ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 610 by chrisfen, Sun Sep 18 20:45:38 2005 UTC vs.
Revision 1930 by gezelter, Mon Aug 19 13:51:04 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 48 | Line 49
49  
50   #include <algorithm>
51   #include <set>
52 + #include <map>
53  
54   #include "brains/SimInfo.hpp"
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57 < #include "UseTheForce/fCutoffPolicy.h"
56 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 < #include "UseTheForce/doForces_interface.h"
58 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
59 < #include "UseTheForce/notifyCutoffs_interface.h"
57 > #include "primitives/StuntDouble.hpp"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61 <
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
67 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <
70 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
71 <                   ForceField* ff, Globals* simParams) :
72 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
73 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false) {
79 <
81 <            
82 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
83 <      MoleculeStamp* molStamp;
84 <      int nMolWithSameStamp;
85 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
87 <      CutoffGroupStamp* cgStamp;    
88 <      RigidBodyStamp* rbStamp;
89 <      int nRigidAtoms = 0;
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
82 <        molStamp = i->first;
83 <        nMolWithSameStamp = i->second;
84 <        
85 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
86 <
87 <        //calculate atoms in molecules
88 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
89 <
90 <
91 <        //calculate atoms in cutoff groups
92 <        int nAtomsInGroups = 0;
93 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
94 <        
95 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
96 <          cgStamp = molStamp->getCutoffGroup(j);
97 <          nAtomsInGroups += cgStamp->getNMembers();
98 <        }
109 <
110 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 <
113 <        //calculate atoms in rigid bodies
114 <        int nAtomsInRigidBodies = 0;
115 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 <        
117 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
118 <          rbStamp = molStamp->getRigidBody(j);
119 <          nAtomsInRigidBodies += rbStamp->getNMembers();
120 <        }
121 <
122 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 <        
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      if ( (*i)->haveRegion() ) {        
95 >        molStamp->setRegion( (*i)->getRegion() );
96 >      } else {
97 >        // set the region to a disallowed value:
98 >        molStamp->setRegion( -1 );
99        }
100  
101 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
102 <      //therefore the total number of cutoff groups in the system is equal to
103 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
104 <      //file plus the number of cutoff groups defined in meta-data file
105 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
106 <
107 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
108 <      //therefore the total number of  integrable objects in the system is equal to
109 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
110 <      //file plus the number of  rigid bodies defined in meta-data file
111 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
112 <
113 <      nGlobalMols_ = molStampIds_.size();
114 <
115 < #ifdef IS_MPI    
116 <      molToProcMap_.resize(nGlobalMols_);
117 < #endif
118 <
101 >      nMolWithSameStamp = (*i)->getNMol();
102 >      
103 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
104 >      
105 >      //calculate atoms in molecules
106 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
107 >      
108 >      //calculate atoms in cutoff groups
109 >      int nAtomsInGroups = 0;
110 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
111 >      
112 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
113 >        cgStamp = molStamp->getCutoffGroupStamp(j);
114 >        nAtomsInGroups += cgStamp->getNMembers();
115 >      }
116 >      
117 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
118 >      
119 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
120 >      
121 >      //calculate atoms in rigid bodies
122 >      int nAtomsInRigidBodies = 0;
123 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
124 >      
125 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
126 >        rbStamp = molStamp->getRigidBodyStamp(j);
127 >        nAtomsInRigidBodies += rbStamp->getNMembers();
128 >      }
129 >      
130 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
131 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
132 >      
133      }
134 +    
135 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
136 +    //group therefore the total number of cutoff groups in the system is
137 +    //equal to the total number of atoms minus number of atoms belong to
138 +    //cutoff group defined in meta-data file plus the number of cutoff
139 +    //groups defined in meta-data file
140  
141 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
142 +    
143 +    //every free atom (atom does not belong to rigid bodies) is an
144 +    //integrable object therefore the total number of integrable objects
145 +    //in the system is equal to the total number of atoms minus number of
146 +    //atoms belong to rigid body defined in meta-data file plus the number
147 +    //of rigid bodies defined in meta-data file
148 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 +      + nGlobalRigidBodies_;
150 +    
151 +    nGlobalMols_ = molStampIds_.size();
152 +    molToProcMap_.resize(nGlobalMols_);
153 +  }
154 +  
155    SimInfo::~SimInfo() {
156 <    std::map<int, Molecule*>::iterator i;
156 >    map<int, Molecule*>::iterator i;
157      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158        delete i->second;
159      }
160      molecules_.clear();
161        
154    delete stamps_;
162      delete sman_;
163      delete simParams_;
164      delete forceField_;
165    }
166  
160  int SimInfo::getNGlobalConstraints() {
161    int nGlobalConstraints;
162 #ifdef IS_MPI
163    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
164                  MPI_COMM_WORLD);    
165 #else
166    nGlobalConstraints =  nConstraints_;
167 #endif
168    return nGlobalConstraints;
169  }
167  
168    bool SimInfo::addMolecule(Molecule* mol) {
169      MoleculeIterator i;
170 <
170 >    
171      i = molecules_.find(mol->getGlobalIndex());
172      if (i == molecules_.end() ) {
173 <
174 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 <        
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176        nAtoms_ += mol->getNAtoms();
177        nBonds_ += mol->getNBonds();
178        nBends_ += mol->getNBends();
179        nTorsions_ += mol->getNTorsions();
180 +      nInversions_ += mol->getNInversions();
181        nRigidBodies_ += mol->getNRigidBodies();
182        nIntegrableObjects_ += mol->getNIntegrableObjects();
183        nCutoffGroups_ += mol->getNCutoffGroups();
184        nConstraints_ += mol->getNConstraintPairs();
185 <
186 <      addExcludePairs(mol);
187 <        
185 >      
186 >      addInteractionPairs(mol);
187 >      
188        return true;
189      } else {
190        return false;
191      }
192    }
193 <
193 >  
194    bool SimInfo::removeMolecule(Molecule* mol) {
195      MoleculeIterator i;
196      i = molecules_.find(mol->getGlobalIndex());
# Line 205 | Line 203 | namespace oopse {
203        nBonds_ -= mol->getNBonds();
204        nBends_ -= mol->getNBends();
205        nTorsions_ -= mol->getNTorsions();
206 +      nInversions_ -= mol->getNInversions();
207        nRigidBodies_ -= mol->getNRigidBodies();
208        nIntegrableObjects_ -= mol->getNIntegrableObjects();
209        nCutoffGroups_ -= mol->getNCutoffGroups();
210        nConstraints_ -= mol->getNConstraintPairs();
211  
212 <      removeExcludePairs(mol);
212 >      removeInteractionPairs(mol);
213        molecules_.erase(mol->getGlobalIndex());
214  
215        delete mol;
# Line 219 | Line 218 | namespace oopse {
218      } else {
219        return false;
220      }
222
223
221    }    
222  
223          
# Line 236 | Line 233 | namespace oopse {
233  
234  
235    void SimInfo::calcNdf() {
236 <    int ndf_local;
236 >    int ndf_local, nfq_local;
237      MoleculeIterator i;
238 <    std::vector<StuntDouble*>::iterator j;
238 >    vector<StuntDouble*>::iterator j;
239 >    vector<Atom*>::iterator k;
240 >
241      Molecule* mol;
242 <    StuntDouble* integrableObject;
242 >    StuntDouble* sd;
243 >    Atom* atom;
244  
245      ndf_local = 0;
246 +    nfq_local = 0;
247      
248      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
248      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
249           integrableObject = mol->nextIntegrableObject(j)) {
249  
250 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
251 +           sd = mol->nextIntegrableObject(j)) {
252 +
253          ndf_local += 3;
254  
255 <        if (integrableObject->isDirectional()) {
256 <          if (integrableObject->isLinear()) {
255 >        if (sd->isDirectional()) {
256 >          if (sd->isLinear()) {
257              ndf_local += 2;
258            } else {
259              ndf_local += 3;
260            }
261          }
262 <            
263 <      }//end for (integrableObject)
264 <    }// end for (mol)
262 >      }
263 >
264 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
265 >           atom = mol->nextFluctuatingCharge(k)) {
266 >        if (atom->isFluctuatingCharge()) {
267 >          nfq_local++;
268 >        }
269 >      }
270 >    }
271      
272 +    ndfLocal_ = ndf_local;
273 +
274      // n_constraints is local, so subtract them on each processor
275      ndf_local -= nConstraints_;
276  
277   #ifdef IS_MPI
278 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
278 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
279 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
280 >                              MPI::INT, MPI::SUM);
281   #else
282      ndf_ = ndf_local;
283 +    nGlobalFluctuatingCharges_ = nfq_local;
284   #endif
285  
286      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 276 | Line 289 | namespace oopse {
289  
290    }
291  
292 +  int SimInfo::getFdf() {
293 + #ifdef IS_MPI
294 +    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
295 + #else
296 +    fdf_ = fdf_local;
297 + #endif
298 +    return fdf_;
299 +  }
300 +  
301 +  unsigned int SimInfo::getNLocalCutoffGroups(){
302 +    int nLocalCutoffAtoms = 0;
303 +    Molecule* mol;
304 +    MoleculeIterator mi;
305 +    CutoffGroup* cg;
306 +    Molecule::CutoffGroupIterator ci;
307 +    
308 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
309 +      
310 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
311 +           cg = mol->nextCutoffGroup(ci)) {
312 +        nLocalCutoffAtoms += cg->getNumAtom();
313 +        
314 +      }        
315 +    }
316 +    
317 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
318 +  }
319 +    
320    void SimInfo::calcNdfRaw() {
321      int ndfRaw_local;
322  
323      MoleculeIterator i;
324 <    std::vector<StuntDouble*>::iterator j;
324 >    vector<StuntDouble*>::iterator j;
325      Molecule* mol;
326 <    StuntDouble* integrableObject;
326 >    StuntDouble* sd;
327  
328      // Raw degrees of freedom that we have to set
329      ndfRaw_local = 0;
330      
331      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
291      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
292           integrableObject = mol->nextIntegrableObject(j)) {
332  
333 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
334 +           sd = mol->nextIntegrableObject(j)) {
335 +
336          ndfRaw_local += 3;
337  
338 <        if (integrableObject->isDirectional()) {
339 <          if (integrableObject->isLinear()) {
338 >        if (sd->isDirectional()) {
339 >          if (sd->isLinear()) {
340              ndfRaw_local += 2;
341            } else {
342              ndfRaw_local += 3;
# Line 305 | Line 347 | namespace oopse {
347      }
348      
349   #ifdef IS_MPI
350 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
350 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
351   #else
352      ndfRaw_ = ndfRaw_local;
353   #endif
# Line 318 | Line 360 | namespace oopse {
360  
361  
362   #ifdef IS_MPI
363 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
363 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
364 >                              MPI::INT, MPI::SUM);
365   #else
366      ndfTrans_ = ndfTrans_local;
367   #endif
# Line 327 | Line 370 | namespace oopse {
370  
371    }
372  
373 <  void SimInfo::addExcludePairs(Molecule* mol) {
374 <    std::vector<Bond*>::iterator bondIter;
375 <    std::vector<Bend*>::iterator bendIter;
376 <    std::vector<Torsion*>::iterator torsionIter;
373 >  void SimInfo::addInteractionPairs(Molecule* mol) {
374 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
375 >    vector<Atom*>::iterator atomIter;
376 >    vector<Bond*>::iterator bondIter;
377 >    vector<Bend*>::iterator bendIter;
378 >    vector<Torsion*>::iterator torsionIter;
379 >    vector<Inversion*>::iterator inversionIter;
380 >    Atom* atom;
381      Bond* bond;
382      Bend* bend;
383      Torsion* torsion;
384 +    Inversion* inversion;
385      int a;
386      int b;
387      int c;
388      int d;
389 +
390 +    // atomGroups can be used to add special interaction maps between
391 +    // groups of atoms that are in two separate rigid bodies.
392 +    // However, most site-site interactions between two rigid bodies
393 +    // are probably not special, just the ones between the physically
394 +    // bonded atoms.  Interactions *within* a single rigid body should
395 +    // always be excluded.  These are done at the bottom of this
396 +    // function.
397 +
398 +    map<int, set<int> > atomGroups;
399 +    Molecule::RigidBodyIterator rbIter;
400 +    RigidBody* rb;
401 +    Molecule::IntegrableObjectIterator ii;
402 +    StuntDouble* sd;
403      
404 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
404 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
405 >         sd = mol->nextIntegrableObject(ii)) {
406 >      
407 >      if (sd->isRigidBody()) {
408 >        rb = static_cast<RigidBody*>(sd);
409 >        vector<Atom*> atoms = rb->getAtoms();
410 >        set<int> rigidAtoms;
411 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
412 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
413 >        }
414 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
415 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
416 >        }      
417 >      } else {
418 >        set<int> oneAtomSet;
419 >        oneAtomSet.insert(sd->getGlobalIndex());
420 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
421 >      }
422 >    }  
423 >
424 >          
425 >    for (bond= mol->beginBond(bondIter); bond != NULL;
426 >         bond = mol->nextBond(bondIter)) {
427 >
428        a = bond->getAtomA()->getGlobalIndex();
429 <      b = bond->getAtomB()->getGlobalIndex();        
430 <      exclude_.addPair(a, b);
429 >      b = bond->getAtomB()->getGlobalIndex();  
430 >
431 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
432 >        oneTwoInteractions_.addPair(a, b);
433 >      } else {
434 >        excludedInteractions_.addPair(a, b);
435 >      }
436      }
437  
438 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
438 >    for (bend= mol->beginBend(bendIter); bend != NULL;
439 >         bend = mol->nextBend(bendIter)) {
440 >
441        a = bend->getAtomA()->getGlobalIndex();
442        b = bend->getAtomB()->getGlobalIndex();        
443        c = bend->getAtomC()->getGlobalIndex();
444 <
445 <      exclude_.addPair(a, b);
446 <      exclude_.addPair(a, c);
447 <      exclude_.addPair(b, c);        
444 >      
445 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
446 >        oneTwoInteractions_.addPair(a, b);      
447 >        oneTwoInteractions_.addPair(b, c);
448 >      } else {
449 >        excludedInteractions_.addPair(a, b);
450 >        excludedInteractions_.addPair(b, c);
451 >      }
452 >
453 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
454 >        oneThreeInteractions_.addPair(a, c);      
455 >      } else {
456 >        excludedInteractions_.addPair(a, c);
457 >      }
458      }
459  
460 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
460 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
461 >         torsion = mol->nextTorsion(torsionIter)) {
462 >
463        a = torsion->getAtomA()->getGlobalIndex();
464        b = torsion->getAtomB()->getGlobalIndex();        
465        c = torsion->getAtomC()->getGlobalIndex();        
466 <      d = torsion->getAtomD()->getGlobalIndex();        
466 >      d = torsion->getAtomD()->getGlobalIndex();      
467  
468 <      exclude_.addPair(a, b);
469 <      exclude_.addPair(a, c);
470 <      exclude_.addPair(a, d);
471 <      exclude_.addPair(b, c);
472 <      exclude_.addPair(b, d);
473 <      exclude_.addPair(c, d);        
468 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
469 >        oneTwoInteractions_.addPair(a, b);      
470 >        oneTwoInteractions_.addPair(b, c);
471 >        oneTwoInteractions_.addPair(c, d);
472 >      } else {
473 >        excludedInteractions_.addPair(a, b);
474 >        excludedInteractions_.addPair(b, c);
475 >        excludedInteractions_.addPair(c, d);
476 >      }
477 >
478 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
479 >        oneThreeInteractions_.addPair(a, c);      
480 >        oneThreeInteractions_.addPair(b, d);      
481 >      } else {
482 >        excludedInteractions_.addPair(a, c);
483 >        excludedInteractions_.addPair(b, d);
484 >      }
485 >
486 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
487 >        oneFourInteractions_.addPair(a, d);      
488 >      } else {
489 >        excludedInteractions_.addPair(a, d);
490 >      }
491      }
492  
493 <    Molecule::RigidBodyIterator rbIter;
494 <    RigidBody* rb;
495 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
496 <      std::vector<Atom*> atoms = rb->getAtoms();
497 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
498 <        for (int j = i + 1; j < atoms.size(); ++j) {
493 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
494 >         inversion = mol->nextInversion(inversionIter)) {
495 >
496 >      a = inversion->getAtomA()->getGlobalIndex();
497 >      b = inversion->getAtomB()->getGlobalIndex();        
498 >      c = inversion->getAtomC()->getGlobalIndex();        
499 >      d = inversion->getAtomD()->getGlobalIndex();        
500 >
501 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
502 >        oneTwoInteractions_.addPair(a, b);      
503 >        oneTwoInteractions_.addPair(a, c);
504 >        oneTwoInteractions_.addPair(a, d);
505 >      } else {
506 >        excludedInteractions_.addPair(a, b);
507 >        excludedInteractions_.addPair(a, c);
508 >        excludedInteractions_.addPair(a, d);
509 >      }
510 >
511 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
512 >        oneThreeInteractions_.addPair(b, c);    
513 >        oneThreeInteractions_.addPair(b, d);    
514 >        oneThreeInteractions_.addPair(c, d);      
515 >      } else {
516 >        excludedInteractions_.addPair(b, c);
517 >        excludedInteractions_.addPair(b, d);
518 >        excludedInteractions_.addPair(c, d);
519 >      }
520 >    }
521 >
522 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
523 >         rb = mol->nextRigidBody(rbIter)) {
524 >      vector<Atom*> atoms = rb->getAtoms();
525 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
526 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
527            a = atoms[i]->getGlobalIndex();
528            b = atoms[j]->getGlobalIndex();
529 <          exclude_.addPair(a, b);
529 >          excludedInteractions_.addPair(a, b);
530          }
531        }
532      }        
533  
534    }
535  
536 <  void SimInfo::removeExcludePairs(Molecule* mol) {
537 <    std::vector<Bond*>::iterator bondIter;
538 <    std::vector<Bend*>::iterator bendIter;
539 <    std::vector<Torsion*>::iterator torsionIter;
536 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
537 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
538 >    vector<Bond*>::iterator bondIter;
539 >    vector<Bend*>::iterator bendIter;
540 >    vector<Torsion*>::iterator torsionIter;
541 >    vector<Inversion*>::iterator inversionIter;
542      Bond* bond;
543      Bend* bend;
544      Torsion* torsion;
545 +    Inversion* inversion;
546      int a;
547      int b;
548      int c;
549      int d;
550 +
551 +    map<int, set<int> > atomGroups;
552 +    Molecule::RigidBodyIterator rbIter;
553 +    RigidBody* rb;
554 +    Molecule::IntegrableObjectIterator ii;
555 +    StuntDouble* sd;
556      
557 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
557 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
558 >         sd = mol->nextIntegrableObject(ii)) {
559 >      
560 >      if (sd->isRigidBody()) {
561 >        rb = static_cast<RigidBody*>(sd);
562 >        vector<Atom*> atoms = rb->getAtoms();
563 >        set<int> rigidAtoms;
564 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
565 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
566 >        }
567 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
568 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
569 >        }      
570 >      } else {
571 >        set<int> oneAtomSet;
572 >        oneAtomSet.insert(sd->getGlobalIndex());
573 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
574 >      }
575 >    }  
576 >
577 >    for (bond= mol->beginBond(bondIter); bond != NULL;
578 >         bond = mol->nextBond(bondIter)) {
579 >      
580        a = bond->getAtomA()->getGlobalIndex();
581 <      b = bond->getAtomB()->getGlobalIndex();        
582 <      exclude_.removePair(a, b);
581 >      b = bond->getAtomB()->getGlobalIndex();  
582 >    
583 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
584 >        oneTwoInteractions_.removePair(a, b);
585 >      } else {
586 >        excludedInteractions_.removePair(a, b);
587 >      }
588      }
589  
590 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
590 >    for (bend= mol->beginBend(bendIter); bend != NULL;
591 >         bend = mol->nextBend(bendIter)) {
592 >
593        a = bend->getAtomA()->getGlobalIndex();
594        b = bend->getAtomB()->getGlobalIndex();        
595        c = bend->getAtomC()->getGlobalIndex();
596 +      
597 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
598 +        oneTwoInteractions_.removePair(a, b);      
599 +        oneTwoInteractions_.removePair(b, c);
600 +      } else {
601 +        excludedInteractions_.removePair(a, b);
602 +        excludedInteractions_.removePair(b, c);
603 +      }
604  
605 <      exclude_.removePair(a, b);
606 <      exclude_.removePair(a, c);
607 <      exclude_.removePair(b, c);        
605 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
606 >        oneThreeInteractions_.removePair(a, c);      
607 >      } else {
608 >        excludedInteractions_.removePair(a, c);
609 >      }
610      }
611  
612 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
612 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
613 >         torsion = mol->nextTorsion(torsionIter)) {
614 >
615        a = torsion->getAtomA()->getGlobalIndex();
616        b = torsion->getAtomB()->getGlobalIndex();        
617        c = torsion->getAtomC()->getGlobalIndex();        
618 <      d = torsion->getAtomD()->getGlobalIndex();        
618 >      d = torsion->getAtomD()->getGlobalIndex();      
619 >  
620 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
621 >        oneTwoInteractions_.removePair(a, b);      
622 >        oneTwoInteractions_.removePair(b, c);
623 >        oneTwoInteractions_.removePair(c, d);
624 >      } else {
625 >        excludedInteractions_.removePair(a, b);
626 >        excludedInteractions_.removePair(b, c);
627 >        excludedInteractions_.removePair(c, d);
628 >      }
629  
630 <      exclude_.removePair(a, b);
631 <      exclude_.removePair(a, c);
632 <      exclude_.removePair(a, d);
633 <      exclude_.removePair(b, c);
634 <      exclude_.removePair(b, d);
635 <      exclude_.removePair(c, d);        
630 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
631 >        oneThreeInteractions_.removePair(a, c);      
632 >        oneThreeInteractions_.removePair(b, d);      
633 >      } else {
634 >        excludedInteractions_.removePair(a, c);
635 >        excludedInteractions_.removePair(b, d);
636 >      }
637 >
638 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
639 >        oneFourInteractions_.removePair(a, d);      
640 >      } else {
641 >        excludedInteractions_.removePair(a, d);
642 >      }
643      }
644  
645 <    Molecule::RigidBodyIterator rbIter;
646 <    RigidBody* rb;
647 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
648 <      std::vector<Atom*> atoms = rb->getAtoms();
649 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
650 <        for (int j = i + 1; j < atoms.size(); ++j) {
645 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
646 >         inversion = mol->nextInversion(inversionIter)) {
647 >
648 >      a = inversion->getAtomA()->getGlobalIndex();
649 >      b = inversion->getAtomB()->getGlobalIndex();        
650 >      c = inversion->getAtomC()->getGlobalIndex();        
651 >      d = inversion->getAtomD()->getGlobalIndex();        
652 >
653 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
654 >        oneTwoInteractions_.removePair(a, b);      
655 >        oneTwoInteractions_.removePair(a, c);
656 >        oneTwoInteractions_.removePair(a, d);
657 >      } else {
658 >        excludedInteractions_.removePair(a, b);
659 >        excludedInteractions_.removePair(a, c);
660 >        excludedInteractions_.removePair(a, d);
661 >      }
662 >
663 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
664 >        oneThreeInteractions_.removePair(b, c);    
665 >        oneThreeInteractions_.removePair(b, d);    
666 >        oneThreeInteractions_.removePair(c, d);      
667 >      } else {
668 >        excludedInteractions_.removePair(b, c);
669 >        excludedInteractions_.removePair(b, d);
670 >        excludedInteractions_.removePair(c, d);
671 >      }
672 >    }
673 >
674 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
675 >         rb = mol->nextRigidBody(rbIter)) {
676 >      vector<Atom*> atoms = rb->getAtoms();
677 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
678 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
679            a = atoms[i]->getGlobalIndex();
680            b = atoms[j]->getGlobalIndex();
681 <          exclude_.removePair(a, b);
681 >          excludedInteractions_.removePair(a, b);
682          }
683        }
684      }        
685 <
685 >    
686    }
687 <
688 <
687 >  
688 >  
689    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
690      int curStampId;
691 <
691 >    
692      //index from 0
693      curStampId = moleculeStamps_.size();
694  
# Line 452 | Line 696 | namespace oopse {
696      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
697    }
698  
455  void SimInfo::update() {
699  
700 <    setupSimType();
701 <
702 < #ifdef IS_MPI
703 <    setupFortranParallel();
704 < #endif
705 <
706 <    setupFortranSim();
707 <
708 <    //setup fortran force field
466 <    /** @deprecate */    
467 <    int isError = 0;
468 <    
469 <    setupElectrostaticSummationMethod( isError );
470 <
471 <    if(isError){
472 <      sprintf( painCave.errMsg,
473 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
474 <      painCave.isFatal = 1;
475 <      simError();
476 <    }
477 <  
478 <    
479 <    setupCutoff();
480 <
700 >  /**
701 >   * update
702 >   *
703 >   *  Performs the global checks and variable settings after the
704 >   *  objects have been created.
705 >   *
706 >   */
707 >  void SimInfo::update() {  
708 >    setupSimVariables();
709      calcNdf();
710      calcNdfRaw();
711      calcNdfTrans();
484
485    fortranInitialized_ = true;
712    }
713 <
714 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
713 >  
714 >  /**
715 >   * getSimulatedAtomTypes
716 >   *
717 >   * Returns an STL set of AtomType* that are actually present in this
718 >   * simulation.  Must query all processors to assemble this information.
719 >   *
720 >   */
721 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
722      SimInfo::MoleculeIterator mi;
723      Molecule* mol;
724      Molecule::AtomIterator ai;
725      Atom* atom;
726 <    std::set<AtomType*> atomTypes;
727 <
726 >    set<AtomType*> atomTypes;
727 >    
728      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
729 <
730 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
729 >      for(atom = mol->beginAtom(ai); atom != NULL;
730 >          atom = mol->nextAtom(ai)) {
731          atomTypes.insert(atom->getAtomType());
732 <      }
733 <        
732 >      }      
733 >    }    
734 >    
735 > #ifdef IS_MPI
736 >
737 >    // loop over the found atom types on this processor, and add their
738 >    // numerical idents to a vector:
739 >    
740 >    vector<int> foundTypes;
741 >    set<AtomType*>::iterator i;
742 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
743 >      foundTypes.push_back( (*i)->getIdent() );
744 >
745 >    // count_local holds the number of found types on this processor
746 >    int count_local = foundTypes.size();
747 >
748 >    int nproc = MPI::COMM_WORLD.Get_size();
749 >
750 >    // we need arrays to hold the counts and displacement vectors for
751 >    // all processors
752 >    vector<int> counts(nproc, 0);
753 >    vector<int> disps(nproc, 0);
754 >
755 >    // fill the counts array
756 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
757 >                              1, MPI::INT);
758 >  
759 >    // use the processor counts to compute the displacement array
760 >    disps[0] = 0;    
761 >    int totalCount = counts[0];
762 >    for (int iproc = 1; iproc < nproc; iproc++) {
763 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
764 >      totalCount += counts[iproc];
765      }
766  
767 +    // we need a (possibly redundant) set of all found types:
768 +    vector<int> ftGlobal(totalCount);
769 +    
770 +    // now spray out the foundTypes to all the other processors:    
771 +    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
772 +                               &ftGlobal[0], &counts[0], &disps[0],
773 +                               MPI::INT);
774 +
775 +    vector<int>::iterator j;
776 +
777 +    // foundIdents is a stl set, so inserting an already found ident
778 +    // will have no effect.
779 +    set<int> foundIdents;
780 +
781 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
782 +      foundIdents.insert((*j));
783 +    
784 +    // now iterate over the foundIdents and get the actual atom types
785 +    // that correspond to these:
786 +    set<int>::iterator it;
787 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
788 +      atomTypes.insert( forceField_->getAtomType((*it)) );
789 +
790 + #endif
791 +
792      return atomTypes;        
793    }
794  
795 <  void SimInfo::setupSimType() {
796 <    std::set<AtomType*>::iterator i;
797 <    std::set<AtomType*> atomTypes;
798 <    atomTypes = getUniqueAtomTypes();
799 <    
800 <    int useLennardJones = 0;
801 <    int useElectrostatic = 0;
802 <    int useEAM = 0;
803 <    int useCharge = 0;
804 <    int useDirectional = 0;
805 <    int useDipole = 0;
806 <    int useGayBerne = 0;
807 <    int useSticky = 0;
808 <    int useStickyPower = 0;
809 <    int useShape = 0;
521 <    int useFLARB = 0; //it is not in AtomType yet
522 <    int useDirectionalAtom = 0;    
523 <    int useElectrostatics = 0;
524 <    //usePBC and useRF are from simParams
525 <    int usePBC = simParams_->getPBC();
795 >
796 >  int getGlobalCountOfType(AtomType* atype) {
797 >    /*
798 >    set<AtomType*> atypes = getSimulatedAtomTypes();
799 >    map<AtomType*, int> counts_;
800 >
801 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
802 >      for(atom = mol->beginAtom(ai); atom != NULL;
803 >          atom = mol->nextAtom(ai)) {
804 >        atom->getAtomType();
805 >      }      
806 >    }    
807 >    */
808 >    return 0;
809 >  }
810  
811 +  void SimInfo::setupSimVariables() {
812 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
813 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
814 +    // parameter is true
815 +    calcBoxDipole_ = false;
816 +    if ( simParams_->haveAccumulateBoxDipole() )
817 +      if ( simParams_->getAccumulateBoxDipole() ) {
818 +        calcBoxDipole_ = true;      
819 +      }
820 +    
821 +    set<AtomType*>::iterator i;
822 +    set<AtomType*> atomTypes;
823 +    atomTypes = getSimulatedAtomTypes();    
824 +    bool usesElectrostatic = false;
825 +    bool usesMetallic = false;
826 +    bool usesDirectional = false;
827 +    bool usesFluctuatingCharges =  false;
828      //loop over all of the atom types
829      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
830 <      useLennardJones |= (*i)->isLennardJones();
831 <      useElectrostatic |= (*i)->isElectrostatic();
832 <      useEAM |= (*i)->isEAM();
833 <      useCharge |= (*i)->isCharge();
533 <      useDirectional |= (*i)->isDirectional();
534 <      useDipole |= (*i)->isDipole();
535 <      useGayBerne |= (*i)->isGayBerne();
536 <      useSticky |= (*i)->isSticky();
537 <      useStickyPower |= (*i)->isStickyPower();
538 <      useShape |= (*i)->isShape();
830 >      usesElectrostatic |= (*i)->isElectrostatic();
831 >      usesMetallic |= (*i)->isMetal();
832 >      usesDirectional |= (*i)->isDirectional();
833 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
834      }
835  
836 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
837 <      useDirectionalAtom = 1;
838 <    }
839 <
840 <    if (useCharge || useDipole) {
841 <      useElectrostatics = 1;
842 <    }
843 <
844 < #ifdef IS_MPI    
550 <    int temp;
551 <
552 <    temp = usePBC;
553 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
554 <
555 <    temp = useDirectionalAtom;
556 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
557 <
558 <    temp = useLennardJones;
559 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
560 <
561 <    temp = useElectrostatics;
562 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
563 <
564 <    temp = useCharge;
565 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
566 <
567 <    temp = useDipole;
568 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
569 <
570 <    temp = useSticky;
571 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
572 <
573 <    temp = useStickyPower;
574 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
836 > #ifdef IS_MPI
837 >    bool temp;
838 >    temp = usesDirectional;
839 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
840 >                              MPI::LOR);
841 >        
842 >    temp = usesMetallic;
843 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
844 >                              MPI::LOR);
845      
846 <    temp = useGayBerne;
847 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
846 >    temp = usesElectrostatic;
847 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
848 >                              MPI::LOR);
849  
850 <    temp = useEAM;
851 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
850 >    temp = usesFluctuatingCharges;
851 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
852 >                              MPI::LOR);
853 > #else
854  
855 <    temp = useShape;
856 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
855 >    usesDirectionalAtoms_ = usesDirectional;
856 >    usesMetallicAtoms_ = usesMetallic;
857 >    usesElectrostaticAtoms_ = usesElectrostatic;
858 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
859  
585    temp = useFLARB;
586    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
587
860   #endif
861 <
862 <    fInfo_.SIM_uses_PBC = usePBC;    
863 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
864 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
593 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
594 <    fInfo_.SIM_uses_Charges = useCharge;
595 <    fInfo_.SIM_uses_Dipoles = useDipole;
596 <    fInfo_.SIM_uses_Sticky = useSticky;
597 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
598 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
599 <    fInfo_.SIM_uses_EAM = useEAM;
600 <    fInfo_.SIM_uses_Shapes = useShape;
601 <    fInfo_.SIM_uses_FLARB = useFLARB;
602 <
603 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
604 <
605 <      if (simParams_->haveDielectric()) {
606 <        fInfo_.dielect = simParams_->getDielectric();
607 <      } else {
608 <        sprintf(painCave.errMsg,
609 <                "SimSetup Error: No Dielectric constant was set.\n"
610 <                "\tYou are trying to use Reaction Field without"
611 <                "\tsetting a dielectric constant!\n");
612 <        painCave.isFatal = 1;
613 <        simError();
614 <      }
615 <        
616 <    } else {
617 <      fInfo_.dielect = 0.0;
618 <    }
619 <
861 >    
862 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
863 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
864 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
865    }
866  
622  void SimInfo::setupFortranSim() {
623    int isError;
624    int nExclude;
625    std::vector<int> fortranGlobalGroupMembership;
626    
627    nExclude = exclude_.getSize();
628    isError = 0;
867  
868 <    //globalGroupMembership_ is filled by SimCreator    
631 <    for (int i = 0; i < nGlobalAtoms_; i++) {
632 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
633 <    }
634 <
635 <    //calculate mass ratio of cutoff group
636 <    std::vector<double> mfact;
868 >  vector<int> SimInfo::getGlobalAtomIndices() {
869      SimInfo::MoleculeIterator mi;
870      Molecule* mol;
639    Molecule::CutoffGroupIterator ci;
640    CutoffGroup* cg;
871      Molecule::AtomIterator ai;
872      Atom* atom;
643    double totalMass;
873  
874 <    //to avoid memory reallocation, reserve enough space for mfact
646 <    mfact.reserve(getNCutoffGroups());
874 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
875      
876 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
877 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
878 <
879 <        totalMass = cg->getMass();
652 <        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
653 <          mfact.push_back(atom->getMass()/totalMass);
654 <        }
655 <
656 <      }      
657 <    }
658 <
659 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
660 <    std::vector<int> identArray;
661 <
662 <    //to avoid memory reallocation, reserve enough space identArray
663 <    identArray.reserve(getNAtoms());
664 <    
665 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
666 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
667 <        identArray.push_back(atom->getIdent());
876 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
877 >      
878 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
879 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
880        }
669    }    
670
671    //fill molMembershipArray
672    //molMembershipArray is filled by SimCreator    
673    std::vector<int> molMembershipArray(nGlobalAtoms_);
674    for (int i = 0; i < nGlobalAtoms_; i++) {
675      molMembershipArray[i] = globalMolMembership_[i] + 1;
881      }
882 <    
678 <    //setup fortran simulation
679 <    int nGlobalExcludes = 0;
680 <    int* globalExcludes = NULL;
681 <    int* excludeList = exclude_.getExcludeList();
682 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
683 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
684 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
685 <
686 <    if( isError ){
687 <
688 <      sprintf( painCave.errMsg,
689 <               "There was an error setting the simulation information in fortran.\n" );
690 <      painCave.isFatal = 1;
691 <      painCave.severity = OOPSE_ERROR;
692 <      simError();
693 <    }
694 <
695 < #ifdef IS_MPI
696 <    sprintf( checkPointMsg,
697 <             "succesfully sent the simulation information to fortran.\n");
698 <    MPIcheckPoint();
699 < #endif // is_mpi
882 >    return GlobalAtomIndices;
883    }
884  
885  
886 < #ifdef IS_MPI
704 <  void SimInfo::setupFortranParallel() {
705 <    
706 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
707 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
708 <    std::vector<int> localToGlobalCutoffGroupIndex;
886 >  vector<int> SimInfo::getGlobalGroupIndices() {
887      SimInfo::MoleculeIterator mi;
710    Molecule::AtomIterator ai;
711    Molecule::CutoffGroupIterator ci;
888      Molecule* mol;
889 <    Atom* atom;
889 >    Molecule::CutoffGroupIterator ci;
890      CutoffGroup* cg;
715    mpiSimData parallelData;
716    int isError;
891  
892 +    vector<int> GlobalGroupIndices;
893 +    
894      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
895 <
896 <      //local index(index in DataStorge) of atom is important
897 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
898 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
899 <      }
900 <
725 <      //local index of cutoff group is trivial, it only depends on the order of travesing
726 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
727 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
895 >      
896 >      //local index of cutoff group is trivial, it only depends on the
897 >      //order of travesing
898 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
899 >           cg = mol->nextCutoffGroup(ci)) {
900 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
901        }        
729        
902      }
903 <
732 <    //fill up mpiSimData struct
733 <    parallelData.nMolGlobal = getNGlobalMolecules();
734 <    parallelData.nMolLocal = getNMolecules();
735 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
736 <    parallelData.nAtomsLocal = getNAtoms();
737 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
738 <    parallelData.nGroupsLocal = getNCutoffGroups();
739 <    parallelData.myNode = worldRank;
740 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
741 <
742 <    //pass mpiSimData struct and index arrays to fortran
743 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
744 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
745 <                    &localToGlobalCutoffGroupIndex[0], &isError);
746 <
747 <    if (isError) {
748 <      sprintf(painCave.errMsg,
749 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
750 <      painCave.isFatal = 1;
751 <      simError();
752 <    }
753 <
754 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
755 <    MPIcheckPoint();
756 <
757 <
903 >    return GlobalGroupIndices;
904    }
905  
760 #endif
906  
907 <  double SimInfo::calcMaxCutoffRadius() {
907 >  void SimInfo::prepareTopology() {
908  
909 +    //calculate mass ratio of cutoff group
910 +    SimInfo::MoleculeIterator mi;
911 +    Molecule* mol;
912 +    Molecule::CutoffGroupIterator ci;
913 +    CutoffGroup* cg;
914 +    Molecule::AtomIterator ai;
915 +    Atom* atom;
916 +    RealType totalMass;
917  
918 <    std::set<AtomType*> atomTypes;
919 <    std::set<AtomType*>::iterator i;
920 <    std::vector<double> cutoffRadius;
918 >    /**
919 >     * The mass factor is the relative mass of an atom to the total
920 >     * mass of the cutoff group it belongs to.  By default, all atoms
921 >     * are their own cutoff groups, and therefore have mass factors of
922 >     * 1.  We need some special handling for massless atoms, which
923 >     * will be treated as carrying the entire mass of the cutoff
924 >     * group.
925 >     */
926 >    massFactors_.clear();
927 >    massFactors_.resize(getNAtoms(), 1.0);
928 >    
929 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
930 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
931 >           cg = mol->nextCutoffGroup(ci)) {
932  
933 <    //get the unique atom types
934 <    atomTypes = getUniqueAtomTypes();
935 <
936 <    //query the max cutoff radius among these atom types
937 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
938 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
933 >        totalMass = cg->getMass();
934 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
935 >          // Check for massless groups - set mfact to 1 if true
936 >          if (totalMass != 0)
937 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
938 >          else
939 >            massFactors_[atom->getLocalIndex()] = 1.0;
940 >        }
941 >      }      
942      }
943  
944 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
778 < #ifdef IS_MPI
779 <    //pick the max cutoff radius among the processors
780 < #endif
944 >    // Build the identArray_ and regions_
945  
946 <    return maxCutoffRadius;
947 <  }
948 <
949 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
950 <    
951 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
952 <        
953 <      if (!simParams_->haveRcut()){
954 <        sprintf(painCave.errMsg,
955 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
792 <                "\tOOPSE will use a default value of 15.0 angstroms"
793 <                "\tfor the cutoffRadius.\n");
794 <        painCave.isFatal = 0;
795 <        simError();
796 <        rcut = 15.0;
797 <      } else{
798 <        rcut = simParams_->getRcut();
799 <      }
800 <
801 <      if (!simParams_->haveRsw()){
802 <        sprintf(painCave.errMsg,
803 <                "SimCreator Warning: No value was set for switchingRadius.\n"
804 <                "\tOOPSE will use a default value of\n"
805 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
806 <        painCave.isFatal = 0;
807 <        simError();
808 <        rsw = 0.95 * rcut;
809 <      } else{
810 <        rsw = simParams_->getRsw();
946 >    identArray_.clear();
947 >    identArray_.reserve(getNAtoms());  
948 >    regions_.clear();
949 >    regions_.reserve(getNAtoms());
950 >
951 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
952 >      int reg = mol->getRegion();      
953 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
954 >        identArray_.push_back(atom->getIdent());
955 >        regions_.push_back(reg);
956        }
957 <
958 <    } else {
959 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
815 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
816 <        
817 <      if (simParams_->haveRcut()) {
818 <        rcut = simParams_->getRcut();
819 <      } else {
820 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
821 <        rcut = calcMaxCutoffRadius();
822 <      }
823 <
824 <      if (simParams_->haveRsw()) {
825 <        rsw  = simParams_->getRsw();
826 <      } else {
827 <        rsw = rcut;
828 <      }
829 <    
830 <    }
957 >    }    
958 >      
959 >    topologyDone_ = true;
960    }
961  
833  void SimInfo::setupCutoff() {    
834    getCutoff(rcut_, rsw_);    
835    double rnblist = rcut_ + 1; // skin of neighbor list
836
837    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
838    
839    int cp =  TRADITIONAL_CUTOFF_POLICY;
840    if (simParams_->haveCutoffPolicy()) {
841      std::string myPolicy = simParams_->getCutoffPolicy();
842      if (myPolicy == "MIX") {
843        cp = MIX_CUTOFF_POLICY;
844      } else {
845        if (myPolicy == "MAX") {
846          cp = MAX_CUTOFF_POLICY;
847        } else {
848          if (myPolicy == "TRADITIONAL") {            
849            cp = TRADITIONAL_CUTOFF_POLICY;
850          } else {
851            // throw error        
852            sprintf( painCave.errMsg,
853                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
854            painCave.isFatal = 1;
855            simError();
856          }    
857        }          
858      }
859    }
860    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
861    // also send cutoff notification to electrostatics
862    setElectrostaticCutoffRadius(&rcut_);
863  }
864
865  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
866    
867    int errorOut;
868    int esm =  NONE;
869    double alphaVal;
870    double dielectric;
871
872    errorOut = isError;
873    alphaVal = simParams_->getDampingAlpha();
874    dielectric = simParams_->getDielectric();
875
876    if (simParams_->haveElectrostaticSummationMethod()) {
877      std::string myMethod = simParams_->getElectrostaticSummationMethod();
878      if (myMethod == "NONE") {
879        esm = NONE;
880      } else {
881        if (myMethod == "UNDAMPED_WOLF") {
882          esm = UNDAMPED_WOLF;
883        } else {
884          if (myMethod == "DAMPED_WOLF") {            
885            esm = DAMPED_WOLF;
886            if (!simParams_->haveDampingAlpha()) {
887              //throw error
888              sprintf( painCave.errMsg,
889                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal);
890              painCave.isFatal = 0;
891              simError();
892            }
893          } else {
894            if (myMethod == "REACTION_FIELD") {
895              esm = REACTION_FIELD;
896            } else {
897              // throw error        
898              sprintf( painCave.errMsg,
899                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
900              painCave.isFatal = 1;
901              simError();
902            }    
903          }          
904        }
905      }
906    }
907    // let's pass some summation method variables to fortran
908    setElectrostaticSummationMethod( &esm );
909    setDampedWolfAlpha( &alphaVal );
910    setReactionFieldDielectric( &dielectric );
911    initFortranFF( &esm, &errorOut );
912  }
913
962    void SimInfo::addProperty(GenericData* genData) {
963      properties_.addProperty(genData);  
964    }
965  
966 <  void SimInfo::removeProperty(const std::string& propName) {
966 >  void SimInfo::removeProperty(const string& propName) {
967      properties_.removeProperty(propName);  
968    }
969  
# Line 923 | Line 971 | namespace oopse {
971      properties_.clearProperties();
972    }
973  
974 <  std::vector<std::string> SimInfo::getPropertyNames() {
974 >  vector<string> SimInfo::getPropertyNames() {
975      return properties_.getPropertyNames();  
976    }
977        
978 <  std::vector<GenericData*> SimInfo::getProperties() {
978 >  vector<GenericData*> SimInfo::getProperties() {
979      return properties_.getProperties();
980    }
981  
982 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
982 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
983      return properties_.getPropertyByName(propName);
984    }
985  
# Line 945 | Line 993 | namespace oopse {
993      Molecule* mol;
994      RigidBody* rb;
995      Atom* atom;
996 +    CutoffGroup* cg;
997      SimInfo::MoleculeIterator mi;
998      Molecule::RigidBodyIterator rbIter;
999 <    Molecule::AtomIterator atomIter;;
999 >    Molecule::AtomIterator atomIter;
1000 >    Molecule::CutoffGroupIterator cgIter;
1001  
1002      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1003          
1004 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1004 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
1005 >           atom = mol->nextAtom(atomIter)) {
1006          atom->setSnapshotManager(sman_);
1007        }
1008          
1009 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1009 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1010 >           rb = mol->nextRigidBody(rbIter)) {
1011          rb->setSnapshotManager(sman_);
1012        }
1013 +
1014 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1015 +           cg = mol->nextCutoffGroup(cgIter)) {
1016 +        cg->setSnapshotManager(sman_);
1017 +      }
1018      }    
1019      
1020    }
1021  
965  Vector3d SimInfo::getComVel(){
966    SimInfo::MoleculeIterator i;
967    Molecule* mol;
1022  
1023 <    Vector3d comVel(0.0);
970 <    double totalMass = 0.0;
971 <    
972 <
973 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
974 <      double mass = mol->getMass();
975 <      totalMass += mass;
976 <      comVel += mass * mol->getComVel();
977 <    }  
1023 >  ostream& operator <<(ostream& o, SimInfo& info) {
1024  
979 #ifdef IS_MPI
980    double tmpMass = totalMass;
981    Vector3d tmpComVel(comVel);    
982    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
983    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
984 #endif
985
986    comVel /= totalMass;
987
988    return comVel;
989  }
990
991  Vector3d SimInfo::getCom(){
992    SimInfo::MoleculeIterator i;
993    Molecule* mol;
994
995    Vector3d com(0.0);
996    double totalMass = 0.0;
997    
998    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
999      double mass = mol->getMass();
1000      totalMass += mass;
1001      com += mass * mol->getCom();
1002    }  
1003
1004 #ifdef IS_MPI
1005    double tmpMass = totalMass;
1006    Vector3d tmpCom(com);    
1007    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1008    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1009 #endif
1010
1011    com /= totalMass;
1012
1013    return com;
1014
1015  }        
1016
1017  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1018
1025      return o;
1026    }
1027    
1028 <  
1029 <   /*
1030 <   Returns center of mass and center of mass velocity in one function call.
1031 <   */
1032 <  
1033 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1034 <      SimInfo::MoleculeIterator i;
1035 <      Molecule* mol;
1036 <      
1037 <    
1038 <      double totalMass = 0.0;
1039 <    
1028 >  
1029 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1030 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1031 >      sprintf(painCave.errMsg,
1032 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1033 >              "\tindex exceeds number of known objects!\n");
1034 >      painCave.isFatal = 1;
1035 >      simError();
1036 >      return NULL;
1037 >    } else
1038 >      return IOIndexToIntegrableObject.at(index);
1039 >  }
1040 >  
1041 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1042 >    IOIndexToIntegrableObject= v;
1043 >  }
1044  
1045 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1046 <         double mass = mol->getMass();
1037 <         totalMass += mass;
1038 <         com += mass * mol->getCom();
1039 <         comVel += mass * mol->getComVel();          
1040 <      }  
1041 <      
1045 >  int SimInfo::getNGlobalConstraints() {
1046 >    int nGlobalConstraints;
1047   #ifdef IS_MPI
1048 <      double tmpMass = totalMass;
1049 <      Vector3d tmpCom(com);  
1050 <      Vector3d tmpComVel(comVel);
1051 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1047 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1048 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1048 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1049 >                              MPI::INT, MPI::SUM);
1050 > #else
1051 >    nGlobalConstraints =  nConstraints_;
1052   #endif
1053 <      
1054 <      com /= totalMass;
1052 <      comVel /= totalMass;
1053 <   }        
1054 <  
1055 <   /*
1056 <   Return intertia tensor for entire system and angular momentum Vector.
1053 >    return nGlobalConstraints;
1054 >  }
1055  
1056 + }//end namespace OpenMD
1057  
1059       [  Ixx -Ixy  -Ixz ]
1060  J =| -Iyx  Iyy  -Iyz |
1061       [ -Izx -Iyz   Izz ]
1062    */
1063
1064   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1065      
1066
1067      double xx = 0.0;
1068      double yy = 0.0;
1069      double zz = 0.0;
1070      double xy = 0.0;
1071      double xz = 0.0;
1072      double yz = 0.0;
1073      Vector3d com(0.0);
1074      Vector3d comVel(0.0);
1075      
1076      getComAll(com, comVel);
1077      
1078      SimInfo::MoleculeIterator i;
1079      Molecule* mol;
1080      
1081      Vector3d thisq(0.0);
1082      Vector3d thisv(0.0);
1083
1084      double thisMass = 0.0;
1085    
1086      
1087      
1088  
1089      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1090        
1091         thisq = mol->getCom()-com;
1092         thisv = mol->getComVel()-comVel;
1093         thisMass = mol->getMass();
1094         // Compute moment of intertia coefficients.
1095         xx += thisq[0]*thisq[0]*thisMass;
1096         yy += thisq[1]*thisq[1]*thisMass;
1097         zz += thisq[2]*thisq[2]*thisMass;
1098        
1099         // compute products of intertia
1100         xy += thisq[0]*thisq[1]*thisMass;
1101         xz += thisq[0]*thisq[2]*thisMass;
1102         yz += thisq[1]*thisq[2]*thisMass;
1103            
1104         angularMomentum += cross( thisq, thisv ) * thisMass;
1105            
1106      }  
1107      
1108      
1109      inertiaTensor(0,0) = yy + zz;
1110      inertiaTensor(0,1) = -xy;
1111      inertiaTensor(0,2) = -xz;
1112      inertiaTensor(1,0) = -xy;
1113      inertiaTensor(1,1) = xx + zz;
1114      inertiaTensor(1,2) = -yz;
1115      inertiaTensor(2,0) = -xz;
1116      inertiaTensor(2,1) = -yz;
1117      inertiaTensor(2,2) = xx + yy;
1118      
1119 #ifdef IS_MPI
1120      Mat3x3d tmpI(inertiaTensor);
1121      Vector3d tmpAngMom;
1122      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1123      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1124 #endif
1125              
1126      return;
1127   }
1128
1129   //Returns the angular momentum of the system
1130   Vector3d SimInfo::getAngularMomentum(){
1131      
1132      Vector3d com(0.0);
1133      Vector3d comVel(0.0);
1134      Vector3d angularMomentum(0.0);
1135      
1136      getComAll(com,comVel);
1137      
1138      SimInfo::MoleculeIterator i;
1139      Molecule* mol;
1140      
1141      Vector3d thisr(0.0);
1142      Vector3d thisp(0.0);
1143      
1144      double thisMass;
1145      
1146      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1147        thisMass = mol->getMass();
1148        thisr = mol->getCom()-com;
1149        thisp = (mol->getComVel()-comVel)*thisMass;
1150        
1151        angularMomentum += cross( thisr, thisp );
1152        
1153      }  
1154      
1155 #ifdef IS_MPI
1156      Vector3d tmpAngMom;
1157      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1158 #endif
1159      
1160      return angularMomentum;
1161   }
1162  
1163  
1164 }//end namespace oopse
1165

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 610 by chrisfen, Sun Sep 18 20:45:38 2005 UTC vs.
Revision 1930 by gezelter, Mon Aug 19 13:51:04 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines