ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 610 by chrisfen, Sun Sep 18 20:45:38 2005 UTC vs.
Revision 1953 by gezelter, Thu Dec 5 18:19:26 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 46 | Line 47
47   * @version 1.0
48   */
49  
50 + #ifdef IS_MPI
51 + #include <mpi.h>
52 + #endif
53   #include <algorithm>
54   #include <set>
55 + #include <map>
56  
57   #include "brains/SimInfo.hpp"
58   #include "math/Vector3.hpp"
59   #include "primitives/Molecule.hpp"
60 < #include "UseTheForce/fCutoffPolicy.h"
56 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 < #include "UseTheForce/doForces_interface.h"
58 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
59 < #include "UseTheForce/notifyCutoffs_interface.h"
60 > #include "primitives/StuntDouble.hpp"
61   #include "utils/MemoryUtils.hpp"
62   #include "utils/simError.h"
63   #include "selection/SelectionManager.hpp"
64 + #include "io/ForceFieldOptions.hpp"
65 + #include "brains/ForceField.hpp"
66 + #include "nonbonded/SwitchingFunction.hpp"
67  
68 < #ifdef IS_MPI
69 < #include "UseTheForce/mpiComponentPlan.h"
70 < #include "UseTheForce/DarkSide/simParallel_interface.h"
71 < #endif
72 <
73 < namespace oopse {
70 <
71 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 <                   ForceField* ff, Globals* simParams) :
73 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
74 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false) {
79 <
80 <            
81 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
83 <      MoleculeStamp* molStamp;
84 <      int nMolWithSameStamp;
85 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
87 <      CutoffGroupStamp* cgStamp;    
88 <      RigidBodyStamp* rbStamp;
89 <      int nRigidAtoms = 0;
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 >    nGlobalFluctuatingCharges_(0), nGlobalBonds_(0), nGlobalBends_(0),
77 >    nGlobalTorsions_(0), nGlobalInversions_(0), nAtoms_(0), nBonds_(0),
78 >    nBends_(0), nTorsions_(0), nInversions_(0), nRigidBodies_(0),
79 >    nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
80 >    nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
81 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
82      
83 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
84 <        molStamp = i->first;
85 <        nMolWithSameStamp = i->second;
86 <        
87 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
88 <
89 <        //calculate atoms in molecules
90 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
91 <
92 <
93 <        //calculate atoms in cutoff groups
94 <        int nAtomsInGroups = 0;
95 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
96 <        
97 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
98 <          cgStamp = molStamp->getCutoffGroup(j);
99 <          nAtomsInGroups += cgStamp->getNMembers();
100 <        }
109 <
110 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 <
113 <        //calculate atoms in rigid bodies
114 <        int nAtomsInRigidBodies = 0;
115 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 <        
117 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
118 <          rbStamp = molStamp->getRigidBody(j);
119 <          nAtomsInRigidBodies += rbStamp->getNMembers();
120 <        }
121 <
122 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 <        
83 >    MoleculeStamp* molStamp;
84 >    int nMolWithSameStamp;
85 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
87 >    CutoffGroupStamp* cgStamp;    
88 >    RigidBodyStamp* rbStamp;
89 >    int nRigidAtoms = 0;
90 >    
91 >    vector<Component*> components = simParams->getComponents();
92 >    
93 >    for (vector<Component*>::iterator i = components.begin();
94 >         i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      if ( (*i)->haveRegion() ) {        
97 >        molStamp->setRegion( (*i)->getRegion() );
98 >      } else {
99 >        // set the region to a disallowed value:
100 >        molStamp->setRegion( -1 );
101        }
102  
103 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
104 <      //therefore the total number of cutoff groups in the system is equal to
105 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
106 <      //file plus the number of cutoff groups defined in meta-data file
107 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
108 <
109 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
110 <      //therefore the total number of  integrable objects in the system is equal to
111 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
112 <      //file plus the number of  rigid bodies defined in meta-data file
113 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
114 <
115 <      nGlobalMols_ = molStampIds_.size();
116 <
117 < #ifdef IS_MPI    
118 <      molToProcMap_.resize(nGlobalMols_);
119 < #endif
120 <
103 >      nMolWithSameStamp = (*i)->getNMol();
104 >      
105 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
106 >      
107 >      //calculate atoms in molecules
108 >      nGlobalAtoms_ += molStamp->getNAtoms() * nMolWithSameStamp;
109 >      nGlobalBonds_ += molStamp->getNBonds() * nMolWithSameStamp;
110 >      nGlobalBends_ += molStamp->getNBends() * nMolWithSameStamp;
111 >      nGlobalTorsions_ += molStamp->getNTorsions() * nMolWithSameStamp;
112 >      nGlobalInversions_ += molStamp->getNInversions() * nMolWithSameStamp;
113 >      
114 >      //calculate atoms in cutoff groups
115 >      int nAtomsInGroups = 0;
116 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
117 >      
118 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
119 >        cgStamp = molStamp->getCutoffGroupStamp(j);
120 >        nAtomsInGroups += cgStamp->getNMembers();
121 >      }
122 >      
123 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
124 >      
125 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
126 >      
127 >      //calculate atoms in rigid bodies
128 >      int nAtomsInRigidBodies = 0;
129 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
130 >      
131 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
132 >        rbStamp = molStamp->getRigidBodyStamp(j);
133 >        nAtomsInRigidBodies += rbStamp->getNMembers();
134 >      }
135 >      
136 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
137 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
138 >      
139      }
140 +    
141 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
142 +    //group therefore the total number of cutoff groups in the system is
143 +    //equal to the total number of atoms minus number of atoms belong to
144 +    //cutoff group defined in meta-data file plus the number of cutoff
145 +    //groups defined in meta-data file
146  
147 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
148 +    
149 +    //every free atom (atom does not belong to rigid bodies) is an
150 +    //integrable object therefore the total number of integrable objects
151 +    //in the system is equal to the total number of atoms minus number of
152 +    //atoms belong to rigid body defined in meta-data file plus the number
153 +    //of rigid bodies defined in meta-data file
154 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
155 +      + nGlobalRigidBodies_;
156 +    
157 +    nGlobalMols_ = molStampIds_.size();
158 +    molToProcMap_.resize(nGlobalMols_);
159 +  }
160 +  
161    SimInfo::~SimInfo() {
162 <    std::map<int, Molecule*>::iterator i;
162 >    map<int, Molecule*>::iterator i;
163      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
164        delete i->second;
165      }
166      molecules_.clear();
167        
154    delete stamps_;
168      delete sman_;
169      delete simParams_;
170      delete forceField_;
171    }
172  
160  int SimInfo::getNGlobalConstraints() {
161    int nGlobalConstraints;
162 #ifdef IS_MPI
163    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
164                  MPI_COMM_WORLD);    
165 #else
166    nGlobalConstraints =  nConstraints_;
167 #endif
168    return nGlobalConstraints;
169  }
173  
174    bool SimInfo::addMolecule(Molecule* mol) {
175      MoleculeIterator i;
176 <
176 >    
177      i = molecules_.find(mol->getGlobalIndex());
178      if (i == molecules_.end() ) {
179 <
180 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
181 <        
179 >      
180 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
181 >      
182        nAtoms_ += mol->getNAtoms();
183        nBonds_ += mol->getNBonds();
184        nBends_ += mol->getNBends();
185        nTorsions_ += mol->getNTorsions();
186 +      nInversions_ += mol->getNInversions();
187        nRigidBodies_ += mol->getNRigidBodies();
188        nIntegrableObjects_ += mol->getNIntegrableObjects();
189        nCutoffGroups_ += mol->getNCutoffGroups();
190        nConstraints_ += mol->getNConstraintPairs();
191 <
192 <      addExcludePairs(mol);
193 <        
191 >      
192 >      addInteractionPairs(mol);
193 >      
194        return true;
195      } else {
196        return false;
197      }
198    }
199 <
199 >  
200    bool SimInfo::removeMolecule(Molecule* mol) {
201      MoleculeIterator i;
202      i = molecules_.find(mol->getGlobalIndex());
# Line 205 | Line 209 | namespace oopse {
209        nBonds_ -= mol->getNBonds();
210        nBends_ -= mol->getNBends();
211        nTorsions_ -= mol->getNTorsions();
212 +      nInversions_ -= mol->getNInversions();
213        nRigidBodies_ -= mol->getNRigidBodies();
214        nIntegrableObjects_ -= mol->getNIntegrableObjects();
215        nCutoffGroups_ -= mol->getNCutoffGroups();
216        nConstraints_ -= mol->getNConstraintPairs();
217  
218 <      removeExcludePairs(mol);
218 >      removeInteractionPairs(mol);
219        molecules_.erase(mol->getGlobalIndex());
220  
221        delete mol;
# Line 219 | Line 224 | namespace oopse {
224      } else {
225        return false;
226      }
222
223
227    }    
228  
229          
# Line 236 | Line 239 | namespace oopse {
239  
240  
241    void SimInfo::calcNdf() {
242 <    int ndf_local;
242 >    int ndf_local, nfq_local;
243      MoleculeIterator i;
244 <    std::vector<StuntDouble*>::iterator j;
244 >    vector<StuntDouble*>::iterator j;
245 >    vector<Atom*>::iterator k;
246 >
247      Molecule* mol;
248 <    StuntDouble* integrableObject;
248 >    StuntDouble* sd;
249 >    Atom* atom;
250  
251      ndf_local = 0;
252 +    nfq_local = 0;
253      
254      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
248      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
249           integrableObject = mol->nextIntegrableObject(j)) {
255  
256 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
257 +           sd = mol->nextIntegrableObject(j)) {
258 +
259          ndf_local += 3;
260  
261 <        if (integrableObject->isDirectional()) {
262 <          if (integrableObject->isLinear()) {
261 >        if (sd->isDirectional()) {
262 >          if (sd->isLinear()) {
263              ndf_local += 2;
264            } else {
265              ndf_local += 3;
266            }
267          }
268 <            
269 <      }//end for (integrableObject)
270 <    }// end for (mol)
268 >      }
269 >
270 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
271 >           atom = mol->nextFluctuatingCharge(k)) {
272 >        if (atom->isFluctuatingCharge()) {
273 >          nfq_local++;
274 >        }
275 >      }
276 >    }
277      
278 +    ndfLocal_ = ndf_local;
279 +
280      // n_constraints is local, so subtract them on each processor
281      ndf_local -= nConstraints_;
282  
283   #ifdef IS_MPI
284 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
284 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
285 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
286 >                              MPI::INT, MPI::SUM);
287   #else
288      ndf_ = ndf_local;
289 +    nGlobalFluctuatingCharges_ = nfq_local;
290   #endif
291  
292      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 276 | Line 295 | namespace oopse {
295  
296    }
297  
298 +  int SimInfo::getFdf() {
299 + #ifdef IS_MPI
300 +    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
301 + #else
302 +    fdf_ = fdf_local;
303 + #endif
304 +    return fdf_;
305 +  }
306 +  
307 +  unsigned int SimInfo::getNLocalCutoffGroups(){
308 +    int nLocalCutoffAtoms = 0;
309 +    Molecule* mol;
310 +    MoleculeIterator mi;
311 +    CutoffGroup* cg;
312 +    Molecule::CutoffGroupIterator ci;
313 +    
314 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
315 +      
316 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
317 +           cg = mol->nextCutoffGroup(ci)) {
318 +        nLocalCutoffAtoms += cg->getNumAtom();
319 +        
320 +      }        
321 +    }
322 +    
323 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
324 +  }
325 +    
326    void SimInfo::calcNdfRaw() {
327      int ndfRaw_local;
328  
329      MoleculeIterator i;
330 <    std::vector<StuntDouble*>::iterator j;
330 >    vector<StuntDouble*>::iterator j;
331      Molecule* mol;
332 <    StuntDouble* integrableObject;
332 >    StuntDouble* sd;
333  
334      // Raw degrees of freedom that we have to set
335      ndfRaw_local = 0;
336      
337      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
291      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
292           integrableObject = mol->nextIntegrableObject(j)) {
338  
339 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
340 +           sd = mol->nextIntegrableObject(j)) {
341 +
342          ndfRaw_local += 3;
343  
344 <        if (integrableObject->isDirectional()) {
345 <          if (integrableObject->isLinear()) {
344 >        if (sd->isDirectional()) {
345 >          if (sd->isLinear()) {
346              ndfRaw_local += 2;
347            } else {
348              ndfRaw_local += 3;
# Line 305 | Line 353 | namespace oopse {
353      }
354      
355   #ifdef IS_MPI
356 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
356 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
357   #else
358      ndfRaw_ = ndfRaw_local;
359   #endif
# Line 318 | Line 366 | namespace oopse {
366  
367  
368   #ifdef IS_MPI
369 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
369 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
370 >                              MPI::INT, MPI::SUM);
371   #else
372      ndfTrans_ = ndfTrans_local;
373   #endif
# Line 327 | Line 376 | namespace oopse {
376  
377    }
378  
379 <  void SimInfo::addExcludePairs(Molecule* mol) {
380 <    std::vector<Bond*>::iterator bondIter;
381 <    std::vector<Bend*>::iterator bendIter;
382 <    std::vector<Torsion*>::iterator torsionIter;
379 >  void SimInfo::addInteractionPairs(Molecule* mol) {
380 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
381 >    vector<Bond*>::iterator bondIter;
382 >    vector<Bend*>::iterator bendIter;
383 >    vector<Torsion*>::iterator torsionIter;
384 >    vector<Inversion*>::iterator inversionIter;
385      Bond* bond;
386      Bend* bend;
387      Torsion* torsion;
388 +    Inversion* inversion;
389      int a;
390      int b;
391      int c;
392      int d;
393 +
394 +    // atomGroups can be used to add special interaction maps between
395 +    // groups of atoms that are in two separate rigid bodies.
396 +    // However, most site-site interactions between two rigid bodies
397 +    // are probably not special, just the ones between the physically
398 +    // bonded atoms.  Interactions *within* a single rigid body should
399 +    // always be excluded.  These are done at the bottom of this
400 +    // function.
401 +
402 +    map<int, set<int> > atomGroups;
403 +    Molecule::RigidBodyIterator rbIter;
404 +    RigidBody* rb;
405 +    Molecule::IntegrableObjectIterator ii;
406 +    StuntDouble* sd;
407      
408 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
408 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
409 >         sd = mol->nextIntegrableObject(ii)) {
410 >      
411 >      if (sd->isRigidBody()) {
412 >        rb = static_cast<RigidBody*>(sd);
413 >        vector<Atom*> atoms = rb->getAtoms();
414 >        set<int> rigidAtoms;
415 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
416 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
417 >        }
418 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
419 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
420 >        }      
421 >      } else {
422 >        set<int> oneAtomSet;
423 >        oneAtomSet.insert(sd->getGlobalIndex());
424 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
425 >      }
426 >    }  
427 >
428 >          
429 >    for (bond= mol->beginBond(bondIter); bond != NULL;
430 >         bond = mol->nextBond(bondIter)) {
431 >
432        a = bond->getAtomA()->getGlobalIndex();
433 <      b = bond->getAtomB()->getGlobalIndex();        
434 <      exclude_.addPair(a, b);
433 >      b = bond->getAtomB()->getGlobalIndex();  
434 >
435 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
436 >        oneTwoInteractions_.addPair(a, b);
437 >      } else {
438 >        excludedInteractions_.addPair(a, b);
439 >      }
440      }
441  
442 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
442 >    for (bend= mol->beginBend(bendIter); bend != NULL;
443 >         bend = mol->nextBend(bendIter)) {
444 >
445        a = bend->getAtomA()->getGlobalIndex();
446        b = bend->getAtomB()->getGlobalIndex();        
447        c = bend->getAtomC()->getGlobalIndex();
448 +      
449 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
450 +        oneTwoInteractions_.addPair(a, b);      
451 +        oneTwoInteractions_.addPair(b, c);
452 +      } else {
453 +        excludedInteractions_.addPair(a, b);
454 +        excludedInteractions_.addPair(b, c);
455 +      }
456  
457 <      exclude_.addPair(a, b);
458 <      exclude_.addPair(a, c);
459 <      exclude_.addPair(b, c);        
457 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
458 >        oneThreeInteractions_.addPair(a, c);      
459 >      } else {
460 >        excludedInteractions_.addPair(a, c);
461 >      }
462      }
463  
464 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
464 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
465 >         torsion = mol->nextTorsion(torsionIter)) {
466 >
467        a = torsion->getAtomA()->getGlobalIndex();
468        b = torsion->getAtomB()->getGlobalIndex();        
469        c = torsion->getAtomC()->getGlobalIndex();        
470 <      d = torsion->getAtomD()->getGlobalIndex();        
470 >      d = torsion->getAtomD()->getGlobalIndex();      
471  
472 <      exclude_.addPair(a, b);
473 <      exclude_.addPair(a, c);
474 <      exclude_.addPair(a, d);
475 <      exclude_.addPair(b, c);
476 <      exclude_.addPair(b, d);
477 <      exclude_.addPair(c, d);        
472 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
473 >        oneTwoInteractions_.addPair(a, b);      
474 >        oneTwoInteractions_.addPair(b, c);
475 >        oneTwoInteractions_.addPair(c, d);
476 >      } else {
477 >        excludedInteractions_.addPair(a, b);
478 >        excludedInteractions_.addPair(b, c);
479 >        excludedInteractions_.addPair(c, d);
480 >      }
481 >
482 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
483 >        oneThreeInteractions_.addPair(a, c);      
484 >        oneThreeInteractions_.addPair(b, d);      
485 >      } else {
486 >        excludedInteractions_.addPair(a, c);
487 >        excludedInteractions_.addPair(b, d);
488 >      }
489 >
490 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
491 >        oneFourInteractions_.addPair(a, d);      
492 >      } else {
493 >        excludedInteractions_.addPair(a, d);
494 >      }
495      }
496  
497 <    Molecule::RigidBodyIterator rbIter;
498 <    RigidBody* rb;
499 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
500 <      std::vector<Atom*> atoms = rb->getAtoms();
501 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
502 <        for (int j = i + 1; j < atoms.size(); ++j) {
497 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
498 >         inversion = mol->nextInversion(inversionIter)) {
499 >
500 >      a = inversion->getAtomA()->getGlobalIndex();
501 >      b = inversion->getAtomB()->getGlobalIndex();        
502 >      c = inversion->getAtomC()->getGlobalIndex();        
503 >      d = inversion->getAtomD()->getGlobalIndex();        
504 >
505 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
506 >        oneTwoInteractions_.addPair(a, b);      
507 >        oneTwoInteractions_.addPair(a, c);
508 >        oneTwoInteractions_.addPair(a, d);
509 >      } else {
510 >        excludedInteractions_.addPair(a, b);
511 >        excludedInteractions_.addPair(a, c);
512 >        excludedInteractions_.addPair(a, d);
513 >      }
514 >
515 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
516 >        oneThreeInteractions_.addPair(b, c);    
517 >        oneThreeInteractions_.addPair(b, d);    
518 >        oneThreeInteractions_.addPair(c, d);      
519 >      } else {
520 >        excludedInteractions_.addPair(b, c);
521 >        excludedInteractions_.addPair(b, d);
522 >        excludedInteractions_.addPair(c, d);
523 >      }
524 >    }
525 >
526 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
527 >         rb = mol->nextRigidBody(rbIter)) {
528 >      vector<Atom*> atoms = rb->getAtoms();
529 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
530 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
531            a = atoms[i]->getGlobalIndex();
532            b = atoms[j]->getGlobalIndex();
533 <          exclude_.addPair(a, b);
533 >          excludedInteractions_.addPair(a, b);
534          }
535        }
536      }        
537  
538    }
539  
540 <  void SimInfo::removeExcludePairs(Molecule* mol) {
541 <    std::vector<Bond*>::iterator bondIter;
542 <    std::vector<Bend*>::iterator bendIter;
543 <    std::vector<Torsion*>::iterator torsionIter;
540 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
541 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
542 >    vector<Bond*>::iterator bondIter;
543 >    vector<Bend*>::iterator bendIter;
544 >    vector<Torsion*>::iterator torsionIter;
545 >    vector<Inversion*>::iterator inversionIter;
546      Bond* bond;
547      Bend* bend;
548      Torsion* torsion;
549 +    Inversion* inversion;
550      int a;
551      int b;
552      int c;
553      int d;
554 +
555 +    map<int, set<int> > atomGroups;
556 +    Molecule::RigidBodyIterator rbIter;
557 +    RigidBody* rb;
558 +    Molecule::IntegrableObjectIterator ii;
559 +    StuntDouble* sd;
560      
561 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
561 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
562 >         sd = mol->nextIntegrableObject(ii)) {
563 >      
564 >      if (sd->isRigidBody()) {
565 >        rb = static_cast<RigidBody*>(sd);
566 >        vector<Atom*> atoms = rb->getAtoms();
567 >        set<int> rigidAtoms;
568 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
569 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
570 >        }
571 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
572 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
573 >        }      
574 >      } else {
575 >        set<int> oneAtomSet;
576 >        oneAtomSet.insert(sd->getGlobalIndex());
577 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
578 >      }
579 >    }  
580 >
581 >    for (bond= mol->beginBond(bondIter); bond != NULL;
582 >         bond = mol->nextBond(bondIter)) {
583 >      
584        a = bond->getAtomA()->getGlobalIndex();
585 <      b = bond->getAtomB()->getGlobalIndex();        
586 <      exclude_.removePair(a, b);
585 >      b = bond->getAtomB()->getGlobalIndex();  
586 >    
587 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
588 >        oneTwoInteractions_.removePair(a, b);
589 >      } else {
590 >        excludedInteractions_.removePair(a, b);
591 >      }
592      }
593  
594 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
594 >    for (bend= mol->beginBend(bendIter); bend != NULL;
595 >         bend = mol->nextBend(bendIter)) {
596 >
597        a = bend->getAtomA()->getGlobalIndex();
598        b = bend->getAtomB()->getGlobalIndex();        
599        c = bend->getAtomC()->getGlobalIndex();
600 +      
601 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
602 +        oneTwoInteractions_.removePair(a, b);      
603 +        oneTwoInteractions_.removePair(b, c);
604 +      } else {
605 +        excludedInteractions_.removePair(a, b);
606 +        excludedInteractions_.removePair(b, c);
607 +      }
608  
609 <      exclude_.removePair(a, b);
610 <      exclude_.removePair(a, c);
611 <      exclude_.removePair(b, c);        
609 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
610 >        oneThreeInteractions_.removePair(a, c);      
611 >      } else {
612 >        excludedInteractions_.removePair(a, c);
613 >      }
614      }
615  
616 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
616 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
617 >         torsion = mol->nextTorsion(torsionIter)) {
618 >
619        a = torsion->getAtomA()->getGlobalIndex();
620        b = torsion->getAtomB()->getGlobalIndex();        
621        c = torsion->getAtomC()->getGlobalIndex();        
622 <      d = torsion->getAtomD()->getGlobalIndex();        
622 >      d = torsion->getAtomD()->getGlobalIndex();      
623 >  
624 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
625 >        oneTwoInteractions_.removePair(a, b);      
626 >        oneTwoInteractions_.removePair(b, c);
627 >        oneTwoInteractions_.removePair(c, d);
628 >      } else {
629 >        excludedInteractions_.removePair(a, b);
630 >        excludedInteractions_.removePair(b, c);
631 >        excludedInteractions_.removePair(c, d);
632 >      }
633  
634 <      exclude_.removePair(a, b);
635 <      exclude_.removePair(a, c);
636 <      exclude_.removePair(a, d);
637 <      exclude_.removePair(b, c);
638 <      exclude_.removePair(b, d);
639 <      exclude_.removePair(c, d);        
634 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
635 >        oneThreeInteractions_.removePair(a, c);      
636 >        oneThreeInteractions_.removePair(b, d);      
637 >      } else {
638 >        excludedInteractions_.removePair(a, c);
639 >        excludedInteractions_.removePair(b, d);
640 >      }
641 >
642 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
643 >        oneFourInteractions_.removePair(a, d);      
644 >      } else {
645 >        excludedInteractions_.removePair(a, d);
646 >      }
647      }
648  
649 <    Molecule::RigidBodyIterator rbIter;
650 <    RigidBody* rb;
651 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
652 <      std::vector<Atom*> atoms = rb->getAtoms();
653 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
654 <        for (int j = i + 1; j < atoms.size(); ++j) {
649 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
650 >         inversion = mol->nextInversion(inversionIter)) {
651 >
652 >      a = inversion->getAtomA()->getGlobalIndex();
653 >      b = inversion->getAtomB()->getGlobalIndex();        
654 >      c = inversion->getAtomC()->getGlobalIndex();        
655 >      d = inversion->getAtomD()->getGlobalIndex();        
656 >
657 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
658 >        oneTwoInteractions_.removePair(a, b);      
659 >        oneTwoInteractions_.removePair(a, c);
660 >        oneTwoInteractions_.removePair(a, d);
661 >      } else {
662 >        excludedInteractions_.removePair(a, b);
663 >        excludedInteractions_.removePair(a, c);
664 >        excludedInteractions_.removePair(a, d);
665 >      }
666 >
667 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
668 >        oneThreeInteractions_.removePair(b, c);    
669 >        oneThreeInteractions_.removePair(b, d);    
670 >        oneThreeInteractions_.removePair(c, d);      
671 >      } else {
672 >        excludedInteractions_.removePair(b, c);
673 >        excludedInteractions_.removePair(b, d);
674 >        excludedInteractions_.removePair(c, d);
675 >      }
676 >    }
677 >
678 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
679 >         rb = mol->nextRigidBody(rbIter)) {
680 >      vector<Atom*> atoms = rb->getAtoms();
681 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
682 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
683            a = atoms[i]->getGlobalIndex();
684            b = atoms[j]->getGlobalIndex();
685 <          exclude_.removePair(a, b);
685 >          excludedInteractions_.removePair(a, b);
686          }
687        }
688      }        
689 <
689 >    
690    }
691 <
692 <
691 >  
692 >  
693    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
694      int curStampId;
695 <
695 >    
696      //index from 0
697      curStampId = moleculeStamps_.size();
698  
# Line 452 | Line 700 | namespace oopse {
700      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
701    }
702  
455  void SimInfo::update() {
703  
704 <    setupSimType();
705 <
706 < #ifdef IS_MPI
707 <    setupFortranParallel();
708 < #endif
709 <
710 <    setupFortranSim();
711 <
712 <    //setup fortran force field
466 <    /** @deprecate */    
467 <    int isError = 0;
468 <    
469 <    setupElectrostaticSummationMethod( isError );
470 <
471 <    if(isError){
472 <      sprintf( painCave.errMsg,
473 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
474 <      painCave.isFatal = 1;
475 <      simError();
476 <    }
477 <  
478 <    
479 <    setupCutoff();
480 <
704 >  /**
705 >   * update
706 >   *
707 >   *  Performs the global checks and variable settings after the
708 >   *  objects have been created.
709 >   *
710 >   */
711 >  void SimInfo::update() {  
712 >    setupSimVariables();
713      calcNdf();
714      calcNdfRaw();
715      calcNdfTrans();
484
485    fortranInitialized_ = true;
716    }
717 <
718 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
717 >  
718 >  /**
719 >   * getSimulatedAtomTypes
720 >   *
721 >   * Returns an STL set of AtomType* that are actually present in this
722 >   * simulation.  Must query all processors to assemble this information.
723 >   *
724 >   */
725 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
726      SimInfo::MoleculeIterator mi;
727      Molecule* mol;
728      Molecule::AtomIterator ai;
729      Atom* atom;
730 <    std::set<AtomType*> atomTypes;
731 <
730 >    set<AtomType*> atomTypes;
731 >    
732      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
733 <
734 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
733 >      for(atom = mol->beginAtom(ai); atom != NULL;
734 >          atom = mol->nextAtom(ai)) {
735          atomTypes.insert(atom->getAtomType());
736 <      }
737 <        
738 <    }
736 >      }      
737 >    }    
738 >    
739 > #ifdef IS_MPI
740  
741 <    return atomTypes;        
742 <  }
505 <
506 <  void SimInfo::setupSimType() {
507 <    std::set<AtomType*>::iterator i;
508 <    std::set<AtomType*> atomTypes;
509 <    atomTypes = getUniqueAtomTypes();
741 >    // loop over the found atom types on this processor, and add their
742 >    // numerical idents to a vector:
743      
744 <    int useLennardJones = 0;
745 <    int useElectrostatic = 0;
746 <    int useEAM = 0;
747 <    int useCharge = 0;
515 <    int useDirectional = 0;
516 <    int useDipole = 0;
517 <    int useGayBerne = 0;
518 <    int useSticky = 0;
519 <    int useStickyPower = 0;
520 <    int useShape = 0;
521 <    int useFLARB = 0; //it is not in AtomType yet
522 <    int useDirectionalAtom = 0;    
523 <    int useElectrostatics = 0;
524 <    //usePBC and useRF are from simParams
525 <    int usePBC = simParams_->getPBC();
744 >    vector<int> foundTypes;
745 >    set<AtomType*>::iterator i;
746 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
747 >      foundTypes.push_back( (*i)->getIdent() );
748  
749 <    //loop over all of the atom types
750 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
529 <      useLennardJones |= (*i)->isLennardJones();
530 <      useElectrostatic |= (*i)->isElectrostatic();
531 <      useEAM |= (*i)->isEAM();
532 <      useCharge |= (*i)->isCharge();
533 <      useDirectional |= (*i)->isDirectional();
534 <      useDipole |= (*i)->isDipole();
535 <      useGayBerne |= (*i)->isGayBerne();
536 <      useSticky |= (*i)->isSticky();
537 <      useStickyPower |= (*i)->isStickyPower();
538 <      useShape |= (*i)->isShape();
539 <    }
749 >    // count_local holds the number of found types on this processor
750 >    int count_local = foundTypes.size();
751  
752 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
542 <      useDirectionalAtom = 1;
543 <    }
752 >    int nproc = MPI::COMM_WORLD.Get_size();
753  
754 <    if (useCharge || useDipole) {
755 <      useElectrostatics = 1;
754 >    // we need arrays to hold the counts and displacement vectors for
755 >    // all processors
756 >    vector<int> counts(nproc, 0);
757 >    vector<int> disps(nproc, 0);
758 >
759 >    // fill the counts array
760 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
761 >                              1, MPI::INT);
762 >  
763 >    // use the processor counts to compute the displacement array
764 >    disps[0] = 0;    
765 >    int totalCount = counts[0];
766 >    for (int iproc = 1; iproc < nproc; iproc++) {
767 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
768 >      totalCount += counts[iproc];
769      }
770  
771 < #ifdef IS_MPI    
772 <    int temp;
771 >    // we need a (possibly redundant) set of all found types:
772 >    vector<int> ftGlobal(totalCount);
773 >    
774 >    // now spray out the foundTypes to all the other processors:    
775 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
776 >                               &ftGlobal[0], &counts[0], &disps[0],
777 >                               MPI::INT);
778  
779 <    temp = usePBC;
553 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
779 >    vector<int>::iterator j;
780  
781 <    temp = useDirectionalAtom;
782 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
783 <
558 <    temp = useLennardJones;
559 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
781 >    // foundIdents is a stl set, so inserting an already found ident
782 >    // will have no effect.
783 >    set<int> foundIdents;
784  
785 <    temp = useElectrostatics;
786 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
563 <
564 <    temp = useCharge;
565 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
566 <
567 <    temp = useDipole;
568 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
569 <
570 <    temp = useSticky;
571 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
572 <
573 <    temp = useStickyPower;
574 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
785 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
786 >      foundIdents.insert((*j));
787      
788 <    temp = useGayBerne;
789 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
790 <
791 <    temp = useEAM;
792 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
793 <
582 <    temp = useShape;
583 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
584 <
585 <    temp = useFLARB;
586 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
587 <
788 >    // now iterate over the foundIdents and get the actual atom types
789 >    // that correspond to these:
790 >    set<int>::iterator it;
791 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
792 >      atomTypes.insert( forceField_->getAtomType((*it)) );
793 >
794   #endif
795  
796 <    fInfo_.SIM_uses_PBC = usePBC;    
797 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
592 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
593 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
594 <    fInfo_.SIM_uses_Charges = useCharge;
595 <    fInfo_.SIM_uses_Dipoles = useDipole;
596 <    fInfo_.SIM_uses_Sticky = useSticky;
597 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
598 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
599 <    fInfo_.SIM_uses_EAM = useEAM;
600 <    fInfo_.SIM_uses_Shapes = useShape;
601 <    fInfo_.SIM_uses_FLARB = useFLARB;
796 >    return atomTypes;        
797 >  }
798  
603    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
799  
800 <      if (simParams_->haveDielectric()) {
801 <        fInfo_.dielect = simParams_->getDielectric();
802 <      } else {
803 <        sprintf(painCave.errMsg,
609 <                "SimSetup Error: No Dielectric constant was set.\n"
610 <                "\tYou are trying to use Reaction Field without"
611 <                "\tsetting a dielectric constant!\n");
612 <        painCave.isFatal = 1;
613 <        simError();
614 <      }
615 <        
616 <    } else {
617 <      fInfo_.dielect = 0.0;
618 <    }
800 >  int getGlobalCountOfType(AtomType* atype) {
801 >    /*
802 >    set<AtomType*> atypes = getSimulatedAtomTypes();
803 >    map<AtomType*, int> counts_;
804  
805 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
806 +      for(atom = mol->beginAtom(ai); atom != NULL;
807 +          atom = mol->nextAtom(ai)) {
808 +        atom->getAtomType();
809 +      }      
810 +    }    
811 +    */
812 +    return 0;
813    }
814  
815 <  void SimInfo::setupFortranSim() {
816 <    int isError;
817 <    int nExclude;
818 <    std::vector<int> fortranGlobalGroupMembership;
815 >  void SimInfo::setupSimVariables() {
816 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
817 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
818 >    // parameter is true
819 >    calcBoxDipole_ = false;
820 >    if ( simParams_->haveAccumulateBoxDipole() )
821 >      if ( simParams_->getAccumulateBoxDipole() ) {
822 >        calcBoxDipole_ = true;      
823 >      }
824      
825 <    nExclude = exclude_.getSize();
826 <    isError = 0;
827 <
828 <    //globalGroupMembership_ is filled by SimCreator    
829 <    for (int i = 0; i < nGlobalAtoms_; i++) {
830 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
825 >    set<AtomType*>::iterator i;
826 >    set<AtomType*> atomTypes;
827 >    atomTypes = getSimulatedAtomTypes();    
828 >    bool usesElectrostatic = false;
829 >    bool usesMetallic = false;
830 >    bool usesDirectional = false;
831 >    bool usesFluctuatingCharges =  false;
832 >    //loop over all of the atom types
833 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
834 >      usesElectrostatic |= (*i)->isElectrostatic();
835 >      usesMetallic |= (*i)->isMetal();
836 >      usesDirectional |= (*i)->isDirectional();
837 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
838      }
839  
840 <    //calculate mass ratio of cutoff group
841 <    std::vector<double> mfact;
842 <    SimInfo::MoleculeIterator mi;
843 <    Molecule* mol;
844 <    Molecule::CutoffGroupIterator ci;
845 <    CutoffGroup* cg;
846 <    Molecule::AtomIterator ai;
847 <    Atom* atom;
848 <    double totalMass;
644 <
645 <    //to avoid memory reallocation, reserve enough space for mfact
646 <    mfact.reserve(getNCutoffGroups());
840 > #ifdef IS_MPI
841 >    bool temp;
842 >    temp = usesDirectional;
843 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
844 >                              MPI::LOR);
845 >        
846 >    temp = usesMetallic;
847 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
848 >                              MPI::LOR);
849      
850 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
851 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
850 >    temp = usesElectrostatic;
851 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
852 >                              MPI::LOR);
853  
854 <        totalMass = cg->getMass();
855 <        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
856 <          mfact.push_back(atom->getMass()/totalMass);
857 <        }
854 >    temp = usesFluctuatingCharges;
855 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
856 >                              MPI::LOR);
857 > #else
858  
859 <      }      
860 <    }
859 >    usesDirectionalAtoms_ = usesDirectional;
860 >    usesMetallicAtoms_ = usesMetallic;
861 >    usesElectrostaticAtoms_ = usesElectrostatic;
862 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
863  
864 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
660 <    std::vector<int> identArray;
661 <
662 <    //to avoid memory reallocation, reserve enough space identArray
663 <    identArray.reserve(getNAtoms());
864 > #endif
865      
866 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
867 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
868 <        identArray.push_back(atom->getIdent());
668 <      }
669 <    }    
670 <
671 <    //fill molMembershipArray
672 <    //molMembershipArray is filled by SimCreator    
673 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
674 <    for (int i = 0; i < nGlobalAtoms_; i++) {
675 <      molMembershipArray[i] = globalMolMembership_[i] + 1;
676 <    }
677 <    
678 <    //setup fortran simulation
679 <    int nGlobalExcludes = 0;
680 <    int* globalExcludes = NULL;
681 <    int* excludeList = exclude_.getExcludeList();
682 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
683 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
684 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
685 <
686 <    if( isError ){
687 <
688 <      sprintf( painCave.errMsg,
689 <               "There was an error setting the simulation information in fortran.\n" );
690 <      painCave.isFatal = 1;
691 <      painCave.severity = OOPSE_ERROR;
692 <      simError();
693 <    }
694 <
695 < #ifdef IS_MPI
696 <    sprintf( checkPointMsg,
697 <             "succesfully sent the simulation information to fortran.\n");
698 <    MPIcheckPoint();
699 < #endif // is_mpi
866 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
867 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
868 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
869    }
870  
871  
872 < #ifdef IS_MPI
704 <  void SimInfo::setupFortranParallel() {
705 <    
706 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
707 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
708 <    std::vector<int> localToGlobalCutoffGroupIndex;
872 >  vector<int> SimInfo::getGlobalAtomIndices() {
873      SimInfo::MoleculeIterator mi;
710    Molecule::AtomIterator ai;
711    Molecule::CutoffGroupIterator ci;
874      Molecule* mol;
875 +    Molecule::AtomIterator ai;
876      Atom* atom;
714    CutoffGroup* cg;
715    mpiSimData parallelData;
716    int isError;
877  
878 +    vector<int> GlobalAtomIndices(getNAtoms(), 0);
879 +    
880      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
881 <
720 <      //local index(index in DataStorge) of atom is important
881 >      
882        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
883 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
883 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
884        }
724
725      //local index of cutoff group is trivial, it only depends on the order of travesing
726      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
727        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
728      }        
729        
885      }
886 <
732 <    //fill up mpiSimData struct
733 <    parallelData.nMolGlobal = getNGlobalMolecules();
734 <    parallelData.nMolLocal = getNMolecules();
735 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
736 <    parallelData.nAtomsLocal = getNAtoms();
737 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
738 <    parallelData.nGroupsLocal = getNCutoffGroups();
739 <    parallelData.myNode = worldRank;
740 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
741 <
742 <    //pass mpiSimData struct and index arrays to fortran
743 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
744 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
745 <                    &localToGlobalCutoffGroupIndex[0], &isError);
746 <
747 <    if (isError) {
748 <      sprintf(painCave.errMsg,
749 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
750 <      painCave.isFatal = 1;
751 <      simError();
752 <    }
753 <
754 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
755 <    MPIcheckPoint();
756 <
757 <
886 >    return GlobalAtomIndices;
887    }
888  
760 #endif
889  
890 <  double SimInfo::calcMaxCutoffRadius() {
890 >  vector<int> SimInfo::getGlobalGroupIndices() {
891 >    SimInfo::MoleculeIterator mi;
892 >    Molecule* mol;
893 >    Molecule::CutoffGroupIterator ci;
894 >    CutoffGroup* cg;
895  
896 <
897 <    std::set<AtomType*> atomTypes;
898 <    std::set<AtomType*>::iterator i;
899 <    std::vector<double> cutoffRadius;
900 <
901 <    //get the unique atom types
902 <    atomTypes = getUniqueAtomTypes();
903 <
904 <    //query the max cutoff radius among these atom types
905 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
774 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
896 >    vector<int> GlobalGroupIndices;
897 >    
898 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
899 >      
900 >      //local index of cutoff group is trivial, it only depends on the
901 >      //order of travesing
902 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
903 >           cg = mol->nextCutoffGroup(ci)) {
904 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
905 >      }        
906      }
907 <
777 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
778 < #ifdef IS_MPI
779 <    //pick the max cutoff radius among the processors
780 < #endif
781 <
782 <    return maxCutoffRadius;
907 >    return GlobalGroupIndices;
908    }
909  
785  void SimInfo::getCutoff(double& rcut, double& rsw) {
786    
787    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
788        
789      if (!simParams_->haveRcut()){
790        sprintf(painCave.errMsg,
791                "SimCreator Warning: No value was set for the cutoffRadius.\n"
792                "\tOOPSE will use a default value of 15.0 angstroms"
793                "\tfor the cutoffRadius.\n");
794        painCave.isFatal = 0;
795        simError();
796        rcut = 15.0;
797      } else{
798        rcut = simParams_->getRcut();
799      }
910  
911 <      if (!simParams_->haveRsw()){
802 <        sprintf(painCave.errMsg,
803 <                "SimCreator Warning: No value was set for switchingRadius.\n"
804 <                "\tOOPSE will use a default value of\n"
805 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
806 <        painCave.isFatal = 0;
807 <        simError();
808 <        rsw = 0.95 * rcut;
809 <      } else{
810 <        rsw = simParams_->getRsw();
811 <      }
911 >  void SimInfo::prepareTopology() {
912  
913 <    } else {
914 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
915 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
916 <        
917 <      if (simParams_->haveRcut()) {
918 <        rcut = simParams_->getRcut();
919 <      } else {
920 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
821 <        rcut = calcMaxCutoffRadius();
822 <      }
913 >    //calculate mass ratio of cutoff group
914 >    SimInfo::MoleculeIterator mi;
915 >    Molecule* mol;
916 >    Molecule::CutoffGroupIterator ci;
917 >    CutoffGroup* cg;
918 >    Molecule::AtomIterator ai;
919 >    Atom* atom;
920 >    RealType totalMass;
921  
922 <      if (simParams_->haveRsw()) {
923 <        rsw  = simParams_->getRsw();
924 <      } else {
925 <        rsw = rcut;
926 <      }
922 >    /**
923 >     * The mass factor is the relative mass of an atom to the total
924 >     * mass of the cutoff group it belongs to.  By default, all atoms
925 >     * are their own cutoff groups, and therefore have mass factors of
926 >     * 1.  We need some special handling for massless atoms, which
927 >     * will be treated as carrying the entire mass of the cutoff
928 >     * group.
929 >     */
930 >    massFactors_.clear();
931 >    massFactors_.resize(getNAtoms(), 1.0);
932      
933 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
934 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
935 +           cg = mol->nextCutoffGroup(ci)) {
936 +
937 +        totalMass = cg->getMass();
938 +        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
939 +          // Check for massless groups - set mfact to 1 if true
940 +          if (totalMass != 0)
941 +            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
942 +          else
943 +            massFactors_[atom->getLocalIndex()] = 1.0;
944 +        }
945 +      }      
946      }
831  }
947  
948 <  void SimInfo::setupCutoff() {    
834 <    getCutoff(rcut_, rsw_);    
835 <    double rnblist = rcut_ + 1; // skin of neighbor list
948 >    // Build the identArray_ and regions_
949  
950 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
951 <    
952 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
953 <    if (simParams_->haveCutoffPolicy()) {
954 <      std::string myPolicy = simParams_->getCutoffPolicy();
955 <      if (myPolicy == "MIX") {
956 <        cp = MIX_CUTOFF_POLICY;
957 <      } else {
958 <        if (myPolicy == "MAX") {
959 <          cp = MAX_CUTOFF_POLICY;
847 <        } else {
848 <          if (myPolicy == "TRADITIONAL") {            
849 <            cp = TRADITIONAL_CUTOFF_POLICY;
850 <          } else {
851 <            // throw error        
852 <            sprintf( painCave.errMsg,
853 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
854 <            painCave.isFatal = 1;
855 <            simError();
856 <          }    
857 <        }          
950 >    identArray_.clear();
951 >    identArray_.reserve(getNAtoms());  
952 >    regions_.clear();
953 >    regions_.reserve(getNAtoms());
954 >
955 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
956 >      int reg = mol->getRegion();      
957 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
958 >        identArray_.push_back(atom->getIdent());
959 >        regions_.push_back(reg);
960        }
961 <    }
962 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
963 <    // also send cutoff notification to electrostatics
862 <    setElectrostaticCutoffRadius(&rcut_);
961 >    }    
962 >      
963 >    topologyDone_ = true;
964    }
965  
865  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
866    
867    int errorOut;
868    int esm =  NONE;
869    double alphaVal;
870    double dielectric;
871
872    errorOut = isError;
873    alphaVal = simParams_->getDampingAlpha();
874    dielectric = simParams_->getDielectric();
875
876    if (simParams_->haveElectrostaticSummationMethod()) {
877      std::string myMethod = simParams_->getElectrostaticSummationMethod();
878      if (myMethod == "NONE") {
879        esm = NONE;
880      } else {
881        if (myMethod == "UNDAMPED_WOLF") {
882          esm = UNDAMPED_WOLF;
883        } else {
884          if (myMethod == "DAMPED_WOLF") {            
885            esm = DAMPED_WOLF;
886            if (!simParams_->haveDampingAlpha()) {
887              //throw error
888              sprintf( painCave.errMsg,
889                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal);
890              painCave.isFatal = 0;
891              simError();
892            }
893          } else {
894            if (myMethod == "REACTION_FIELD") {
895              esm = REACTION_FIELD;
896            } else {
897              // throw error        
898              sprintf( painCave.errMsg,
899                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
900              painCave.isFatal = 1;
901              simError();
902            }    
903          }          
904        }
905      }
906    }
907    // let's pass some summation method variables to fortran
908    setElectrostaticSummationMethod( &esm );
909    setDampedWolfAlpha( &alphaVal );
910    setReactionFieldDielectric( &dielectric );
911    initFortranFF( &esm, &errorOut );
912  }
913
966    void SimInfo::addProperty(GenericData* genData) {
967      properties_.addProperty(genData);  
968    }
969  
970 <  void SimInfo::removeProperty(const std::string& propName) {
970 >  void SimInfo::removeProperty(const string& propName) {
971      properties_.removeProperty(propName);  
972    }
973  
# Line 923 | Line 975 | namespace oopse {
975      properties_.clearProperties();
976    }
977  
978 <  std::vector<std::string> SimInfo::getPropertyNames() {
978 >  vector<string> SimInfo::getPropertyNames() {
979      return properties_.getPropertyNames();  
980    }
981        
982 <  std::vector<GenericData*> SimInfo::getProperties() {
982 >  vector<GenericData*> SimInfo::getProperties() {
983      return properties_.getProperties();
984    }
985  
986 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
986 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
987      return properties_.getPropertyByName(propName);
988    }
989  
# Line 942 | Line 994 | namespace oopse {
994      delete sman_;
995      sman_ = sman;
996  
945    Molecule* mol;
946    RigidBody* rb;
947    Atom* atom;
997      SimInfo::MoleculeIterator mi;
998 +    Molecule::AtomIterator ai;
999      Molecule::RigidBodyIterator rbIter;
1000 <    Molecule::AtomIterator atomIter;;
1000 >    Molecule::CutoffGroupIterator cgIter;
1001 >    Molecule::BondIterator bondIter;
1002 >    Molecule::BendIterator bendIter;
1003 >    Molecule::TorsionIterator torsionIter;
1004 >    Molecule::InversionIterator inversionIter;
1005  
1006 +    Molecule* mol;
1007 +    Atom* atom;
1008 +    RigidBody* rb;
1009 +    CutoffGroup* cg;
1010 +    Bond* bond;
1011 +    Bend* bend;
1012 +    Torsion* torsion;
1013 +    Inversion* inversion;    
1014 +
1015      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1016          
1017 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1017 >      for (atom = mol->beginAtom(ai); atom != NULL;
1018 >           atom = mol->nextAtom(ai)) {
1019          atom->setSnapshotManager(sman_);
1020 <      }
1021 <        
1022 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1020 >      }        
1021 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1022 >           rb = mol->nextRigidBody(rbIter)) {
1023          rb->setSnapshotManager(sman_);
1024        }
1025 <    }    
1026 <    
1025 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1026 >           cg = mol->nextCutoffGroup(cgIter)) {
1027 >        cg->setSnapshotManager(sman_);
1028 >      }
1029 >      for (bond = mol->beginBond(bondIter); bond != NULL;
1030 >           bond = mol->nextBond(bondIter)) {
1031 >        bond->setSnapshotManager(sman_);
1032 >      }
1033 >      for (bend = mol->beginBend(bendIter); bend != NULL;
1034 >           bend = mol->nextBend(bendIter)) {
1035 >        bend->setSnapshotManager(sman_);
1036 >      }
1037 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
1038 >           torsion = mol->nextTorsion(torsionIter)) {
1039 >        torsion->setSnapshotManager(sman_);
1040 >      }
1041 >      for (inversion = mol->beginInversion(inversionIter); inversion != NULL;
1042 >           inversion = mol->nextInversion(inversionIter)) {
1043 >        inversion->setSnapshotManager(sman_);
1044 >      }
1045 >    }
1046    }
1047  
965  Vector3d SimInfo::getComVel(){
966    SimInfo::MoleculeIterator i;
967    Molecule* mol;
1048  
1049 <    Vector3d comVel(0.0);
970 <    double totalMass = 0.0;
971 <    
972 <
973 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
974 <      double mass = mol->getMass();
975 <      totalMass += mass;
976 <      comVel += mass * mol->getComVel();
977 <    }  
1049 >  ostream& operator <<(ostream& o, SimInfo& info) {
1050  
979 #ifdef IS_MPI
980    double tmpMass = totalMass;
981    Vector3d tmpComVel(comVel);    
982    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
983    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
984 #endif
985
986    comVel /= totalMass;
987
988    return comVel;
989  }
990
991  Vector3d SimInfo::getCom(){
992    SimInfo::MoleculeIterator i;
993    Molecule* mol;
994
995    Vector3d com(0.0);
996    double totalMass = 0.0;
997    
998    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
999      double mass = mol->getMass();
1000      totalMass += mass;
1001      com += mass * mol->getCom();
1002    }  
1003
1004 #ifdef IS_MPI
1005    double tmpMass = totalMass;
1006    Vector3d tmpCom(com);    
1007    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1008    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1009 #endif
1010
1011    com /= totalMass;
1012
1013    return com;
1014
1015  }        
1016
1017  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1018
1051      return o;
1052    }
1053    
1054 <  
1055 <   /*
1056 <   Returns center of mass and center of mass velocity in one function call.
1057 <   */
1058 <  
1059 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1060 <      SimInfo::MoleculeIterator i;
1061 <      Molecule* mol;
1062 <      
1063 <    
1064 <      double totalMass = 0.0;
1065 <    
1054 >  
1055 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1056 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1057 >      sprintf(painCave.errMsg,
1058 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1059 >              "\tindex exceeds number of known objects!\n");
1060 >      painCave.isFatal = 1;
1061 >      simError();
1062 >      return NULL;
1063 >    } else
1064 >      return IOIndexToIntegrableObject.at(index);
1065 >  }
1066 >  
1067 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1068 >    IOIndexToIntegrableObject= v;
1069 >  }
1070  
1071 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1072 <         double mass = mol->getMass();
1037 <         totalMass += mass;
1038 <         com += mass * mol->getCom();
1039 <         comVel += mass * mol->getComVel();          
1040 <      }  
1041 <      
1071 >  int SimInfo::getNGlobalConstraints() {
1072 >    int nGlobalConstraints;
1073   #ifdef IS_MPI
1074 <      double tmpMass = totalMass;
1075 <      Vector3d tmpCom(com);  
1076 <      Vector3d tmpComVel(comVel);
1077 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1047 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1048 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1074 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1075 >                              MPI::INT, MPI::SUM);
1076 > #else
1077 >    nGlobalConstraints =  nConstraints_;
1078   #endif
1079 <      
1080 <      com /= totalMass;
1052 <      comVel /= totalMass;
1053 <   }        
1054 <  
1055 <   /*
1056 <   Return intertia tensor for entire system and angular momentum Vector.
1079 >    return nGlobalConstraints;
1080 >  }
1081  
1082 + }//end namespace OpenMD
1083  
1059       [  Ixx -Ixy  -Ixz ]
1060  J =| -Iyx  Iyy  -Iyz |
1061       [ -Izx -Iyz   Izz ]
1062    */
1063
1064   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1065      
1066
1067      double xx = 0.0;
1068      double yy = 0.0;
1069      double zz = 0.0;
1070      double xy = 0.0;
1071      double xz = 0.0;
1072      double yz = 0.0;
1073      Vector3d com(0.0);
1074      Vector3d comVel(0.0);
1075      
1076      getComAll(com, comVel);
1077      
1078      SimInfo::MoleculeIterator i;
1079      Molecule* mol;
1080      
1081      Vector3d thisq(0.0);
1082      Vector3d thisv(0.0);
1083
1084      double thisMass = 0.0;
1085    
1086      
1087      
1088  
1089      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1090        
1091         thisq = mol->getCom()-com;
1092         thisv = mol->getComVel()-comVel;
1093         thisMass = mol->getMass();
1094         // Compute moment of intertia coefficients.
1095         xx += thisq[0]*thisq[0]*thisMass;
1096         yy += thisq[1]*thisq[1]*thisMass;
1097         zz += thisq[2]*thisq[2]*thisMass;
1098        
1099         // compute products of intertia
1100         xy += thisq[0]*thisq[1]*thisMass;
1101         xz += thisq[0]*thisq[2]*thisMass;
1102         yz += thisq[1]*thisq[2]*thisMass;
1103            
1104         angularMomentum += cross( thisq, thisv ) * thisMass;
1105            
1106      }  
1107      
1108      
1109      inertiaTensor(0,0) = yy + zz;
1110      inertiaTensor(0,1) = -xy;
1111      inertiaTensor(0,2) = -xz;
1112      inertiaTensor(1,0) = -xy;
1113      inertiaTensor(1,1) = xx + zz;
1114      inertiaTensor(1,2) = -yz;
1115      inertiaTensor(2,0) = -xz;
1116      inertiaTensor(2,1) = -yz;
1117      inertiaTensor(2,2) = xx + yy;
1118      
1119 #ifdef IS_MPI
1120      Mat3x3d tmpI(inertiaTensor);
1121      Vector3d tmpAngMom;
1122      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1123      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1124 #endif
1125              
1126      return;
1127   }
1128
1129   //Returns the angular momentum of the system
1130   Vector3d SimInfo::getAngularMomentum(){
1131      
1132      Vector3d com(0.0);
1133      Vector3d comVel(0.0);
1134      Vector3d angularMomentum(0.0);
1135      
1136      getComAll(com,comVel);
1137      
1138      SimInfo::MoleculeIterator i;
1139      Molecule* mol;
1140      
1141      Vector3d thisr(0.0);
1142      Vector3d thisp(0.0);
1143      
1144      double thisMass;
1145      
1146      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1147        thisMass = mol->getMass();
1148        thisr = mol->getCom()-com;
1149        thisp = (mol->getComVel()-comVel)*thisMass;
1150        
1151        angularMomentum += cross( thisr, thisp );
1152        
1153      }  
1154      
1155 #ifdef IS_MPI
1156      Vector3d tmpAngMom;
1157      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1158 #endif
1159      
1160      return angularMomentum;
1161   }
1162  
1163  
1164 }//end namespace oopse
1165

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 610 by chrisfen, Sun Sep 18 20:45:38 2005 UTC vs.
Revision 1953 by gezelter, Thu Dec 5 18:19:26 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines