ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 1938 by gezelter, Thu Oct 31 15:32:17 2013 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file SimInfo.cpp
45 > * @author    tlin
46 > * @date  11/02/2004
47 > * @version 1.0
48 > */
49  
5 #include <iostream>
6 using namespace std;
7
8 #include "SimInfo.hpp"
9 #define __C
10 #include "fSimulation.h"
11 #include "simError.h"
12
13 #include "fortranWrappers.hpp"
14
15 #include "MatVec3.h"
16
50   #ifdef IS_MPI
51 < #include "mpiSimulation.hpp"
51 > #include <mpi.h>
52   #endif
53 + #include <algorithm>
54 + #include <set>
55 + #include <map>
56  
57 < inline double roundMe( double x ){
58 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
59 < }
60 <          
61 < inline double min( double a, double b ){
62 <  return (a < b ) ? a : b;
63 < }
57 > #include "brains/SimInfo.hpp"
58 > #include "math/Vector3.hpp"
59 > #include "primitives/Molecule.hpp"
60 > #include "primitives/StuntDouble.hpp"
61 > #include "utils/MemoryUtils.hpp"
62 > #include "utils/simError.h"
63 > #include "selection/SelectionManager.hpp"
64 > #include "io/ForceFieldOptions.hpp"
65 > #include "brains/ForceField.hpp"
66 > #include "nonbonded/SwitchingFunction.hpp"
67  
68 < SimInfo* currentInfo;
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      if ( (*i)->haveRegion() ) {        
95 >        molStamp->setRegion( (*i)->getRegion() );
96 >      } else {
97 >        // set the region to a disallowed value:
98 >        molStamp->setRegion( -1 );
99 >      }
100  
101 < SimInfo::SimInfo(){
101 >      nMolWithSameStamp = (*i)->getNMol();
102 >      
103 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
104 >      
105 >      //calculate atoms in molecules
106 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
107 >      
108 >      //calculate atoms in cutoff groups
109 >      int nAtomsInGroups = 0;
110 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
111 >      
112 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
113 >        cgStamp = molStamp->getCutoffGroupStamp(j);
114 >        nAtomsInGroups += cgStamp->getNMembers();
115 >      }
116 >      
117 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
118 >      
119 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
120 >      
121 >      //calculate atoms in rigid bodies
122 >      int nAtomsInRigidBodies = 0;
123 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
124 >      
125 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
126 >        rbStamp = molStamp->getRigidBodyStamp(j);
127 >        nAtomsInRigidBodies += rbStamp->getNMembers();
128 >      }
129 >      
130 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
131 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
132 >      
133 >    }
134 >    
135 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
136 >    //group therefore the total number of cutoff groups in the system is
137 >    //equal to the total number of atoms minus number of atoms belong to
138 >    //cutoff group defined in meta-data file plus the number of cutoff
139 >    //groups defined in meta-data file
140  
141 <  n_constraints = 0;
142 <  nZconstraints = 0;
143 <  n_oriented = 0;
144 <  n_dipoles = 0;
145 <  ndf = 0;
146 <  ndfRaw = 0;
147 <  nZconstraints = 0;
148 <  the_integrator = NULL;
149 <  setTemp = 0;
150 <  thermalTime = 0.0;
151 <  currentTime = 0.0;
152 <  rCut = 0.0;
153 <  rSw = 0.0;
46 <
47 <  haveRcut = 0;
48 <  haveRsw = 0;
49 <  boxIsInit = 0;
141 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
142 >    
143 >    //every free atom (atom does not belong to rigid bodies) is an
144 >    //integrable object therefore the total number of integrable objects
145 >    //in the system is equal to the total number of atoms minus number of
146 >    //atoms belong to rigid body defined in meta-data file plus the number
147 >    //of rigid bodies defined in meta-data file
148 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 >      + nGlobalRigidBodies_;
150 >    
151 >    nGlobalMols_ = molStampIds_.size();
152 >    molToProcMap_.resize(nGlobalMols_);
153 >  }
154    
155 <  resetTime = 1e99;
155 >  SimInfo::~SimInfo() {
156 >    map<int, Molecule*>::iterator i;
157 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158 >      delete i->second;
159 >    }
160 >    molecules_.clear();
161 >      
162 >    delete sman_;
163 >    delete simParams_;
164 >    delete forceField_;
165 >  }
166  
53  orthoRhombic = 0;
54  orthoTolerance = 1E-6;
55  useInitXSstate = true;
167  
168 <  usePBC = 0;
169 <  useLJ = 0;
170 <  useSticky = 0;
171 <  useCharges = 0;
172 <  useDipoles = 0;
173 <  useReactionField = 0;
174 <  useGB = 0;
175 <  useEAM = 0;
176 <  useSolidThermInt = 0;
177 <  useLiquidThermInt = 0;
168 >  bool SimInfo::addMolecule(Molecule* mol) {
169 >    MoleculeIterator i;
170 >    
171 >    i = molecules_.find(mol->getGlobalIndex());
172 >    if (i == molecules_.end() ) {
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176 >      nAtoms_ += mol->getNAtoms();
177 >      nBonds_ += mol->getNBonds();
178 >      nBends_ += mol->getNBends();
179 >      nTorsions_ += mol->getNTorsions();
180 >      nInversions_ += mol->getNInversions();
181 >      nRigidBodies_ += mol->getNRigidBodies();
182 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
183 >      nCutoffGroups_ += mol->getNCutoffGroups();
184 >      nConstraints_ += mol->getNConstraintPairs();
185 >      
186 >      addInteractionPairs(mol);
187 >      
188 >      return true;
189 >    } else {
190 >      return false;
191 >    }
192 >  }
193 >  
194 >  bool SimInfo::removeMolecule(Molecule* mol) {
195 >    MoleculeIterator i;
196 >    i = molecules_.find(mol->getGlobalIndex());
197  
198 <  haveCutoffGroups = false;
198 >    if (i != molecules_.end() ) {
199  
200 <  excludes = Exclude::Instance();
200 >      assert(mol == i->second);
201 >        
202 >      nAtoms_ -= mol->getNAtoms();
203 >      nBonds_ -= mol->getNBonds();
204 >      nBends_ -= mol->getNBends();
205 >      nTorsions_ -= mol->getNTorsions();
206 >      nInversions_ -= mol->getNInversions();
207 >      nRigidBodies_ -= mol->getNRigidBodies();
208 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
209 >      nCutoffGroups_ -= mol->getNCutoffGroups();
210 >      nConstraints_ -= mol->getNConstraintPairs();
211  
212 <  myConfiguration = new SimState();
212 >      removeInteractionPairs(mol);
213 >      molecules_.erase(mol->getGlobalIndex());
214  
215 <  has_minimizer = false;
216 <  the_minimizer =NULL;
215 >      delete mol;
216 >        
217 >      return true;
218 >    } else {
219 >      return false;
220 >    }
221 >  }    
222  
223 <  ngroup = 0;
223 >        
224 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
225 >    i = molecules_.begin();
226 >    return i == molecules_.end() ? NULL : i->second;
227 >  }    
228  
229 <  wrapMeSimInfo( this );
230 < }
229 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
230 >    ++i;
231 >    return i == molecules_.end() ? NULL : i->second;    
232 >  }
233  
234  
235 < SimInfo::~SimInfo(){
235 >  void SimInfo::calcNdf() {
236 >    int ndf_local, nfq_local;
237 >    MoleculeIterator i;
238 >    vector<StuntDouble*>::iterator j;
239 >    vector<Atom*>::iterator k;
240  
241 <  delete myConfiguration;
241 >    Molecule* mol;
242 >    StuntDouble* sd;
243 >    Atom* atom;
244  
245 <  map<string, GenericData*>::iterator i;
246 <  
247 <  for(i = properties.begin(); i != properties.end(); i++)
248 <    delete (*i).second;
245 >    ndf_local = 0;
246 >    nfq_local = 0;
247 >    
248 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
249  
250 < }
250 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
251 >           sd = mol->nextIntegrableObject(j)) {
252  
253 < void SimInfo::setBox(double newBox[3]) {
95 <  
96 <  int i, j;
97 <  double tempMat[3][3];
253 >        ndf_local += 3;
254  
255 <  for(i=0; i<3; i++)
256 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
255 >        if (sd->isDirectional()) {
256 >          if (sd->isLinear()) {
257 >            ndf_local += 2;
258 >          } else {
259 >            ndf_local += 3;
260 >          }
261 >        }
262 >      }
263  
264 <  tempMat[0][0] = newBox[0];
265 <  tempMat[1][1] = newBox[1];
266 <  tempMat[2][2] = newBox[2];
264 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
265 >           atom = mol->nextFluctuatingCharge(k)) {
266 >        if (atom->isFluctuatingCharge()) {
267 >          nfq_local++;
268 >        }
269 >      }
270 >    }
271 >    
272 >    ndfLocal_ = ndf_local;
273  
274 <  setBoxM( tempMat );
274 >    // n_constraints is local, so subtract them on each processor
275 >    ndf_local -= nConstraints_;
276  
277 < }
277 > #ifdef IS_MPI
278 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
279 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
280 >                              MPI::INT, MPI::SUM);
281 > #else
282 >    ndf_ = ndf_local;
283 >    nGlobalFluctuatingCharges_ = nfq_local;
284 > #endif
285  
286 < void SimInfo::setBoxM( double theBox[3][3] ){
287 <  
288 <  int i, j;
113 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
114 <                         // ordering in the array is as follows:
115 <                         // [ 0 3 6 ]
116 <                         // [ 1 4 7 ]
117 <                         // [ 2 5 8 ]
118 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
286 >    // nZconstraints_ is global, as are the 3 COM translations for the
287 >    // entire system:
288 >    ndf_ = ndf_ - 3 - nZconstraint_;
289  
290 <  if( !boxIsInit ) boxIsInit = 1;
290 >  }
291  
292 <  for(i=0; i < 3; i++)
293 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
292 >  int SimInfo::getFdf() {
293 > #ifdef IS_MPI
294 >    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
295 > #else
296 >    fdf_ = fdf_local;
297 > #endif
298 >    return fdf_;
299 >  }
300    
301 <  calcBoxL();
302 <  calcHmatInv();
303 <
304 <  for(i=0; i < 3; i++) {
305 <    for (j=0; j < 3; j++) {
306 <      FortranHmat[3*j + i] = Hmat[i][j];
307 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
301 >  unsigned int SimInfo::getNLocalCutoffGroups(){
302 >    int nLocalCutoffAtoms = 0;
303 >    Molecule* mol;
304 >    MoleculeIterator mi;
305 >    CutoffGroup* cg;
306 >    Molecule::CutoffGroupIterator ci;
307 >    
308 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
309 >      
310 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
311 >           cg = mol->nextCutoffGroup(ci)) {
312 >        nLocalCutoffAtoms += cg->getNumAtom();
313 >        
314 >      }        
315      }
316 +    
317 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
318    }
319 +    
320 +  void SimInfo::calcNdfRaw() {
321 +    int ndfRaw_local;
322  
323 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
324 <
325 < }
326 <
323 >    MoleculeIterator i;
324 >    vector<StuntDouble*>::iterator j;
325 >    Molecule* mol;
326 >    StuntDouble* sd;
327  
328 < void SimInfo::getBoxM (double theBox[3][3]) {
329 <
330 <  int i, j;
331 <  for(i=0; i<3; i++)
144 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
145 < }
328 >    // Raw degrees of freedom that we have to set
329 >    ndfRaw_local = 0;
330 >    
331 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
332  
333 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
334 +           sd = mol->nextIntegrableObject(j)) {
335  
336 < void SimInfo::scaleBox(double scale) {
149 <  double theBox[3][3];
150 <  int i, j;
336 >        ndfRaw_local += 3;
337  
338 <  // cerr << "Scaling box by " << scale << "\n";
339 <
340 <  for(i=0; i<3; i++)
341 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
342 <
343 <  setBoxM(theBox);
344 <
345 < }
160 <
161 < void SimInfo::calcHmatInv( void ) {
162 <  
163 <  int oldOrtho;
164 <  int i,j;
165 <  double smallDiag;
166 <  double tol;
167 <  double sanity[3][3];
168 <
169 <  invertMat3( Hmat, HmatInv );
170 <
171 <  // check to see if Hmat is orthorhombic
172 <  
173 <  oldOrtho = orthoRhombic;
174 <
175 <  smallDiag = fabs(Hmat[0][0]);
176 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
179 <
180 <  orthoRhombic = 1;
181 <  
182 <  for (i = 0; i < 3; i++ ) {
183 <    for (j = 0 ; j < 3; j++) {
184 <      if (i != j) {
185 <        if (orthoRhombic) {
186 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
187 <        }        
338 >        if (sd->isDirectional()) {
339 >          if (sd->isLinear()) {
340 >            ndfRaw_local += 2;
341 >          } else {
342 >            ndfRaw_local += 3;
343 >          }
344 >        }
345 >            
346        }
347      }
190  }
191
192  if( oldOrtho != orthoRhombic ){
348      
349 <    if( orthoRhombic ) {
350 <      sprintf( painCave.errMsg,
351 <               "OOPSE is switching from the default Non-Orthorhombic\n"
352 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
353 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
349 > #ifdef IS_MPI
350 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
351 > #else
352 >    ndfRaw_ = ndfRaw_local;
353 > #endif
354    }
218 }
355  
356 < void SimInfo::calcBoxL( void ){
356 >  void SimInfo::calcNdfTrans() {
357 >    int ndfTrans_local;
358  
359 <  double dx, dy, dz, dsq;
359 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
360  
224  // boxVol = Determinant of Hmat
361  
362 <  boxVol = matDet3( Hmat );
362 > #ifdef IS_MPI
363 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
364 >                              MPI::INT, MPI::SUM);
365 > #else
366 >    ndfTrans_ = ndfTrans_local;
367 > #endif
368  
369 <  // boxLx
370 <  
371 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
231 <  dsq = dx*dx + dy*dy + dz*dz;
232 <  boxL[0] = sqrt( dsq );
233 <  //maxCutoff = 0.5 * boxL[0];
369 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
370 >
371 >  }
372  
373 <  // boxLy
374 <  
375 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
376 <  dsq = dx*dx + dy*dy + dz*dz;
377 <  boxL[1] = sqrt( dsq );
378 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
373 >  void SimInfo::addInteractionPairs(Molecule* mol) {
374 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
375 >    vector<Atom*>::iterator atomIter;
376 >    vector<Bond*>::iterator bondIter;
377 >    vector<Bend*>::iterator bendIter;
378 >    vector<Torsion*>::iterator torsionIter;
379 >    vector<Inversion*>::iterator inversionIter;
380 >    Atom* atom;
381 >    Bond* bond;
382 >    Bend* bend;
383 >    Torsion* torsion;
384 >    Inversion* inversion;
385 >    int a;
386 >    int b;
387 >    int c;
388 >    int d;
389  
390 +    // atomGroups can be used to add special interaction maps between
391 +    // groups of atoms that are in two separate rigid bodies.
392 +    // However, most site-site interactions between two rigid bodies
393 +    // are probably not special, just the ones between the physically
394 +    // bonded atoms.  Interactions *within* a single rigid body should
395 +    // always be excluded.  These are done at the bottom of this
396 +    // function.
397  
398 <  // boxLz
399 <  
400 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
401 <  dsq = dx*dx + dy*dy + dz*dz;
402 <  boxL[2] = sqrt( dsq );
403 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
398 >    map<int, set<int> > atomGroups;
399 >    Molecule::RigidBodyIterator rbIter;
400 >    RigidBody* rb;
401 >    Molecule::IntegrableObjectIterator ii;
402 >    StuntDouble* sd;
403 >    
404 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
405 >         sd = mol->nextIntegrableObject(ii)) {
406 >      
407 >      if (sd->isRigidBody()) {
408 >        rb = static_cast<RigidBody*>(sd);
409 >        vector<Atom*> atoms = rb->getAtoms();
410 >        set<int> rigidAtoms;
411 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
412 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
413 >        }
414 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
415 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
416 >        }      
417 >      } else {
418 >        set<int> oneAtomSet;
419 >        oneAtomSet.insert(sd->getGlobalIndex());
420 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
421 >      }
422 >    }  
423  
424 <  //calculate the max cutoff
425 <  maxCutoff =  calcMaxCutOff();
426 <  
253 <  checkCutOffs();
424 >          
425 >    for (bond= mol->beginBond(bondIter); bond != NULL;
426 >         bond = mol->nextBond(bondIter)) {
427  
428 < }
428 >      a = bond->getAtomA()->getGlobalIndex();
429 >      b = bond->getAtomB()->getGlobalIndex();  
430  
431 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
432 +        oneTwoInteractions_.addPair(a, b);
433 +      } else {
434 +        excludedInteractions_.addPair(a, b);
435 +      }
436 +    }
437  
438 < double SimInfo::calcMaxCutOff(){
438 >    for (bend= mol->beginBend(bendIter); bend != NULL;
439 >         bend = mol->nextBend(bendIter)) {
440  
441 <  double ri[3], rj[3], rk[3];
442 <  double rij[3], rjk[3], rki[3];
443 <  double minDist;
441 >      a = bend->getAtomA()->getGlobalIndex();
442 >      b = bend->getAtomB()->getGlobalIndex();        
443 >      c = bend->getAtomC()->getGlobalIndex();
444 >      
445 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
446 >        oneTwoInteractions_.addPair(a, b);      
447 >        oneTwoInteractions_.addPair(b, c);
448 >      } else {
449 >        excludedInteractions_.addPair(a, b);
450 >        excludedInteractions_.addPair(b, c);
451 >      }
452  
453 <  ri[0] = Hmat[0][0];
454 <  ri[1] = Hmat[1][0];
455 <  ri[2] = Hmat[2][0];
453 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
454 >        oneThreeInteractions_.addPair(a, c);      
455 >      } else {
456 >        excludedInteractions_.addPair(a, c);
457 >      }
458 >    }
459  
460 <  rj[0] = Hmat[0][1];
461 <  rj[1] = Hmat[1][1];
270 <  rj[2] = Hmat[2][1];
460 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
461 >         torsion = mol->nextTorsion(torsionIter)) {
462  
463 <  rk[0] = Hmat[0][2];
464 <  rk[1] = Hmat[1][2];
465 <  rk[2] = Hmat[2][2];
466 <    
276 <  crossProduct3(ri, rj, rij);
277 <  distXY = dotProduct3(rk,rij) / norm3(rij);
463 >      a = torsion->getAtomA()->getGlobalIndex();
464 >      b = torsion->getAtomB()->getGlobalIndex();        
465 >      c = torsion->getAtomC()->getGlobalIndex();        
466 >      d = torsion->getAtomD()->getGlobalIndex();      
467  
468 <  crossProduct3(rj,rk, rjk);
469 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
468 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
469 >        oneTwoInteractions_.addPair(a, b);      
470 >        oneTwoInteractions_.addPair(b, c);
471 >        oneTwoInteractions_.addPair(c, d);
472 >      } else {
473 >        excludedInteractions_.addPair(a, b);
474 >        excludedInteractions_.addPair(b, c);
475 >        excludedInteractions_.addPair(c, d);
476 >      }
477  
478 <  crossProduct3(rk,ri, rki);
479 <  distZX = dotProduct3(rj,rki) / norm3(rki);
478 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
479 >        oneThreeInteractions_.addPair(a, c);      
480 >        oneThreeInteractions_.addPair(b, d);      
481 >      } else {
482 >        excludedInteractions_.addPair(a, c);
483 >        excludedInteractions_.addPair(b, d);
484 >      }
485  
486 <  minDist = min(min(distXY, distYZ), distZX);
487 <  return minDist/2;
488 <  
489 < }
486 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
487 >        oneFourInteractions_.addPair(a, d);      
488 >      } else {
489 >        excludedInteractions_.addPair(a, d);
490 >      }
491 >    }
492  
493 < void SimInfo::wrapVector( double thePos[3] ){
493 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
494 >         inversion = mol->nextInversion(inversionIter)) {
495  
496 <  int i;
497 <  double scaled[3];
496 >      a = inversion->getAtomA()->getGlobalIndex();
497 >      b = inversion->getAtomB()->getGlobalIndex();        
498 >      c = inversion->getAtomC()->getGlobalIndex();        
499 >      d = inversion->getAtomD()->getGlobalIndex();        
500  
501 <  if( !orthoRhombic ){
502 <    // calc the scaled coordinates.
503 <  
501 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
502 >        oneTwoInteractions_.addPair(a, b);      
503 >        oneTwoInteractions_.addPair(a, c);
504 >        oneTwoInteractions_.addPair(a, d);
505 >      } else {
506 >        excludedInteractions_.addPair(a, b);
507 >        excludedInteractions_.addPair(a, c);
508 >        excludedInteractions_.addPair(a, d);
509 >      }
510  
511 <    matVecMul3(HmatInv, thePos, scaled);
512 <    
513 <    for(i=0; i<3; i++)
514 <      scaled[i] -= roundMe(scaled[i]);
515 <    
516 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
517 <    
518 <    matVecMul3(Hmat, scaled, thePos);
511 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
512 >        oneThreeInteractions_.addPair(b, c);    
513 >        oneThreeInteractions_.addPair(b, d);    
514 >        oneThreeInteractions_.addPair(c, d);      
515 >      } else {
516 >        excludedInteractions_.addPair(b, c);
517 >        excludedInteractions_.addPair(b, d);
518 >        excludedInteractions_.addPair(c, d);
519 >      }
520 >    }
521  
522 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
523 +         rb = mol->nextRigidBody(rbIter)) {
524 +      vector<Atom*> atoms = rb->getAtoms();
525 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
526 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
527 +          a = atoms[i]->getGlobalIndex();
528 +          b = atoms[j]->getGlobalIndex();
529 +          excludedInteractions_.addPair(a, b);
530 +        }
531 +      }
532 +    }        
533 +
534    }
309  else{
310    // calc the scaled coordinates.
311    
312    for(i=0; i<3; i++)
313      scaled[i] = thePos[i]*HmatInv[i][i];
314    
315    // wrap the scaled coordinates
316    
317    for(i=0; i<3; i++)
318      scaled[i] -= roundMe(scaled[i]);
319    
320    // calc the wrapped real coordinates from the wrapped scaled coordinates
321    
322    for(i=0; i<3; i++)
323      thePos[i] = scaled[i]*Hmat[i][i];
324  }
325    
326 }
535  
536 +  void SimInfo::removeInteractionPairs(Molecule* mol) {
537 +    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
538 +    vector<Bond*>::iterator bondIter;
539 +    vector<Bend*>::iterator bendIter;
540 +    vector<Torsion*>::iterator torsionIter;
541 +    vector<Inversion*>::iterator inversionIter;
542 +    Bond* bond;
543 +    Bend* bend;
544 +    Torsion* torsion;
545 +    Inversion* inversion;
546 +    int a;
547 +    int b;
548 +    int c;
549 +    int d;
550  
551 < int SimInfo::getNDF(){
552 <  int ndf_local;
553 <
554 <  ndf_local = 0;
555 <  
556 <  for(int i = 0; i < integrableObjects.size(); i++){
557 <    ndf_local += 3;
558 <    if (integrableObjects[i]->isDirectional()) {
559 <      if (integrableObjects[i]->isLinear())
560 <        ndf_local += 2;
561 <      else
562 <        ndf_local += 3;
551 >    map<int, set<int> > atomGroups;
552 >    Molecule::RigidBodyIterator rbIter;
553 >    RigidBody* rb;
554 >    Molecule::IntegrableObjectIterator ii;
555 >    StuntDouble* sd;
556 >    
557 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
558 >         sd = mol->nextIntegrableObject(ii)) {
559 >      
560 >      if (sd->isRigidBody()) {
561 >        rb = static_cast<RigidBody*>(sd);
562 >        vector<Atom*> atoms = rb->getAtoms();
563 >        set<int> rigidAtoms;
564 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
565 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
566 >        }
567 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
568 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
569 >        }      
570 >      } else {
571 >        set<int> oneAtomSet;
572 >        oneAtomSet.insert(sd->getGlobalIndex());
573 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
574 >      }
575 >    }  
576 >
577 >    for (bond= mol->beginBond(bondIter); bond != NULL;
578 >         bond = mol->nextBond(bondIter)) {
579 >      
580 >      a = bond->getAtomA()->getGlobalIndex();
581 >      b = bond->getAtomB()->getGlobalIndex();  
582 >    
583 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
584 >        oneTwoInteractions_.removePair(a, b);
585 >      } else {
586 >        excludedInteractions_.removePair(a, b);
587 >      }
588      }
342  }
589  
590 <  // n_constraints is local, so subtract them on each processor:
590 >    for (bend= mol->beginBend(bendIter); bend != NULL;
591 >         bend = mol->nextBend(bendIter)) {
592  
593 <  ndf_local -= n_constraints;
593 >      a = bend->getAtomA()->getGlobalIndex();
594 >      b = bend->getAtomB()->getGlobalIndex();        
595 >      c = bend->getAtomC()->getGlobalIndex();
596 >      
597 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
598 >        oneTwoInteractions_.removePair(a, b);      
599 >        oneTwoInteractions_.removePair(b, c);
600 >      } else {
601 >        excludedInteractions_.removePair(a, b);
602 >        excludedInteractions_.removePair(b, c);
603 >      }
604  
605 < #ifdef IS_MPI
606 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
607 < #else
608 <  ndf = ndf_local;
609 < #endif
605 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
606 >        oneThreeInteractions_.removePair(a, c);      
607 >      } else {
608 >        excludedInteractions_.removePair(a, c);
609 >      }
610 >    }
611  
612 <  // nZconstraints is global, as are the 3 COM translations for the
613 <  // entire system:
612 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
613 >         torsion = mol->nextTorsion(torsionIter)) {
614  
615 <  ndf = ndf - 3 - nZconstraints;
615 >      a = torsion->getAtomA()->getGlobalIndex();
616 >      b = torsion->getAtomB()->getGlobalIndex();        
617 >      c = torsion->getAtomC()->getGlobalIndex();        
618 >      d = torsion->getAtomD()->getGlobalIndex();      
619 >  
620 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
621 >        oneTwoInteractions_.removePair(a, b);      
622 >        oneTwoInteractions_.removePair(b, c);
623 >        oneTwoInteractions_.removePair(c, d);
624 >      } else {
625 >        excludedInteractions_.removePair(a, b);
626 >        excludedInteractions_.removePair(b, c);
627 >        excludedInteractions_.removePair(c, d);
628 >      }
629  
630 <  return ndf;
631 < }
630 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
631 >        oneThreeInteractions_.removePair(a, c);      
632 >        oneThreeInteractions_.removePair(b, d);      
633 >      } else {
634 >        excludedInteractions_.removePair(a, c);
635 >        excludedInteractions_.removePair(b, d);
636 >      }
637  
638 < int SimInfo::getNDFraw() {
639 <  int ndfRaw_local;
638 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
639 >        oneFourInteractions_.removePair(a, d);      
640 >      } else {
641 >        excludedInteractions_.removePair(a, d);
642 >      }
643 >    }
644  
645 <  // Raw degrees of freedom that we have to set
646 <  ndfRaw_local = 0;
645 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
646 >         inversion = mol->nextInversion(inversionIter)) {
647  
648 <  for(int i = 0; i < integrableObjects.size(); i++){
649 <    ndfRaw_local += 3;
650 <    if (integrableObjects[i]->isDirectional()) {
651 <       if (integrableObjects[i]->isLinear())
652 <        ndfRaw_local += 2;
653 <      else
654 <        ndfRaw_local += 3;
648 >      a = inversion->getAtomA()->getGlobalIndex();
649 >      b = inversion->getAtomB()->getGlobalIndex();        
650 >      c = inversion->getAtomC()->getGlobalIndex();        
651 >      d = inversion->getAtomD()->getGlobalIndex();        
652 >
653 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
654 >        oneTwoInteractions_.removePair(a, b);      
655 >        oneTwoInteractions_.removePair(a, c);
656 >        oneTwoInteractions_.removePair(a, d);
657 >      } else {
658 >        excludedInteractions_.removePair(a, b);
659 >        excludedInteractions_.removePair(a, c);
660 >        excludedInteractions_.removePair(a, d);
661 >      }
662 >
663 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
664 >        oneThreeInteractions_.removePair(b, c);    
665 >        oneThreeInteractions_.removePair(b, d);    
666 >        oneThreeInteractions_.removePair(c, d);      
667 >      } else {
668 >        excludedInteractions_.removePair(b, c);
669 >        excludedInteractions_.removePair(b, d);
670 >        excludedInteractions_.removePair(c, d);
671 >      }
672      }
673 +
674 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
675 +         rb = mol->nextRigidBody(rbIter)) {
676 +      vector<Atom*> atoms = rb->getAtoms();
677 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
678 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
679 +          a = atoms[i]->getGlobalIndex();
680 +          b = atoms[j]->getGlobalIndex();
681 +          excludedInteractions_.removePair(a, b);
682 +        }
683 +      }
684 +    }        
685 +    
686    }
687 +  
688 +  
689 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
690 +    int curStampId;
691      
692 < #ifdef IS_MPI
693 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
380 < #else
381 <  ndfRaw = ndfRaw_local;
382 < #endif
692 >    //index from 0
693 >    curStampId = moleculeStamps_.size();
694  
695 <  return ndfRaw;
696 < }
695 >    moleculeStamps_.push_back(molStamp);
696 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
697 >  }
698  
387 int SimInfo::getNDFtranslational() {
388  int ndfTrans_local;
699  
700 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
701 <
702 <
700 >  /**
701 >   * update
702 >   *
703 >   *  Performs the global checks and variable settings after the
704 >   *  objects have been created.
705 >   *
706 >   */
707 >  void SimInfo::update() {  
708 >    setupSimVariables();
709 >    calcNdf();
710 >    calcNdfRaw();
711 >    calcNdfTrans();
712 >  }
713 >  
714 >  /**
715 >   * getSimulatedAtomTypes
716 >   *
717 >   * Returns an STL set of AtomType* that are actually present in this
718 >   * simulation.  Must query all processors to assemble this information.
719 >   *
720 >   */
721 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
722 >    SimInfo::MoleculeIterator mi;
723 >    Molecule* mol;
724 >    Molecule::AtomIterator ai;
725 >    Atom* atom;
726 >    set<AtomType*> atomTypes;
727 >    
728 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
729 >      for(atom = mol->beginAtom(ai); atom != NULL;
730 >          atom = mol->nextAtom(ai)) {
731 >        atomTypes.insert(atom->getAtomType());
732 >      }      
733 >    }    
734 >    
735   #ifdef IS_MPI
394  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
395 #else
396  ndfTrans = ndfTrans_local;
397 #endif
736  
737 <  ndfTrans = ndfTrans - 3 - nZconstraints;
737 >    // loop over the found atom types on this processor, and add their
738 >    // numerical idents to a vector:
739 >    
740 >    vector<int> foundTypes;
741 >    set<AtomType*>::iterator i;
742 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
743 >      foundTypes.push_back( (*i)->getIdent() );
744  
745 <  return ndfTrans;
746 < }
745 >    // count_local holds the number of found types on this processor
746 >    int count_local = foundTypes.size();
747  
748 < int SimInfo::getTotIntegrableObjects() {
405 <  int nObjs_local;
406 <  int nObjs;
748 >    int nproc = MPI::COMM_WORLD.Get_size();
749  
750 <  nObjs_local =  integrableObjects.size();
750 >    // we need arrays to hold the counts and displacement vectors for
751 >    // all processors
752 >    vector<int> counts(nproc, 0);
753 >    vector<int> disps(nproc, 0);
754  
755 +    // fill the counts array
756 +    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
757 +                              1, MPI::INT);
758 +  
759 +    // use the processor counts to compute the displacement array
760 +    disps[0] = 0;    
761 +    int totalCount = counts[0];
762 +    for (int iproc = 1; iproc < nproc; iproc++) {
763 +      disps[iproc] = disps[iproc-1] + counts[iproc-1];
764 +      totalCount += counts[iproc];
765 +    }
766  
767 < #ifdef IS_MPI
768 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
769 < #else
770 <  nObjs = nObjs_local;
771 < #endif
767 >    // we need a (possibly redundant) set of all found types:
768 >    vector<int> ftGlobal(totalCount);
769 >    
770 >    // now spray out the foundTypes to all the other processors:    
771 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
772 >                               &ftGlobal[0], &counts[0], &disps[0],
773 >                               MPI::INT);
774  
775 +    vector<int>::iterator j;
776  
777 <  return nObjs;
778 < }
777 >    // foundIdents is a stl set, so inserting an already found ident
778 >    // will have no effect.
779 >    set<int> foundIdents;
780  
781 < void SimInfo::refreshSim(){
781 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
782 >      foundIdents.insert((*j));
783 >    
784 >    // now iterate over the foundIdents and get the actual atom types
785 >    // that correspond to these:
786 >    set<int>::iterator it;
787 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
788 >      atomTypes.insert( forceField_->getAtomType((*it)) );
789 >
790 > #endif
791  
792 <  simtype fInfo;
793 <  int isError;
425 <  int n_global;
426 <  int* excl;
792 >    return atomTypes;        
793 >  }
794  
428  fInfo.dielect = 0.0;
795  
796 <  if( useDipoles ){
797 <    if( useReactionField )fInfo.dielect = dielectric;
796 >  int getGlobalCountOfType(AtomType* atype) {
797 >    /*
798 >    set<AtomType*> atypes = getSimulatedAtomTypes();
799 >    map<AtomType*, int> counts_;
800 >
801 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
802 >      for(atom = mol->beginAtom(ai); atom != NULL;
803 >          atom = mol->nextAtom(ai)) {
804 >        atom->getAtomType();
805 >      }      
806 >    }    
807 >    */
808 >    return 0;
809    }
810  
811 <  fInfo.SIM_uses_PBC = usePBC;
812 <  //fInfo.SIM_uses_LJ = 0;
813 <  fInfo.SIM_uses_LJ = useLJ;
814 <  fInfo.SIM_uses_sticky = useSticky;
815 <  //fInfo.SIM_uses_sticky = 0;
816 <  fInfo.SIM_uses_charges = useCharges;
817 <  fInfo.SIM_uses_dipoles = useDipoles;
818 <  //fInfo.SIM_uses_dipoles = 0;
819 <  fInfo.SIM_uses_RF = useReactionField;
820 <  //fInfo.SIM_uses_RF = 0;
821 <  fInfo.SIM_uses_GB = useGB;
822 <  fInfo.SIM_uses_EAM = useEAM;
811 >  void SimInfo::setupSimVariables() {
812 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
813 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
814 >    // parameter is true
815 >    calcBoxDipole_ = false;
816 >    if ( simParams_->haveAccumulateBoxDipole() )
817 >      if ( simParams_->getAccumulateBoxDipole() ) {
818 >        calcBoxDipole_ = true;      
819 >      }
820 >    
821 >    set<AtomType*>::iterator i;
822 >    set<AtomType*> atomTypes;
823 >    atomTypes = getSimulatedAtomTypes();    
824 >    bool usesElectrostatic = false;
825 >    bool usesMetallic = false;
826 >    bool usesDirectional = false;
827 >    bool usesFluctuatingCharges =  false;
828 >    //loop over all of the atom types
829 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
830 >      usesElectrostatic |= (*i)->isElectrostatic();
831 >      usesMetallic |= (*i)->isMetal();
832 >      usesDirectional |= (*i)->isDirectional();
833 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
834 >    }
835  
447  n_exclude = excludes->getSize();
448  excl = excludes->getFortranArray();
449  
836   #ifdef IS_MPI
837 <  n_global = mpiSim->getNAtomsGlobal();
837 >    bool temp;
838 >    temp = usesDirectional;
839 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
840 >                              MPI::LOR);
841 >        
842 >    temp = usesMetallic;
843 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
844 >                              MPI::LOR);
845 >    
846 >    temp = usesElectrostatic;
847 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
848 >                              MPI::LOR);
849 >
850 >    temp = usesFluctuatingCharges;
851 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
852 >                              MPI::LOR);
853   #else
854 <  n_global = n_atoms;
854 >
855 >    usesDirectionalAtoms_ = usesDirectional;
856 >    usesMetallicAtoms_ = usesMetallic;
857 >    usesElectrostaticAtoms_ = usesElectrostatic;
858 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
859 >
860   #endif
861 <  
862 <  isError = 0;
863 <  
864 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
865 <  //it may not be a good idea to pass the address of first element in vector
460 <  //since c++ standard does not require vector to be stored continuously in meomory
461 <  //Most of the compilers will organize the memory of vector continuously
462 <  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
861 >    
862 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
863 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
864 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
865 >  }
866  
867 <  if( isError ){
867 >
868 >  vector<int> SimInfo::getGlobalAtomIndices() {
869 >    SimInfo::MoleculeIterator mi;
870 >    Molecule* mol;
871 >    Molecule::AtomIterator ai;
872 >    Atom* atom;
873 >
874 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
875      
876 <    sprintf( painCave.errMsg,
877 <             "There was an error setting the simulation information in fortran.\n" );
878 <    painCave.isFatal = 1;
879 <    painCave.severity = OOPSE_ERROR;
880 <    simError();
876 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
877 >      
878 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
879 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
880 >      }
881 >    }
882 >    return GlobalAtomIndices;
883    }
474  
475 #ifdef IS_MPI
476  sprintf( checkPointMsg,
477           "succesfully sent the simulation information to fortran.\n");
478  MPIcheckPoint();
479 #endif // is_mpi
480  
481  this->ndf = this->getNDF();
482  this->ndfRaw = this->getNDFraw();
483  this->ndfTrans = this->getNDFtranslational();
484 }
884  
486 void SimInfo::setDefaultRcut( double theRcut ){
487  
488  haveRcut = 1;
489  rCut = theRcut;
490  rList = rCut + 1.0;
491  
492  notifyFortranCutOffs( &rCut, &rSw, &rList );
493 }
885  
886 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
886 >  vector<int> SimInfo::getGlobalGroupIndices() {
887 >    SimInfo::MoleculeIterator mi;
888 >    Molecule* mol;
889 >    Molecule::CutoffGroupIterator ci;
890 >    CutoffGroup* cg;
891  
892 <  rSw = theRsw;
893 <  setDefaultRcut( theRcut );
894 < }
892 >    vector<int> GlobalGroupIndices;
893 >    
894 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
895 >      
896 >      //local index of cutoff group is trivial, it only depends on the
897 >      //order of travesing
898 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
899 >           cg = mol->nextCutoffGroup(ci)) {
900 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
901 >      }        
902 >    }
903 >    return GlobalGroupIndices;
904 >  }
905  
906  
907 < void SimInfo::checkCutOffs( void ){
908 <  
909 <  if( boxIsInit ){
907 >  void SimInfo::prepareTopology() {
908 >
909 >    //calculate mass ratio of cutoff group
910 >    SimInfo::MoleculeIterator mi;
911 >    Molecule* mol;
912 >    Molecule::CutoffGroupIterator ci;
913 >    CutoffGroup* cg;
914 >    Molecule::AtomIterator ai;
915 >    Atom* atom;
916 >    RealType totalMass;
917 >
918 >    /**
919 >     * The mass factor is the relative mass of an atom to the total
920 >     * mass of the cutoff group it belongs to.  By default, all atoms
921 >     * are their own cutoff groups, and therefore have mass factors of
922 >     * 1.  We need some special handling for massless atoms, which
923 >     * will be treated as carrying the entire mass of the cutoff
924 >     * group.
925 >     */
926 >    massFactors_.clear();
927 >    massFactors_.resize(getNAtoms(), 1.0);
928      
929 <    //we need to check cutOffs against the box
930 <    
931 <    if( rCut > maxCutoff ){
932 <      sprintf( painCave.errMsg,
933 <               "cutoffRadius is too large for the current periodic box.\n"
934 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
935 <               "\tThis is larger than half of at least one of the\n"
936 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
937 <               "\n"
938 <               "\t[ %G %G %G ]\n"
939 <               "\t[ %G %G %G ]\n"
940 <               "\t[ %G %G %G ]\n",
941 <               rCut, currentTime,
942 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
943 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
944 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
945 <      painCave.severity = OOPSE_ERROR;
946 <      painCave.isFatal = 1;
947 <      simError();
929 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
930 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
931 >           cg = mol->nextCutoffGroup(ci)) {
932 >
933 >        totalMass = cg->getMass();
934 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
935 >          // Check for massless groups - set mfact to 1 if true
936 >          if (totalMass != 0)
937 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
938 >          else
939 >            massFactors_[atom->getLocalIndex()] = 1.0;
940 >        }
941 >      }      
942 >    }
943 >
944 >    // Build the identArray_ and regions_
945 >
946 >    identArray_.clear();
947 >    identArray_.reserve(getNAtoms());  
948 >    regions_.clear();
949 >    regions_.reserve(getNAtoms());
950 >
951 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
952 >      int reg = mol->getRegion();      
953 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
954 >        identArray_.push_back(atom->getIdent());
955 >        regions_.push_back(reg);
956 >      }
957      }    
958 <  } else {
959 <    // initialize this stuff before using it, OK?
528 <    sprintf( painCave.errMsg,
529 <             "Trying to check cutoffs without a box.\n"
530 <             "\tOOPSE should have better programmers than that.\n" );
531 <    painCave.severity = OOPSE_ERROR;
532 <    painCave.isFatal = 1;
533 <    simError();      
958 >      
959 >    topologyDone_ = true;
960    }
535  
536 }
961  
962 < void SimInfo::addProperty(GenericData* prop){
962 >  void SimInfo::addProperty(GenericData* genData) {
963 >    properties_.addProperty(genData);  
964 >  }
965  
966 <  map<string, GenericData*>::iterator result;
967 <  result = properties.find(prop->getID());
542 <  
543 <  //we can't simply use  properties[prop->getID()] = prop,
544 <  //it will cause memory leak if we already contain a propery which has the same name of prop
545 <  
546 <  if(result != properties.end()){
547 <    
548 <    delete (*result).second;
549 <    (*result).second = prop;
550 <      
966 >  void SimInfo::removeProperty(const string& propName) {
967 >    properties_.removeProperty(propName);  
968    }
552  else{
969  
970 <    properties[prop->getID()] = prop;
970 >  void SimInfo::clearProperties() {
971 >    properties_.clearProperties();
972 >  }
973  
974 +  vector<string> SimInfo::getPropertyNames() {
975 +    return properties_.getPropertyNames();  
976    }
977 <    
978 < }
977 >      
978 >  vector<GenericData*> SimInfo::getProperties() {
979 >    return properties_.getProperties();
980 >  }
981  
982 < GenericData* SimInfo::getProperty(const string& propName){
982 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
983 >    return properties_.getPropertyByName(propName);
984 >  }
985 >
986 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
987 >    if (sman_ == sman) {
988 >      return;
989 >    }    
990 >    delete sman_;
991 >    sman_ = sman;
992 >
993 >    Molecule* mol;
994 >    RigidBody* rb;
995 >    Atom* atom;
996 >    CutoffGroup* cg;
997 >    SimInfo::MoleculeIterator mi;
998 >    Molecule::RigidBodyIterator rbIter;
999 >    Molecule::AtomIterator atomIter;
1000 >    Molecule::CutoffGroupIterator cgIter;
1001  
1002 <  map<string, GenericData*>::iterator result;
1003 <  
1004 <  //string lowerCaseName = ();
1005 <  
1006 <  result = properties.find(propName);
1007 <  
1008 <  if(result != properties.end())
1009 <    return (*result).second;  
1010 <  else  
1011 <    return NULL;  
1012 < }
1002 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1003 >        
1004 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
1005 >           atom = mol->nextAtom(atomIter)) {
1006 >        atom->setSnapshotManager(sman_);
1007 >      }
1008 >        
1009 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1010 >           rb = mol->nextRigidBody(rbIter)) {
1011 >        rb->setSnapshotManager(sman_);
1012 >      }
1013  
1014 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1015 +           cg = mol->nextCutoffGroup(cgIter)) {
1016 +        cg->setSnapshotManager(sman_);
1017 +      }
1018 +    }    
1019 +    
1020 +  }
1021  
1022 < void SimInfo::getFortranGroupArrays(SimInfo* info,
1023 <                                    vector<int>& FglobalGroupMembership,
1024 <                                    vector<double>& mfact){
1022 >
1023 >  ostream& operator <<(ostream& o, SimInfo& info) {
1024 >
1025 >    return o;
1026 >  }
1027 >  
1028    
1029 <  Molecule* myMols;
1030 <  Atom** myAtoms;
1031 <  int numAtom;
1032 <  double mtot;
1033 <  int numMol;
1034 <  int numCutoffGroups;
1035 <  CutoffGroup* myCutoffGroup;
1036 <  vector<CutoffGroup*>::iterator iterCutoff;
1037 <  Atom* cutoffAtom;
1038 <  vector<Atom*>::iterator iterAtom;
1039 <  int atomIndex;
590 <  double totalMass;
1029 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1030 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1031 >      sprintf(painCave.errMsg,
1032 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1033 >              "\tindex exceeds number of known objects!\n");
1034 >      painCave.isFatal = 1;
1035 >      simError();
1036 >      return NULL;
1037 >    } else
1038 >      return IOIndexToIntegrableObject.at(index);
1039 >  }
1040    
1041 <  mfact.clear();
1042 <  FglobalGroupMembership.clear();
1043 <  
1041 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1042 >    IOIndexToIntegrableObject= v;
1043 >  }
1044  
1045 <  // Fix the silly fortran indexing problem
1045 >  int SimInfo::getNGlobalConstraints() {
1046 >    int nGlobalConstraints;
1047   #ifdef IS_MPI
1048 <  numAtom = mpiSim->getNAtomsGlobal();
1048 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1049 >                              MPI::INT, MPI::SUM);
1050   #else
1051 <  numAtom = n_atoms;
1051 >    nGlobalConstraints =  nConstraints_;
1052   #endif
1053 <  for (int i = 0; i < numAtom; i++)
603 <    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604 <  
605 <
606 <  myMols = info->molecules;
607 <  numMol = info->n_mol;
608 <  for(int i  = 0; i < numMol; i++){
609 <    numCutoffGroups = myMols[i].getNCutoffGroups();
610 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611 <        myCutoffGroup != NULL;
612 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
613 <
614 <      totalMass = myCutoffGroup->getMass();
615 <      
616 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
617 <          cutoffAtom != NULL;
618 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
619 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
620 <      }  
621 <    }
1053 >    return nGlobalConstraints;
1054    }
1055  
1056 < }
1056 > }//end namespace OpenMD
1057 >

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 1938 by gezelter, Thu Oct 31 15:32:17 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines