ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 1940 by gezelter, Fri Nov 1 19:31:41 2013 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file SimInfo.cpp
45 > * @author    tlin
46 > * @date  11/02/2004
47 > * @version 1.0
48 > */
49  
5 #include <iostream>
6 using namespace std;
7
8 #include "SimInfo.hpp"
9 #define __C
10 #include "fSimulation.h"
11 #include "simError.h"
12
13 #include "fortranWrappers.hpp"
14
15 #include "MatVec3.h"
16
50   #ifdef IS_MPI
51 < #include "mpiSimulation.hpp"
51 > #include <mpi.h>
52   #endif
53 + #include <algorithm>
54 + #include <set>
55 + #include <map>
56  
57 < inline double roundMe( double x ){
58 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
59 < }
60 <          
61 < inline double min( double a, double b ){
62 <  return (a < b ) ? a : b;
63 < }
57 > #include "brains/SimInfo.hpp"
58 > #include "math/Vector3.hpp"
59 > #include "primitives/Molecule.hpp"
60 > #include "primitives/StuntDouble.hpp"
61 > #include "utils/MemoryUtils.hpp"
62 > #include "utils/simError.h"
63 > #include "selection/SelectionManager.hpp"
64 > #include "io/ForceFieldOptions.hpp"
65 > #include "brains/ForceField.hpp"
66 > #include "nonbonded/SwitchingFunction.hpp"
67  
68 < SimInfo* currentInfo;
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      if ( (*i)->haveRegion() ) {        
95 >        molStamp->setRegion( (*i)->getRegion() );
96 >      } else {
97 >        // set the region to a disallowed value:
98 >        molStamp->setRegion( -1 );
99 >      }
100  
101 < SimInfo::SimInfo(){
101 >      nMolWithSameStamp = (*i)->getNMol();
102 >      
103 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
104 >      
105 >      //calculate atoms in molecules
106 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
107 >      
108 >      //calculate atoms in cutoff groups
109 >      int nAtomsInGroups = 0;
110 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
111 >      
112 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
113 >        cgStamp = molStamp->getCutoffGroupStamp(j);
114 >        nAtomsInGroups += cgStamp->getNMembers();
115 >      }
116 >      
117 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
118 >      
119 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
120 >      
121 >      //calculate atoms in rigid bodies
122 >      int nAtomsInRigidBodies = 0;
123 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
124 >      
125 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
126 >        rbStamp = molStamp->getRigidBodyStamp(j);
127 >        nAtomsInRigidBodies += rbStamp->getNMembers();
128 >      }
129 >      
130 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
131 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
132 >      
133 >    }
134 >    
135 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
136 >    //group therefore the total number of cutoff groups in the system is
137 >    //equal to the total number of atoms minus number of atoms belong to
138 >    //cutoff group defined in meta-data file plus the number of cutoff
139 >    //groups defined in meta-data file
140  
141 <  n_constraints = 0;
142 <  nZconstraints = 0;
143 <  n_oriented = 0;
144 <  n_dipoles = 0;
145 <  ndf = 0;
146 <  ndfRaw = 0;
147 <  nZconstraints = 0;
148 <  the_integrator = NULL;
149 <  setTemp = 0;
150 <  thermalTime = 0.0;
151 <  currentTime = 0.0;
152 <  rCut = 0.0;
153 <  rSw = 0.0;
46 <
47 <  haveRcut = 0;
48 <  haveRsw = 0;
49 <  boxIsInit = 0;
141 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
142 >    
143 >    //every free atom (atom does not belong to rigid bodies) is an
144 >    //integrable object therefore the total number of integrable objects
145 >    //in the system is equal to the total number of atoms minus number of
146 >    //atoms belong to rigid body defined in meta-data file plus the number
147 >    //of rigid bodies defined in meta-data file
148 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 >      + nGlobalRigidBodies_;
150 >    
151 >    nGlobalMols_ = molStampIds_.size();
152 >    molToProcMap_.resize(nGlobalMols_);
153 >  }
154    
155 <  resetTime = 1e99;
155 >  SimInfo::~SimInfo() {
156 >    map<int, Molecule*>::iterator i;
157 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158 >      delete i->second;
159 >    }
160 >    molecules_.clear();
161 >      
162 >    delete sman_;
163 >    delete simParams_;
164 >    delete forceField_;
165 >  }
166  
53  orthoRhombic = 0;
54  orthoTolerance = 1E-6;
55  useInitXSstate = true;
167  
168 <  usePBC = 0;
169 <  useLJ = 0;
170 <  useSticky = 0;
171 <  useCharges = 0;
172 <  useDipoles = 0;
173 <  useReactionField = 0;
174 <  useGB = 0;
175 <  useEAM = 0;
176 <  useSolidThermInt = 0;
177 <  useLiquidThermInt = 0;
168 >  bool SimInfo::addMolecule(Molecule* mol) {
169 >    MoleculeIterator i;
170 >    
171 >    i = molecules_.find(mol->getGlobalIndex());
172 >    if (i == molecules_.end() ) {
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176 >      nAtoms_ += mol->getNAtoms();
177 >      nBonds_ += mol->getNBonds();
178 >      nBends_ += mol->getNBends();
179 >      nTorsions_ += mol->getNTorsions();
180 >      nInversions_ += mol->getNInversions();
181 >      nRigidBodies_ += mol->getNRigidBodies();
182 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
183 >      nCutoffGroups_ += mol->getNCutoffGroups();
184 >      nConstraints_ += mol->getNConstraintPairs();
185 >      
186 >      addInteractionPairs(mol);
187 >      
188 >      return true;
189 >    } else {
190 >      return false;
191 >    }
192 >  }
193 >  
194 >  bool SimInfo::removeMolecule(Molecule* mol) {
195 >    MoleculeIterator i;
196 >    i = molecules_.find(mol->getGlobalIndex());
197  
198 <  haveCutoffGroups = false;
198 >    if (i != molecules_.end() ) {
199  
200 <  excludes = Exclude::Instance();
200 >      assert(mol == i->second);
201 >        
202 >      nAtoms_ -= mol->getNAtoms();
203 >      nBonds_ -= mol->getNBonds();
204 >      nBends_ -= mol->getNBends();
205 >      nTorsions_ -= mol->getNTorsions();
206 >      nInversions_ -= mol->getNInversions();
207 >      nRigidBodies_ -= mol->getNRigidBodies();
208 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
209 >      nCutoffGroups_ -= mol->getNCutoffGroups();
210 >      nConstraints_ -= mol->getNConstraintPairs();
211  
212 <  myConfiguration = new SimState();
212 >      removeInteractionPairs(mol);
213 >      molecules_.erase(mol->getGlobalIndex());
214  
215 <  has_minimizer = false;
216 <  the_minimizer =NULL;
215 >      delete mol;
216 >        
217 >      return true;
218 >    } else {
219 >      return false;
220 >    }
221 >  }    
222  
223 <  ngroup = 0;
223 >        
224 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
225 >    i = molecules_.begin();
226 >    return i == molecules_.end() ? NULL : i->second;
227 >  }    
228  
229 <  wrapMeSimInfo( this );
230 < }
229 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
230 >    ++i;
231 >    return i == molecules_.end() ? NULL : i->second;    
232 >  }
233  
234  
235 < SimInfo::~SimInfo(){
235 >  void SimInfo::calcNdf() {
236 >    int ndf_local, nfq_local;
237 >    MoleculeIterator i;
238 >    vector<StuntDouble*>::iterator j;
239 >    vector<Atom*>::iterator k;
240  
241 <  delete myConfiguration;
241 >    Molecule* mol;
242 >    StuntDouble* sd;
243 >    Atom* atom;
244  
245 <  map<string, GenericData*>::iterator i;
246 <  
247 <  for(i = properties.begin(); i != properties.end(); i++)
248 <    delete (*i).second;
245 >    ndf_local = 0;
246 >    nfq_local = 0;
247 >    
248 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
249  
250 < }
250 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
251 >           sd = mol->nextIntegrableObject(j)) {
252  
253 < void SimInfo::setBox(double newBox[3]) {
95 <  
96 <  int i, j;
97 <  double tempMat[3][3];
253 >        ndf_local += 3;
254  
255 <  for(i=0; i<3; i++)
256 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
255 >        if (sd->isDirectional()) {
256 >          if (sd->isLinear()) {
257 >            ndf_local += 2;
258 >          } else {
259 >            ndf_local += 3;
260 >          }
261 >        }
262 >      }
263  
264 <  tempMat[0][0] = newBox[0];
265 <  tempMat[1][1] = newBox[1];
266 <  tempMat[2][2] = newBox[2];
264 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
265 >           atom = mol->nextFluctuatingCharge(k)) {
266 >        if (atom->isFluctuatingCharge()) {
267 >          nfq_local++;
268 >        }
269 >      }
270 >    }
271 >    
272 >    ndfLocal_ = ndf_local;
273  
274 <  setBoxM( tempMat );
274 >    // n_constraints is local, so subtract them on each processor
275 >    ndf_local -= nConstraints_;
276  
277 < }
277 > #ifdef IS_MPI
278 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
279 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
280 >                              MPI::INT, MPI::SUM);
281 > #else
282 >    ndf_ = ndf_local;
283 >    nGlobalFluctuatingCharges_ = nfq_local;
284 > #endif
285  
286 < void SimInfo::setBoxM( double theBox[3][3] ){
287 <  
288 <  int i, j;
113 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
114 <                         // ordering in the array is as follows:
115 <                         // [ 0 3 6 ]
116 <                         // [ 1 4 7 ]
117 <                         // [ 2 5 8 ]
118 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
286 >    // nZconstraints_ is global, as are the 3 COM translations for the
287 >    // entire system:
288 >    ndf_ = ndf_ - 3 - nZconstraint_;
289  
290 <  if( !boxIsInit ) boxIsInit = 1;
290 >  }
291  
292 <  for(i=0; i < 3; i++)
293 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
292 >  int SimInfo::getFdf() {
293 > #ifdef IS_MPI
294 >    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
295 > #else
296 >    fdf_ = fdf_local;
297 > #endif
298 >    return fdf_;
299 >  }
300    
301 <  calcBoxL();
302 <  calcHmatInv();
303 <
304 <  for(i=0; i < 3; i++) {
305 <    for (j=0; j < 3; j++) {
306 <      FortranHmat[3*j + i] = Hmat[i][j];
307 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
301 >  unsigned int SimInfo::getNLocalCutoffGroups(){
302 >    int nLocalCutoffAtoms = 0;
303 >    Molecule* mol;
304 >    MoleculeIterator mi;
305 >    CutoffGroup* cg;
306 >    Molecule::CutoffGroupIterator ci;
307 >    
308 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
309 >      
310 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
311 >           cg = mol->nextCutoffGroup(ci)) {
312 >        nLocalCutoffAtoms += cg->getNumAtom();
313 >        
314 >      }        
315      }
316 +    
317 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
318    }
319 +    
320 +  void SimInfo::calcNdfRaw() {
321 +    int ndfRaw_local;
322  
323 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
324 <
325 < }
326 <
139 <
140 < void SimInfo::getBoxM (double theBox[3][3]) {
141 <
142 <  int i, j;
143 <  for(i=0; i<3; i++)
144 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
145 < }
323 >    MoleculeIterator i;
324 >    vector<StuntDouble*>::iterator j;
325 >    Molecule* mol;
326 >    StuntDouble* sd;
327  
328 +    // Raw degrees of freedom that we have to set
329 +    ndfRaw_local = 0;
330 +    
331 +    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
332  
333 < void SimInfo::scaleBox(double scale) {
334 <  double theBox[3][3];
150 <  int i, j;
333 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
334 >           sd = mol->nextIntegrableObject(j)) {
335  
336 <  // cerr << "Scaling box by " << scale << "\n";
336 >        ndfRaw_local += 3;
337  
338 <  for(i=0; i<3; i++)
339 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
340 <
341 <  setBoxM(theBox);
342 <
343 < }
344 <
345 < void SimInfo::calcHmatInv( void ) {
162 <  
163 <  int oldOrtho;
164 <  int i,j;
165 <  double smallDiag;
166 <  double tol;
167 <  double sanity[3][3];
168 <
169 <  invertMat3( Hmat, HmatInv );
170 <
171 <  // check to see if Hmat is orthorhombic
172 <  
173 <  oldOrtho = orthoRhombic;
174 <
175 <  smallDiag = fabs(Hmat[0][0]);
176 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
179 <
180 <  orthoRhombic = 1;
181 <  
182 <  for (i = 0; i < 3; i++ ) {
183 <    for (j = 0 ; j < 3; j++) {
184 <      if (i != j) {
185 <        if (orthoRhombic) {
186 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
187 <        }        
338 >        if (sd->isDirectional()) {
339 >          if (sd->isLinear()) {
340 >            ndfRaw_local += 2;
341 >          } else {
342 >            ndfRaw_local += 3;
343 >          }
344 >        }
345 >            
346        }
347      }
190  }
191
192  if( oldOrtho != orthoRhombic ){
348      
349 <    if( orthoRhombic ) {
350 <      sprintf( painCave.errMsg,
351 <               "OOPSE is switching from the default Non-Orthorhombic\n"
352 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
353 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
349 > #ifdef IS_MPI
350 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
351 > #else
352 >    ndfRaw_ = ndfRaw_local;
353 > #endif
354    }
218 }
355  
356 < void SimInfo::calcBoxL( void ){
356 >  void SimInfo::calcNdfTrans() {
357 >    int ndfTrans_local;
358  
359 <  double dx, dy, dz, dsq;
359 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
360  
224  // boxVol = Determinant of Hmat
361  
362 <  boxVol = matDet3( Hmat );
362 > #ifdef IS_MPI
363 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
364 >                              MPI::INT, MPI::SUM);
365 > #else
366 >    ndfTrans_ = ndfTrans_local;
367 > #endif
368  
369 <  // boxLx
370 <  
371 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
231 <  dsq = dx*dx + dy*dy + dz*dz;
232 <  boxL[0] = sqrt( dsq );
233 <  //maxCutoff = 0.5 * boxL[0];
369 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
370 >
371 >  }
372  
373 <  // boxLy
374 <  
375 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
376 <  dsq = dx*dx + dy*dy + dz*dz;
377 <  boxL[1] = sqrt( dsq );
378 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
373 >  void SimInfo::addInteractionPairs(Molecule* mol) {
374 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
375 >    vector<Bond*>::iterator bondIter;
376 >    vector<Bend*>::iterator bendIter;
377 >    vector<Torsion*>::iterator torsionIter;
378 >    vector<Inversion*>::iterator inversionIter;
379 >    Bond* bond;
380 >    Bend* bend;
381 >    Torsion* torsion;
382 >    Inversion* inversion;
383 >    int a;
384 >    int b;
385 >    int c;
386 >    int d;
387  
388 +    // atomGroups can be used to add special interaction maps between
389 +    // groups of atoms that are in two separate rigid bodies.
390 +    // However, most site-site interactions between two rigid bodies
391 +    // are probably not special, just the ones between the physically
392 +    // bonded atoms.  Interactions *within* a single rigid body should
393 +    // always be excluded.  These are done at the bottom of this
394 +    // function.
395  
396 <  // boxLz
397 <  
398 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
399 <  dsq = dx*dx + dy*dy + dz*dz;
400 <  boxL[2] = sqrt( dsq );
401 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
396 >    map<int, set<int> > atomGroups;
397 >    Molecule::RigidBodyIterator rbIter;
398 >    RigidBody* rb;
399 >    Molecule::IntegrableObjectIterator ii;
400 >    StuntDouble* sd;
401 >    
402 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
403 >         sd = mol->nextIntegrableObject(ii)) {
404 >      
405 >      if (sd->isRigidBody()) {
406 >        rb = static_cast<RigidBody*>(sd);
407 >        vector<Atom*> atoms = rb->getAtoms();
408 >        set<int> rigidAtoms;
409 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
410 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
411 >        }
412 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
413 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
414 >        }      
415 >      } else {
416 >        set<int> oneAtomSet;
417 >        oneAtomSet.insert(sd->getGlobalIndex());
418 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
419 >      }
420 >    }  
421  
422 <  //calculate the max cutoff
423 <  maxCutoff =  calcMaxCutOff();
424 <  
253 <  checkCutOffs();
422 >          
423 >    for (bond= mol->beginBond(bondIter); bond != NULL;
424 >         bond = mol->nextBond(bondIter)) {
425  
426 < }
426 >      a = bond->getAtomA()->getGlobalIndex();
427 >      b = bond->getAtomB()->getGlobalIndex();  
428  
429 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
430 +        oneTwoInteractions_.addPair(a, b);
431 +      } else {
432 +        excludedInteractions_.addPair(a, b);
433 +      }
434 +    }
435  
436 < double SimInfo::calcMaxCutOff(){
436 >    for (bend= mol->beginBend(bendIter); bend != NULL;
437 >         bend = mol->nextBend(bendIter)) {
438  
439 <  double ri[3], rj[3], rk[3];
440 <  double rij[3], rjk[3], rki[3];
441 <  double minDist;
439 >      a = bend->getAtomA()->getGlobalIndex();
440 >      b = bend->getAtomB()->getGlobalIndex();        
441 >      c = bend->getAtomC()->getGlobalIndex();
442 >      
443 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
444 >        oneTwoInteractions_.addPair(a, b);      
445 >        oneTwoInteractions_.addPair(b, c);
446 >      } else {
447 >        excludedInteractions_.addPair(a, b);
448 >        excludedInteractions_.addPair(b, c);
449 >      }
450  
451 <  ri[0] = Hmat[0][0];
452 <  ri[1] = Hmat[1][0];
453 <  ri[2] = Hmat[2][0];
451 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
452 >        oneThreeInteractions_.addPair(a, c);      
453 >      } else {
454 >        excludedInteractions_.addPair(a, c);
455 >      }
456 >    }
457  
458 <  rj[0] = Hmat[0][1];
459 <  rj[1] = Hmat[1][1];
270 <  rj[2] = Hmat[2][1];
458 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
459 >         torsion = mol->nextTorsion(torsionIter)) {
460  
461 <  rk[0] = Hmat[0][2];
462 <  rk[1] = Hmat[1][2];
463 <  rk[2] = Hmat[2][2];
464 <    
276 <  crossProduct3(ri, rj, rij);
277 <  distXY = dotProduct3(rk,rij) / norm3(rij);
461 >      a = torsion->getAtomA()->getGlobalIndex();
462 >      b = torsion->getAtomB()->getGlobalIndex();        
463 >      c = torsion->getAtomC()->getGlobalIndex();        
464 >      d = torsion->getAtomD()->getGlobalIndex();      
465  
466 <  crossProduct3(rj,rk, rjk);
467 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
466 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
467 >        oneTwoInteractions_.addPair(a, b);      
468 >        oneTwoInteractions_.addPair(b, c);
469 >        oneTwoInteractions_.addPair(c, d);
470 >      } else {
471 >        excludedInteractions_.addPair(a, b);
472 >        excludedInteractions_.addPair(b, c);
473 >        excludedInteractions_.addPair(c, d);
474 >      }
475  
476 <  crossProduct3(rk,ri, rki);
477 <  distZX = dotProduct3(rj,rki) / norm3(rki);
476 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
477 >        oneThreeInteractions_.addPair(a, c);      
478 >        oneThreeInteractions_.addPair(b, d);      
479 >      } else {
480 >        excludedInteractions_.addPair(a, c);
481 >        excludedInteractions_.addPair(b, d);
482 >      }
483  
484 <  minDist = min(min(distXY, distYZ), distZX);
485 <  return minDist/2;
486 <  
487 < }
484 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
485 >        oneFourInteractions_.addPair(a, d);      
486 >      } else {
487 >        excludedInteractions_.addPair(a, d);
488 >      }
489 >    }
490  
491 < void SimInfo::wrapVector( double thePos[3] ){
491 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
492 >         inversion = mol->nextInversion(inversionIter)) {
493  
494 <  int i;
495 <  double scaled[3];
494 >      a = inversion->getAtomA()->getGlobalIndex();
495 >      b = inversion->getAtomB()->getGlobalIndex();        
496 >      c = inversion->getAtomC()->getGlobalIndex();        
497 >      d = inversion->getAtomD()->getGlobalIndex();        
498  
499 <  if( !orthoRhombic ){
500 <    // calc the scaled coordinates.
501 <  
499 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
500 >        oneTwoInteractions_.addPair(a, b);      
501 >        oneTwoInteractions_.addPair(a, c);
502 >        oneTwoInteractions_.addPair(a, d);
503 >      } else {
504 >        excludedInteractions_.addPair(a, b);
505 >        excludedInteractions_.addPair(a, c);
506 >        excludedInteractions_.addPair(a, d);
507 >      }
508  
509 <    matVecMul3(HmatInv, thePos, scaled);
510 <    
511 <    for(i=0; i<3; i++)
512 <      scaled[i] -= roundMe(scaled[i]);
513 <    
514 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
515 <    
516 <    matVecMul3(Hmat, scaled, thePos);
509 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
510 >        oneThreeInteractions_.addPair(b, c);    
511 >        oneThreeInteractions_.addPair(b, d);    
512 >        oneThreeInteractions_.addPair(c, d);      
513 >      } else {
514 >        excludedInteractions_.addPair(b, c);
515 >        excludedInteractions_.addPair(b, d);
516 >        excludedInteractions_.addPair(c, d);
517 >      }
518 >    }
519  
520 <  }
521 <  else{
522 <    // calc the scaled coordinates.
523 <    
524 <    for(i=0; i<3; i++)
525 <      scaled[i] = thePos[i]*HmatInv[i][i];
526 <    
527 <    // wrap the scaled coordinates
528 <    
529 <    for(i=0; i<3; i++)
530 <      scaled[i] -= roundMe(scaled[i]);
319 <    
320 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
321 <    
322 <    for(i=0; i<3; i++)
323 <      thePos[i] = scaled[i]*Hmat[i][i];
324 <  }
325 <    
326 < }
520 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
521 >         rb = mol->nextRigidBody(rbIter)) {
522 >      vector<Atom*> atoms = rb->getAtoms();
523 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
524 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
525 >          a = atoms[i]->getGlobalIndex();
526 >          b = atoms[j]->getGlobalIndex();
527 >          excludedInteractions_.addPair(a, b);
528 >        }
529 >      }
530 >    }        
531  
328
329 int SimInfo::getNDF(){
330  int ndf_local;
331
332  ndf_local = 0;
333  
334  for(int i = 0; i < integrableObjects.size(); i++){
335    ndf_local += 3;
336    if (integrableObjects[i]->isDirectional()) {
337      if (integrableObjects[i]->isLinear())
338        ndf_local += 2;
339      else
340        ndf_local += 3;
341    }
532    }
533  
534 <  // n_constraints is local, so subtract them on each processor:
534 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
535 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
536 >    vector<Bond*>::iterator bondIter;
537 >    vector<Bend*>::iterator bendIter;
538 >    vector<Torsion*>::iterator torsionIter;
539 >    vector<Inversion*>::iterator inversionIter;
540 >    Bond* bond;
541 >    Bend* bend;
542 >    Torsion* torsion;
543 >    Inversion* inversion;
544 >    int a;
545 >    int b;
546 >    int c;
547 >    int d;
548  
549 <  ndf_local -= n_constraints;
549 >    map<int, set<int> > atomGroups;
550 >    Molecule::RigidBodyIterator rbIter;
551 >    RigidBody* rb;
552 >    Molecule::IntegrableObjectIterator ii;
553 >    StuntDouble* sd;
554 >    
555 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
556 >         sd = mol->nextIntegrableObject(ii)) {
557 >      
558 >      if (sd->isRigidBody()) {
559 >        rb = static_cast<RigidBody*>(sd);
560 >        vector<Atom*> atoms = rb->getAtoms();
561 >        set<int> rigidAtoms;
562 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
563 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
564 >        }
565 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
566 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
567 >        }      
568 >      } else {
569 >        set<int> oneAtomSet;
570 >        oneAtomSet.insert(sd->getGlobalIndex());
571 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
572 >      }
573 >    }  
574  
575 < #ifdef IS_MPI
576 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
577 < #else
578 <  ndf = ndf_local;
579 < #endif
575 >    for (bond= mol->beginBond(bondIter); bond != NULL;
576 >         bond = mol->nextBond(bondIter)) {
577 >      
578 >      a = bond->getAtomA()->getGlobalIndex();
579 >      b = bond->getAtomB()->getGlobalIndex();  
580 >    
581 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
582 >        oneTwoInteractions_.removePair(a, b);
583 >      } else {
584 >        excludedInteractions_.removePair(a, b);
585 >      }
586 >    }
587  
588 <  // nZconstraints is global, as are the 3 COM translations for the
589 <  // entire system:
588 >    for (bend= mol->beginBend(bendIter); bend != NULL;
589 >         bend = mol->nextBend(bendIter)) {
590  
591 <  ndf = ndf - 3 - nZconstraints;
591 >      a = bend->getAtomA()->getGlobalIndex();
592 >      b = bend->getAtomB()->getGlobalIndex();        
593 >      c = bend->getAtomC()->getGlobalIndex();
594 >      
595 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
596 >        oneTwoInteractions_.removePair(a, b);      
597 >        oneTwoInteractions_.removePair(b, c);
598 >      } else {
599 >        excludedInteractions_.removePair(a, b);
600 >        excludedInteractions_.removePair(b, c);
601 >      }
602  
603 <  return ndf;
604 < }
603 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
604 >        oneThreeInteractions_.removePair(a, c);      
605 >      } else {
606 >        excludedInteractions_.removePair(a, c);
607 >      }
608 >    }
609  
610 < int SimInfo::getNDFraw() {
611 <  int ndfRaw_local;
610 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
611 >         torsion = mol->nextTorsion(torsionIter)) {
612  
613 <  // Raw degrees of freedom that we have to set
614 <  ndfRaw_local = 0;
613 >      a = torsion->getAtomA()->getGlobalIndex();
614 >      b = torsion->getAtomB()->getGlobalIndex();        
615 >      c = torsion->getAtomC()->getGlobalIndex();        
616 >      d = torsion->getAtomD()->getGlobalIndex();      
617 >  
618 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
619 >        oneTwoInteractions_.removePair(a, b);      
620 >        oneTwoInteractions_.removePair(b, c);
621 >        oneTwoInteractions_.removePair(c, d);
622 >      } else {
623 >        excludedInteractions_.removePair(a, b);
624 >        excludedInteractions_.removePair(b, c);
625 >        excludedInteractions_.removePair(c, d);
626 >      }
627  
628 <  for(int i = 0; i < integrableObjects.size(); i++){
629 <    ndfRaw_local += 3;
630 <    if (integrableObjects[i]->isDirectional()) {
631 <       if (integrableObjects[i]->isLinear())
632 <        ndfRaw_local += 2;
633 <      else
634 <        ndfRaw_local += 3;
628 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
629 >        oneThreeInteractions_.removePair(a, c);      
630 >        oneThreeInteractions_.removePair(b, d);      
631 >      } else {
632 >        excludedInteractions_.removePair(a, c);
633 >        excludedInteractions_.removePair(b, d);
634 >      }
635 >
636 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
637 >        oneFourInteractions_.removePair(a, d);      
638 >      } else {
639 >        excludedInteractions_.removePair(a, d);
640 >      }
641      }
376  }
377    
378 #ifdef IS_MPI
379  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
380 #else
381  ndfRaw = ndfRaw_local;
382 #endif
642  
643 <  return ndfRaw;
644 < }
643 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
644 >         inversion = mol->nextInversion(inversionIter)) {
645  
646 < int SimInfo::getNDFtranslational() {
647 <  int ndfTrans_local;
646 >      a = inversion->getAtomA()->getGlobalIndex();
647 >      b = inversion->getAtomB()->getGlobalIndex();        
648 >      c = inversion->getAtomC()->getGlobalIndex();        
649 >      d = inversion->getAtomD()->getGlobalIndex();        
650  
651 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
651 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
652 >        oneTwoInteractions_.removePair(a, b);      
653 >        oneTwoInteractions_.removePair(a, c);
654 >        oneTwoInteractions_.removePair(a, d);
655 >      } else {
656 >        excludedInteractions_.removePair(a, b);
657 >        excludedInteractions_.removePair(a, c);
658 >        excludedInteractions_.removePair(a, d);
659 >      }
660  
661 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
662 +        oneThreeInteractions_.removePair(b, c);    
663 +        oneThreeInteractions_.removePair(b, d);    
664 +        oneThreeInteractions_.removePair(c, d);      
665 +      } else {
666 +        excludedInteractions_.removePair(b, c);
667 +        excludedInteractions_.removePair(b, d);
668 +        excludedInteractions_.removePair(c, d);
669 +      }
670 +    }
671  
672 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
673 +         rb = mol->nextRigidBody(rbIter)) {
674 +      vector<Atom*> atoms = rb->getAtoms();
675 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
676 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
677 +          a = atoms[i]->getGlobalIndex();
678 +          b = atoms[j]->getGlobalIndex();
679 +          excludedInteractions_.removePair(a, b);
680 +        }
681 +      }
682 +    }        
683 +    
684 +  }
685 +  
686 +  
687 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
688 +    int curStampId;
689 +    
690 +    //index from 0
691 +    curStampId = moleculeStamps_.size();
692 +
693 +    moleculeStamps_.push_back(molStamp);
694 +    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
695 +  }
696 +
697 +
698 +  /**
699 +   * update
700 +   *
701 +   *  Performs the global checks and variable settings after the
702 +   *  objects have been created.
703 +   *
704 +   */
705 +  void SimInfo::update() {  
706 +    setupSimVariables();
707 +    calcNdf();
708 +    calcNdfRaw();
709 +    calcNdfTrans();
710 +  }
711 +  
712 +  /**
713 +   * getSimulatedAtomTypes
714 +   *
715 +   * Returns an STL set of AtomType* that are actually present in this
716 +   * simulation.  Must query all processors to assemble this information.
717 +   *
718 +   */
719 +  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
720 +    SimInfo::MoleculeIterator mi;
721 +    Molecule* mol;
722 +    Molecule::AtomIterator ai;
723 +    Atom* atom;
724 +    set<AtomType*> atomTypes;
725 +    
726 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
727 +      for(atom = mol->beginAtom(ai); atom != NULL;
728 +          atom = mol->nextAtom(ai)) {
729 +        atomTypes.insert(atom->getAtomType());
730 +      }      
731 +    }    
732 +    
733   #ifdef IS_MPI
394  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
395 #else
396  ndfTrans = ndfTrans_local;
397 #endif
734  
735 <  ndfTrans = ndfTrans - 3 - nZconstraints;
735 >    // loop over the found atom types on this processor, and add their
736 >    // numerical idents to a vector:
737 >    
738 >    vector<int> foundTypes;
739 >    set<AtomType*>::iterator i;
740 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
741 >      foundTypes.push_back( (*i)->getIdent() );
742  
743 <  return ndfTrans;
744 < }
743 >    // count_local holds the number of found types on this processor
744 >    int count_local = foundTypes.size();
745  
746 < int SimInfo::getTotIntegrableObjects() {
405 <  int nObjs_local;
406 <  int nObjs;
746 >    int nproc = MPI::COMM_WORLD.Get_size();
747  
748 <  nObjs_local =  integrableObjects.size();
748 >    // we need arrays to hold the counts and displacement vectors for
749 >    // all processors
750 >    vector<int> counts(nproc, 0);
751 >    vector<int> disps(nproc, 0);
752  
753 +    // fill the counts array
754 +    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
755 +                              1, MPI::INT);
756 +  
757 +    // use the processor counts to compute the displacement array
758 +    disps[0] = 0;    
759 +    int totalCount = counts[0];
760 +    for (int iproc = 1; iproc < nproc; iproc++) {
761 +      disps[iproc] = disps[iproc-1] + counts[iproc-1];
762 +      totalCount += counts[iproc];
763 +    }
764  
765 < #ifdef IS_MPI
766 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
767 < #else
768 <  nObjs = nObjs_local;
769 < #endif
765 >    // we need a (possibly redundant) set of all found types:
766 >    vector<int> ftGlobal(totalCount);
767 >    
768 >    // now spray out the foundTypes to all the other processors:    
769 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
770 >                               &ftGlobal[0], &counts[0], &disps[0],
771 >                               MPI::INT);
772  
773 +    vector<int>::iterator j;
774  
775 <  return nObjs;
776 < }
775 >    // foundIdents is a stl set, so inserting an already found ident
776 >    // will have no effect.
777 >    set<int> foundIdents;
778  
779 < void SimInfo::refreshSim(){
779 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
780 >      foundIdents.insert((*j));
781 >    
782 >    // now iterate over the foundIdents and get the actual atom types
783 >    // that correspond to these:
784 >    set<int>::iterator it;
785 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
786 >      atomTypes.insert( forceField_->getAtomType((*it)) );
787 >
788 > #endif
789  
790 <  simtype fInfo;
791 <  int isError;
425 <  int n_global;
426 <  int* excl;
790 >    return atomTypes;        
791 >  }
792  
428  fInfo.dielect = 0.0;
793  
794 <  if( useDipoles ){
795 <    if( useReactionField )fInfo.dielect = dielectric;
794 >  int getGlobalCountOfType(AtomType* atype) {
795 >    /*
796 >    set<AtomType*> atypes = getSimulatedAtomTypes();
797 >    map<AtomType*, int> counts_;
798 >
799 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
800 >      for(atom = mol->beginAtom(ai); atom != NULL;
801 >          atom = mol->nextAtom(ai)) {
802 >        atom->getAtomType();
803 >      }      
804 >    }    
805 >    */
806 >    return 0;
807    }
808  
809 <  fInfo.SIM_uses_PBC = usePBC;
810 <  //fInfo.SIM_uses_LJ = 0;
811 <  fInfo.SIM_uses_LJ = useLJ;
812 <  fInfo.SIM_uses_sticky = useSticky;
813 <  //fInfo.SIM_uses_sticky = 0;
814 <  fInfo.SIM_uses_charges = useCharges;
815 <  fInfo.SIM_uses_dipoles = useDipoles;
816 <  //fInfo.SIM_uses_dipoles = 0;
817 <  fInfo.SIM_uses_RF = useReactionField;
818 <  //fInfo.SIM_uses_RF = 0;
819 <  fInfo.SIM_uses_GB = useGB;
820 <  fInfo.SIM_uses_EAM = useEAM;
809 >  void SimInfo::setupSimVariables() {
810 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
811 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
812 >    // parameter is true
813 >    calcBoxDipole_ = false;
814 >    if ( simParams_->haveAccumulateBoxDipole() )
815 >      if ( simParams_->getAccumulateBoxDipole() ) {
816 >        calcBoxDipole_ = true;      
817 >      }
818 >    
819 >    set<AtomType*>::iterator i;
820 >    set<AtomType*> atomTypes;
821 >    atomTypes = getSimulatedAtomTypes();    
822 >    bool usesElectrostatic = false;
823 >    bool usesMetallic = false;
824 >    bool usesDirectional = false;
825 >    bool usesFluctuatingCharges =  false;
826 >    //loop over all of the atom types
827 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
828 >      usesElectrostatic |= (*i)->isElectrostatic();
829 >      usesMetallic |= (*i)->isMetal();
830 >      usesDirectional |= (*i)->isDirectional();
831 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
832 >    }
833  
447  n_exclude = excludes->getSize();
448  excl = excludes->getFortranArray();
449  
834   #ifdef IS_MPI
835 <  n_global = mpiSim->getNAtomsGlobal();
835 >    bool temp;
836 >    temp = usesDirectional;
837 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
838 >                              MPI::LOR);
839 >        
840 >    temp = usesMetallic;
841 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
842 >                              MPI::LOR);
843 >    
844 >    temp = usesElectrostatic;
845 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
846 >                              MPI::LOR);
847 >
848 >    temp = usesFluctuatingCharges;
849 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
850 >                              MPI::LOR);
851   #else
852 <  n_global = n_atoms;
852 >
853 >    usesDirectionalAtoms_ = usesDirectional;
854 >    usesMetallicAtoms_ = usesMetallic;
855 >    usesElectrostaticAtoms_ = usesElectrostatic;
856 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
857 >
858   #endif
859 <  
860 <  isError = 0;
861 <  
862 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
863 <  //it may not be a good idea to pass the address of first element in vector
460 <  //since c++ standard does not require vector to be stored continuously in meomory
461 <  //Most of the compilers will organize the memory of vector continuously
462 <  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
859 >    
860 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
861 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
862 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
863 >  }
864  
865 <  if( isError ){
865 >
866 >  vector<int> SimInfo::getGlobalAtomIndices() {
867 >    SimInfo::MoleculeIterator mi;
868 >    Molecule* mol;
869 >    Molecule::AtomIterator ai;
870 >    Atom* atom;
871 >
872 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
873      
874 <    sprintf( painCave.errMsg,
875 <             "There was an error setting the simulation information in fortran.\n" );
876 <    painCave.isFatal = 1;
877 <    painCave.severity = OOPSE_ERROR;
878 <    simError();
874 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
875 >      
876 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
877 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
878 >      }
879 >    }
880 >    return GlobalAtomIndices;
881    }
474  
475 #ifdef IS_MPI
476  sprintf( checkPointMsg,
477           "succesfully sent the simulation information to fortran.\n");
478  MPIcheckPoint();
479 #endif // is_mpi
480  
481  this->ndf = this->getNDF();
482  this->ndfRaw = this->getNDFraw();
483  this->ndfTrans = this->getNDFtranslational();
484 }
882  
486 void SimInfo::setDefaultRcut( double theRcut ){
487  
488  haveRcut = 1;
489  rCut = theRcut;
490  rList = rCut + 1.0;
491  
492  notifyFortranCutOffs( &rCut, &rSw, &rList );
493 }
883  
884 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
884 >  vector<int> SimInfo::getGlobalGroupIndices() {
885 >    SimInfo::MoleculeIterator mi;
886 >    Molecule* mol;
887 >    Molecule::CutoffGroupIterator ci;
888 >    CutoffGroup* cg;
889  
890 <  rSw = theRsw;
891 <  setDefaultRcut( theRcut );
892 < }
890 >    vector<int> GlobalGroupIndices;
891 >    
892 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
893 >      
894 >      //local index of cutoff group is trivial, it only depends on the
895 >      //order of travesing
896 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
897 >           cg = mol->nextCutoffGroup(ci)) {
898 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
899 >      }        
900 >    }
901 >    return GlobalGroupIndices;
902 >  }
903  
904  
905 < void SimInfo::checkCutOffs( void ){
906 <  
907 <  if( boxIsInit ){
905 >  void SimInfo::prepareTopology() {
906 >
907 >    //calculate mass ratio of cutoff group
908 >    SimInfo::MoleculeIterator mi;
909 >    Molecule* mol;
910 >    Molecule::CutoffGroupIterator ci;
911 >    CutoffGroup* cg;
912 >    Molecule::AtomIterator ai;
913 >    Atom* atom;
914 >    RealType totalMass;
915 >
916 >    /**
917 >     * The mass factor is the relative mass of an atom to the total
918 >     * mass of the cutoff group it belongs to.  By default, all atoms
919 >     * are their own cutoff groups, and therefore have mass factors of
920 >     * 1.  We need some special handling for massless atoms, which
921 >     * will be treated as carrying the entire mass of the cutoff
922 >     * group.
923 >     */
924 >    massFactors_.clear();
925 >    massFactors_.resize(getNAtoms(), 1.0);
926      
927 <    //we need to check cutOffs against the box
928 <    
929 <    if( rCut > maxCutoff ){
930 <      sprintf( painCave.errMsg,
931 <               "cutoffRadius is too large for the current periodic box.\n"
932 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
933 <               "\tThis is larger than half of at least one of the\n"
934 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
935 <               "\n"
936 <               "\t[ %G %G %G ]\n"
937 <               "\t[ %G %G %G ]\n"
938 <               "\t[ %G %G %G ]\n",
939 <               rCut, currentTime,
940 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
941 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
942 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
943 <      painCave.severity = OOPSE_ERROR;
944 <      painCave.isFatal = 1;
945 <      simError();
927 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
928 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
929 >           cg = mol->nextCutoffGroup(ci)) {
930 >
931 >        totalMass = cg->getMass();
932 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
933 >          // Check for massless groups - set mfact to 1 if true
934 >          if (totalMass != 0)
935 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
936 >          else
937 >            massFactors_[atom->getLocalIndex()] = 1.0;
938 >        }
939 >      }      
940 >    }
941 >
942 >    // Build the identArray_ and regions_
943 >
944 >    identArray_.clear();
945 >    identArray_.reserve(getNAtoms());  
946 >    regions_.clear();
947 >    regions_.reserve(getNAtoms());
948 >
949 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
950 >      int reg = mol->getRegion();      
951 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
952 >        identArray_.push_back(atom->getIdent());
953 >        regions_.push_back(reg);
954 >      }
955      }    
956 <  } else {
957 <    // initialize this stuff before using it, OK?
528 <    sprintf( painCave.errMsg,
529 <             "Trying to check cutoffs without a box.\n"
530 <             "\tOOPSE should have better programmers than that.\n" );
531 <    painCave.severity = OOPSE_ERROR;
532 <    painCave.isFatal = 1;
533 <    simError();      
956 >      
957 >    topologyDone_ = true;
958    }
535  
536 }
959  
960 < void SimInfo::addProperty(GenericData* prop){
960 >  void SimInfo::addProperty(GenericData* genData) {
961 >    properties_.addProperty(genData);  
962 >  }
963  
964 <  map<string, GenericData*>::iterator result;
965 <  result = properties.find(prop->getID());
542 <  
543 <  //we can't simply use  properties[prop->getID()] = prop,
544 <  //it will cause memory leak if we already contain a propery which has the same name of prop
545 <  
546 <  if(result != properties.end()){
547 <    
548 <    delete (*result).second;
549 <    (*result).second = prop;
550 <      
964 >  void SimInfo::removeProperty(const string& propName) {
965 >    properties_.removeProperty(propName);  
966    }
552  else{
967  
968 <    properties[prop->getID()] = prop;
968 >  void SimInfo::clearProperties() {
969 >    properties_.clearProperties();
970 >  }
971  
972 +  vector<string> SimInfo::getPropertyNames() {
973 +    return properties_.getPropertyNames();  
974    }
975 <    
976 < }
975 >      
976 >  vector<GenericData*> SimInfo::getProperties() {
977 >    return properties_.getProperties();
978 >  }
979  
980 < GenericData* SimInfo::getProperty(const string& propName){
980 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
981 >    return properties_.getPropertyByName(propName);
982 >  }
983 >
984 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
985 >    if (sman_ == sman) {
986 >      return;
987 >    }    
988 >    delete sman_;
989 >    sman_ = sman;
990 >
991 >    Molecule* mol;
992 >    RigidBody* rb;
993 >    Atom* atom;
994 >    CutoffGroup* cg;
995 >    SimInfo::MoleculeIterator mi;
996 >    Molecule::RigidBodyIterator rbIter;
997 >    Molecule::AtomIterator atomIter;
998 >    Molecule::CutoffGroupIterator cgIter;
999  
1000 <  map<string, GenericData*>::iterator result;
1001 <  
1002 <  //string lowerCaseName = ();
1003 <  
1004 <  result = properties.find(propName);
1005 <  
1006 <  if(result != properties.end())
1007 <    return (*result).second;  
1008 <  else  
1009 <    return NULL;  
1010 < }
1000 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1001 >        
1002 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
1003 >           atom = mol->nextAtom(atomIter)) {
1004 >        atom->setSnapshotManager(sman_);
1005 >      }
1006 >        
1007 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1008 >           rb = mol->nextRigidBody(rbIter)) {
1009 >        rb->setSnapshotManager(sman_);
1010 >      }
1011  
1012 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1013 +           cg = mol->nextCutoffGroup(cgIter)) {
1014 +        cg->setSnapshotManager(sman_);
1015 +      }
1016 +    }    
1017 +    
1018 +  }
1019  
1020 < void SimInfo::getFortranGroupArrays(SimInfo* info,
1021 <                                    vector<int>& FglobalGroupMembership,
1022 <                                    vector<double>& mfact){
1020 >
1021 >  ostream& operator <<(ostream& o, SimInfo& info) {
1022 >
1023 >    return o;
1024 >  }
1025 >  
1026    
1027 <  Molecule* myMols;
1028 <  Atom** myAtoms;
1029 <  int numAtom;
1030 <  double mtot;
1031 <  int numMol;
1032 <  int numCutoffGroups;
1033 <  CutoffGroup* myCutoffGroup;
1034 <  vector<CutoffGroup*>::iterator iterCutoff;
1035 <  Atom* cutoffAtom;
1036 <  vector<Atom*>::iterator iterAtom;
1037 <  int atomIndex;
590 <  double totalMass;
1027 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1028 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1029 >      sprintf(painCave.errMsg,
1030 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1031 >              "\tindex exceeds number of known objects!\n");
1032 >      painCave.isFatal = 1;
1033 >      simError();
1034 >      return NULL;
1035 >    } else
1036 >      return IOIndexToIntegrableObject.at(index);
1037 >  }
1038    
1039 <  mfact.clear();
1040 <  FglobalGroupMembership.clear();
1041 <  
1039 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1040 >    IOIndexToIntegrableObject= v;
1041 >  }
1042  
1043 <  // Fix the silly fortran indexing problem
1043 >  int SimInfo::getNGlobalConstraints() {
1044 >    int nGlobalConstraints;
1045   #ifdef IS_MPI
1046 <  numAtom = mpiSim->getNAtomsGlobal();
1046 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1047 >                              MPI::INT, MPI::SUM);
1048   #else
1049 <  numAtom = n_atoms;
1049 >    nGlobalConstraints =  nConstraints_;
1050   #endif
1051 <  for (int i = 0; i < numAtom; i++)
603 <    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604 <  
605 <
606 <  myMols = info->molecules;
607 <  numMol = info->n_mol;
608 <  for(int i  = 0; i < numMol; i++){
609 <    numCutoffGroups = myMols[i].getNCutoffGroups();
610 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611 <        myCutoffGroup != NULL;
612 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
613 <
614 <      totalMass = myCutoffGroup->getMass();
615 <      
616 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
617 <          cutoffAtom != NULL;
618 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
619 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
620 <      }  
621 <    }
1051 >    return nGlobalConstraints;
1052    }
1053  
1054 < }
1054 > }//end namespace OpenMD
1055 >

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 1940 by gezelter, Fri Nov 1 19:31:41 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines