ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 1908 by gezelter, Fri Jul 19 21:25:45 2013 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file SimInfo.cpp
45 > * @author    tlin
46 > * @date  11/02/2004
47 > * @version 1.0
48 > */
49  
50 < #include <iostream>
51 < using namespace std;
50 > #include <algorithm>
51 > #include <set>
52 > #include <map>
53  
54 < #include "SimInfo.hpp"
55 < #define __C
56 < #include "fSimulation.h"
57 < #include "simError.h"
58 <
59 < #include "fortranWrappers.hpp"
60 <
61 < #include "MatVec3.h"
62 <
54 > #include "brains/SimInfo.hpp"
55 > #include "math/Vector3.hpp"
56 > #include "primitives/Molecule.hpp"
57 > #include "primitives/StuntDouble.hpp"
58 > #include "utils/MemoryUtils.hpp"
59 > #include "utils/simError.h"
60 > #include "selection/SelectionManager.hpp"
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "mpiSimulation.hpp"
65 > #include <mpi.h>
66   #endif
67  
68 < inline double roundMe( double x ){
69 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
70 < }
71 <          
72 < inline double min( double a, double b ){
73 <  return (a < b ) ? a : b;
74 < }
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      if ( (*i)->haveRegion() ) {        
95 >        molStamp->setRegion( (*i)->getRegion() );
96 >      } else {
97 >        // set the region to a disallowed value:
98 >        molStamp->setRegion( -1 );
99 >      }
100  
101 < SimInfo* currentInfo;
101 >      nMolWithSameStamp = (*i)->getNMol();
102 >      
103 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
104 >      
105 >      //calculate atoms in molecules
106 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
107 >      
108 >      //calculate atoms in cutoff groups
109 >      int nAtomsInGroups = 0;
110 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
111 >      
112 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
113 >        cgStamp = molStamp->getCutoffGroupStamp(j);
114 >        nAtomsInGroups += cgStamp->getNMembers();
115 >      }
116 >      
117 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
118 >      
119 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
120 >      
121 >      //calculate atoms in rigid bodies
122 >      int nAtomsInRigidBodies = 0;
123 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
124 >      
125 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
126 >        rbStamp = molStamp->getRigidBodyStamp(j);
127 >        nAtomsInRigidBodies += rbStamp->getNMembers();
128 >      }
129 >      
130 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
131 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
132 >      
133 >    }
134 >    
135 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
136 >    //group therefore the total number of cutoff groups in the system is
137 >    //equal to the total number of atoms minus number of atoms belong to
138 >    //cutoff group defined in meta-data file plus the number of cutoff
139 >    //groups defined in meta-data file
140  
141 < SimInfo::SimInfo(){
141 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
142 >    
143 >    //every free atom (atom does not belong to rigid bodies) is an
144 >    //integrable object therefore the total number of integrable objects
145 >    //in the system is equal to the total number of atoms minus number of
146 >    //atoms belong to rigid body defined in meta-data file plus the number
147 >    //of rigid bodies defined in meta-data file
148 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 >      + nGlobalRigidBodies_;
150 >    
151 >    nGlobalMols_ = molStampIds_.size();
152 >    molToProcMap_.resize(nGlobalMols_);
153 >  }
154 >  
155 >  SimInfo::~SimInfo() {
156 >    map<int, Molecule*>::iterator i;
157 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158 >      delete i->second;
159 >    }
160 >    molecules_.clear();
161 >      
162 >    delete sman_;
163 >    delete simParams_;
164 >    delete forceField_;
165 >  }
166  
33  n_constraints = 0;
34  nZconstraints = 0;
35  n_oriented = 0;
36  n_dipoles = 0;
37  ndf = 0;
38  ndfRaw = 0;
39  nZconstraints = 0;
40  the_integrator = NULL;
41  setTemp = 0;
42  thermalTime = 0.0;
43  currentTime = 0.0;
44  rCut = 0.0;
45  rSw = 0.0;
167  
168 <  haveRcut = 0;
169 <  haveRsw = 0;
170 <  boxIsInit = 0;
168 >  bool SimInfo::addMolecule(Molecule* mol) {
169 >    MoleculeIterator i;
170 >    
171 >    i = molecules_.find(mol->getGlobalIndex());
172 >    if (i == molecules_.end() ) {
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176 >      nAtoms_ += mol->getNAtoms();
177 >      nBonds_ += mol->getNBonds();
178 >      nBends_ += mol->getNBends();
179 >      nTorsions_ += mol->getNTorsions();
180 >      nInversions_ += mol->getNInversions();
181 >      nRigidBodies_ += mol->getNRigidBodies();
182 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
183 >      nCutoffGroups_ += mol->getNCutoffGroups();
184 >      nConstraints_ += mol->getNConstraintPairs();
185 >      
186 >      addInteractionPairs(mol);
187 >      
188 >      return true;
189 >    } else {
190 >      return false;
191 >    }
192 >  }
193    
194 <  resetTime = 1e99;
194 >  bool SimInfo::removeMolecule(Molecule* mol) {
195 >    MoleculeIterator i;
196 >    i = molecules_.find(mol->getGlobalIndex());
197  
198 <  orthoRhombic = 0;
54 <  orthoTolerance = 1E-6;
55 <  useInitXSstate = true;
198 >    if (i != molecules_.end() ) {
199  
200 <  usePBC = 0;
201 <  useLJ = 0;
202 <  useSticky = 0;
203 <  useCharges = 0;
204 <  useDipoles = 0;
205 <  useReactionField = 0;
206 <  useGB = 0;
207 <  useEAM = 0;
208 <  useSolidThermInt = 0;
209 <  useLiquidThermInt = 0;
200 >      assert(mol == i->second);
201 >        
202 >      nAtoms_ -= mol->getNAtoms();
203 >      nBonds_ -= mol->getNBonds();
204 >      nBends_ -= mol->getNBends();
205 >      nTorsions_ -= mol->getNTorsions();
206 >      nInversions_ -= mol->getNInversions();
207 >      nRigidBodies_ -= mol->getNRigidBodies();
208 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
209 >      nCutoffGroups_ -= mol->getNCutoffGroups();
210 >      nConstraints_ -= mol->getNConstraintPairs();
211  
212 <  haveCutoffGroups = false;
212 >      removeInteractionPairs(mol);
213 >      molecules_.erase(mol->getGlobalIndex());
214  
215 <  excludes = Exclude::Instance();
215 >      delete mol;
216 >        
217 >      return true;
218 >    } else {
219 >      return false;
220 >    }
221 >  }    
222  
223 <  myConfiguration = new SimState();
223 >        
224 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
225 >    i = molecules_.begin();
226 >    return i == molecules_.end() ? NULL : i->second;
227 >  }    
228  
229 <  has_minimizer = false;
230 <  the_minimizer =NULL;
229 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
230 >    ++i;
231 >    return i == molecules_.end() ? NULL : i->second;    
232 >  }
233  
77  ngroup = 0;
234  
235 <  wrapMeSimInfo( this );
236 < }
235 >  void SimInfo::calcNdf() {
236 >    int ndf_local, nfq_local;
237 >    MoleculeIterator i;
238 >    vector<StuntDouble*>::iterator j;
239 >    vector<Atom*>::iterator k;
240  
241 +    Molecule* mol;
242 +    StuntDouble* sd;
243 +    Atom* atom;
244  
245 < SimInfo::~SimInfo(){
245 >    ndf_local = 0;
246 >    nfq_local = 0;
247 >    
248 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
249  
250 <  delete myConfiguration;
250 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
251 >           sd = mol->nextIntegrableObject(j)) {
252  
253 <  map<string, GenericData*>::iterator i;
88 <  
89 <  for(i = properties.begin(); i != properties.end(); i++)
90 <    delete (*i).second;
253 >        ndf_local += 3;
254  
255 < }
255 >        if (sd->isDirectional()) {
256 >          if (sd->isLinear()) {
257 >            ndf_local += 2;
258 >          } else {
259 >            ndf_local += 3;
260 >          }
261 >        }
262 >      }
263  
264 < void SimInfo::setBox(double newBox[3]) {
265 <  
266 <  int i, j;
267 <  double tempMat[3][3];
264 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
265 >           atom = mol->nextFluctuatingCharge(k)) {
266 >        if (atom->isFluctuatingCharge()) {
267 >          nfq_local++;
268 >        }
269 >      }
270 >    }
271 >    
272 >    ndfLocal_ = ndf_local;
273  
274 <  for(i=0; i<3; i++)
275 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
274 >    // n_constraints is local, so subtract them on each processor
275 >    ndf_local -= nConstraints_;
276  
277 <  tempMat[0][0] = newBox[0];
278 <  tempMat[1][1] = newBox[1];
279 <  tempMat[2][2] = newBox[2];
277 > #ifdef IS_MPI
278 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
279 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
280 >                              MPI::INT, MPI::SUM);
281 > #else
282 >    ndf_ = ndf_local;
283 >    nGlobalFluctuatingCharges_ = nfq_local;
284 > #endif
285  
286 <  setBoxM( tempMat );
286 >    // nZconstraints_ is global, as are the 3 COM translations for the
287 >    // entire system:
288 >    ndf_ = ndf_ - 3 - nZconstraint_;
289  
290 < }
290 >  }
291  
292 < void SimInfo::setBoxM( double theBox[3][3] ){
292 >  int SimInfo::getFdf() {
293 > #ifdef IS_MPI
294 >    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
295 > #else
296 >    fdf_ = fdf_local;
297 > #endif
298 >    return fdf_;
299 >  }
300    
301 <  int i, j;
302 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
303 <                         // ordering in the array is as follows:
304 <                         // [ 0 3 6 ]
305 <                         // [ 1 4 7 ]
306 <                         // [ 2 5 8 ]
307 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
308 <
309 <  if( !boxIsInit ) boxIsInit = 1;
310 <
311 <  for(i=0; i < 3; i++)
312 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
313 <  
314 <  calcBoxL();
126 <  calcHmatInv();
127 <
128 <  for(i=0; i < 3; i++) {
129 <    for (j=0; j < 3; j++) {
130 <      FortranHmat[3*j + i] = Hmat[i][j];
131 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
301 >  unsigned int SimInfo::getNLocalCutoffGroups(){
302 >    int nLocalCutoffAtoms = 0;
303 >    Molecule* mol;
304 >    MoleculeIterator mi;
305 >    CutoffGroup* cg;
306 >    Molecule::CutoffGroupIterator ci;
307 >    
308 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
309 >      
310 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
311 >           cg = mol->nextCutoffGroup(ci)) {
312 >        nLocalCutoffAtoms += cg->getNumAtom();
313 >        
314 >      }        
315      }
316 +    
317 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
318    }
319 +    
320 +  void SimInfo::calcNdfRaw() {
321 +    int ndfRaw_local;
322  
323 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
324 <
325 < }
326 <
139 <
140 < void SimInfo::getBoxM (double theBox[3][3]) {
141 <
142 <  int i, j;
143 <  for(i=0; i<3; i++)
144 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
145 < }
323 >    MoleculeIterator i;
324 >    vector<StuntDouble*>::iterator j;
325 >    Molecule* mol;
326 >    StuntDouble* sd;
327  
328 +    // Raw degrees of freedom that we have to set
329 +    ndfRaw_local = 0;
330 +    
331 +    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
332  
333 < void SimInfo::scaleBox(double scale) {
334 <  double theBox[3][3];
150 <  int i, j;
333 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
334 >           sd = mol->nextIntegrableObject(j)) {
335  
336 <  // cerr << "Scaling box by " << scale << "\n";
336 >        ndfRaw_local += 3;
337  
338 <  for(i=0; i<3; i++)
339 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
340 <
341 <  setBoxM(theBox);
342 <
343 < }
344 <
345 < void SimInfo::calcHmatInv( void ) {
162 <  
163 <  int oldOrtho;
164 <  int i,j;
165 <  double smallDiag;
166 <  double tol;
167 <  double sanity[3][3];
168 <
169 <  invertMat3( Hmat, HmatInv );
170 <
171 <  // check to see if Hmat is orthorhombic
172 <  
173 <  oldOrtho = orthoRhombic;
174 <
175 <  smallDiag = fabs(Hmat[0][0]);
176 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
179 <
180 <  orthoRhombic = 1;
181 <  
182 <  for (i = 0; i < 3; i++ ) {
183 <    for (j = 0 ; j < 3; j++) {
184 <      if (i != j) {
185 <        if (orthoRhombic) {
186 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
187 <        }        
338 >        if (sd->isDirectional()) {
339 >          if (sd->isLinear()) {
340 >            ndfRaw_local += 2;
341 >          } else {
342 >            ndfRaw_local += 3;
343 >          }
344 >        }
345 >            
346        }
347      }
190  }
191
192  if( oldOrtho != orthoRhombic ){
348      
349 <    if( orthoRhombic ) {
350 <      sprintf( painCave.errMsg,
351 <               "OOPSE is switching from the default Non-Orthorhombic\n"
352 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
353 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
349 > #ifdef IS_MPI
350 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
351 > #else
352 >    ndfRaw_ = ndfRaw_local;
353 > #endif
354    }
218 }
355  
356 < void SimInfo::calcBoxL( void ){
356 >  void SimInfo::calcNdfTrans() {
357 >    int ndfTrans_local;
358  
359 <  double dx, dy, dz, dsq;
359 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
360  
224  // boxVol = Determinant of Hmat
361  
362 <  boxVol = matDet3( Hmat );
362 > #ifdef IS_MPI
363 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
364 >                              MPI::INT, MPI::SUM);
365 > #else
366 >    ndfTrans_ = ndfTrans_local;
367 > #endif
368  
369 <  // boxLx
370 <  
371 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
231 <  dsq = dx*dx + dy*dy + dz*dz;
232 <  boxL[0] = sqrt( dsq );
233 <  //maxCutoff = 0.5 * boxL[0];
369 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
370 >
371 >  }
372  
373 <  // boxLy
374 <  
375 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
376 <  dsq = dx*dx + dy*dy + dz*dz;
377 <  boxL[1] = sqrt( dsq );
378 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
373 >  void SimInfo::addInteractionPairs(Molecule* mol) {
374 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
375 >    vector<Bond*>::iterator bondIter;
376 >    vector<Bend*>::iterator bendIter;
377 >    vector<Torsion*>::iterator torsionIter;
378 >    vector<Inversion*>::iterator inversionIter;
379 >    Bond* bond;
380 >    Bend* bend;
381 >    Torsion* torsion;
382 >    Inversion* inversion;
383 >    int a;
384 >    int b;
385 >    int c;
386 >    int d;
387  
388 +    // atomGroups can be used to add special interaction maps between
389 +    // groups of atoms that are in two separate rigid bodies.
390 +    // However, most site-site interactions between two rigid bodies
391 +    // are probably not special, just the ones between the physically
392 +    // bonded atoms.  Interactions *within* a single rigid body should
393 +    // always be excluded.  These are done at the bottom of this
394 +    // function.
395  
396 <  // boxLz
397 <  
398 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
399 <  dsq = dx*dx + dy*dy + dz*dz;
400 <  boxL[2] = sqrt( dsq );
401 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
396 >    map<int, set<int> > atomGroups;
397 >    Molecule::RigidBodyIterator rbIter;
398 >    RigidBody* rb;
399 >    Molecule::IntegrableObjectIterator ii;
400 >    StuntDouble* sd;
401 >    
402 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
403 >         sd = mol->nextIntegrableObject(ii)) {
404 >      
405 >      if (sd->isRigidBody()) {
406 >        rb = static_cast<RigidBody*>(sd);
407 >        vector<Atom*> atoms = rb->getAtoms();
408 >        set<int> rigidAtoms;
409 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
410 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
411 >        }
412 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
413 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
414 >        }      
415 >      } else {
416 >        set<int> oneAtomSet;
417 >        oneAtomSet.insert(sd->getGlobalIndex());
418 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
419 >      }
420 >    }  
421 >          
422 >    for (bond= mol->beginBond(bondIter); bond != NULL;
423 >         bond = mol->nextBond(bondIter)) {
424  
425 <  //calculate the max cutoff
426 <  maxCutoff =  calcMaxCutOff();
252 <  
253 <  checkCutOffs();
425 >      a = bond->getAtomA()->getGlobalIndex();
426 >      b = bond->getAtomB()->getGlobalIndex();  
427  
428 < }
428 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
429 >        oneTwoInteractions_.addPair(a, b);
430 >      } else {
431 >        excludedInteractions_.addPair(a, b);
432 >      }
433 >    }
434  
435 +    for (bend= mol->beginBend(bendIter); bend != NULL;
436 +         bend = mol->nextBend(bendIter)) {
437  
438 < double SimInfo::calcMaxCutOff(){
438 >      a = bend->getAtomA()->getGlobalIndex();
439 >      b = bend->getAtomB()->getGlobalIndex();        
440 >      c = bend->getAtomC()->getGlobalIndex();
441 >      
442 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
443 >        oneTwoInteractions_.addPair(a, b);      
444 >        oneTwoInteractions_.addPair(b, c);
445 >      } else {
446 >        excludedInteractions_.addPair(a, b);
447 >        excludedInteractions_.addPair(b, c);
448 >      }
449  
450 <  double ri[3], rj[3], rk[3];
451 <  double rij[3], rjk[3], rki[3];
452 <  double minDist;
450 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
451 >        oneThreeInteractions_.addPair(a, c);      
452 >      } else {
453 >        excludedInteractions_.addPair(a, c);
454 >      }
455 >    }
456  
457 <  ri[0] = Hmat[0][0];
458 <  ri[1] = Hmat[1][0];
266 <  ri[2] = Hmat[2][0];
457 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
458 >         torsion = mol->nextTorsion(torsionIter)) {
459  
460 <  rj[0] = Hmat[0][1];
461 <  rj[1] = Hmat[1][1];
462 <  rj[2] = Hmat[2][1];
460 >      a = torsion->getAtomA()->getGlobalIndex();
461 >      b = torsion->getAtomB()->getGlobalIndex();        
462 >      c = torsion->getAtomC()->getGlobalIndex();        
463 >      d = torsion->getAtomD()->getGlobalIndex();      
464  
465 <  rk[0] = Hmat[0][2];
466 <  rk[1] = Hmat[1][2];
467 <  rk[2] = Hmat[2][2];
468 <    
469 <  crossProduct3(ri, rj, rij);
470 <  distXY = dotProduct3(rk,rij) / norm3(rij);
465 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
466 >        oneTwoInteractions_.addPair(a, b);      
467 >        oneTwoInteractions_.addPair(b, c);
468 >        oneTwoInteractions_.addPair(c, d);
469 >      } else {
470 >        excludedInteractions_.addPair(a, b);
471 >        excludedInteractions_.addPair(b, c);
472 >        excludedInteractions_.addPair(c, d);
473 >      }
474  
475 <  crossProduct3(rj,rk, rjk);
476 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
475 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
476 >        oneThreeInteractions_.addPair(a, c);      
477 >        oneThreeInteractions_.addPair(b, d);      
478 >      } else {
479 >        excludedInteractions_.addPair(a, c);
480 >        excludedInteractions_.addPair(b, d);
481 >      }
482  
483 <  crossProduct3(rk,ri, rki);
484 <  distZX = dotProduct3(rj,rki) / norm3(rki);
483 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
484 >        oneFourInteractions_.addPair(a, d);      
485 >      } else {
486 >        excludedInteractions_.addPair(a, d);
487 >      }
488 >    }
489  
490 <  minDist = min(min(distXY, distYZ), distZX);
491 <  return minDist/2;
287 <  
288 < }
490 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
491 >         inversion = mol->nextInversion(inversionIter)) {
492  
493 < void SimInfo::wrapVector( double thePos[3] ){
493 >      a = inversion->getAtomA()->getGlobalIndex();
494 >      b = inversion->getAtomB()->getGlobalIndex();        
495 >      c = inversion->getAtomC()->getGlobalIndex();        
496 >      d = inversion->getAtomD()->getGlobalIndex();        
497  
498 <  int i;
499 <  double scaled[3];
498 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
499 >        oneTwoInteractions_.addPair(a, b);      
500 >        oneTwoInteractions_.addPair(a, c);
501 >        oneTwoInteractions_.addPair(a, d);
502 >      } else {
503 >        excludedInteractions_.addPair(a, b);
504 >        excludedInteractions_.addPair(a, c);
505 >        excludedInteractions_.addPair(a, d);
506 >      }
507  
508 <  if( !orthoRhombic ){
509 <    // calc the scaled coordinates.
510 <  
508 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
509 >        oneThreeInteractions_.addPair(b, c);    
510 >        oneThreeInteractions_.addPair(b, d);    
511 >        oneThreeInteractions_.addPair(c, d);      
512 >      } else {
513 >        excludedInteractions_.addPair(b, c);
514 >        excludedInteractions_.addPair(b, d);
515 >        excludedInteractions_.addPair(c, d);
516 >      }
517 >    }
518  
519 <    matVecMul3(HmatInv, thePos, scaled);
520 <    
521 <    for(i=0; i<3; i++)
522 <      scaled[i] -= roundMe(scaled[i]);
523 <    
524 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
525 <    
526 <    matVecMul3(Hmat, scaled, thePos);
519 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
520 >         rb = mol->nextRigidBody(rbIter)) {
521 >      vector<Atom*> atoms = rb->getAtoms();
522 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
523 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
524 >          a = atoms[i]->getGlobalIndex();
525 >          b = atoms[j]->getGlobalIndex();
526 >          excludedInteractions_.addPair(a, b);
527 >        }
528 >      }
529 >    }        
530  
531    }
309  else{
310    // calc the scaled coordinates.
311    
312    for(i=0; i<3; i++)
313      scaled[i] = thePos[i]*HmatInv[i][i];
314    
315    // wrap the scaled coordinates
316    
317    for(i=0; i<3; i++)
318      scaled[i] -= roundMe(scaled[i]);
319    
320    // calc the wrapped real coordinates from the wrapped scaled coordinates
321    
322    for(i=0; i<3; i++)
323      thePos[i] = scaled[i]*Hmat[i][i];
324  }
325    
326 }
532  
533 +  void SimInfo::removeInteractionPairs(Molecule* mol) {
534 +    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
535 +    vector<Bond*>::iterator bondIter;
536 +    vector<Bend*>::iterator bendIter;
537 +    vector<Torsion*>::iterator torsionIter;
538 +    vector<Inversion*>::iterator inversionIter;
539 +    Bond* bond;
540 +    Bend* bend;
541 +    Torsion* torsion;
542 +    Inversion* inversion;
543 +    int a;
544 +    int b;
545 +    int c;
546 +    int d;
547  
548 < int SimInfo::getNDF(){
549 <  int ndf_local;
550 <
551 <  ndf_local = 0;
552 <  
553 <  for(int i = 0; i < integrableObjects.size(); i++){
554 <    ndf_local += 3;
555 <    if (integrableObjects[i]->isDirectional()) {
556 <      if (integrableObjects[i]->isLinear())
557 <        ndf_local += 2;
558 <      else
559 <        ndf_local += 3;
548 >    map<int, set<int> > atomGroups;
549 >    Molecule::RigidBodyIterator rbIter;
550 >    RigidBody* rb;
551 >    Molecule::IntegrableObjectIterator ii;
552 >    StuntDouble* sd;
553 >    
554 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
555 >         sd = mol->nextIntegrableObject(ii)) {
556 >      
557 >      if (sd->isRigidBody()) {
558 >        rb = static_cast<RigidBody*>(sd);
559 >        vector<Atom*> atoms = rb->getAtoms();
560 >        set<int> rigidAtoms;
561 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
562 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
563 >        }
564 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
565 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
566 >        }      
567 >      } else {
568 >        set<int> oneAtomSet;
569 >        oneAtomSet.insert(sd->getGlobalIndex());
570 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
571 >      }
572 >    }  
573 >
574 >    for (bond= mol->beginBond(bondIter); bond != NULL;
575 >         bond = mol->nextBond(bondIter)) {
576 >      
577 >      a = bond->getAtomA()->getGlobalIndex();
578 >      b = bond->getAtomB()->getGlobalIndex();  
579 >    
580 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581 >        oneTwoInteractions_.removePair(a, b);
582 >      } else {
583 >        excludedInteractions_.removePair(a, b);
584 >      }
585      }
342  }
586  
587 <  // n_constraints is local, so subtract them on each processor:
587 >    for (bend= mol->beginBend(bendIter); bend != NULL;
588 >         bend = mol->nextBend(bendIter)) {
589  
590 <  ndf_local -= n_constraints;
590 >      a = bend->getAtomA()->getGlobalIndex();
591 >      b = bend->getAtomB()->getGlobalIndex();        
592 >      c = bend->getAtomC()->getGlobalIndex();
593 >      
594 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
595 >        oneTwoInteractions_.removePair(a, b);      
596 >        oneTwoInteractions_.removePair(b, c);
597 >      } else {
598 >        excludedInteractions_.removePair(a, b);
599 >        excludedInteractions_.removePair(b, c);
600 >      }
601  
602 < #ifdef IS_MPI
603 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
604 < #else
605 <  ndf = ndf_local;
606 < #endif
602 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
603 >        oneThreeInteractions_.removePair(a, c);      
604 >      } else {
605 >        excludedInteractions_.removePair(a, c);
606 >      }
607 >    }
608  
609 <  // nZconstraints is global, as are the 3 COM translations for the
610 <  // entire system:
609 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
610 >         torsion = mol->nextTorsion(torsionIter)) {
611  
612 <  ndf = ndf - 3 - nZconstraints;
612 >      a = torsion->getAtomA()->getGlobalIndex();
613 >      b = torsion->getAtomB()->getGlobalIndex();        
614 >      c = torsion->getAtomC()->getGlobalIndex();        
615 >      d = torsion->getAtomD()->getGlobalIndex();      
616 >  
617 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
618 >        oneTwoInteractions_.removePair(a, b);      
619 >        oneTwoInteractions_.removePair(b, c);
620 >        oneTwoInteractions_.removePair(c, d);
621 >      } else {
622 >        excludedInteractions_.removePair(a, b);
623 >        excludedInteractions_.removePair(b, c);
624 >        excludedInteractions_.removePair(c, d);
625 >      }
626  
627 <  return ndf;
628 < }
627 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
628 >        oneThreeInteractions_.removePair(a, c);      
629 >        oneThreeInteractions_.removePair(b, d);      
630 >      } else {
631 >        excludedInteractions_.removePair(a, c);
632 >        excludedInteractions_.removePair(b, d);
633 >      }
634  
635 < int SimInfo::getNDFraw() {
636 <  int ndfRaw_local;
635 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
636 >        oneFourInteractions_.removePair(a, d);      
637 >      } else {
638 >        excludedInteractions_.removePair(a, d);
639 >      }
640 >    }
641  
642 <  // Raw degrees of freedom that we have to set
643 <  ndfRaw_local = 0;
642 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
643 >         inversion = mol->nextInversion(inversionIter)) {
644  
645 <  for(int i = 0; i < integrableObjects.size(); i++){
646 <    ndfRaw_local += 3;
647 <    if (integrableObjects[i]->isDirectional()) {
648 <       if (integrableObjects[i]->isLinear())
649 <        ndfRaw_local += 2;
650 <      else
651 <        ndfRaw_local += 3;
645 >      a = inversion->getAtomA()->getGlobalIndex();
646 >      b = inversion->getAtomB()->getGlobalIndex();        
647 >      c = inversion->getAtomC()->getGlobalIndex();        
648 >      d = inversion->getAtomD()->getGlobalIndex();        
649 >
650 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
651 >        oneTwoInteractions_.removePair(a, b);      
652 >        oneTwoInteractions_.removePair(a, c);
653 >        oneTwoInteractions_.removePair(a, d);
654 >      } else {
655 >        excludedInteractions_.removePair(a, b);
656 >        excludedInteractions_.removePair(a, c);
657 >        excludedInteractions_.removePair(a, d);
658 >      }
659 >
660 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
661 >        oneThreeInteractions_.removePair(b, c);    
662 >        oneThreeInteractions_.removePair(b, d);    
663 >        oneThreeInteractions_.removePair(c, d);      
664 >      } else {
665 >        excludedInteractions_.removePair(b, c);
666 >        excludedInteractions_.removePair(b, d);
667 >        excludedInteractions_.removePair(c, d);
668 >      }
669      }
670 +
671 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
672 +         rb = mol->nextRigidBody(rbIter)) {
673 +      vector<Atom*> atoms = rb->getAtoms();
674 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
675 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
676 +          a = atoms[i]->getGlobalIndex();
677 +          b = atoms[j]->getGlobalIndex();
678 +          excludedInteractions_.removePair(a, b);
679 +        }
680 +      }
681 +    }        
682 +    
683    }
684 +  
685 +  
686 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
687 +    int curStampId;
688      
689 < #ifdef IS_MPI
690 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
380 < #else
381 <  ndfRaw = ndfRaw_local;
382 < #endif
689 >    //index from 0
690 >    curStampId = moleculeStamps_.size();
691  
692 <  return ndfRaw;
693 < }
692 >    moleculeStamps_.push_back(molStamp);
693 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
694 >  }
695  
387 int SimInfo::getNDFtranslational() {
388  int ndfTrans_local;
696  
697 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
698 <
699 <
697 >  /**
698 >   * update
699 >   *
700 >   *  Performs the global checks and variable settings after the
701 >   *  objects have been created.
702 >   *
703 >   */
704 >  void SimInfo::update() {  
705 >    setupSimVariables();
706 >    calcNdf();
707 >    calcNdfRaw();
708 >    calcNdfTrans();
709 >  }
710 >  
711 >  /**
712 >   * getSimulatedAtomTypes
713 >   *
714 >   * Returns an STL set of AtomType* that are actually present in this
715 >   * simulation.  Must query all processors to assemble this information.
716 >   *
717 >   */
718 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
719 >    SimInfo::MoleculeIterator mi;
720 >    Molecule* mol;
721 >    Molecule::AtomIterator ai;
722 >    Atom* atom;
723 >    set<AtomType*> atomTypes;
724 >    
725 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
726 >      for(atom = mol->beginAtom(ai); atom != NULL;
727 >          atom = mol->nextAtom(ai)) {
728 >        atomTypes.insert(atom->getAtomType());
729 >      }      
730 >    }    
731 >    
732   #ifdef IS_MPI
394  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
395 #else
396  ndfTrans = ndfTrans_local;
397 #endif
733  
734 <  ndfTrans = ndfTrans - 3 - nZconstraints;
734 >    // loop over the found atom types on this processor, and add their
735 >    // numerical idents to a vector:
736 >    
737 >    vector<int> foundTypes;
738 >    set<AtomType*>::iterator i;
739 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
740 >      foundTypes.push_back( (*i)->getIdent() );
741  
742 <  return ndfTrans;
743 < }
742 >    // count_local holds the number of found types on this processor
743 >    int count_local = foundTypes.size();
744  
745 < int SimInfo::getTotIntegrableObjects() {
405 <  int nObjs_local;
406 <  int nObjs;
745 >    int nproc = MPI::COMM_WORLD.Get_size();
746  
747 <  nObjs_local =  integrableObjects.size();
747 >    // we need arrays to hold the counts and displacement vectors for
748 >    // all processors
749 >    vector<int> counts(nproc, 0);
750 >    vector<int> disps(nproc, 0);
751  
752 +    // fill the counts array
753 +    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
754 +                              1, MPI::INT);
755 +  
756 +    // use the processor counts to compute the displacement array
757 +    disps[0] = 0;    
758 +    int totalCount = counts[0];
759 +    for (int iproc = 1; iproc < nproc; iproc++) {
760 +      disps[iproc] = disps[iproc-1] + counts[iproc-1];
761 +      totalCount += counts[iproc];
762 +    }
763  
764 < #ifdef IS_MPI
765 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
766 < #else
767 <  nObjs = nObjs_local;
768 < #endif
764 >    // we need a (possibly redundant) set of all found types:
765 >    vector<int> ftGlobal(totalCount);
766 >    
767 >    // now spray out the foundTypes to all the other processors:    
768 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
769 >                               &ftGlobal[0], &counts[0], &disps[0],
770 >                               MPI::INT);
771  
772 +    vector<int>::iterator j;
773  
774 <  return nObjs;
775 < }
774 >    // foundIdents is a stl set, so inserting an already found ident
775 >    // will have no effect.
776 >    set<int> foundIdents;
777  
778 < void SimInfo::refreshSim(){
778 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
779 >      foundIdents.insert((*j));
780 >    
781 >    // now iterate over the foundIdents and get the actual atom types
782 >    // that correspond to these:
783 >    set<int>::iterator it;
784 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
785 >      atomTypes.insert( forceField_->getAtomType((*it)) );
786 >
787 > #endif
788  
789 <  simtype fInfo;
790 <  int isError;
425 <  int n_global;
426 <  int* excl;
789 >    return atomTypes;        
790 >  }
791  
428  fInfo.dielect = 0.0;
792  
793 <  if( useDipoles ){
794 <    if( useReactionField )fInfo.dielect = dielectric;
793 >  int getGlobalCountOfType(AtomType* atype) {
794 >    /*
795 >    set<AtomType*> atypes = getSimulatedAtomTypes();
796 >    map<AtomType*, int> counts_;
797 >
798 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
799 >      for(atom = mol->beginAtom(ai); atom != NULL;
800 >          atom = mol->nextAtom(ai)) {
801 >        atom->getAtomType();
802 >      }      
803 >    }    
804 >    */
805 >    return 0;
806    }
807  
808 <  fInfo.SIM_uses_PBC = usePBC;
809 <  //fInfo.SIM_uses_LJ = 0;
810 <  fInfo.SIM_uses_LJ = useLJ;
811 <  fInfo.SIM_uses_sticky = useSticky;
812 <  //fInfo.SIM_uses_sticky = 0;
813 <  fInfo.SIM_uses_charges = useCharges;
814 <  fInfo.SIM_uses_dipoles = useDipoles;
815 <  //fInfo.SIM_uses_dipoles = 0;
816 <  fInfo.SIM_uses_RF = useReactionField;
817 <  //fInfo.SIM_uses_RF = 0;
818 <  fInfo.SIM_uses_GB = useGB;
819 <  fInfo.SIM_uses_EAM = useEAM;
808 >  void SimInfo::setupSimVariables() {
809 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
810 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
811 >    // parameter is true
812 >    calcBoxDipole_ = false;
813 >    if ( simParams_->haveAccumulateBoxDipole() )
814 >      if ( simParams_->getAccumulateBoxDipole() ) {
815 >        calcBoxDipole_ = true;      
816 >      }
817 >    
818 >    set<AtomType*>::iterator i;
819 >    set<AtomType*> atomTypes;
820 >    atomTypes = getSimulatedAtomTypes();    
821 >    bool usesElectrostatic = false;
822 >    bool usesMetallic = false;
823 >    bool usesDirectional = false;
824 >    bool usesFluctuatingCharges =  false;
825 >    //loop over all of the atom types
826 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
827 >      usesElectrostatic |= (*i)->isElectrostatic();
828 >      usesMetallic |= (*i)->isMetal();
829 >      usesDirectional |= (*i)->isDirectional();
830 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
831 >    }
832  
447  n_exclude = excludes->getSize();
448  excl = excludes->getFortranArray();
449  
833   #ifdef IS_MPI
834 <  n_global = mpiSim->getNAtomsGlobal();
834 >    bool temp;
835 >    temp = usesDirectional;
836 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
837 >                              MPI::LOR);
838 >        
839 >    temp = usesMetallic;
840 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
841 >                              MPI::LOR);
842 >    
843 >    temp = usesElectrostatic;
844 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
845 >                              MPI::LOR);
846 >
847 >    temp = usesFluctuatingCharges;
848 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
849 >                              MPI::LOR);
850   #else
851 <  n_global = n_atoms;
851 >
852 >    usesDirectionalAtoms_ = usesDirectional;
853 >    usesMetallicAtoms_ = usesMetallic;
854 >    usesElectrostaticAtoms_ = usesElectrostatic;
855 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
856 >
857   #endif
858 <  
859 <  isError = 0;
860 <  
861 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
862 <  //it may not be a good idea to pass the address of first element in vector
460 <  //since c++ standard does not require vector to be stored continuously in meomory
461 <  //Most of the compilers will organize the memory of vector continuously
462 <  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
858 >    
859 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
860 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
861 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
862 >  }
863  
864 <  if( isError ){
864 >
865 >  vector<int> SimInfo::getGlobalAtomIndices() {
866 >    SimInfo::MoleculeIterator mi;
867 >    Molecule* mol;
868 >    Molecule::AtomIterator ai;
869 >    Atom* atom;
870 >
871 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
872      
873 <    sprintf( painCave.errMsg,
874 <             "There was an error setting the simulation information in fortran.\n" );
875 <    painCave.isFatal = 1;
876 <    painCave.severity = OOPSE_ERROR;
877 <    simError();
873 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
874 >      
875 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
876 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
877 >      }
878 >    }
879 >    return GlobalAtomIndices;
880    }
474  
475 #ifdef IS_MPI
476  sprintf( checkPointMsg,
477           "succesfully sent the simulation information to fortran.\n");
478  MPIcheckPoint();
479 #endif // is_mpi
480  
481  this->ndf = this->getNDF();
482  this->ndfRaw = this->getNDFraw();
483  this->ndfTrans = this->getNDFtranslational();
484 }
881  
486 void SimInfo::setDefaultRcut( double theRcut ){
487  
488  haveRcut = 1;
489  rCut = theRcut;
490  rList = rCut + 1.0;
491  
492  notifyFortranCutOffs( &rCut, &rSw, &rList );
493 }
882  
883 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
883 >  vector<int> SimInfo::getGlobalGroupIndices() {
884 >    SimInfo::MoleculeIterator mi;
885 >    Molecule* mol;
886 >    Molecule::CutoffGroupIterator ci;
887 >    CutoffGroup* cg;
888  
889 <  rSw = theRsw;
890 <  setDefaultRcut( theRcut );
891 < }
889 >    vector<int> GlobalGroupIndices;
890 >    
891 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
892 >      
893 >      //local index of cutoff group is trivial, it only depends on the
894 >      //order of travesing
895 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
896 >           cg = mol->nextCutoffGroup(ci)) {
897 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
898 >      }        
899 >    }
900 >    return GlobalGroupIndices;
901 >  }
902  
903  
904 < void SimInfo::checkCutOffs( void ){
905 <  
906 <  if( boxIsInit ){
904 >  void SimInfo::prepareTopology() {
905 >
906 >    //calculate mass ratio of cutoff group
907 >    SimInfo::MoleculeIterator mi;
908 >    Molecule* mol;
909 >    Molecule::CutoffGroupIterator ci;
910 >    CutoffGroup* cg;
911 >    Molecule::AtomIterator ai;
912 >    Atom* atom;
913 >    RealType totalMass;
914 >
915 >    /**
916 >     * The mass factor is the relative mass of an atom to the total
917 >     * mass of the cutoff group it belongs to.  By default, all atoms
918 >     * are their own cutoff groups, and therefore have mass factors of
919 >     * 1.  We need some special handling for massless atoms, which
920 >     * will be treated as carrying the entire mass of the cutoff
921 >     * group.
922 >     */
923 >    massFactors_.clear();
924 >    massFactors_.resize(getNAtoms(), 1.0);
925      
926 <    //we need to check cutOffs against the box
927 <    
928 <    if( rCut > maxCutoff ){
929 <      sprintf( painCave.errMsg,
930 <               "cutoffRadius is too large for the current periodic box.\n"
931 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
932 <               "\tThis is larger than half of at least one of the\n"
933 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
934 <               "\n"
935 <               "\t[ %G %G %G ]\n"
936 <               "\t[ %G %G %G ]\n"
937 <               "\t[ %G %G %G ]\n",
938 <               rCut, currentTime,
939 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
940 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
941 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
942 <      painCave.severity = OOPSE_ERROR;
943 <      painCave.isFatal = 1;
944 <      simError();
926 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
927 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
928 >           cg = mol->nextCutoffGroup(ci)) {
929 >
930 >        totalMass = cg->getMass();
931 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
932 >          // Check for massless groups - set mfact to 1 if true
933 >          if (totalMass != 0)
934 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
935 >          else
936 >            massFactors_[atom->getLocalIndex()] = 1.0;
937 >        }
938 >      }      
939 >    }
940 >
941 >    // Build the identArray_
942 >
943 >    identArray_.clear();
944 >    identArray_.reserve(getNAtoms());    
945 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
946 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
947 >        identArray_.push_back(atom->getIdent());
948 >      }
949      }    
950 <  } else {
951 <    // initialize this stuff before using it, OK?
528 <    sprintf( painCave.errMsg,
529 <             "Trying to check cutoffs without a box.\n"
530 <             "\tOOPSE should have better programmers than that.\n" );
531 <    painCave.severity = OOPSE_ERROR;
532 <    painCave.isFatal = 1;
533 <    simError();      
950 >    
951 >    topologyDone_ = true;
952    }
535  
536 }
953  
954 < void SimInfo::addProperty(GenericData* prop){
954 >  void SimInfo::addProperty(GenericData* genData) {
955 >    properties_.addProperty(genData);  
956 >  }
957  
958 <  map<string, GenericData*>::iterator result;
959 <  result = properties.find(prop->getID());
542 <  
543 <  //we can't simply use  properties[prop->getID()] = prop,
544 <  //it will cause memory leak if we already contain a propery which has the same name of prop
545 <  
546 <  if(result != properties.end()){
547 <    
548 <    delete (*result).second;
549 <    (*result).second = prop;
550 <      
958 >  void SimInfo::removeProperty(const string& propName) {
959 >    properties_.removeProperty(propName);  
960    }
552  else{
961  
962 <    properties[prop->getID()] = prop;
962 >  void SimInfo::clearProperties() {
963 >    properties_.clearProperties();
964 >  }
965  
966 +  vector<string> SimInfo::getPropertyNames() {
967 +    return properties_.getPropertyNames();  
968    }
969 <    
970 < }
969 >      
970 >  vector<GenericData*> SimInfo::getProperties() {
971 >    return properties_.getProperties();
972 >  }
973  
974 < GenericData* SimInfo::getProperty(const string& propName){
974 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
975 >    return properties_.getPropertyByName(propName);
976 >  }
977 >
978 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
979 >    if (sman_ == sman) {
980 >      return;
981 >    }    
982 >    delete sman_;
983 >    sman_ = sman;
984 >
985 >    Molecule* mol;
986 >    RigidBody* rb;
987 >    Atom* atom;
988 >    CutoffGroup* cg;
989 >    SimInfo::MoleculeIterator mi;
990 >    Molecule::RigidBodyIterator rbIter;
991 >    Molecule::AtomIterator atomIter;
992 >    Molecule::CutoffGroupIterator cgIter;
993  
994 <  map<string, GenericData*>::iterator result;
995 <  
996 <  //string lowerCaseName = ();
997 <  
998 <  result = properties.find(propName);
999 <  
1000 <  if(result != properties.end())
1001 <    return (*result).second;  
1002 <  else  
1003 <    return NULL;  
1004 < }
994 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
995 >        
996 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
997 >           atom = mol->nextAtom(atomIter)) {
998 >        atom->setSnapshotManager(sman_);
999 >      }
1000 >        
1001 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1002 >           rb = mol->nextRigidBody(rbIter)) {
1003 >        rb->setSnapshotManager(sman_);
1004 >      }
1005  
1006 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1007 +           cg = mol->nextCutoffGroup(cgIter)) {
1008 +        cg->setSnapshotManager(sman_);
1009 +      }
1010 +    }    
1011 +    
1012 +  }
1013  
1014 < void SimInfo::getFortranGroupArrays(SimInfo* info,
1015 <                                    vector<int>& FglobalGroupMembership,
1016 <                                    vector<double>& mfact){
1014 >
1015 >  ostream& operator <<(ostream& o, SimInfo& info) {
1016 >
1017 >    return o;
1018 >  }
1019 >  
1020    
1021 <  Molecule* myMols;
1022 <  Atom** myAtoms;
1023 <  int numAtom;
1024 <  double mtot;
1025 <  int numMol;
1026 <  int numCutoffGroups;
1027 <  CutoffGroup* myCutoffGroup;
1028 <  vector<CutoffGroup*>::iterator iterCutoff;
1029 <  Atom* cutoffAtom;
1030 <  vector<Atom*>::iterator iterAtom;
1031 <  int atomIndex;
590 <  double totalMass;
1021 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1022 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1023 >      sprintf(painCave.errMsg,
1024 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1025 >              "\tindex exceeds number of known objects!\n");
1026 >      painCave.isFatal = 1;
1027 >      simError();
1028 >      return NULL;
1029 >    } else
1030 >      return IOIndexToIntegrableObject.at(index);
1031 >  }
1032    
1033 <  mfact.clear();
1034 <  FglobalGroupMembership.clear();
1035 <  
1033 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1034 >    IOIndexToIntegrableObject= v;
1035 >  }
1036  
1037 <  // Fix the silly fortran indexing problem
1037 >  int SimInfo::getNGlobalConstraints() {
1038 >    int nGlobalConstraints;
1039   #ifdef IS_MPI
1040 <  numAtom = mpiSim->getNAtomsGlobal();
1040 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1041 >                              MPI::INT, MPI::SUM);
1042   #else
1043 <  numAtom = n_atoms;
1043 >    nGlobalConstraints =  nConstraints_;
1044   #endif
1045 <  for (int i = 0; i < numAtom; i++)
603 <    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604 <  
605 <
606 <  myMols = info->molecules;
607 <  numMol = info->n_mol;
608 <  for(int i  = 0; i < numMol; i++){
609 <    numCutoffGroups = myMols[i].getNCutoffGroups();
610 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611 <        myCutoffGroup != NULL;
612 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
613 <
614 <      totalMass = myCutoffGroup->getMass();
615 <      
616 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
617 <          cutoffAtom != NULL;
618 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
619 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
620 <      }  
621 <    }
1045 >    return nGlobalConstraints;
1046    }
1047  
1048 < }
1048 > }//end namespace OpenMD
1049 >

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 1908 by gezelter, Fri Jul 19 21:25:45 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines