSE_ERROR;
950      simError();
951    }
952    
953    
954    sprintf( checkPointMsg,
955             "succesfully sent the simulation information to fortran.\n");
956    
957    errorCheckPoint();
958    
959    // Setup number of neighbors in neighbor list if present
960    if (simParams_->haveNeighborListNeighbors()) {
961      int nlistNeighbors = simParams_->getNeighborListNeighbors();
962      setNeighbors(&nlistNeighbors);
963    }
964  
965
966  }
967
968
969  void SimInfo::setupFortranParallel() {
970 #ifdef IS_MPI    
971    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
972    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
973    std::vector<int> localToGlobalCutoffGroupIndex;
974    SimInfo::MoleculeIterator mi;
975    Molecule::AtomIterator ai;
976    Molecule::CutoffGroupIterator ci;
977    Molecule* mol;
978    Atom* atom;
979    CutoffGroup* cg;
980    mpiSimData parallelData;
981    int isError;
982
983    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
984
985      //local index(index in DataStorge) of atom is important
986      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
987        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
988      }
989
990      //local index of cutoff group is trivial, it only depends on the order of travesing
991      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
992        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
993      }        
994        
974      }
975  
976 <    //fill up mpiSimData struct
998 <    parallelData.nMolGlobal = getNGlobalMolecules();
999 <    parallelData.nMolLocal = getNMolecules();
1000 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
1001 <    parallelData.nAtomsLocal = getNAtoms();
1002 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1003 <    parallelData.nGroupsLocal = getNCutoffGroups();
1004 <    parallelData.myNode = worldRank;
1005 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
976 >    // Build the identArray_ and regions_
977  
978 <    //pass mpiSimData struct and index arrays to fortran
979 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
980 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
981 <                    &localToGlobalCutoffGroupIndex[0], &isError);
982 <
983 <    if (isError) {
984 <      sprintf(painCave.errMsg,
985 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
986 <      painCave.isFatal = 1;
987 <      simError();
1017 <    }
1018 <
1019 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
1020 <    errorCheckPoint();
1021 <
1022 < #endif
1023 <  }
1024 <
1025 <  void SimInfo::setupCutoff() {          
1026 <    
1027 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1028 <
1029 <    // Check the cutoff policy
1030 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1031 <
1032 <    // Set LJ shifting bools to false
1033 <    ljsp_ = false;
1034 <    ljsf_ = false;
1035 <
1036 <    std::string myPolicy;
1037 <    if (forceFieldOptions_.haveCutoffPolicy()){
1038 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
1039 <    }else if (simParams_->haveCutoffPolicy()) {
1040 <      myPolicy = simParams_->getCutoffPolicy();
1041 <    }
1042 <
1043 <    if (!myPolicy.empty()){
1044 <      toUpper(myPolicy);
1045 <      if (myPolicy == "MIX") {
1046 <        cp = MIX_CUTOFF_POLICY;
1047 <      } else {
1048 <        if (myPolicy == "MAX") {
1049 <          cp = MAX_CUTOFF_POLICY;
1050 <        } else {
1051 <          if (myPolicy == "TRADITIONAL") {            
1052 <            cp = TRADITIONAL_CUTOFF_POLICY;
1053 <          } else {
1054 <            // throw error        
1055 <            sprintf( painCave.errMsg,
1056 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1057 <            painCave.isFatal = 1;
1058 <            simError();
1059 <          }    
1060 <        }          
1061 <      }
1062 <    }          
1063 <    notifyFortranCutoffPolicy(&cp);
1064 <
1065 <    // Check the Skin Thickness for neighborlists
1066 <    RealType skin;
1067 <    if (simParams_->haveSkinThickness()) {
1068 <      skin = simParams_->getSkinThickness();
1069 <      notifyFortranSkinThickness(&skin);
1070 <    }            
1071 <        
1072 <    // Check if the cutoff was set explicitly:
1073 <    if (simParams_->haveCutoffRadius()) {
1074 <      rcut_ = simParams_->getCutoffRadius();
1075 <      if (simParams_->haveSwitchingRadius()) {
1076 <        rsw_  = simParams_->getSwitchingRadius();
1077 <      } else {
1078 <        if (fInfo_.SIM_uses_Charges |
1079 <            fInfo_.SIM_uses_Dipoles |
1080 <            fInfo_.SIM_uses_RF) {
1081 <          
1082 <          rsw_ = 0.85 * rcut_;
1083 <          sprintf(painCave.errMsg,
1084 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1085 <                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1086 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1087 <        painCave.isFatal = 0;
1088 <        simError();
1089 <        } else {
1090 <          rsw_ = rcut_;
1091 <          sprintf(painCave.errMsg,
1092 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1093 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1094 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1095 <          painCave.isFatal = 0;
1096 <          simError();
1097 <        }
1098 <      }
1099 <
1100 <      if (simParams_->haveElectrostaticSummationMethod()) {
1101 <        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1102 <        toUpper(myMethod);
1103 <        
1104 <        if (myMethod == "SHIFTED_POTENTIAL") {
1105 <          ljsp_ = true;
1106 <        } else if (myMethod == "SHIFTED_FORCE") {
1107 <          ljsf_ = true;
1108 <        }
1109 <      }
1110 <      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1111 <      
1112 <    } else {
1113 <      
1114 <      // For electrostatic atoms, we'll assume a large safe value:
1115 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1116 <        sprintf(painCave.errMsg,
1117 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1118 <                "\tOOPSE will use a default value of 15.0 angstroms"
1119 <                "\tfor the cutoffRadius.\n");
1120 <        painCave.isFatal = 0;
1121 <        simError();
1122 <        rcut_ = 15.0;
1123 <      
1124 <        if (simParams_->haveElectrostaticSummationMethod()) {
1125 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1126 <          toUpper(myMethod);
1127 <      
1128 <      // For the time being, we're tethering the LJ shifted behavior to the
1129 <      // electrostaticSummationMethod keyword options
1130 <          if (myMethod == "SHIFTED_POTENTIAL") {
1131 <            ljsp_ = true;
1132 <          } else if (myMethod == "SHIFTED_FORCE") {
1133 <            ljsf_ = true;
1134 <          }
1135 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1136 <            if (simParams_->haveSwitchingRadius()){
1137 <              sprintf(painCave.errMsg,
1138 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1139 <                      "\teven though the electrostaticSummationMethod was\n"
1140 <                      "\tset to %s\n", myMethod.c_str());
1141 <              painCave.isFatal = 1;
1142 <              simError();            
1143 <            }
1144 <          }
1145 <        }
1146 <      
1147 <        if (simParams_->haveSwitchingRadius()){
1148 <          rsw_ = simParams_->getSwitchingRadius();
1149 <        } else {        
1150 <          sprintf(painCave.errMsg,
1151 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1152 <                  "\tOOPSE will use a default value of\n"
1153 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1154 <          painCave.isFatal = 0;
1155 <          simError();
1156 <          rsw_ = 0.85 * rcut_;
1157 <        }
1158 <
1159 <        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1160 <
1161 <      } else {
1162 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1163 <        // We'll punt and let fortran figure out the cutoffs later.
1164 <        
1165 <        notifyFortranYouAreOnYourOwn();
1166 <
1167 <      }
1168 <    }
1169 <  }
1170 <
1171 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1172 <    
1173 <    int errorOut;
1174 <    int esm =  NONE;
1175 <    int sm = UNDAMPED;
1176 <    RealType alphaVal;
1177 <    RealType dielectric;
1178 <    
1179 <    errorOut = isError;
1180 <
1181 <    if (simParams_->haveElectrostaticSummationMethod()) {
1182 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1183 <      toUpper(myMethod);
1184 <      if (myMethod == "NONE") {
1185 <        esm = NONE;
1186 <      } else {
1187 <        if (myMethod == "SWITCHING_FUNCTION") {
1188 <          esm = SWITCHING_FUNCTION;
1189 <        } else {
1190 <          if (myMethod == "SHIFTED_POTENTIAL") {
1191 <            esm = SHIFTED_POTENTIAL;
1192 <          } else {
1193 <            if (myMethod == "SHIFTED_FORCE") {            
1194 <              esm = SHIFTED_FORCE;
1195 <            } else {
1196 <              if (myMethod == "REACTION_FIELD") {
1197 <                esm = REACTION_FIELD;
1198 <                dielectric = simParams_->getDielectric();
1199 <                if (!simParams_->haveDielectric()) {
1200 <                  // throw warning
1201 <                  sprintf( painCave.errMsg,
1202 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1203 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1204 <                  painCave.isFatal = 0;
1205 <                  simError();
1206 <                }
1207 <              } else {
1208 <                // throw error        
1209 <                sprintf( painCave.errMsg,
1210 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1211 <                         "\t(Input file specified %s .)\n"
1212 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1213 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1214 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1215 <                painCave.isFatal = 1;
1216 <                simError();
1217 <              }    
1218 <            }          
1219 <          }
1220 <        }
978 >    identArray_.clear();
979 >    identArray_.reserve(getNAtoms());  
980 >    regions_.clear();
981 >    regions_.reserve(getNAtoms());
982 >
983 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
984 >      int reg = mol->getRegion();      
985 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
986 >        identArray_.push_back(atom->getIdent());
987 >        regions_.push_back(reg);
988        }
989 <    }
990 <    
991 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1225 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1226 <      toUpper(myScreen);
1227 <      if (myScreen == "UNDAMPED") {
1228 <        sm = UNDAMPED;
1229 <      } else {
1230 <        if (myScreen == "DAMPED") {
1231 <          sm = DAMPED;
1232 <          if (!simParams_->haveDampingAlpha()) {
1233 <            // first set a cutoff dependent alpha value
1234 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1235 <            alphaVal = 0.5125 - rcut_* 0.025;
1236 <            // for values rcut > 20.5, alpha is zero
1237 <            if (alphaVal < 0) alphaVal = 0;
1238 <
1239 <            // throw warning
1240 <            sprintf( painCave.errMsg,
1241 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1242 <                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1243 <            painCave.isFatal = 0;
1244 <            simError();
1245 <          } else {
1246 <            alphaVal = simParams_->getDampingAlpha();
1247 <          }
1248 <          
1249 <        } else {
1250 <          // throw error        
1251 <          sprintf( painCave.errMsg,
1252 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1253 <                   "\t(Input file specified %s .)\n"
1254 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1255 <                   "or \"damped\".\n", myScreen.c_str() );
1256 <          painCave.isFatal = 1;
1257 <          simError();
1258 <        }
1259 <      }
1260 <    }
1261 <    
1262 <    // let's pass some summation method variables to fortran
1263 <    setElectrostaticSummationMethod( &esm );
1264 <    setFortranElectrostaticMethod( &esm );
1265 <    setScreeningMethod( &sm );
1266 <    setDampingAlpha( &alphaVal );
1267 <    setReactionFieldDielectric( &dielectric );
1268 <    initFortranFF( &errorOut );
989 >    }    
990 >      
991 >    topologyDone_ = true;
992    }
993  
1271  void SimInfo::setupSwitchingFunction() {    
1272    int ft = CUBIC;
1273
1274    if (simParams_->haveSwitchingFunctionType()) {
1275      std::string funcType = simParams_->getSwitchingFunctionType();
1276      toUpper(funcType);
1277      if (funcType == "CUBIC") {
1278        ft = CUBIC;
1279      } else {
1280        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1281          ft = FIFTH_ORDER_POLY;
1282        } else {
1283          // throw error        
1284          sprintf( painCave.errMsg,
1285                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1286          painCave.isFatal = 1;
1287          simError();
1288        }          
1289      }
1290    }
1291
1292    // send switching function notification to switcheroo
1293    setFunctionType(&ft);
1294
1295  }
1296
1297  void SimInfo::setupAccumulateBoxDipole() {    
1298
1299    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1300    if ( simParams_->haveAccumulateBoxDipole() )
1301      if ( simParams_->getAccumulateBoxDipole() ) {
1302        setAccumulateBoxDipole();
1303        calcBoxDipole_ = true;
1304      }
1305
1306  }
1307
994    void SimInfo::addProperty(GenericData* genData) {
995      properties_.addProperty(genData);  
996    }
997  
998 <  void SimInfo::removeProperty(const std::string& propName) {
998 >  void SimInfo::removeProperty(const string& propName) {
999      properties_.removeProperty(propName);  
1000    }
1001  
# Line 1317 | Line 1003 | namespace oopse {
1003      properties_.clearProperties();
1004    }
1005  
1006 <  std::vector<std::string> SimInfo::getPropertyNames() {
1006 >  vector<string> SimInfo::getPropertyNames() {
1007      return properties_.getPropertyNames();  
1008    }
1009        
1010 <  std::vector<GenericData*> SimInfo::getProperties() {
1010 >  vector<GenericData*> SimInfo::getProperties() {
1011      return properties_.getProperties();
1012    }
1013  
1014 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1014 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
1015      return properties_.getPropertyByName(propName);
1016    }
1017  
# Line 1336 | Line 1022 | namespace oopse {
1022      delete sman_;
1023      sman_ = sman;
1024  
1339    Molecule* mol;
1340    RigidBody* rb;
1341    Atom* atom;
1025      SimInfo::MoleculeIterator mi;
1026 +    Molecule::AtomIterator ai;
1027      Molecule::RigidBodyIterator rbIter;
1028 <    Molecule::AtomIterator atomIter;;
1028 >    Molecule::CutoffGroupIterator cgIter;
1029 >    Molecule::BondIterator bondIter;
1030 >    Molecule::BendIterator bendIter;
1031 >    Molecule::TorsionIterator torsionIter;
1032 >    Molecule::InversionIterator inversionIter;
1033  
1034 +    Molecule* mol;
1035 +    Atom* atom;
1036 +    RigidBody* rb;
1037 +    CutoffGroup* cg;
1038 +    Bond* bond;
1039 +    Bend* bend;
1040 +    Torsion* torsion;
1041 +    Inversion* inversion;    
1042 +
1043      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1044          
1045 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1045 >      for (atom = mol->beginAtom(ai); atom != NULL;
1046 >           atom = mol->nextAtom(ai)) {
1047          atom->setSnapshotManager(sman_);
1048 <      }
1049 <        
1050 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1048 >      }        
1049 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1050 >           rb = mol->nextRigidBody(rbIter)) {
1051          rb->setSnapshotManager(sman_);
1052        }
1053 <    }    
1054 <    
1053 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1054 >           cg = mol->nextCutoffGroup(cgIter)) {
1055 >        cg->setSnapshotManager(sman_);
1056 >      }
1057 >      for (bond = mol->beginBond(bondIter); bond != NULL;
1058 >           bond = mol->nextBond(bondIter)) {
1059 >        bond->setSnapshotManager(sman_);
1060 >      }
1061 >      for (bend = mol->beginBend(bendIter); bend != NULL;
1062 >           bend = mol->nextBend(bendIter)) {
1063 >        bend->setSnapshotManager(sman_);
1064 >      }
1065 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
1066 >           torsion = mol->nextTorsion(torsionIter)) {
1067 >        torsion->setSnapshotManager(sman_);
1068 >      }
1069 >      for (inversion = mol->beginInversion(inversionIter); inversion != NULL;
1070 >           inversion = mol->nextInversion(inversionIter)) {
1071 >        inversion->setSnapshotManager(sman_);
1072 >      }
1073 >    }
1074    }
1075  
1359  Vector3d SimInfo::getComVel(){
1360    SimInfo::MoleculeIterator i;
1361    Molecule* mol;
1076  
1077 <    Vector3d comVel(0.0);
1364 <    RealType totalMass = 0.0;
1365 <    
1366 <
1367 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1368 <      RealType mass = mol->getMass();
1369 <      totalMass += mass;
1370 <      comVel += mass * mol->getComVel();
1371 <    }  
1372 <
1373 < #ifdef IS_MPI
1374 <    RealType tmpMass = totalMass;
1375 <    Vector3d tmpComVel(comVel);    
1376 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1377 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1378 < #endif
1379 <
1380 <    comVel /= totalMass;
1381 <
1382 <    return comVel;
1383 <  }
1384 <
1385 <  Vector3d SimInfo::getCom(){
1386 <    SimInfo::MoleculeIterator i;
1387 <    Molecule* mol;
1388 <
1389 <    Vector3d com(0.0);
1390 <    RealType totalMass = 0.0;
1391 <    
1392 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1393 <      RealType mass = mol->getMass();
1394 <      totalMass += mass;
1395 <      com += mass * mol->getCom();
1396 <    }  
1397 <
1398 < #ifdef IS_MPI
1399 <    RealType tmpMass = totalMass;
1400 <    Vector3d tmpCom(com);    
1401 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1402 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1403 < #endif
1077 >  ostream& operator <<(ostream& o, SimInfo& info) {
1078  
1405    com /= totalMass;
1406
1407    return com;
1408
1409  }        
1410
1411  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1412
1079      return o;
1080    }
1081    
1082 <  
1417 <   /*
1418 <   Returns center of mass and center of mass velocity in one function call.
1419 <   */
1420 <  
1421 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1422 <      SimInfo::MoleculeIterator i;
1423 <      Molecule* mol;
1424 <      
1425 <    
1426 <      RealType totalMass = 0.0;
1427 <    
1428 <
1429 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1430 <         RealType mass = mol->getMass();
1431 <         totalMass += mass;
1432 <         com += mass * mol->getCom();
1433 <         comVel += mass * mol->getComVel();          
1434 <      }  
1435 <      
1436 < #ifdef IS_MPI
1437 <      RealType tmpMass = totalMass;
1438 <      Vector3d tmpCom(com);  
1439 <      Vector3d tmpComVel(comVel);
1440 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1441 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1442 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1443 < #endif
1444 <      
1445 <      com /= totalMass;
1446 <      comVel /= totalMass;
1447 <   }        
1448 <  
1449 <   /*
1450 <   Return intertia tensor for entire system and angular momentum Vector.
1451 <
1452 <
1453 <       [  Ixx -Ixy  -Ixz ]
1454 <  J =| -Iyx  Iyy  -Iyz |
1455 <       [ -Izx -Iyz   Izz ]
1456 <    */
1457 <
1458 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1459 <      
1460 <
1461 <      RealType xx = 0.0;
1462 <      RealType yy = 0.0;
1463 <      RealType zz = 0.0;
1464 <      RealType xy = 0.0;
1465 <      RealType xz = 0.0;
1466 <      RealType yz = 0.0;
1467 <      Vector3d com(0.0);
1468 <      Vector3d comVel(0.0);
1469 <      
1470 <      getComAll(com, comVel);
1471 <      
1472 <      SimInfo::MoleculeIterator i;
1473 <      Molecule* mol;
1474 <      
1475 <      Vector3d thisq(0.0);
1476 <      Vector3d thisv(0.0);
1477 <
1478 <      RealType thisMass = 0.0;
1479 <    
1480 <      
1481 <      
1482 <  
1483 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1484 <        
1485 <         thisq = mol->getCom()-com;
1486 <         thisv = mol->getComVel()-comVel;
1487 <         thisMass = mol->getMass();
1488 <         // Compute moment of intertia coefficients.
1489 <         xx += thisq[0]*thisq[0]*thisMass;
1490 <         yy += thisq[1]*thisq[1]*thisMass;
1491 <         zz += thisq[2]*thisq[2]*thisMass;
1492 <        
1493 <         // compute products of intertia
1494 <         xy += thisq[0]*thisq[1]*thisMass;
1495 <         xz += thisq[0]*thisq[2]*thisMass;
1496 <         yz += thisq[1]*thisq[2]*thisMass;
1497 <            
1498 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1499 <            
1500 <      }  
1501 <      
1502 <      
1503 <      inertiaTensor(0,0) = yy + zz;
1504 <      inertiaTensor(0,1) = -xy;
1505 <      inertiaTensor(0,2) = -xz;
1506 <      inertiaTensor(1,0) = -xy;
1507 <      inertiaTensor(1,1) = xx + zz;
1508 <      inertiaTensor(1,2) = -yz;
1509 <      inertiaTensor(2,0) = -xz;
1510 <      inertiaTensor(2,1) = -yz;
1511 <      inertiaTensor(2,2) = xx + yy;
1512 <      
1513 < #ifdef IS_MPI
1514 <      Mat3x3d tmpI(inertiaTensor);
1515 <      Vector3d tmpAngMom;
1516 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1517 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1518 < #endif
1519 <              
1520 <      return;
1521 <   }
1522 <
1523 <   //Returns the angular momentum of the system
1524 <   Vector3d SimInfo::getAngularMomentum(){
1525 <      
1526 <      Vector3d com(0.0);
1527 <      Vector3d comVel(0.0);
1528 <      Vector3d angularMomentum(0.0);
1529 <      
1530 <      getComAll(com,comVel);
1531 <      
1532 <      SimInfo::MoleculeIterator i;
1533 <      Molecule* mol;
1534 <      
1535 <      Vector3d thisr(0.0);
1536 <      Vector3d thisp(0.0);
1537 <      
1538 <      RealType thisMass;
1539 <      
1540 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1541 <        thisMass = mol->getMass();
1542 <        thisr = mol->getCom()-com;
1543 <        thisp = (mol->getComVel()-comVel)*thisMass;
1544 <        
1545 <        angularMomentum += cross( thisr, thisp );
1546 <        
1547 <      }  
1548 <      
1549 < #ifdef IS_MPI
1550 <      Vector3d tmpAngMom;
1551 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1552 < #endif
1553 <      
1554 <      return angularMomentum;
1555 <   }
1556 <  
1082 >  
1083    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1084 <    return IOIndexToIntegrableObject.at(index);
1084 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1085 >      sprintf(painCave.errMsg,
1086 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1087 >              "\tindex exceeds number of known objects!\n");
1088 >      painCave.isFatal = 1;
1089 >      simError();
1090 >      return NULL;
1091 >    } else
1092 >      return IOIndexToIntegrableObject.at(index);
1093    }
1094    
1095 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1095 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1096      IOIndexToIntegrableObject= v;
1097    }
1098  
1099 <  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1100 <     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1101 <     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1102 <     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1103 <  */
1104 <  void SimInfo::getGyrationalVolume(RealType &volume){
1105 <    Mat3x3d intTensor;
1106 <    RealType det;
1107 <    Vector3d dummyAngMom;
1108 <    RealType sysconstants;
1109 <    RealType geomCnst;
1576 <
1577 <    geomCnst = 3.0/2.0;
1578 <    /* Get the inertial tensor and angular momentum for free*/
1579 <    getInertiaTensor(intTensor,dummyAngMom);
1580 <    
1581 <    det = intTensor.determinant();
1582 <    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1583 <    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1584 <    return;
1099 >  int SimInfo::getNGlobalConstraints() {
1100 >    int nGlobalConstraints;
1101 > #ifdef IS_MPI
1102 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1,  
1103 >                              MPI_INT, MPI_SUM, MPI_COMM_WORLD);
1104 >    // MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1105 >    //                           MPI::INT, MPI::SUM);
1106 > #else
1107 >    nGlobalConstraints =  nConstraints_;
1108 > #endif
1109 >    return nGlobalConstraints;
1110    }
1111  
1112 <  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1588 <    Mat3x3d intTensor;
1589 <    Vector3d dummyAngMom;
1590 <    RealType sysconstants;
1591 <    RealType geomCnst;
1112 > }//end namespace OpenMD
1113  
1593    geomCnst = 3.0/2.0;
1594    /* Get the inertial tensor and angular momentum for free*/
1595    getInertiaTensor(intTensor,dummyAngMom);
1596    
1597    detI = intTensor.determinant();
1598    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1599    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1600    return;
1601  }
1602 /*
1603   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1604      assert( v.size() == nAtoms_ + nRigidBodies_);
1605      sdByGlobalIndex_ = v;
1606    }
1607
1608    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1609      //assert(index < nAtoms_ + nRigidBodies_);
1610      return sdByGlobalIndex_.at(index);
1611    }  
1612 */  
1613 }//end namespace oopse
1614

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 1277 by gezelter, Mon Jul 14 12:35:58 2008 UTC vs.
Revision 1969 by gezelter, Wed Feb 26 14:14:50 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines