ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 1050 by chrisfen, Fri Sep 22 22:19:59 2006 UTC vs.
Revision 1983 by gezelter, Tue Apr 15 20:36:19 2014 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 46 | Line 47
47   * @version 1.0
48   */
49  
50 + #ifdef IS_MPI
51 + #include <mpi.h>
52 + #endif
53   #include <algorithm>
54   #include <set>
55   #include <map>
# Line 54 | Line 58
58   #include "math/Vector3.hpp"
59   #include "primitives/Molecule.hpp"
60   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/electrostatic_interface.h"
63 #include "UseTheForce/DarkSide/switcheroo_interface.h"
61   #include "utils/MemoryUtils.hpp"
62   #include "utils/simError.h"
63   #include "selection/SelectionManager.hpp"
64   #include "io/ForceFieldOptions.hpp"
65 < #include "UseTheForce/ForceField.hpp"
65 > #include "brains/ForceField.hpp"
66 > #include "nonbonded/SwitchingFunction.hpp"
67  
68 < #ifdef IS_MPI
69 < #include "UseTheForce/mpiComponentPlan.h"
72 < #include "UseTheForce/DarkSide/simParallel_interface.h"
73 < #endif
74 <
75 < namespace oopse {
76 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
77 <    std::map<int, std::set<int> >::iterator i = container.find(index);
78 <    std::set<int> result;
79 <    if (i != container.end()) {
80 <        result = i->second;
81 <    }
82 <
83 <    return result;
84 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 >    nGlobalFluctuatingCharges_(0), nGlobalBonds_(0), nGlobalBends_(0),
77 >    nGlobalTorsions_(0), nGlobalInversions_(0), nGlobalConstraints_(0),
78 >    nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
79 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
80 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL),
81 >    topologyDone_(false), calcBoxDipole_(false), useAtomicVirial_(true),
82 >    hasNGlobalConstraints_(false) {    
83 >    
84 >    MoleculeStamp* molStamp;
85 >    int nMolWithSameStamp;
86 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88 >    CutoffGroupStamp* cgStamp;    
89 >    RigidBodyStamp* rbStamp;
90 >    int nRigidAtoms = 0;
91 >    
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin();
95 >         i !=components.end(); ++i) {
96 >      molStamp = (*i)->getMoleculeStamp();
97 >      if ( (*i)->haveRegion() ) {        
98 >        molStamp->setRegion( (*i)->getRegion() );
99 >      } else {
100 >        // set the region to a disallowed value:
101 >        molStamp->setRegion( -1 );
102 >      }
103  
104 <      MoleculeStamp* molStamp;
96 <      int nMolWithSameStamp;
97 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
98 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
99 <      CutoffGroupStamp* cgStamp;    
100 <      RigidBodyStamp* rbStamp;
101 <      int nRigidAtoms = 0;
102 <      std::vector<Component*> components = simParams->getComponents();
104 >      nMolWithSameStamp = (*i)->getNMol();
105        
106 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
107 <        molStamp = (*i)->getMoleculeStamp();
108 <        nMolWithSameStamp = (*i)->getNMol();
109 <        
110 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
111 <
112 <        //calculate atoms in molecules
113 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
114 <
115 <        //calculate atoms in cutoff groups
116 <        int nAtomsInGroups = 0;
117 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118 <        
119 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 <          cgStamp = molStamp->getCutoffGroupStamp(j);
121 <          nAtomsInGroups += cgStamp->getNMembers();
120 <        }
121 <
122 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
123 <
124 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
125 <
126 <        //calculate atoms in rigid bodies
127 <        int nAtomsInRigidBodies = 0;
128 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
129 <        
130 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
131 <          rbStamp = molStamp->getRigidBodyStamp(j);
132 <          nAtomsInRigidBodies += rbStamp->getNMembers();
133 <        }
134 <
135 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
136 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
137 <        
106 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
107 >      
108 >      //calculate atoms in molecules
109 >      nGlobalAtoms_ += molStamp->getNAtoms() * nMolWithSameStamp;
110 >      nGlobalBonds_ += molStamp->getNBonds() * nMolWithSameStamp;
111 >      nGlobalBends_ += molStamp->getNBends() * nMolWithSameStamp;
112 >      nGlobalTorsions_ += molStamp->getNTorsions() * nMolWithSameStamp;
113 >      nGlobalInversions_ += molStamp->getNInversions() * nMolWithSameStamp;
114 >      
115 >      //calculate atoms in cutoff groups
116 >      int nAtomsInGroups = 0;
117 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118 >      
119 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 >        cgStamp = molStamp->getCutoffGroupStamp(j);
121 >        nAtomsInGroups += cgStamp->getNMembers();
122        }
123 <
124 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
125 <      //group therefore the total number of cutoff groups in the system is
126 <      //equal to the total number of atoms minus number of atoms belong to
127 <      //cutoff group defined in meta-data file plus the number of cutoff
128 <      //groups defined in meta-data file
129 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
130 <
131 <      //every free atom (atom does not belong to rigid bodies) is an
132 <      //integrable object therefore the total number of integrable objects
133 <      //in the system is equal to the total number of atoms minus number of
134 <      //atoms belong to rigid body defined in meta-data file plus the number
135 <      //of rigid bodies defined in meta-data file
136 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
137 <                                                + nGlobalRigidBodies_;
138 <  
139 <      nGlobalMols_ = molStampIds_.size();
156 <
157 < #ifdef IS_MPI    
158 <      molToProcMap_.resize(nGlobalMols_);
159 < #endif
160 <
123 >      
124 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
125 >      
126 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
127 >      
128 >      //calculate atoms in rigid bodies
129 >      int nAtomsInRigidBodies = 0;
130 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
131 >      
132 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
133 >        rbStamp = molStamp->getRigidBodyStamp(j);
134 >        nAtomsInRigidBodies += rbStamp->getNMembers();
135 >      }
136 >      
137 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
138 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
139 >      
140      }
141 +    
142 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
143 +    //group therefore the total number of cutoff groups in the system is
144 +    //equal to the total number of atoms minus number of atoms belong to
145 +    //cutoff group defined in meta-data file plus the number of cutoff
146 +    //groups defined in meta-data file
147  
148 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
149 +    
150 +    //every free atom (atom does not belong to rigid bodies) is an
151 +    //integrable object therefore the total number of integrable objects
152 +    //in the system is equal to the total number of atoms minus number of
153 +    //atoms belong to rigid body defined in meta-data file plus the number
154 +    //of rigid bodies defined in meta-data file
155 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
156 +      + nGlobalRigidBodies_;
157 +    
158 +    nGlobalMols_ = molStampIds_.size();
159 +    molToProcMap_.resize(nGlobalMols_);
160 +  }
161 +  
162    SimInfo::~SimInfo() {
163 <    std::map<int, Molecule*>::iterator i;
163 >    map<int, Molecule*>::iterator i;
164      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
165        delete i->second;
166      }
# Line 172 | Line 171 | namespace oopse {
171      delete forceField_;
172    }
173  
175  int SimInfo::getNGlobalConstraints() {
176    int nGlobalConstraints;
177 #ifdef IS_MPI
178    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
179                  MPI_COMM_WORLD);    
180 #else
181    nGlobalConstraints =  nConstraints_;
182 #endif
183    return nGlobalConstraints;
184  }
174  
175    bool SimInfo::addMolecule(Molecule* mol) {
176      MoleculeIterator i;
177 <
177 >    
178      i = molecules_.find(mol->getGlobalIndex());
179      if (i == molecules_.end() ) {
180 <
181 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
182 <        
180 >      
181 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
182 >      
183        nAtoms_ += mol->getNAtoms();
184        nBonds_ += mol->getNBonds();
185        nBends_ += mol->getNBends();
186        nTorsions_ += mol->getNTorsions();
187 +      nInversions_ += mol->getNInversions();
188        nRigidBodies_ += mol->getNRigidBodies();
189        nIntegrableObjects_ += mol->getNIntegrableObjects();
190        nCutoffGroups_ += mol->getNCutoffGroups();
191        nConstraints_ += mol->getNConstraintPairs();
192 <
193 <      addExcludePairs(mol);
194 <        
192 >      
193 >      addInteractionPairs(mol);
194 >      
195        return true;
196      } else {
197        return false;
198      }
199    }
200 <
200 >  
201    bool SimInfo::removeMolecule(Molecule* mol) {
202      MoleculeIterator i;
203      i = molecules_.find(mol->getGlobalIndex());
# Line 220 | Line 210 | namespace oopse {
210        nBonds_ -= mol->getNBonds();
211        nBends_ -= mol->getNBends();
212        nTorsions_ -= mol->getNTorsions();
213 +      nInversions_ -= mol->getNInversions();
214        nRigidBodies_ -= mol->getNRigidBodies();
215        nIntegrableObjects_ -= mol->getNIntegrableObjects();
216        nCutoffGroups_ -= mol->getNCutoffGroups();
217        nConstraints_ -= mol->getNConstraintPairs();
218  
219 <      removeExcludePairs(mol);
219 >      removeInteractionPairs(mol);
220        molecules_.erase(mol->getGlobalIndex());
221  
222        delete mol;
# Line 234 | Line 225 | namespace oopse {
225      } else {
226        return false;
227      }
237
238
228    }    
229  
230          
# Line 251 | Line 240 | namespace oopse {
240  
241  
242    void SimInfo::calcNdf() {
243 <    int ndf_local;
243 >    int ndf_local, nfq_local;
244      MoleculeIterator i;
245 <    std::vector<StuntDouble*>::iterator j;
245 >    vector<StuntDouble*>::iterator j;
246 >    vector<Atom*>::iterator k;
247 >
248      Molecule* mol;
249 <    StuntDouble* integrableObject;
249 >    StuntDouble* sd;
250 >    Atom* atom;
251  
252      ndf_local = 0;
253 +    nfq_local = 0;
254      
255      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
263      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
264           integrableObject = mol->nextIntegrableObject(j)) {
256  
257 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
258 +           sd = mol->nextIntegrableObject(j)) {
259 +
260          ndf_local += 3;
261  
262 <        if (integrableObject->isDirectional()) {
263 <          if (integrableObject->isLinear()) {
262 >        if (sd->isDirectional()) {
263 >          if (sd->isLinear()) {
264              ndf_local += 2;
265            } else {
266              ndf_local += 3;
267            }
268          }
275            
269        }
270 +
271 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
272 +           atom = mol->nextFluctuatingCharge(k)) {
273 +        if (atom->isFluctuatingCharge()) {
274 +          nfq_local++;
275 +        }
276 +      }
277      }
278      
279 +    ndfLocal_ = ndf_local;
280 +
281      // n_constraints is local, so subtract them on each processor
282      ndf_local -= nConstraints_;
283  
284   #ifdef IS_MPI
285 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
285 >    MPI_Allreduce(&ndf_local, &ndf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
286 >    MPI_Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
287 >      MPI_INT, MPI_SUM, MPI_COMM_WORLD);
288   #else
289      ndf_ = ndf_local;
290 +    nGlobalFluctuatingCharges_ = nfq_local;
291   #endif
292  
293      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 293 | Line 298 | namespace oopse {
298  
299    int SimInfo::getFdf() {
300   #ifdef IS_MPI
301 <    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
301 >    MPI_Allreduce(&fdf_local, &fdf_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
302   #else
303      fdf_ = fdf_local;
304   #endif
305      return fdf_;
306    }
307 +  
308 +  unsigned int SimInfo::getNLocalCutoffGroups(){
309 +    int nLocalCutoffAtoms = 0;
310 +    Molecule* mol;
311 +    MoleculeIterator mi;
312 +    CutoffGroup* cg;
313 +    Molecule::CutoffGroupIterator ci;
314      
315 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
316 +      
317 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
318 +           cg = mol->nextCutoffGroup(ci)) {
319 +        nLocalCutoffAtoms += cg->getNumAtom();
320 +        
321 +      }        
322 +    }
323 +    
324 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
325 +  }
326 +    
327    void SimInfo::calcNdfRaw() {
328      int ndfRaw_local;
329  
330      MoleculeIterator i;
331 <    std::vector<StuntDouble*>::iterator j;
331 >    vector<StuntDouble*>::iterator j;
332      Molecule* mol;
333 <    StuntDouble* integrableObject;
333 >    StuntDouble* sd;
334  
335      // Raw degrees of freedom that we have to set
336      ndfRaw_local = 0;
337      
338      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
315      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
316           integrableObject = mol->nextIntegrableObject(j)) {
339  
340 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
341 +           sd = mol->nextIntegrableObject(j)) {
342 +
343          ndfRaw_local += 3;
344  
345 <        if (integrableObject->isDirectional()) {
346 <          if (integrableObject->isLinear()) {
345 >        if (sd->isDirectional()) {
346 >          if (sd->isLinear()) {
347              ndfRaw_local += 2;
348            } else {
349              ndfRaw_local += 3;
# Line 329 | Line 354 | namespace oopse {
354      }
355      
356   #ifdef IS_MPI
357 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
357 >    MPI_Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
358   #else
359      ndfRaw_ = ndfRaw_local;
360   #endif
# Line 340 | Line 365 | namespace oopse {
365  
366      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
367  
343
368   #ifdef IS_MPI
369 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
369 >    MPI_Allreduce(&ndfTrans_local, &ndfTrans_, 1, MPI_INT, MPI_SUM,
370 >                  MPI_COMM_WORLD);
371   #else
372      ndfTrans_ = ndfTrans_local;
373   #endif
374  
375      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
351
376    }
377  
378 <  void SimInfo::addExcludePairs(Molecule* mol) {
379 <    std::vector<Bond*>::iterator bondIter;
380 <    std::vector<Bend*>::iterator bendIter;
381 <    std::vector<Torsion*>::iterator torsionIter;
378 >  void SimInfo::addInteractionPairs(Molecule* mol) {
379 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
380 >    vector<Bond*>::iterator bondIter;
381 >    vector<Bend*>::iterator bendIter;
382 >    vector<Torsion*>::iterator torsionIter;
383 >    vector<Inversion*>::iterator inversionIter;
384      Bond* bond;
385      Bend* bend;
386      Torsion* torsion;
387 +    Inversion* inversion;
388      int a;
389      int b;
390      int c;
391      int d;
392  
393 <    std::map<int, std::set<int> > atomGroups;
393 >    // atomGroups can be used to add special interaction maps between
394 >    // groups of atoms that are in two separate rigid bodies.
395 >    // However, most site-site interactions between two rigid bodies
396 >    // are probably not special, just the ones between the physically
397 >    // bonded atoms.  Interactions *within* a single rigid body should
398 >    // always be excluded.  These are done at the bottom of this
399 >    // function.
400  
401 +    map<int, set<int> > atomGroups;
402      Molecule::RigidBodyIterator rbIter;
403      RigidBody* rb;
404      Molecule::IntegrableObjectIterator ii;
405 <    StuntDouble* integrableObject;
405 >    StuntDouble* sd;
406      
407 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
408 <           integrableObject = mol->nextIntegrableObject(ii)) {
409 <
410 <      if (integrableObject->isRigidBody()) {
411 <          rb = static_cast<RigidBody*>(integrableObject);
412 <          std::vector<Atom*> atoms = rb->getAtoms();
413 <          std::set<int> rigidAtoms;
414 <          for (int i = 0; i < atoms.size(); ++i) {
415 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
416 <          }
417 <          for (int i = 0; i < atoms.size(); ++i) {
418 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
419 <          }      
407 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
408 >         sd = mol->nextIntegrableObject(ii)) {
409 >      
410 >      if (sd->isRigidBody()) {
411 >        rb = static_cast<RigidBody*>(sd);
412 >        vector<Atom*> atoms = rb->getAtoms();
413 >        set<int> rigidAtoms;
414 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
415 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
416 >        }
417 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
418 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
419 >        }      
420        } else {
421 <        std::set<int> oneAtomSet;
422 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
423 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
421 >        set<int> oneAtomSet;
422 >        oneAtomSet.insert(sd->getGlobalIndex());
423 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
424        }
425      }  
426  
427 <    
428 <    
429 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
427 >          
428 >    for (bond= mol->beginBond(bondIter); bond != NULL;
429 >         bond = mol->nextBond(bondIter)) {
430 >
431        a = bond->getAtomA()->getGlobalIndex();
432 <      b = bond->getAtomB()->getGlobalIndex();        
433 <      exclude_.addPair(a, b);
432 >      b = bond->getAtomB()->getGlobalIndex();  
433 >
434 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
435 >        oneTwoInteractions_.addPair(a, b);
436 >      } else {
437 >        excludedInteractions_.addPair(a, b);
438 >      }
439      }
440  
441 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
441 >    for (bend= mol->beginBend(bendIter); bend != NULL;
442 >         bend = mol->nextBend(bendIter)) {
443 >
444        a = bend->getAtomA()->getGlobalIndex();
445        b = bend->getAtomB()->getGlobalIndex();        
446        c = bend->getAtomC()->getGlobalIndex();
405      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
406      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
407      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
408
409      exclude_.addPairs(rigidSetA, rigidSetB);
410      exclude_.addPairs(rigidSetA, rigidSetC);
411      exclude_.addPairs(rigidSetB, rigidSetC);
447        
448 <      //exclude_.addPair(a, b);
449 <      //exclude_.addPair(a, c);
450 <      //exclude_.addPair(b, c);        
448 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
449 >        oneTwoInteractions_.addPair(a, b);      
450 >        oneTwoInteractions_.addPair(b, c);
451 >      } else {
452 >        excludedInteractions_.addPair(a, b);
453 >        excludedInteractions_.addPair(b, c);
454 >      }
455 >
456 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
457 >        oneThreeInteractions_.addPair(a, c);      
458 >      } else {
459 >        excludedInteractions_.addPair(a, c);
460 >      }
461      }
462  
463 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
463 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
464 >         torsion = mol->nextTorsion(torsionIter)) {
465 >
466        a = torsion->getAtomA()->getGlobalIndex();
467        b = torsion->getAtomB()->getGlobalIndex();        
468        c = torsion->getAtomC()->getGlobalIndex();        
469 <      d = torsion->getAtomD()->getGlobalIndex();        
423 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
424 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
425 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
426 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
469 >      d = torsion->getAtomD()->getGlobalIndex();      
470  
471 <      exclude_.addPairs(rigidSetA, rigidSetB);
472 <      exclude_.addPairs(rigidSetA, rigidSetC);
473 <      exclude_.addPairs(rigidSetA, rigidSetD);
474 <      exclude_.addPairs(rigidSetB, rigidSetC);
475 <      exclude_.addPairs(rigidSetB, rigidSetD);
476 <      exclude_.addPairs(rigidSetC, rigidSetD);
471 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
472 >        oneTwoInteractions_.addPair(a, b);      
473 >        oneTwoInteractions_.addPair(b, c);
474 >        oneTwoInteractions_.addPair(c, d);
475 >      } else {
476 >        excludedInteractions_.addPair(a, b);
477 >        excludedInteractions_.addPair(b, c);
478 >        excludedInteractions_.addPair(c, d);
479 >      }
480  
481 <      /*
482 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
483 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
484 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
485 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
486 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
487 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
488 <        
489 <      
490 <      exclude_.addPair(a, b);
491 <      exclude_.addPair(a, c);
492 <      exclude_.addPair(a, d);
493 <      exclude_.addPair(b, c);
448 <      exclude_.addPair(b, d);
449 <      exclude_.addPair(c, d);        
450 <      */
481 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
482 >        oneThreeInteractions_.addPair(a, c);      
483 >        oneThreeInteractions_.addPair(b, d);      
484 >      } else {
485 >        excludedInteractions_.addPair(a, c);
486 >        excludedInteractions_.addPair(b, d);
487 >      }
488 >
489 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
490 >        oneFourInteractions_.addPair(a, d);      
491 >      } else {
492 >        excludedInteractions_.addPair(a, d);
493 >      }
494      }
495  
496 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
497 <      std::vector<Atom*> atoms = rb->getAtoms();
498 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
499 <        for (int j = i + 1; j < atoms.size(); ++j) {
496 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
497 >         inversion = mol->nextInversion(inversionIter)) {
498 >
499 >      a = inversion->getAtomA()->getGlobalIndex();
500 >      b = inversion->getAtomB()->getGlobalIndex();        
501 >      c = inversion->getAtomC()->getGlobalIndex();        
502 >      d = inversion->getAtomD()->getGlobalIndex();        
503 >
504 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
505 >        oneTwoInteractions_.addPair(a, b);      
506 >        oneTwoInteractions_.addPair(a, c);
507 >        oneTwoInteractions_.addPair(a, d);
508 >      } else {
509 >        excludedInteractions_.addPair(a, b);
510 >        excludedInteractions_.addPair(a, c);
511 >        excludedInteractions_.addPair(a, d);
512 >      }
513 >
514 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
515 >        oneThreeInteractions_.addPair(b, c);    
516 >        oneThreeInteractions_.addPair(b, d);    
517 >        oneThreeInteractions_.addPair(c, d);      
518 >      } else {
519 >        excludedInteractions_.addPair(b, c);
520 >        excludedInteractions_.addPair(b, d);
521 >        excludedInteractions_.addPair(c, d);
522 >      }
523 >    }
524 >
525 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
526 >         rb = mol->nextRigidBody(rbIter)) {
527 >      vector<Atom*> atoms = rb->getAtoms();
528 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
529 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
530            a = atoms[i]->getGlobalIndex();
531            b = atoms[j]->getGlobalIndex();
532 <          exclude_.addPair(a, b);
532 >          excludedInteractions_.addPair(a, b);
533          }
534        }
535      }        
536  
537    }
538  
539 <  void SimInfo::removeExcludePairs(Molecule* mol) {
540 <    std::vector<Bond*>::iterator bondIter;
541 <    std::vector<Bend*>::iterator bendIter;
542 <    std::vector<Torsion*>::iterator torsionIter;
539 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
540 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
541 >    vector<Bond*>::iterator bondIter;
542 >    vector<Bend*>::iterator bendIter;
543 >    vector<Torsion*>::iterator torsionIter;
544 >    vector<Inversion*>::iterator inversionIter;
545      Bond* bond;
546      Bend* bend;
547      Torsion* torsion;
548 +    Inversion* inversion;
549      int a;
550      int b;
551      int c;
552      int d;
553  
554 <    std::map<int, std::set<int> > atomGroups;
479 <
554 >    map<int, set<int> > atomGroups;
555      Molecule::RigidBodyIterator rbIter;
556      RigidBody* rb;
557      Molecule::IntegrableObjectIterator ii;
558 <    StuntDouble* integrableObject;
558 >    StuntDouble* sd;
559      
560 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
561 <           integrableObject = mol->nextIntegrableObject(ii)) {
562 <
563 <      if (integrableObject->isRigidBody()) {
564 <          rb = static_cast<RigidBody*>(integrableObject);
565 <          std::vector<Atom*> atoms = rb->getAtoms();
566 <          std::set<int> rigidAtoms;
567 <          for (int i = 0; i < atoms.size(); ++i) {
568 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
569 <          }
570 <          for (int i = 0; i < atoms.size(); ++i) {
571 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
572 <          }      
560 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
561 >         sd = mol->nextIntegrableObject(ii)) {
562 >      
563 >      if (sd->isRigidBody()) {
564 >        rb = static_cast<RigidBody*>(sd);
565 >        vector<Atom*> atoms = rb->getAtoms();
566 >        set<int> rigidAtoms;
567 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
568 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
569 >        }
570 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
571 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
572 >        }      
573        } else {
574 <        std::set<int> oneAtomSet;
575 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
576 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
574 >        set<int> oneAtomSet;
575 >        oneAtomSet.insert(sd->getGlobalIndex());
576 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
577        }
578      }  
579  
580 <    
581 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
580 >    for (bond= mol->beginBond(bondIter); bond != NULL;
581 >         bond = mol->nextBond(bondIter)) {
582 >      
583        a = bond->getAtomA()->getGlobalIndex();
584 <      b = bond->getAtomB()->getGlobalIndex();        
585 <      exclude_.removePair(a, b);
584 >      b = bond->getAtomB()->getGlobalIndex();  
585 >    
586 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
587 >        oneTwoInteractions_.removePair(a, b);
588 >      } else {
589 >        excludedInteractions_.removePair(a, b);
590 >      }
591      }
592  
593 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
593 >    for (bend= mol->beginBend(bendIter); bend != NULL;
594 >         bend = mol->nextBend(bendIter)) {
595 >
596        a = bend->getAtomA()->getGlobalIndex();
597        b = bend->getAtomB()->getGlobalIndex();        
598        c = bend->getAtomC()->getGlobalIndex();
516
517      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
518      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
519      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
520
521      exclude_.removePairs(rigidSetA, rigidSetB);
522      exclude_.removePairs(rigidSetA, rigidSetC);
523      exclude_.removePairs(rigidSetB, rigidSetC);
599        
600 <      //exclude_.removePair(a, b);
601 <      //exclude_.removePair(a, c);
602 <      //exclude_.removePair(b, c);        
600 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
601 >        oneTwoInteractions_.removePair(a, b);      
602 >        oneTwoInteractions_.removePair(b, c);
603 >      } else {
604 >        excludedInteractions_.removePair(a, b);
605 >        excludedInteractions_.removePair(b, c);
606 >      }
607 >
608 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
609 >        oneThreeInteractions_.removePair(a, c);      
610 >      } else {
611 >        excludedInteractions_.removePair(a, c);
612 >      }
613      }
614  
615 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
615 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
616 >         torsion = mol->nextTorsion(torsionIter)) {
617 >
618        a = torsion->getAtomA()->getGlobalIndex();
619        b = torsion->getAtomB()->getGlobalIndex();        
620        c = torsion->getAtomC()->getGlobalIndex();        
621 <      d = torsion->getAtomD()->getGlobalIndex();        
621 >      d = torsion->getAtomD()->getGlobalIndex();      
622 >  
623 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
624 >        oneTwoInteractions_.removePair(a, b);      
625 >        oneTwoInteractions_.removePair(b, c);
626 >        oneTwoInteractions_.removePair(c, d);
627 >      } else {
628 >        excludedInteractions_.removePair(a, b);
629 >        excludedInteractions_.removePair(b, c);
630 >        excludedInteractions_.removePair(c, d);
631 >      }
632  
633 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
634 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
635 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
636 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
633 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
634 >        oneThreeInteractions_.removePair(a, c);      
635 >        oneThreeInteractions_.removePair(b, d);      
636 >      } else {
637 >        excludedInteractions_.removePair(a, c);
638 >        excludedInteractions_.removePair(b, d);
639 >      }
640  
641 <      exclude_.removePairs(rigidSetA, rigidSetB);
642 <      exclude_.removePairs(rigidSetA, rigidSetC);
643 <      exclude_.removePairs(rigidSetA, rigidSetD);
644 <      exclude_.removePairs(rigidSetB, rigidSetC);
645 <      exclude_.removePairs(rigidSetB, rigidSetD);
646 <      exclude_.removePairs(rigidSetC, rigidSetD);
641 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
642 >        oneFourInteractions_.removePair(a, d);      
643 >      } else {
644 >        excludedInteractions_.removePair(a, d);
645 >      }
646 >    }
647  
648 <      /*
649 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
550 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
551 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
552 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
553 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
554 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
648 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
649 >         inversion = mol->nextInversion(inversionIter)) {
650  
651 <      
652 <      exclude_.removePair(a, b);
653 <      exclude_.removePair(a, c);
654 <      exclude_.removePair(a, d);
655 <      exclude_.removePair(b, c);
656 <      exclude_.removePair(b, d);
657 <      exclude_.removePair(c, d);        
658 <      */
651 >      a = inversion->getAtomA()->getGlobalIndex();
652 >      b = inversion->getAtomB()->getGlobalIndex();        
653 >      c = inversion->getAtomC()->getGlobalIndex();        
654 >      d = inversion->getAtomD()->getGlobalIndex();        
655 >
656 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
657 >        oneTwoInteractions_.removePair(a, b);      
658 >        oneTwoInteractions_.removePair(a, c);
659 >        oneTwoInteractions_.removePair(a, d);
660 >      } else {
661 >        excludedInteractions_.removePair(a, b);
662 >        excludedInteractions_.removePair(a, c);
663 >        excludedInteractions_.removePair(a, d);
664 >      }
665 >
666 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
667 >        oneThreeInteractions_.removePair(b, c);    
668 >        oneThreeInteractions_.removePair(b, d);    
669 >        oneThreeInteractions_.removePair(c, d);      
670 >      } else {
671 >        excludedInteractions_.removePair(b, c);
672 >        excludedInteractions_.removePair(b, d);
673 >        excludedInteractions_.removePair(c, d);
674 >      }
675      }
676  
677 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
678 <      std::vector<Atom*> atoms = rb->getAtoms();
679 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
680 <        for (int j = i + 1; j < atoms.size(); ++j) {
677 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
678 >         rb = mol->nextRigidBody(rbIter)) {
679 >      vector<Atom*> atoms = rb->getAtoms();
680 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
681 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
682            a = atoms[i]->getGlobalIndex();
683            b = atoms[j]->getGlobalIndex();
684 <          exclude_.removePair(a, b);
684 >          excludedInteractions_.removePair(a, b);
685          }
686        }
687      }        
688 <
688 >    
689    }
690 <
691 <
690 >  
691 >  
692    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
693      int curStampId;
694 <
694 >    
695      //index from 0
696      curStampId = moleculeStamps_.size();
697  
# Line 587 | Line 699 | namespace oopse {
699      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
700    }
701  
590  void SimInfo::update() {
702  
703 <    setupSimType();
704 <
705 < #ifdef IS_MPI
706 <    setupFortranParallel();
707 < #endif
708 <
709 <    setupFortranSim();
710 <
711 <    //setup fortran force field
712 <    /** @deprecate */    
602 <    int isError = 0;
603 <    
604 <    setupCutoff();
605 <    
606 <    setupElectrostaticSummationMethod( isError );
607 <    setupSwitchingFunction();
608 <    setupAccumulateBoxDipole();
609 <
610 <    if(isError){
611 <      sprintf( painCave.errMsg,
612 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
613 <      painCave.isFatal = 1;
614 <      simError();
615 <    }
616 <
703 >  /**
704 >   * update
705 >   *
706 >   *  Performs the global checks and variable settings after the
707 >   *  objects have been created.
708 >   *
709 >   */
710 >  void SimInfo::update() {  
711 >    setupSimVariables();
712 >    calcNConstraints();
713      calcNdf();
714      calcNdfRaw();
715      calcNdfTrans();
620
621    fortranInitialized_ = true;
716    }
717 <
718 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
717 >  
718 >  /**
719 >   * getSimulatedAtomTypes
720 >   *
721 >   * Returns an STL set of AtomType* that are actually present in this
722 >   * simulation.  Must query all processors to assemble this information.
723 >   *
724 >   */
725 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
726      SimInfo::MoleculeIterator mi;
727      Molecule* mol;
728      Molecule::AtomIterator ai;
729      Atom* atom;
730 <    std::set<AtomType*> atomTypes;
731 <
730 >    set<AtomType*> atomTypes;
731 >    
732      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
733 <
734 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
733 >      for(atom = mol->beginAtom(ai); atom != NULL;
734 >          atom = mol->nextAtom(ai)) {
735          atomTypes.insert(atom->getAtomType());
736 <      }
737 <        
736 >      }      
737 >    }    
738 >    
739 > #ifdef IS_MPI
740 >
741 >    // loop over the found atom types on this processor, and add their
742 >    // numerical idents to a vector:
743 >    
744 >    vector<int> foundTypes;
745 >    set<AtomType*>::iterator i;
746 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
747 >      foundTypes.push_back( (*i)->getIdent() );
748 >
749 >    // count_local holds the number of found types on this processor
750 >    int count_local = foundTypes.size();
751 >
752 >    int nproc;
753 >    MPI_Comm_size( MPI_COMM_WORLD, &nproc);
754 >    // int nproc = MPI::COMM_WORLD.Get_size();
755 >
756 >    // we need arrays to hold the counts and displacement vectors for
757 >    // all processors
758 >    vector<int> counts(nproc, 0);
759 >    vector<int> disps(nproc, 0);
760 >
761 >    // fill the counts array
762 >    MPI_Allgather(&count_local, 1, MPI_INT, &counts[0],
763 >                  1, MPI_INT, MPI_COMM_WORLD);
764 >    // MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
765 >    //                           1, MPI::INT);
766 >  
767 >    // use the processor counts to compute the displacement array
768 >    disps[0] = 0;    
769 >    int totalCount = counts[0];
770 >    for (int iproc = 1; iproc < nproc; iproc++) {
771 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
772 >      totalCount += counts[iproc];
773      }
774  
775 +    // we need a (possibly redundant) set of all found types:
776 +    vector<int> ftGlobal(totalCount);
777 +    
778 +    // now spray out the foundTypes to all the other processors:    
779 +    MPI_Allgatherv(&foundTypes[0], count_local, MPI_INT,
780 +                   &ftGlobal[0], &counts[0], &disps[0],
781 +                   MPI_INT, MPI_COMM_WORLD);
782 +    // MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
783 +    //                            &ftGlobal[0], &counts[0], &disps[0],
784 +    //                            MPI::INT);
785 +
786 +    vector<int>::iterator j;
787 +
788 +    // foundIdents is a stl set, so inserting an already found ident
789 +    // will have no effect.
790 +    set<int> foundIdents;
791 +
792 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
793 +      foundIdents.insert((*j));
794 +    
795 +    // now iterate over the foundIdents and get the actual atom types
796 +    // that correspond to these:
797 +    set<int>::iterator it;
798 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
799 +      atomTypes.insert( forceField_->getAtomType((*it)) );
800 +
801 + #endif
802 +
803      return atomTypes;        
804    }
805  
642  void SimInfo::setupSimType() {
643    std::set<AtomType*>::iterator i;
644    std::set<AtomType*> atomTypes;
645    atomTypes = getUniqueAtomTypes();
646    
647    int useLennardJones = 0;
648    int useElectrostatic = 0;
649    int useEAM = 0;
650    int useSC = 0;
651    int useCharge = 0;
652    int useDirectional = 0;
653    int useDipole = 0;
654    int useGayBerne = 0;
655    int useSticky = 0;
656    int useStickyPower = 0;
657    int useShape = 0;
658    int useFLARB = 0; //it is not in AtomType yet
659    int useDirectionalAtom = 0;    
660    int useElectrostatics = 0;
661    //usePBC and useRF are from simParams
662    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
663    int useRF;
664    int useSF;
665    int useSP;
666    int useBoxDipole;
667    std::string myMethod;
806  
807 <    // set the useRF logical
808 <    useRF = 0;
809 <    useSF = 0;
807 >  int getGlobalCountOfType(AtomType* atype) {
808 >    /*
809 >    set<AtomType*> atypes = getSimulatedAtomTypes();
810 >    map<AtomType*, int> counts_;
811  
812 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
813 +      for(atom = mol->beginAtom(ai); atom != NULL;
814 +          atom = mol->nextAtom(ai)) {
815 +        atom->getAtomType();
816 +      }      
817 +    }    
818 +    */
819 +    return 0;
820 +  }
821  
822 <    if (simParams_->haveElectrostaticSummationMethod()) {
823 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
824 <      toUpper(myMethod);
825 <      if (myMethod == "REACTION_FIELD"){
826 <        useRF=1;
827 <      } else if (myMethod == "SHIFTED_FORCE"){
828 <        useSF = 1;
829 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
830 <        useSP = 1;
683 <      }
684 <    }
822 >  void SimInfo::setupSimVariables() {
823 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
824 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
825 >    // parameter is true
826 >    calcBoxDipole_ = false;
827 >    if ( simParams_->haveAccumulateBoxDipole() )
828 >      if ( simParams_->getAccumulateBoxDipole() ) {
829 >        calcBoxDipole_ = true;      
830 >      }
831      
832 <    if (simParams_->haveAccumulateBoxDipole())
833 <      if (simParams_->getAccumulateBoxDipole())
834 <        useBoxDipole = 1;
835 <
832 >    set<AtomType*>::iterator i;
833 >    set<AtomType*> atomTypes;
834 >    atomTypes = getSimulatedAtomTypes();    
835 >    bool usesElectrostatic = false;
836 >    bool usesMetallic = false;
837 >    bool usesDirectional = false;
838 >    bool usesFluctuatingCharges =  false;
839      //loop over all of the atom types
840      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
841 <      useLennardJones |= (*i)->isLennardJones();
842 <      useElectrostatic |= (*i)->isElectrostatic();
843 <      useEAM |= (*i)->isEAM();
844 <      useSC |= (*i)->isSC();
696 <      useCharge |= (*i)->isCharge();
697 <      useDirectional |= (*i)->isDirectional();
698 <      useDipole |= (*i)->isDipole();
699 <      useGayBerne |= (*i)->isGayBerne();
700 <      useSticky |= (*i)->isSticky();
701 <      useStickyPower |= (*i)->isStickyPower();
702 <      useShape |= (*i)->isShape();
841 >      usesElectrostatic |= (*i)->isElectrostatic();
842 >      usesMetallic |= (*i)->isMetal();
843 >      usesDirectional |= (*i)->isDirectional();
844 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
845      }
846  
847 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
706 <      useDirectionalAtom = 1;
707 <    }
708 <
709 <    if (useCharge || useDipole) {
710 <      useElectrostatics = 1;
711 <    }
712 <
713 < #ifdef IS_MPI    
847 > #ifdef IS_MPI
848      int temp;
849  
850 <    temp = usePBC;
851 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
850 >    temp = usesDirectional;
851 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
852 >    usesDirectionalAtoms_ = (temp == 0) ? false : true;
853 >    
854 >    temp = usesMetallic;
855 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
856 >    usesMetallicAtoms_ = (temp == 0) ? false : true;
857  
858 <    temp = useDirectionalAtom;
859 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
858 >    temp = usesElectrostatic;
859 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
860 >    usesElectrostaticAtoms_ = (temp == 0) ? false : true;
861  
862 <    temp = useLennardJones;
863 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
862 >    temp = usesFluctuatingCharges;
863 >    MPI_Allreduce(MPI_IN_PLACE, &temp, 1, MPI_INT,  MPI_LOR, MPI_COMM_WORLD);
864 >    usesFluctuatingCharges_ = (temp == 0) ? false : true;
865 > #else
866  
867 <    temp = useElectrostatics;
868 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
867 >    usesDirectionalAtoms_ = usesDirectional;
868 >    usesMetallicAtoms_ = usesMetallic;
869 >    usesElectrostaticAtoms_ = usesElectrostatic;
870 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
871  
872 <    temp = useCharge;
873 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
872 > #endif
873 >    
874 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
875 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
876 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
877 >  }
878  
731    temp = useDipole;
732    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
879  
880 <    temp = useSticky;
881 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
880 >  vector<int> SimInfo::getGlobalAtomIndices() {
881 >    SimInfo::MoleculeIterator mi;
882 >    Molecule* mol;
883 >    Molecule::AtomIterator ai;
884 >    Atom* atom;
885  
886 <    temp = useStickyPower;
738 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
886 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
887      
888 <    temp = useGayBerne;
889 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
888 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
889 >      
890 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
891 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
892 >      }
893 >    }
894 >    return GlobalAtomIndices;
895 >  }
896  
743    temp = useEAM;
744    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
897  
898 <    temp = useSC;
899 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
900 <    
901 <    temp = useShape;
902 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
898 >  vector<int> SimInfo::getGlobalGroupIndices() {
899 >    SimInfo::MoleculeIterator mi;
900 >    Molecule* mol;
901 >    Molecule::CutoffGroupIterator ci;
902 >    CutoffGroup* cg;
903  
904 <    temp = useFLARB;
905 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
906 <
907 <    temp = useRF;
908 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
909 <
910 <    temp = useSF;
911 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
912 <
913 <    temp = useSP;
914 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
915 <
764 <    temp = useBoxDipole;
765 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 <
767 < #endif
768 <
769 <    fInfo_.SIM_uses_PBC = usePBC;    
770 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
771 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
772 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
773 <    fInfo_.SIM_uses_Charges = useCharge;
774 <    fInfo_.SIM_uses_Dipoles = useDipole;
775 <    fInfo_.SIM_uses_Sticky = useSticky;
776 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
777 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
778 <    fInfo_.SIM_uses_EAM = useEAM;
779 <    fInfo_.SIM_uses_SC = useSC;
780 <    fInfo_.SIM_uses_Shapes = useShape;
781 <    fInfo_.SIM_uses_FLARB = useFLARB;
782 <    fInfo_.SIM_uses_RF = useRF;
783 <    fInfo_.SIM_uses_SF = useSF;
784 <    fInfo_.SIM_uses_SP = useSP;
785 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
904 >    vector<int> GlobalGroupIndices;
905 >    
906 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
907 >      
908 >      //local index of cutoff group is trivial, it only depends on the
909 >      //order of travesing
910 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
911 >           cg = mol->nextCutoffGroup(ci)) {
912 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
913 >      }        
914 >    }
915 >    return GlobalGroupIndices;
916    }
917  
788  void SimInfo::setupFortranSim() {
789    int isError;
790    int nExclude;
791    std::vector<int> fortranGlobalGroupMembership;
792    
793    nExclude = exclude_.getSize();
794    isError = 0;
918  
919 <    //globalGroupMembership_ is filled by SimCreator    
797 <    for (int i = 0; i < nGlobalAtoms_; i++) {
798 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
799 <    }
919 >  void SimInfo::prepareTopology() {
920  
921      //calculate mass ratio of cutoff group
802    std::vector<RealType> mfact;
922      SimInfo::MoleculeIterator mi;
923      Molecule* mol;
924      Molecule::CutoffGroupIterator ci;
# Line 808 | Line 927 | namespace oopse {
927      Atom* atom;
928      RealType totalMass;
929  
930 <    //to avoid memory reallocation, reserve enough space for mfact
931 <    mfact.reserve(getNCutoffGroups());
930 >    /**
931 >     * The mass factor is the relative mass of an atom to the total
932 >     * mass of the cutoff group it belongs to.  By default, all atoms
933 >     * are their own cutoff groups, and therefore have mass factors of
934 >     * 1.  We need some special handling for massless atoms, which
935 >     * will be treated as carrying the entire mass of the cutoff
936 >     * group.
937 >     */
938 >    massFactors_.clear();
939 >    massFactors_.resize(getNAtoms(), 1.0);
940      
941      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
942 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
942 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
943 >           cg = mol->nextCutoffGroup(ci)) {
944  
945          totalMass = cg->getMass();
946          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
947            // Check for massless groups - set mfact to 1 if true
948 <          if (totalMass != 0)
949 <            mfact.push_back(atom->getMass()/totalMass);
948 >          if (totalMass != 0)
949 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
950            else
951 <            mfact.push_back( 1.0 );
951 >            massFactors_[atom->getLocalIndex()] = 1.0;
952          }
825
953        }      
954      }
955  
956 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
830 <    std::vector<int> identArray;
956 >    // Build the identArray_ and regions_
957  
958 <    //to avoid memory reallocation, reserve enough space identArray
959 <    identArray.reserve(getNAtoms());
960 <    
961 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
958 >    identArray_.clear();
959 >    identArray_.reserve(getNAtoms());  
960 >    regions_.clear();
961 >    regions_.reserve(getNAtoms());
962 >
963 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
964 >      int reg = mol->getRegion();      
965        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
966 <        identArray.push_back(atom->getIdent());
966 >        identArray_.push_back(atom->getIdent());
967 >        regions_.push_back(reg);
968        }
969      }    
970 <
971 <    //fill molMembershipArray
842 <    //molMembershipArray is filled by SimCreator    
843 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
844 <    for (int i = 0; i < nGlobalAtoms_; i++) {
845 <      molMembershipArray[i] = globalMolMembership_[i] + 1;
846 <    }
847 <    
848 <    //setup fortran simulation
849 <    int nGlobalExcludes = 0;
850 <    int* globalExcludes = NULL;
851 <    int* excludeList = exclude_.getExcludeList();
852 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
853 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
854 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
855 <
856 <    if( isError ){
857 <
858 <      sprintf( painCave.errMsg,
859 <               "There was an error setting the simulation information in fortran.\n" );
860 <      painCave.isFatal = 1;
861 <      painCave.severity = OOPSE_ERROR;
862 <      simError();
863 <    }
864 <
865 < #ifdef IS_MPI
866 <    sprintf( checkPointMsg,
867 <             "succesfully sent the simulation information to fortran.\n");
868 <    MPIcheckPoint();
869 < #endif // is_mpi
870 <  }
871 <
872 <
873 < #ifdef IS_MPI
874 <  void SimInfo::setupFortranParallel() {
875 <    
876 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
877 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
878 <    std::vector<int> localToGlobalCutoffGroupIndex;
879 <    SimInfo::MoleculeIterator mi;
880 <    Molecule::AtomIterator ai;
881 <    Molecule::CutoffGroupIterator ci;
882 <    Molecule* mol;
883 <    Atom* atom;
884 <    CutoffGroup* cg;
885 <    mpiSimData parallelData;
886 <    int isError;
887 <
888 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
889 <
890 <      //local index(index in DataStorge) of atom is important
891 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
892 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
893 <      }
894 <
895 <      //local index of cutoff group is trivial, it only depends on the order of travesing
896 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
897 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
898 <      }        
899 <        
900 <    }
901 <
902 <    //fill up mpiSimData struct
903 <    parallelData.nMolGlobal = getNGlobalMolecules();
904 <    parallelData.nMolLocal = getNMolecules();
905 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
906 <    parallelData.nAtomsLocal = getNAtoms();
907 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
908 <    parallelData.nGroupsLocal = getNCutoffGroups();
909 <    parallelData.myNode = worldRank;
910 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
911 <
912 <    //pass mpiSimData struct and index arrays to fortran
913 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
914 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
915 <                    &localToGlobalCutoffGroupIndex[0], &isError);
916 <
917 <    if (isError) {
918 <      sprintf(painCave.errMsg,
919 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
920 <      painCave.isFatal = 1;
921 <      simError();
922 <    }
923 <
924 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
925 <    MPIcheckPoint();
926 <
927 <
928 <  }
929 <
930 < #endif
931 <
932 <  void SimInfo::setupCutoff() {          
933 <    
934 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
935 <
936 <    // Check the cutoff policy
937 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
938 <
939 <    std::string myPolicy;
940 <    if (forceFieldOptions_.haveCutoffPolicy()){
941 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
942 <    }else if (simParams_->haveCutoffPolicy()) {
943 <      myPolicy = simParams_->getCutoffPolicy();
944 <    }
945 <
946 <    if (!myPolicy.empty()){
947 <      toUpper(myPolicy);
948 <      if (myPolicy == "MIX") {
949 <        cp = MIX_CUTOFF_POLICY;
950 <      } else {
951 <        if (myPolicy == "MAX") {
952 <          cp = MAX_CUTOFF_POLICY;
953 <        } else {
954 <          if (myPolicy == "TRADITIONAL") {            
955 <            cp = TRADITIONAL_CUTOFF_POLICY;
956 <          } else {
957 <            // throw error        
958 <            sprintf( painCave.errMsg,
959 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
960 <            painCave.isFatal = 1;
961 <            simError();
962 <          }    
963 <        }          
964 <      }
965 <    }          
966 <    notifyFortranCutoffPolicy(&cp);
967 <
968 <    // Check the Skin Thickness for neighborlists
969 <    RealType skin;
970 <    if (simParams_->haveSkinThickness()) {
971 <      skin = simParams_->getSkinThickness();
972 <      notifyFortranSkinThickness(&skin);
973 <    }            
974 <        
975 <    // Check if the cutoff was set explicitly:
976 <    if (simParams_->haveCutoffRadius()) {
977 <      rcut_ = simParams_->getCutoffRadius();
978 <      if (simParams_->haveSwitchingRadius()) {
979 <        rsw_  = simParams_->getSwitchingRadius();
980 <      } else {
981 <        if (fInfo_.SIM_uses_Charges |
982 <            fInfo_.SIM_uses_Dipoles |
983 <            fInfo_.SIM_uses_RF) {
984 <          
985 <          rsw_ = 0.85 * rcut_;
986 <          sprintf(painCave.errMsg,
987 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
988 <                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
989 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
990 <        painCave.isFatal = 0;
991 <        simError();
992 <        } else {
993 <          rsw_ = rcut_;
994 <          sprintf(painCave.errMsg,
995 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
996 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
997 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
998 <          painCave.isFatal = 0;
999 <          simError();
1000 <        }
1001 <      }
1002 <      
1003 <      notifyFortranCutoffs(&rcut_, &rsw_);
1004 <      
1005 <    } else {
1006 <      
1007 <      // For electrostatic atoms, we'll assume a large safe value:
1008 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1009 <        sprintf(painCave.errMsg,
1010 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1011 <                "\tOOPSE will use a default value of 15.0 angstroms"
1012 <                "\tfor the cutoffRadius.\n");
1013 <        painCave.isFatal = 0;
1014 <        simError();
1015 <        rcut_ = 15.0;
1016 <      
1017 <        if (simParams_->haveElectrostaticSummationMethod()) {
1018 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1019 <          toUpper(myMethod);
1020 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1021 <            if (simParams_->haveSwitchingRadius()){
1022 <              sprintf(painCave.errMsg,
1023 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1024 <                      "\teven though the electrostaticSummationMethod was\n"
1025 <                      "\tset to %s\n", myMethod.c_str());
1026 <              painCave.isFatal = 1;
1027 <              simError();            
1028 <            }
1029 <          }
1030 <        }
1031 <      
1032 <        if (simParams_->haveSwitchingRadius()){
1033 <          rsw_ = simParams_->getSwitchingRadius();
1034 <        } else {        
1035 <          sprintf(painCave.errMsg,
1036 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1037 <                  "\tOOPSE will use a default value of\n"
1038 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1039 <          painCave.isFatal = 0;
1040 <          simError();
1041 <          rsw_ = 0.85 * rcut_;
1042 <        }
1043 <        notifyFortranCutoffs(&rcut_, &rsw_);
1044 <      } else {
1045 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1046 <        // We'll punt and let fortran figure out the cutoffs later.
1047 <        
1048 <        notifyFortranYouAreOnYourOwn();
1049 <
1050 <      }
1051 <    }
1052 <  }
1053 <
1054 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1055 <    
1056 <    int errorOut;
1057 <    int esm =  NONE;
1058 <    int sm = UNDAMPED;
1059 <    RealType alphaVal;
1060 <    RealType dielectric;
1061 <    
1062 <    errorOut = isError;
1063 <
1064 <    if (simParams_->haveElectrostaticSummationMethod()) {
1065 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1066 <      toUpper(myMethod);
1067 <      if (myMethod == "NONE") {
1068 <        esm = NONE;
1069 <      } else {
1070 <        if (myMethod == "SWITCHING_FUNCTION") {
1071 <          esm = SWITCHING_FUNCTION;
1072 <        } else {
1073 <          if (myMethod == "SHIFTED_POTENTIAL") {
1074 <            esm = SHIFTED_POTENTIAL;
1075 <          } else {
1076 <            if (myMethod == "SHIFTED_FORCE") {            
1077 <              esm = SHIFTED_FORCE;
1078 <            } else {
1079 <              if (myMethod == "REACTION_FIELD") {
1080 <                esm = REACTION_FIELD;
1081 <                dielectric = simParams_->getDielectric();
1082 <                if (!simParams_->haveDielectric()) {
1083 <                  // throw warning
1084 <                  sprintf( painCave.errMsg,
1085 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1086 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1087 <                  painCave.isFatal = 0;
1088 <                  simError();
1089 <                }
1090 <              } else {
1091 <                // throw error        
1092 <                sprintf( painCave.errMsg,
1093 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1094 <                         "\t(Input file specified %s .)\n"
1095 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1096 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1097 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1098 <                painCave.isFatal = 1;
1099 <                simError();
1100 <              }    
1101 <            }          
1102 <          }
1103 <        }
1104 <      }
1105 <    }
1106 <    
1107 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1108 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1109 <      toUpper(myScreen);
1110 <      if (myScreen == "UNDAMPED") {
1111 <        sm = UNDAMPED;
1112 <      } else {
1113 <        if (myScreen == "DAMPED") {
1114 <          sm = DAMPED;
1115 <          if (!simParams_->haveDampingAlpha()) {
1116 <            // first set a cutoff dependent alpha value
1117 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1118 <            alphaVal = 0.5125 - rcut_* 0.025;
1119 <            // for values rcut > 20.5, alpha is zero
1120 <            if (alphaVal < 0) alphaVal = 0;
1121 <
1122 <            // throw warning
1123 <            sprintf( painCave.errMsg,
1124 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1125 <                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1126 <            painCave.isFatal = 0;
1127 <            simError();
1128 <          }
1129 <        } else {
1130 <          // throw error        
1131 <          sprintf( painCave.errMsg,
1132 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1133 <                   "\t(Input file specified %s .)\n"
1134 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1135 <                   "or \"damped\".\n", myScreen.c_str() );
1136 <          painCave.isFatal = 1;
1137 <          simError();
1138 <        }
1139 <      }
1140 <    }
1141 <    
1142 <    // let's pass some summation method variables to fortran
1143 <    setElectrostaticSummationMethod( &esm );
1144 <    setFortranElectrostaticMethod( &esm );
1145 <    setScreeningMethod( &sm );
1146 <    setDampingAlpha( &alphaVal );
1147 <    setReactionFieldDielectric( &dielectric );
1148 <    initFortranFF( &errorOut );
970 >      
971 >    topologyDone_ = true;
972    }
973  
1151  void SimInfo::setupSwitchingFunction() {    
1152    int ft = CUBIC;
1153
1154    if (simParams_->haveSwitchingFunctionType()) {
1155      std::string funcType = simParams_->getSwitchingFunctionType();
1156      toUpper(funcType);
1157      if (funcType == "CUBIC") {
1158        ft = CUBIC;
1159      } else {
1160        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1161          ft = FIFTH_ORDER_POLY;
1162        } else {
1163          // throw error        
1164          sprintf( painCave.errMsg,
1165                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1166          painCave.isFatal = 1;
1167          simError();
1168        }          
1169      }
1170    }
1171
1172    // send switching function notification to switcheroo
1173    setFunctionType(&ft);
1174
1175  }
1176
1177  void SimInfo::setupAccumulateBoxDipole() {    
1178
1179    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1180    if ( simParams_->haveAccumulateBoxDipole() )
1181      if ( simParams_->getAccumulateBoxDipole() ) {
1182        setAccumulateBoxDipole();
1183        calcBoxDipole_ = true;
1184      }
1185
1186  }
1187
974    void SimInfo::addProperty(GenericData* genData) {
975      properties_.addProperty(genData);  
976    }
977  
978 <  void SimInfo::removeProperty(const std::string& propName) {
978 >  void SimInfo::removeProperty(const string& propName) {
979      properties_.removeProperty(propName);  
980    }
981  
# Line 1197 | Line 983 | namespace oopse {
983      properties_.clearProperties();
984    }
985  
986 <  std::vector<std::string> SimInfo::getPropertyNames() {
986 >  vector<string> SimInfo::getPropertyNames() {
987      return properties_.getPropertyNames();  
988    }
989        
990 <  std::vector<GenericData*> SimInfo::getProperties() {
990 >  vector<GenericData*> SimInfo::getProperties() {
991      return properties_.getProperties();
992    }
993  
994 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
994 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
995      return properties_.getPropertyByName(propName);
996    }
997  
# Line 1216 | Line 1002 | namespace oopse {
1002      delete sman_;
1003      sman_ = sman;
1004  
1219    Molecule* mol;
1220    RigidBody* rb;
1221    Atom* atom;
1005      SimInfo::MoleculeIterator mi;
1006 +    Molecule::AtomIterator ai;
1007      Molecule::RigidBodyIterator rbIter;
1008 <    Molecule::AtomIterator atomIter;;
1008 >    Molecule::CutoffGroupIterator cgIter;
1009 >    Molecule::BondIterator bondIter;
1010 >    Molecule::BendIterator bendIter;
1011 >    Molecule::TorsionIterator torsionIter;
1012 >    Molecule::InversionIterator inversionIter;
1013  
1014 +    Molecule* mol;
1015 +    Atom* atom;
1016 +    RigidBody* rb;
1017 +    CutoffGroup* cg;
1018 +    Bond* bond;
1019 +    Bend* bend;
1020 +    Torsion* torsion;
1021 +    Inversion* inversion;    
1022 +
1023      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1024          
1025 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1025 >      for (atom = mol->beginAtom(ai); atom != NULL;
1026 >           atom = mol->nextAtom(ai)) {
1027          atom->setSnapshotManager(sman_);
1028 <      }
1029 <        
1030 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1028 >      }        
1029 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1030 >           rb = mol->nextRigidBody(rbIter)) {
1031          rb->setSnapshotManager(sman_);
1032        }
1033 <    }    
1034 <    
1033 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1034 >           cg = mol->nextCutoffGroup(cgIter)) {
1035 >        cg->setSnapshotManager(sman_);
1036 >      }
1037 >      for (bond = mol->beginBond(bondIter); bond != NULL;
1038 >           bond = mol->nextBond(bondIter)) {
1039 >        bond->setSnapshotManager(sman_);
1040 >      }
1041 >      for (bend = mol->beginBend(bendIter); bend != NULL;
1042 >           bend = mol->nextBend(bendIter)) {
1043 >        bend->setSnapshotManager(sman_);
1044 >      }
1045 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
1046 >           torsion = mol->nextTorsion(torsionIter)) {
1047 >        torsion->setSnapshotManager(sman_);
1048 >      }
1049 >      for (inversion = mol->beginInversion(inversionIter); inversion != NULL;
1050 >           inversion = mol->nextInversion(inversionIter)) {
1051 >        inversion->setSnapshotManager(sman_);
1052 >      }
1053 >    }
1054    }
1055  
1239  Vector3d SimInfo::getComVel(){
1240    SimInfo::MoleculeIterator i;
1241    Molecule* mol;
1056  
1057 <    Vector3d comVel(0.0);
1244 <    RealType totalMass = 0.0;
1245 <    
1246 <
1247 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1248 <      RealType mass = mol->getMass();
1249 <      totalMass += mass;
1250 <      comVel += mass * mol->getComVel();
1251 <    }  
1252 <
1253 < #ifdef IS_MPI
1254 <    RealType tmpMass = totalMass;
1255 <    Vector3d tmpComVel(comVel);    
1256 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1257 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1258 < #endif
1259 <
1260 <    comVel /= totalMass;
1261 <
1262 <    return comVel;
1263 <  }
1264 <
1265 <  Vector3d SimInfo::getCom(){
1266 <    SimInfo::MoleculeIterator i;
1267 <    Molecule* mol;
1057 >  ostream& operator <<(ostream& o, SimInfo& info) {
1058  
1269    Vector3d com(0.0);
1270    RealType totalMass = 0.0;
1271    
1272    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1273      RealType mass = mol->getMass();
1274      totalMass += mass;
1275      com += mass * mol->getCom();
1276    }  
1277
1278 #ifdef IS_MPI
1279    RealType tmpMass = totalMass;
1280    Vector3d tmpCom(com);    
1281    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1282    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1283 #endif
1284
1285    com /= totalMass;
1286
1287    return com;
1288
1289  }        
1290
1291  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1292
1059      return o;
1060    }
1061    
1062 <  
1297 <   /*
1298 <   Returns center of mass and center of mass velocity in one function call.
1299 <   */
1300 <  
1301 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1302 <      SimInfo::MoleculeIterator i;
1303 <      Molecule* mol;
1304 <      
1305 <    
1306 <      RealType totalMass = 0.0;
1307 <    
1308 <
1309 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1310 <         RealType mass = mol->getMass();
1311 <         totalMass += mass;
1312 <         com += mass * mol->getCom();
1313 <         comVel += mass * mol->getComVel();          
1314 <      }  
1315 <      
1316 < #ifdef IS_MPI
1317 <      RealType tmpMass = totalMass;
1318 <      Vector3d tmpCom(com);  
1319 <      Vector3d tmpComVel(comVel);
1320 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1321 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1322 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1323 < #endif
1324 <      
1325 <      com /= totalMass;
1326 <      comVel /= totalMass;
1327 <   }        
1328 <  
1329 <   /*
1330 <   Return intertia tensor for entire system and angular momentum Vector.
1331 <
1332 <
1333 <       [  Ixx -Ixy  -Ixz ]
1334 <  J =| -Iyx  Iyy  -Iyz |
1335 <       [ -Izx -Iyz   Izz ]
1336 <    */
1337 <
1338 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1339 <      
1340 <
1341 <      RealType xx = 0.0;
1342 <      RealType yy = 0.0;
1343 <      RealType zz = 0.0;
1344 <      RealType xy = 0.0;
1345 <      RealType xz = 0.0;
1346 <      RealType yz = 0.0;
1347 <      Vector3d com(0.0);
1348 <      Vector3d comVel(0.0);
1349 <      
1350 <      getComAll(com, comVel);
1351 <      
1352 <      SimInfo::MoleculeIterator i;
1353 <      Molecule* mol;
1354 <      
1355 <      Vector3d thisq(0.0);
1356 <      Vector3d thisv(0.0);
1357 <
1358 <      RealType thisMass = 0.0;
1359 <    
1360 <      
1361 <      
1362 <  
1363 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1364 <        
1365 <         thisq = mol->getCom()-com;
1366 <         thisv = mol->getComVel()-comVel;
1367 <         thisMass = mol->getMass();
1368 <         // Compute moment of intertia coefficients.
1369 <         xx += thisq[0]*thisq[0]*thisMass;
1370 <         yy += thisq[1]*thisq[1]*thisMass;
1371 <         zz += thisq[2]*thisq[2]*thisMass;
1372 <        
1373 <         // compute products of intertia
1374 <         xy += thisq[0]*thisq[1]*thisMass;
1375 <         xz += thisq[0]*thisq[2]*thisMass;
1376 <         yz += thisq[1]*thisq[2]*thisMass;
1377 <            
1378 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1379 <            
1380 <      }  
1381 <      
1382 <      
1383 <      inertiaTensor(0,0) = yy + zz;
1384 <      inertiaTensor(0,1) = -xy;
1385 <      inertiaTensor(0,2) = -xz;
1386 <      inertiaTensor(1,0) = -xy;
1387 <      inertiaTensor(1,1) = xx + zz;
1388 <      inertiaTensor(1,2) = -yz;
1389 <      inertiaTensor(2,0) = -xz;
1390 <      inertiaTensor(2,1) = -yz;
1391 <      inertiaTensor(2,2) = xx + yy;
1392 <      
1393 < #ifdef IS_MPI
1394 <      Mat3x3d tmpI(inertiaTensor);
1395 <      Vector3d tmpAngMom;
1396 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1397 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1398 < #endif
1399 <              
1400 <      return;
1401 <   }
1402 <
1403 <   //Returns the angular momentum of the system
1404 <   Vector3d SimInfo::getAngularMomentum(){
1405 <      
1406 <      Vector3d com(0.0);
1407 <      Vector3d comVel(0.0);
1408 <      Vector3d angularMomentum(0.0);
1409 <      
1410 <      getComAll(com,comVel);
1411 <      
1412 <      SimInfo::MoleculeIterator i;
1413 <      Molecule* mol;
1414 <      
1415 <      Vector3d thisr(0.0);
1416 <      Vector3d thisp(0.0);
1417 <      
1418 <      RealType thisMass;
1419 <      
1420 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1421 <        thisMass = mol->getMass();
1422 <        thisr = mol->getCom()-com;
1423 <        thisp = (mol->getComVel()-comVel)*thisMass;
1424 <        
1425 <        angularMomentum += cross( thisr, thisp );
1426 <        
1427 <      }  
1428 <      
1429 < #ifdef IS_MPI
1430 <      Vector3d tmpAngMom;
1431 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1432 < #endif
1433 <      
1434 <      return angularMomentum;
1435 <   }
1436 <  
1062 >  
1063    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1064 <    return IOIndexToIntegrableObject.at(index);
1064 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1065 >      sprintf(painCave.errMsg,
1066 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1067 >              "\tindex exceeds number of known objects!\n");
1068 >      painCave.isFatal = 1;
1069 >      simError();
1070 >      return NULL;
1071 >    } else
1072 >      return IOIndexToIntegrableObject.at(index);
1073    }
1074    
1075 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1075 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1076      IOIndexToIntegrableObject= v;
1077    }
1078  
1079 < /*
1080 <   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1081 <      assert( v.size() == nAtoms_ + nRigidBodies_);
1082 <      sdByGlobalIndex_ = v;
1083 <    }
1079 >  void SimInfo::calcNConstraints() {
1080 > #ifdef IS_MPI
1081 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints_, 1,  
1082 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
1083 > #else
1084 >    nGlobalConstraints_ =  nConstraints_;
1085 > #endif
1086 >  }
1087  
1088 <    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1452 <      //assert(index < nAtoms_ + nRigidBodies_);
1453 <      return sdByGlobalIndex_.at(index);
1454 <    }  
1455 < */  
1456 < }//end namespace oopse
1088 > }//end namespace OpenMD
1089  

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 1050 by chrisfen, Fri Sep 22 22:19:59 2006 UTC vs.
Revision 1983 by gezelter, Tue Apr 15 20:36:19 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines