ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 1290 by cli2, Wed Sep 10 19:51:45 2008 UTC vs.
Revision 1930 by gezelter, Mon Aug 19 13:51:04 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
63 <
71 <
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
75 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 <    std::map<int, std::set<int> >::iterator i = container.find(index);
80 <    std::set<int> result;
81 <    if (i != container.end()) {
82 <        result = i->second;
83 <    }
84 <
85 <    return result;
86 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
79 <    calcBoxDipole_(false), useAtomicVirial_(true) {
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      if ( (*i)->haveRegion() ) {        
95 >        molStamp->setRegion( (*i)->getRegion() );
96 >      } else {
97 >        // set the region to a disallowed value:
98 >        molStamp->setRegion( -1 );
99 >      }
100  
101 <
99 <      MoleculeStamp* molStamp;
100 <      int nMolWithSameStamp;
101 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
102 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
103 <      CutoffGroupStamp* cgStamp;    
104 <      RigidBodyStamp* rbStamp;
105 <      int nRigidAtoms = 0;
106 <
107 <      std::vector<Component*> components = simParams->getComponents();
101 >      nMolWithSameStamp = (*i)->getNMol();
102        
103 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
104 <        molStamp = (*i)->getMoleculeStamp();
105 <        nMolWithSameStamp = (*i)->getNMol();
106 <        
107 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
108 <
109 <        //calculate atoms in molecules
110 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
111 <
112 <        //calculate atoms in cutoff groups
113 <        int nAtomsInGroups = 0;
114 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
121 <        
122 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
123 <          cgStamp = molStamp->getCutoffGroupStamp(j);
124 <          nAtomsInGroups += cgStamp->getNMembers();
125 <        }
126 <
127 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128 <
129 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
130 <
131 <        //calculate atoms in rigid bodies
132 <        int nAtomsInRigidBodies = 0;
133 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134 <        
135 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
136 <          rbStamp = molStamp->getRigidBodyStamp(j);
137 <          nAtomsInRigidBodies += rbStamp->getNMembers();
138 <        }
139 <
140 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
142 <        
103 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
104 >      
105 >      //calculate atoms in molecules
106 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
107 >      
108 >      //calculate atoms in cutoff groups
109 >      int nAtomsInGroups = 0;
110 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
111 >      
112 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
113 >        cgStamp = molStamp->getCutoffGroupStamp(j);
114 >        nAtomsInGroups += cgStamp->getNMembers();
115        }
116 <
117 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
118 <      //group therefore the total number of cutoff groups in the system is
119 <      //equal to the total number of atoms minus number of atoms belong to
120 <      //cutoff group defined in meta-data file plus the number of cutoff
121 <      //groups defined in meta-data file
122 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
123 <
124 <      //every free atom (atom does not belong to rigid bodies) is an
125 <      //integrable object therefore the total number of integrable objects
126 <      //in the system is equal to the total number of atoms minus number of
127 <      //atoms belong to rigid body defined in meta-data file plus the number
128 <      //of rigid bodies defined in meta-data file
129 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
130 <                                                + nGlobalRigidBodies_;
131 <  
132 <      nGlobalMols_ = molStampIds_.size();
161 <      molToProcMap_.resize(nGlobalMols_);
116 >      
117 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
118 >      
119 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
120 >      
121 >      //calculate atoms in rigid bodies
122 >      int nAtomsInRigidBodies = 0;
123 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
124 >      
125 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
126 >        rbStamp = molStamp->getRigidBodyStamp(j);
127 >        nAtomsInRigidBodies += rbStamp->getNMembers();
128 >      }
129 >      
130 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
131 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
132 >      
133      }
134 +    
135 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
136 +    //group therefore the total number of cutoff groups in the system is
137 +    //equal to the total number of atoms minus number of atoms belong to
138 +    //cutoff group defined in meta-data file plus the number of cutoff
139 +    //groups defined in meta-data file
140  
141 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
142 +    
143 +    //every free atom (atom does not belong to rigid bodies) is an
144 +    //integrable object therefore the total number of integrable objects
145 +    //in the system is equal to the total number of atoms minus number of
146 +    //atoms belong to rigid body defined in meta-data file plus the number
147 +    //of rigid bodies defined in meta-data file
148 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 +      + nGlobalRigidBodies_;
150 +    
151 +    nGlobalMols_ = molStampIds_.size();
152 +    molToProcMap_.resize(nGlobalMols_);
153 +  }
154 +  
155    SimInfo::~SimInfo() {
156 <    std::map<int, Molecule*>::iterator i;
156 >    map<int, Molecule*>::iterator i;
157      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158        delete i->second;
159      }
# Line 173 | Line 164 | namespace oopse {
164      delete forceField_;
165    }
166  
176  int SimInfo::getNGlobalConstraints() {
177    int nGlobalConstraints;
178 #ifdef IS_MPI
179    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180                  MPI_COMM_WORLD);    
181 #else
182    nGlobalConstraints =  nConstraints_;
183 #endif
184    return nGlobalConstraints;
185  }
167  
168    bool SimInfo::addMolecule(Molecule* mol) {
169      MoleculeIterator i;
170 <
170 >    
171      i = molecules_.find(mol->getGlobalIndex());
172      if (i == molecules_.end() ) {
173 <
174 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 <        
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176        nAtoms_ += mol->getNAtoms();
177        nBonds_ += mol->getNBonds();
178        nBends_ += mol->getNBends();
# Line 201 | Line 182 | namespace oopse {
182        nIntegrableObjects_ += mol->getNIntegrableObjects();
183        nCutoffGroups_ += mol->getNCutoffGroups();
184        nConstraints_ += mol->getNConstraintPairs();
185 <
185 >      
186        addInteractionPairs(mol);
187 <  
187 >      
188        return true;
189      } else {
190        return false;
191      }
192    }
193 <
193 >  
194    bool SimInfo::removeMolecule(Molecule* mol) {
195      MoleculeIterator i;
196      i = molecules_.find(mol->getGlobalIndex());
# Line 237 | Line 218 | namespace oopse {
218      } else {
219        return false;
220      }
240
241
221    }    
222  
223          
# Line 254 | Line 233 | namespace oopse {
233  
234  
235    void SimInfo::calcNdf() {
236 <    int ndf_local;
236 >    int ndf_local, nfq_local;
237      MoleculeIterator i;
238 <    std::vector<StuntDouble*>::iterator j;
238 >    vector<StuntDouble*>::iterator j;
239 >    vector<Atom*>::iterator k;
240 >
241      Molecule* mol;
242 <    StuntDouble* integrableObject;
242 >    StuntDouble* sd;
243 >    Atom* atom;
244  
245      ndf_local = 0;
246 +    nfq_local = 0;
247      
248      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267           integrableObject = mol->nextIntegrableObject(j)) {
249  
250 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
251 +           sd = mol->nextIntegrableObject(j)) {
252 +
253          ndf_local += 3;
254  
255 <        if (integrableObject->isDirectional()) {
256 <          if (integrableObject->isLinear()) {
255 >        if (sd->isDirectional()) {
256 >          if (sd->isLinear()) {
257              ndf_local += 2;
258            } else {
259              ndf_local += 3;
260            }
261          }
278            
262        }
263 +
264 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
265 +           atom = mol->nextFluctuatingCharge(k)) {
266 +        if (atom->isFluctuatingCharge()) {
267 +          nfq_local++;
268 +        }
269 +      }
270      }
271      
272 +    ndfLocal_ = ndf_local;
273 +
274      // n_constraints is local, so subtract them on each processor
275      ndf_local -= nConstraints_;
276  
277   #ifdef IS_MPI
278 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
278 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
279 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
280 >                              MPI::INT, MPI::SUM);
281   #else
282      ndf_ = ndf_local;
283 +    nGlobalFluctuatingCharges_ = nfq_local;
284   #endif
285  
286      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 296 | Line 291 | namespace oopse {
291  
292    int SimInfo::getFdf() {
293   #ifdef IS_MPI
294 <    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
294 >    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
295   #else
296      fdf_ = fdf_local;
297   #endif
298      return fdf_;
299    }
300 +  
301 +  unsigned int SimInfo::getNLocalCutoffGroups(){
302 +    int nLocalCutoffAtoms = 0;
303 +    Molecule* mol;
304 +    MoleculeIterator mi;
305 +    CutoffGroup* cg;
306 +    Molecule::CutoffGroupIterator ci;
307      
308 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
309 +      
310 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
311 +           cg = mol->nextCutoffGroup(ci)) {
312 +        nLocalCutoffAtoms += cg->getNumAtom();
313 +        
314 +      }        
315 +    }
316 +    
317 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
318 +  }
319 +    
320    void SimInfo::calcNdfRaw() {
321      int ndfRaw_local;
322  
323      MoleculeIterator i;
324 <    std::vector<StuntDouble*>::iterator j;
324 >    vector<StuntDouble*>::iterator j;
325      Molecule* mol;
326 <    StuntDouble* integrableObject;
326 >    StuntDouble* sd;
327  
328      // Raw degrees of freedom that we have to set
329      ndfRaw_local = 0;
330      
331      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319           integrableObject = mol->nextIntegrableObject(j)) {
332  
333 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
334 +           sd = mol->nextIntegrableObject(j)) {
335 +
336          ndfRaw_local += 3;
337  
338 <        if (integrableObject->isDirectional()) {
339 <          if (integrableObject->isLinear()) {
338 >        if (sd->isDirectional()) {
339 >          if (sd->isLinear()) {
340              ndfRaw_local += 2;
341            } else {
342              ndfRaw_local += 3;
# Line 332 | Line 347 | namespace oopse {
347      }
348      
349   #ifdef IS_MPI
350 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
350 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
351   #else
352      ndfRaw_ = ndfRaw_local;
353   #endif
# Line 345 | Line 360 | namespace oopse {
360  
361  
362   #ifdef IS_MPI
363 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
363 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
364 >                              MPI::INT, MPI::SUM);
365   #else
366      ndfTrans_ = ndfTrans_local;
367   #endif
# Line 356 | Line 372 | namespace oopse {
372  
373    void SimInfo::addInteractionPairs(Molecule* mol) {
374      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
375 <    std::vector<Bond*>::iterator bondIter;
376 <    std::vector<Bend*>::iterator bendIter;
377 <    std::vector<Torsion*>::iterator torsionIter;
378 <    std::vector<Inversion*>::iterator inversionIter;
375 >    vector<Atom*>::iterator atomIter;
376 >    vector<Bond*>::iterator bondIter;
377 >    vector<Bend*>::iterator bendIter;
378 >    vector<Torsion*>::iterator torsionIter;
379 >    vector<Inversion*>::iterator inversionIter;
380 >    Atom* atom;
381      Bond* bond;
382      Bend* bend;
383      Torsion* torsion;
# Line 377 | Line 395 | namespace oopse {
395      // always be excluded.  These are done at the bottom of this
396      // function.
397  
398 <    std::map<int, std::set<int> > atomGroups;
398 >    map<int, set<int> > atomGroups;
399      Molecule::RigidBodyIterator rbIter;
400      RigidBody* rb;
401      Molecule::IntegrableObjectIterator ii;
402 <    StuntDouble* integrableObject;
402 >    StuntDouble* sd;
403      
404 <    for (integrableObject = mol->beginIntegrableObject(ii);
405 <         integrableObject != NULL;
388 <         integrableObject = mol->nextIntegrableObject(ii)) {
404 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
405 >         sd = mol->nextIntegrableObject(ii)) {
406        
407 <      if (integrableObject->isRigidBody()) {
408 <        rb = static_cast<RigidBody*>(integrableObject);
409 <        std::vector<Atom*> atoms = rb->getAtoms();
410 <        std::set<int> rigidAtoms;
407 >      if (sd->isRigidBody()) {
408 >        rb = static_cast<RigidBody*>(sd);
409 >        vector<Atom*> atoms = rb->getAtoms();
410 >        set<int> rigidAtoms;
411          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
412            rigidAtoms.insert(atoms[i]->getGlobalIndex());
413          }
414          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
415 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
415 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
416          }      
417        } else {
418 <        std::set<int> oneAtomSet;
419 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
420 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
418 >        set<int> oneAtomSet;
419 >        oneAtomSet.insert(sd->getGlobalIndex());
420 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
421        }
422      }  
423 +
424            
425      for (bond= mol->beginBond(bondIter); bond != NULL;
426           bond = mol->nextBond(bondIter)) {
427  
428        a = bond->getAtomA()->getGlobalIndex();
429        b = bond->getAtomB()->getGlobalIndex();  
430 <    
430 >
431        if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
432          oneTwoInteractions_.addPair(a, b);
433        } else {
# Line 503 | Line 521 | namespace oopse {
521  
522      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
523           rb = mol->nextRigidBody(rbIter)) {
524 <      std::vector<Atom*> atoms = rb->getAtoms();
524 >      vector<Atom*> atoms = rb->getAtoms();
525        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
526          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
527            a = atoms[i]->getGlobalIndex();
# Line 517 | Line 535 | namespace oopse {
535  
536    void SimInfo::removeInteractionPairs(Molecule* mol) {
537      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
538 <    std::vector<Bond*>::iterator bondIter;
539 <    std::vector<Bend*>::iterator bendIter;
540 <    std::vector<Torsion*>::iterator torsionIter;
541 <    std::vector<Inversion*>::iterator inversionIter;
538 >    vector<Bond*>::iterator bondIter;
539 >    vector<Bend*>::iterator bendIter;
540 >    vector<Torsion*>::iterator torsionIter;
541 >    vector<Inversion*>::iterator inversionIter;
542      Bond* bond;
543      Bend* bend;
544      Torsion* torsion;
# Line 530 | Line 548 | namespace oopse {
548      int c;
549      int d;
550  
551 <    std::map<int, std::set<int> > atomGroups;
551 >    map<int, set<int> > atomGroups;
552      Molecule::RigidBodyIterator rbIter;
553      RigidBody* rb;
554      Molecule::IntegrableObjectIterator ii;
555 <    StuntDouble* integrableObject;
555 >    StuntDouble* sd;
556      
557 <    for (integrableObject = mol->beginIntegrableObject(ii);
558 <         integrableObject != NULL;
541 <         integrableObject = mol->nextIntegrableObject(ii)) {
557 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
558 >         sd = mol->nextIntegrableObject(ii)) {
559        
560 <      if (integrableObject->isRigidBody()) {
561 <        rb = static_cast<RigidBody*>(integrableObject);
562 <        std::vector<Atom*> atoms = rb->getAtoms();
563 <        std::set<int> rigidAtoms;
560 >      if (sd->isRigidBody()) {
561 >        rb = static_cast<RigidBody*>(sd);
562 >        vector<Atom*> atoms = rb->getAtoms();
563 >        set<int> rigidAtoms;
564          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
565            rigidAtoms.insert(atoms[i]->getGlobalIndex());
566          }
567          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
568 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
568 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
569          }      
570        } else {
571 <        std::set<int> oneAtomSet;
572 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
573 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
571 >        set<int> oneAtomSet;
572 >        oneAtomSet.insert(sd->getGlobalIndex());
573 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
574        }
575      }  
576  
# Line 656 | Line 673 | namespace oopse {
673  
674      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
675           rb = mol->nextRigidBody(rbIter)) {
676 <      std::vector<Atom*> atoms = rb->getAtoms();
676 >      vector<Atom*> atoms = rb->getAtoms();
677        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
678          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
679            a = atoms[i]->getGlobalIndex();
# Line 679 | Line 696 | namespace oopse {
696      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
697    }
698  
682  void SimInfo::update() {
699  
700 <    setupSimType();
701 <
702 < #ifdef IS_MPI
703 <    setupFortranParallel();
704 < #endif
705 <
706 <    setupFortranSim();
707 <
708 <    //setup fortran force field
693 <    /** @deprecate */    
694 <    int isError = 0;
695 <    
696 <    setupCutoff();
697 <    
698 <    setupElectrostaticSummationMethod( isError );
699 <    setupSwitchingFunction();
700 <    setupAccumulateBoxDipole();
701 <
702 <    if(isError){
703 <      sprintf( painCave.errMsg,
704 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
705 <      painCave.isFatal = 1;
706 <      simError();
707 <    }
708 <
700 >  /**
701 >   * update
702 >   *
703 >   *  Performs the global checks and variable settings after the
704 >   *  objects have been created.
705 >   *
706 >   */
707 >  void SimInfo::update() {  
708 >    setupSimVariables();
709      calcNdf();
710      calcNdfRaw();
711      calcNdfTrans();
712
713    fortranInitialized_ = true;
712    }
713 <
714 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
713 >  
714 >  /**
715 >   * getSimulatedAtomTypes
716 >   *
717 >   * Returns an STL set of AtomType* that are actually present in this
718 >   * simulation.  Must query all processors to assemble this information.
719 >   *
720 >   */
721 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
722      SimInfo::MoleculeIterator mi;
723      Molecule* mol;
724      Molecule::AtomIterator ai;
725      Atom* atom;
726 <    std::set<AtomType*> atomTypes;
727 <
726 >    set<AtomType*> atomTypes;
727 >    
728      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
729 <
730 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
729 >      for(atom = mol->beginAtom(ai); atom != NULL;
730 >          atom = mol->nextAtom(ai)) {
731          atomTypes.insert(atom->getAtomType());
732 <      }
733 <        
729 <    }
730 <
731 <    return atomTypes;        
732 <  }
733 <
734 <  void SimInfo::setupSimType() {
735 <    std::set<AtomType*>::iterator i;
736 <    std::set<AtomType*> atomTypes;
737 <    atomTypes = getUniqueAtomTypes();
732 >      }      
733 >    }    
734      
735 <    int useLennardJones = 0;
740 <    int useElectrostatic = 0;
741 <    int useEAM = 0;
742 <    int useSC = 0;
743 <    int useCharge = 0;
744 <    int useDirectional = 0;
745 <    int useDipole = 0;
746 <    int useGayBerne = 0;
747 <    int useSticky = 0;
748 <    int useStickyPower = 0;
749 <    int useShape = 0;
750 <    int useFLARB = 0; //it is not in AtomType yet
751 <    int useDirectionalAtom = 0;    
752 <    int useElectrostatics = 0;
753 <    //usePBC and useRF are from simParams
754 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
755 <    int useRF;
756 <    int useSF;
757 <    int useSP;
758 <    int useBoxDipole;
735 > #ifdef IS_MPI
736  
737 <    std::string myMethod;
738 <
762 <    // set the useRF logical
763 <    useRF = 0;
764 <    useSF = 0;
765 <    useSP = 0;
766 <
767 <
768 <    if (simParams_->haveElectrostaticSummationMethod()) {
769 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
770 <      toUpper(myMethod);
771 <      if (myMethod == "REACTION_FIELD"){
772 <        useRF = 1;
773 <      } else if (myMethod == "SHIFTED_FORCE"){
774 <        useSF = 1;
775 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
776 <        useSP = 1;
777 <      }
778 <    }
737 >    // loop over the found atom types on this processor, and add their
738 >    // numerical idents to a vector:
739      
740 <    if (simParams_->haveAccumulateBoxDipole())
741 <      if (simParams_->getAccumulateBoxDipole())
742 <        useBoxDipole = 1;
740 >    vector<int> foundTypes;
741 >    set<AtomType*>::iterator i;
742 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
743 >      foundTypes.push_back( (*i)->getIdent() );
744  
745 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
745 >    // count_local holds the number of found types on this processor
746 >    int count_local = foundTypes.size();
747  
748 <    //loop over all of the atom types
787 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
788 <      useLennardJones |= (*i)->isLennardJones();
789 <      useElectrostatic |= (*i)->isElectrostatic();
790 <      useEAM |= (*i)->isEAM();
791 <      useSC |= (*i)->isSC();
792 <      useCharge |= (*i)->isCharge();
793 <      useDirectional |= (*i)->isDirectional();
794 <      useDipole |= (*i)->isDipole();
795 <      useGayBerne |= (*i)->isGayBerne();
796 <      useSticky |= (*i)->isSticky();
797 <      useStickyPower |= (*i)->isStickyPower();
798 <      useShape |= (*i)->isShape();
799 <    }
748 >    int nproc = MPI::COMM_WORLD.Get_size();
749  
750 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
751 <      useDirectionalAtom = 1;
752 <    }
750 >    // we need arrays to hold the counts and displacement vectors for
751 >    // all processors
752 >    vector<int> counts(nproc, 0);
753 >    vector<int> disps(nproc, 0);
754  
755 <    if (useCharge || useDipole) {
756 <      useElectrostatics = 1;
755 >    // fill the counts array
756 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
757 >                              1, MPI::INT);
758 >  
759 >    // use the processor counts to compute the displacement array
760 >    disps[0] = 0;    
761 >    int totalCount = counts[0];
762 >    for (int iproc = 1; iproc < nproc; iproc++) {
763 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
764 >      totalCount += counts[iproc];
765      }
766  
767 < #ifdef IS_MPI    
768 <    int temp;
767 >    // we need a (possibly redundant) set of all found types:
768 >    vector<int> ftGlobal(totalCount);
769 >    
770 >    // now spray out the foundTypes to all the other processors:    
771 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
772 >                               &ftGlobal[0], &counts[0], &disps[0],
773 >                               MPI::INT);
774  
775 <    temp = usePBC;
813 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
775 >    vector<int>::iterator j;
776  
777 <    temp = useDirectionalAtom;
778 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
777 >    // foundIdents is a stl set, so inserting an already found ident
778 >    // will have no effect.
779 >    set<int> foundIdents;
780  
781 <    temp = useLennardJones;
782 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
781 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
782 >      foundIdents.insert((*j));
783 >    
784 >    // now iterate over the foundIdents and get the actual atom types
785 >    // that correspond to these:
786 >    set<int>::iterator it;
787 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
788 >      atomTypes.insert( forceField_->getAtomType((*it)) );
789 >
790 > #endif
791  
792 <    temp = useElectrostatics;
793 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
792 >    return atomTypes;        
793 >  }
794  
824    temp = useCharge;
825    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
795  
796 <    temp = useDipole;
797 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
796 >  int getGlobalCountOfType(AtomType* atype) {
797 >    /*
798 >    set<AtomType*> atypes = getSimulatedAtomTypes();
799 >    map<AtomType*, int> counts_;
800  
801 <    temp = useSticky;
802 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
801 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
802 >      for(atom = mol->beginAtom(ai); atom != NULL;
803 >          atom = mol->nextAtom(ai)) {
804 >        atom->getAtomType();
805 >      }      
806 >    }    
807 >    */
808 >    return 0;
809 >  }
810  
811 <    temp = useStickyPower;
812 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
811 >  void SimInfo::setupSimVariables() {
812 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
813 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
814 >    // parameter is true
815 >    calcBoxDipole_ = false;
816 >    if ( simParams_->haveAccumulateBoxDipole() )
817 >      if ( simParams_->getAccumulateBoxDipole() ) {
818 >        calcBoxDipole_ = true;      
819 >      }
820      
821 <    temp = useGayBerne;
822 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
821 >    set<AtomType*>::iterator i;
822 >    set<AtomType*> atomTypes;
823 >    atomTypes = getSimulatedAtomTypes();    
824 >    bool usesElectrostatic = false;
825 >    bool usesMetallic = false;
826 >    bool usesDirectional = false;
827 >    bool usesFluctuatingCharges =  false;
828 >    //loop over all of the atom types
829 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
830 >      usesElectrostatic |= (*i)->isElectrostatic();
831 >      usesMetallic |= (*i)->isMetal();
832 >      usesDirectional |= (*i)->isDirectional();
833 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
834 >    }
835  
836 <    temp = useEAM;
837 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
838 <
839 <    temp = useSC;
840 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
836 > #ifdef IS_MPI
837 >    bool temp;
838 >    temp = usesDirectional;
839 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
840 >                              MPI::LOR);
841 >        
842 >    temp = usesMetallic;
843 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
844 >                              MPI::LOR);
845      
846 <    temp = useShape;
847 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
846 >    temp = usesElectrostatic;
847 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
848 >                              MPI::LOR);
849  
850 <    temp = useFLARB;
851 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
850 >    temp = usesFluctuatingCharges;
851 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
852 >                              MPI::LOR);
853 > #else
854  
855 <    temp = useRF;
856 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
855 >    usesDirectionalAtoms_ = usesDirectional;
856 >    usesMetallicAtoms_ = usesMetallic;
857 >    usesElectrostaticAtoms_ = usesElectrostatic;
858 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
859  
860 <    temp = useSF;
861 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
860 > #endif
861 >    
862 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
863 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
864 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
865 >  }
866  
857    temp = useSP;
858    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
867  
868 <    temp = useBoxDipole;
869 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
868 >  vector<int> SimInfo::getGlobalAtomIndices() {
869 >    SimInfo::MoleculeIterator mi;
870 >    Molecule* mol;
871 >    Molecule::AtomIterator ai;
872 >    Atom* atom;
873  
874 <    temp = useAtomicVirial_;
875 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
874 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
875 >    
876 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
877 >      
878 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
879 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
880 >      }
881 >    }
882 >    return GlobalAtomIndices;
883 >  }
884  
866 #endif
885  
886 <    fInfo_.SIM_uses_PBC = usePBC;    
887 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
888 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
889 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
890 <    fInfo_.SIM_uses_Charges = useCharge;
873 <    fInfo_.SIM_uses_Dipoles = useDipole;
874 <    fInfo_.SIM_uses_Sticky = useSticky;
875 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
876 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
877 <    fInfo_.SIM_uses_EAM = useEAM;
878 <    fInfo_.SIM_uses_SC = useSC;
879 <    fInfo_.SIM_uses_Shapes = useShape;
880 <    fInfo_.SIM_uses_FLARB = useFLARB;
881 <    fInfo_.SIM_uses_RF = useRF;
882 <    fInfo_.SIM_uses_SF = useSF;
883 <    fInfo_.SIM_uses_SP = useSP;
884 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
885 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
886 <  }
886 >  vector<int> SimInfo::getGlobalGroupIndices() {
887 >    SimInfo::MoleculeIterator mi;
888 >    Molecule* mol;
889 >    Molecule::CutoffGroupIterator ci;
890 >    CutoffGroup* cg;
891  
892 <  void SimInfo::setupFortranSim() {
889 <    int isError;
890 <    int nExclude, nOneTwo, nOneThree, nOneFour;
891 <    std::vector<int> fortranGlobalGroupMembership;
892 >    vector<int> GlobalGroupIndices;
893      
894 <    isError = 0;
895 <
896 <    //globalGroupMembership_ is filled by SimCreator    
897 <    for (int i = 0; i < nGlobalAtoms_; i++) {
898 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
894 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
895 >      
896 >      //local index of cutoff group is trivial, it only depends on the
897 >      //order of travesing
898 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
899 >           cg = mol->nextCutoffGroup(ci)) {
900 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
901 >      }        
902      }
903 +    return GlobalGroupIndices;
904 +  }
905  
906 +
907 +  void SimInfo::prepareTopology() {
908 +
909      //calculate mass ratio of cutoff group
901    std::vector<RealType> mfact;
910      SimInfo::MoleculeIterator mi;
911      Molecule* mol;
912      Molecule::CutoffGroupIterator ci;
# Line 907 | Line 915 | namespace oopse {
915      Atom* atom;
916      RealType totalMass;
917  
918 <    //to avoid memory reallocation, reserve enough space for mfact
919 <    mfact.reserve(getNCutoffGroups());
918 >    /**
919 >     * The mass factor is the relative mass of an atom to the total
920 >     * mass of the cutoff group it belongs to.  By default, all atoms
921 >     * are their own cutoff groups, and therefore have mass factors of
922 >     * 1.  We need some special handling for massless atoms, which
923 >     * will be treated as carrying the entire mass of the cutoff
924 >     * group.
925 >     */
926 >    massFactors_.clear();
927 >    massFactors_.resize(getNAtoms(), 1.0);
928      
929      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
930 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
930 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
931 >           cg = mol->nextCutoffGroup(ci)) {
932  
933          totalMass = cg->getMass();
934          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
935            // Check for massless groups - set mfact to 1 if true
936 <          if (totalMass != 0)
937 <            mfact.push_back(atom->getMass()/totalMass);
936 >          if (totalMass != 0)
937 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
938            else
939 <            mfact.push_back( 1.0 );
939 >            massFactors_[atom->getLocalIndex()] = 1.0;
940          }
941        }      
942      }
943  
944 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
928 <    std::vector<int> identArray;
944 >    // Build the identArray_ and regions_
945  
946 <    //to avoid memory reallocation, reserve enough space identArray
947 <    identArray.reserve(getNAtoms());
948 <    
949 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
946 >    identArray_.clear();
947 >    identArray_.reserve(getNAtoms());  
948 >    regions_.clear();
949 >    regions_.reserve(getNAtoms());
950 >
951 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
952 >      int reg = mol->getRegion();      
953        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
954 <        identArray.push_back(atom->getIdent());
954 >        identArray_.push_back(atom->getIdent());
955 >        regions_.push_back(reg);
956        }
957      }    
958 +      
959 +    topologyDone_ = true;
960 +  }
961  
962 <    //fill molMembershipArray
963 <    //molMembershipArray is filled by SimCreator    
964 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
942 <    for (int i = 0; i < nGlobalAtoms_; i++) {
943 <      molMembershipArray[i] = globalMolMembership_[i] + 1;
944 <    }
945 <    
946 <    //setup fortran simulation
962 >  void SimInfo::addProperty(GenericData* genData) {
963 >    properties_.addProperty(genData);  
964 >  }
965  
966 <    nExclude = excludedInteractions_.getSize();
967 <    nOneTwo = oneTwoInteractions_.getSize();
968 <    nOneThree = oneThreeInteractions_.getSize();
951 <    nOneFour = oneFourInteractions_.getSize();
966 >  void SimInfo::removeProperty(const string& propName) {
967 >    properties_.removeProperty(propName);  
968 >  }
969  
970 <    std::cerr << "excludedInteractions contains: " << excludedInteractions_.getSize() << " pairs \n";
971 <    std::cerr << "oneTwoInteractions contains: " << oneTwoInteractions_.getSize() << " pairs \n";
972 <    std::cerr << "oneThreeInteractions contains: " << oneThreeInteractions_.getSize() << " pairs \n";
956 <    std::cerr << "oneFourInteractions contains: " << oneFourInteractions_.getSize() << " pairs \n";
970 >  void SimInfo::clearProperties() {
971 >    properties_.clearProperties();
972 >  }
973  
974 <    int* excludeList = excludedInteractions_.getPairList();
975 <    int* oneTwoList = oneTwoInteractions_.getPairList();
976 <    int* oneThreeList = oneThreeInteractions_.getPairList();
961 <    int* oneFourList = oneFourInteractions_.getPairList();
962 <
963 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
964 <                   &nExclude, excludeList,
965 <                   &nOneTwo, oneTwoList,
966 <                   &nOneThree, oneThreeList,
967 <                   &nOneFour, oneFourList,
968 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
969 <                   &fortranGlobalGroupMembership[0], &isError);
970 <    
971 <    if( isError ){
974 >  vector<string> SimInfo::getPropertyNames() {
975 >    return properties_.getPropertyNames();  
976 >  }
977        
978 <      sprintf( painCave.errMsg,
979 <               "There was an error setting the simulation information in fortran.\n" );
980 <      painCave.isFatal = 1;
976 <      painCave.severity = OOPSE_ERROR;
977 <      simError();
978 <    }
979 <    
980 <    
981 <    sprintf( checkPointMsg,
982 <             "succesfully sent the simulation information to fortran.\n");
983 <    
984 <    errorCheckPoint();
985 <    
986 <    // Setup number of neighbors in neighbor list if present
987 <    if (simParams_->haveNeighborListNeighbors()) {
988 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
989 <      setNeighbors(&nlistNeighbors);
990 <    }
991 <  
978 >  vector<GenericData*> SimInfo::getProperties() {
979 >    return properties_.getProperties();
980 >  }
981  
982 +  GenericData* SimInfo::getPropertyByName(const string& propName) {
983 +    return properties_.getPropertyByName(propName);
984    }
985  
986 +  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
987 +    if (sman_ == sman) {
988 +      return;
989 +    }    
990 +    delete sman_;
991 +    sman_ = sman;
992  
996  void SimInfo::setupFortranParallel() {
997 #ifdef IS_MPI    
998    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
999    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1000    std::vector<int> localToGlobalCutoffGroupIndex;
1001    SimInfo::MoleculeIterator mi;
1002    Molecule::AtomIterator ai;
1003    Molecule::CutoffGroupIterator ci;
993      Molecule* mol;
994 +    RigidBody* rb;
995      Atom* atom;
996      CutoffGroup* cg;
997 <    mpiSimData parallelData;
998 <    int isError;
999 <
1000 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
1001 <
1002 <      //local index(index in DataStorge) of atom is important
1013 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1014 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1015 <      }
1016 <
1017 <      //local index of cutoff group is trivial, it only depends on the order of travesing
1018 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1019 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1020 <      }        
997 >    SimInfo::MoleculeIterator mi;
998 >    Molecule::RigidBodyIterator rbIter;
999 >    Molecule::AtomIterator atomIter;
1000 >    Molecule::CutoffGroupIterator cgIter;
1001 >
1002 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1003          
1004 <    }
1005 <
1006 <    //fill up mpiSimData struct
1025 <    parallelData.nMolGlobal = getNGlobalMolecules();
1026 <    parallelData.nMolLocal = getNMolecules();
1027 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
1028 <    parallelData.nAtomsLocal = getNAtoms();
1029 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1030 <    parallelData.nGroupsLocal = getNCutoffGroups();
1031 <    parallelData.myNode = worldRank;
1032 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1033 <
1034 <    //pass mpiSimData struct and index arrays to fortran
1035 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1036 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
1037 <                    &localToGlobalCutoffGroupIndex[0], &isError);
1038 <
1039 <    if (isError) {
1040 <      sprintf(painCave.errMsg,
1041 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1042 <      painCave.isFatal = 1;
1043 <      simError();
1044 <    }
1045 <
1046 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
1047 <    errorCheckPoint();
1048 <
1049 < #endif
1050 <  }
1051 <
1052 <  void SimInfo::setupCutoff() {          
1053 <    
1054 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1055 <
1056 <    // Check the cutoff policy
1057 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1058 <
1059 <    // Set LJ shifting bools to false
1060 <    ljsp_ = false;
1061 <    ljsf_ = false;
1062 <
1063 <    std::string myPolicy;
1064 <    if (forceFieldOptions_.haveCutoffPolicy()){
1065 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
1066 <    }else if (simParams_->haveCutoffPolicy()) {
1067 <      myPolicy = simParams_->getCutoffPolicy();
1068 <    }
1069 <
1070 <    if (!myPolicy.empty()){
1071 <      toUpper(myPolicy);
1072 <      if (myPolicy == "MIX") {
1073 <        cp = MIX_CUTOFF_POLICY;
1074 <      } else {
1075 <        if (myPolicy == "MAX") {
1076 <          cp = MAX_CUTOFF_POLICY;
1077 <        } else {
1078 <          if (myPolicy == "TRADITIONAL") {            
1079 <            cp = TRADITIONAL_CUTOFF_POLICY;
1080 <          } else {
1081 <            // throw error        
1082 <            sprintf( painCave.errMsg,
1083 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1084 <            painCave.isFatal = 1;
1085 <            simError();
1086 <          }    
1087 <        }          
1004 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
1005 >           atom = mol->nextAtom(atomIter)) {
1006 >        atom->setSnapshotManager(sman_);
1007        }
1089    }          
1090    notifyFortranCutoffPolicy(&cp);
1091
1092    // Check the Skin Thickness for neighborlists
1093    RealType skin;
1094    if (simParams_->haveSkinThickness()) {
1095      skin = simParams_->getSkinThickness();
1096      notifyFortranSkinThickness(&skin);
1097    }            
1008          
1009 <    // Check if the cutoff was set explicitly:
1010 <    if (simParams_->haveCutoffRadius()) {
1011 <      rcut_ = simParams_->getCutoffRadius();
1102 <      if (simParams_->haveSwitchingRadius()) {
1103 <        rsw_  = simParams_->getSwitchingRadius();
1104 <      } else {
1105 <        if (fInfo_.SIM_uses_Charges |
1106 <            fInfo_.SIM_uses_Dipoles |
1107 <            fInfo_.SIM_uses_RF) {
1108 <          
1109 <          rsw_ = 0.85 * rcut_;
1110 <          sprintf(painCave.errMsg,
1111 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1112 <                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1113 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1114 <        painCave.isFatal = 0;
1115 <        simError();
1116 <        } else {
1117 <          rsw_ = rcut_;
1118 <          sprintf(painCave.errMsg,
1119 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1120 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1121 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1122 <          painCave.isFatal = 0;
1123 <          simError();
1124 <        }
1009 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1010 >           rb = mol->nextRigidBody(rbIter)) {
1011 >        rb->setSnapshotManager(sman_);
1012        }
1013  
1014 <      if (simParams_->haveElectrostaticSummationMethod()) {
1015 <        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1016 <        toUpper(myMethod);
1130 <        
1131 <        if (myMethod == "SHIFTED_POTENTIAL") {
1132 <          ljsp_ = true;
1133 <        } else if (myMethod == "SHIFTED_FORCE") {
1134 <          ljsf_ = true;
1135 <        }
1136 <      }
1137 <      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1138 <      
1139 <    } else {
1140 <      
1141 <      // For electrostatic atoms, we'll assume a large safe value:
1142 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1143 <        sprintf(painCave.errMsg,
1144 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1145 <                "\tOOPSE will use a default value of 15.0 angstroms"
1146 <                "\tfor the cutoffRadius.\n");
1147 <        painCave.isFatal = 0;
1148 <        simError();
1149 <        rcut_ = 15.0;
1150 <      
1151 <        if (simParams_->haveElectrostaticSummationMethod()) {
1152 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1153 <          toUpper(myMethod);
1154 <      
1155 <      // For the time being, we're tethering the LJ shifted behavior to the
1156 <      // electrostaticSummationMethod keyword options
1157 <          if (myMethod == "SHIFTED_POTENTIAL") {
1158 <            ljsp_ = true;
1159 <          } else if (myMethod == "SHIFTED_FORCE") {
1160 <            ljsf_ = true;
1161 <          }
1162 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1163 <            if (simParams_->haveSwitchingRadius()){
1164 <              sprintf(painCave.errMsg,
1165 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1166 <                      "\teven though the electrostaticSummationMethod was\n"
1167 <                      "\tset to %s\n", myMethod.c_str());
1168 <              painCave.isFatal = 1;
1169 <              simError();            
1170 <            }
1171 <          }
1172 <        }
1173 <      
1174 <        if (simParams_->haveSwitchingRadius()){
1175 <          rsw_ = simParams_->getSwitchingRadius();
1176 <        } else {        
1177 <          sprintf(painCave.errMsg,
1178 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1179 <                  "\tOOPSE will use a default value of\n"
1180 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1181 <          painCave.isFatal = 0;
1182 <          simError();
1183 <          rsw_ = 0.85 * rcut_;
1184 <        }
1185 <
1186 <        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1187 <
1188 <      } else {
1189 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1190 <        // We'll punt and let fortran figure out the cutoffs later.
1191 <        
1192 <        notifyFortranYouAreOnYourOwn();
1193 <
1194 <      }
1195 <    }
1196 <  }
1197 <
1198 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1199 <    
1200 <    int errorOut;
1201 <    int esm =  NONE;
1202 <    int sm = UNDAMPED;
1203 <    RealType alphaVal;
1204 <    RealType dielectric;
1205 <    
1206 <    errorOut = isError;
1207 <
1208 <    if (simParams_->haveElectrostaticSummationMethod()) {
1209 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1210 <      toUpper(myMethod);
1211 <      if (myMethod == "NONE") {
1212 <        esm = NONE;
1213 <      } else {
1214 <        if (myMethod == "SWITCHING_FUNCTION") {
1215 <          esm = SWITCHING_FUNCTION;
1216 <        } else {
1217 <          if (myMethod == "SHIFTED_POTENTIAL") {
1218 <            esm = SHIFTED_POTENTIAL;
1219 <          } else {
1220 <            if (myMethod == "SHIFTED_FORCE") {            
1221 <              esm = SHIFTED_FORCE;
1222 <            } else {
1223 <              if (myMethod == "REACTION_FIELD") {
1224 <                esm = REACTION_FIELD;
1225 <                dielectric = simParams_->getDielectric();
1226 <                if (!simParams_->haveDielectric()) {
1227 <                  // throw warning
1228 <                  sprintf( painCave.errMsg,
1229 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1230 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1231 <                  painCave.isFatal = 0;
1232 <                  simError();
1233 <                }
1234 <              } else {
1235 <                // throw error        
1236 <                sprintf( painCave.errMsg,
1237 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1238 <                         "\t(Input file specified %s .)\n"
1239 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1240 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1241 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1242 <                painCave.isFatal = 1;
1243 <                simError();
1244 <              }    
1245 <            }          
1246 <          }
1247 <        }
1248 <      }
1249 <    }
1250 <    
1251 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1252 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1253 <      toUpper(myScreen);
1254 <      if (myScreen == "UNDAMPED") {
1255 <        sm = UNDAMPED;
1256 <      } else {
1257 <        if (myScreen == "DAMPED") {
1258 <          sm = DAMPED;
1259 <          if (!simParams_->haveDampingAlpha()) {
1260 <            // first set a cutoff dependent alpha value
1261 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1262 <            alphaVal = 0.5125 - rcut_* 0.025;
1263 <            // for values rcut > 20.5, alpha is zero
1264 <            if (alphaVal < 0) alphaVal = 0;
1265 <
1266 <            // throw warning
1267 <            sprintf( painCave.errMsg,
1268 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1269 <                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1270 <            painCave.isFatal = 0;
1271 <            simError();
1272 <          } else {
1273 <            alphaVal = simParams_->getDampingAlpha();
1274 <          }
1275 <          
1276 <        } else {
1277 <          // throw error        
1278 <          sprintf( painCave.errMsg,
1279 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1280 <                   "\t(Input file specified %s .)\n"
1281 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1282 <                   "or \"damped\".\n", myScreen.c_str() );
1283 <          painCave.isFatal = 1;
1284 <          simError();
1285 <        }
1014 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1015 >           cg = mol->nextCutoffGroup(cgIter)) {
1016 >        cg->setSnapshotManager(sman_);
1017        }
1287    }
1288    
1289    // let's pass some summation method variables to fortran
1290    setElectrostaticSummationMethod( &esm );
1291    setFortranElectrostaticMethod( &esm );
1292    setScreeningMethod( &sm );
1293    setDampingAlpha( &alphaVal );
1294    setReactionFieldDielectric( &dielectric );
1295    initFortranFF( &errorOut );
1296  }
1297
1298  void SimInfo::setupSwitchingFunction() {    
1299    int ft = CUBIC;
1300
1301    if (simParams_->haveSwitchingFunctionType()) {
1302      std::string funcType = simParams_->getSwitchingFunctionType();
1303      toUpper(funcType);
1304      if (funcType == "CUBIC") {
1305        ft = CUBIC;
1306      } else {
1307        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1308          ft = FIFTH_ORDER_POLY;
1309        } else {
1310          // throw error        
1311          sprintf( painCave.errMsg,
1312                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1313          painCave.isFatal = 1;
1314          simError();
1315        }          
1316      }
1317    }
1318
1319    // send switching function notification to switcheroo
1320    setFunctionType(&ft);
1321
1322  }
1323
1324  void SimInfo::setupAccumulateBoxDipole() {    
1325
1326    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1327    if ( simParams_->haveAccumulateBoxDipole() )
1328      if ( simParams_->getAccumulateBoxDipole() ) {
1329        setAccumulateBoxDipole();
1330        calcBoxDipole_ = true;
1331      }
1332
1333  }
1334
1335  void SimInfo::addProperty(GenericData* genData) {
1336    properties_.addProperty(genData);  
1337  }
1338
1339  void SimInfo::removeProperty(const std::string& propName) {
1340    properties_.removeProperty(propName);  
1341  }
1342
1343  void SimInfo::clearProperties() {
1344    properties_.clearProperties();
1345  }
1346
1347  std::vector<std::string> SimInfo::getPropertyNames() {
1348    return properties_.getPropertyNames();  
1349  }
1350      
1351  std::vector<GenericData*> SimInfo::getProperties() {
1352    return properties_.getProperties();
1353  }
1354
1355  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1356    return properties_.getPropertyByName(propName);
1357  }
1358
1359  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1360    if (sman_ == sman) {
1361      return;
1018      }    
1363    delete sman_;
1364    sman_ = sman;
1365
1366    Molecule* mol;
1367    RigidBody* rb;
1368    Atom* atom;
1369    SimInfo::MoleculeIterator mi;
1370    Molecule::RigidBodyIterator rbIter;
1371    Molecule::AtomIterator atomIter;;
1372
1373    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1374        
1375      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1376        atom->setSnapshotManager(sman_);
1377      }
1378        
1379      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1380        rb->setSnapshotManager(sman_);
1381      }
1382    }    
1019      
1020    }
1021  
1386  Vector3d SimInfo::getComVel(){
1387    SimInfo::MoleculeIterator i;
1388    Molecule* mol;
1022  
1023 <    Vector3d comVel(0.0);
1391 <    RealType totalMass = 0.0;
1392 <    
1393 <
1394 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1395 <      RealType mass = mol->getMass();
1396 <      totalMass += mass;
1397 <      comVel += mass * mol->getComVel();
1398 <    }  
1023 >  ostream& operator <<(ostream& o, SimInfo& info) {
1024  
1400 #ifdef IS_MPI
1401    RealType tmpMass = totalMass;
1402    Vector3d tmpComVel(comVel);    
1403    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1404    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1405 #endif
1406
1407    comVel /= totalMass;
1408
1409    return comVel;
1410  }
1411
1412  Vector3d SimInfo::getCom(){
1413    SimInfo::MoleculeIterator i;
1414    Molecule* mol;
1415
1416    Vector3d com(0.0);
1417    RealType totalMass = 0.0;
1418    
1419    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1420      RealType mass = mol->getMass();
1421      totalMass += mass;
1422      com += mass * mol->getCom();
1423    }  
1424
1425 #ifdef IS_MPI
1426    RealType tmpMass = totalMass;
1427    Vector3d tmpCom(com);    
1428    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1429    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1430 #endif
1431
1432    com /= totalMass;
1433
1434    return com;
1435
1436  }        
1437
1438  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1439
1025      return o;
1026    }
1027    
1028 <  
1444 <   /*
1445 <   Returns center of mass and center of mass velocity in one function call.
1446 <   */
1447 <  
1448 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1449 <      SimInfo::MoleculeIterator i;
1450 <      Molecule* mol;
1451 <      
1452 <    
1453 <      RealType totalMass = 0.0;
1454 <    
1455 <
1456 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1457 <         RealType mass = mol->getMass();
1458 <         totalMass += mass;
1459 <         com += mass * mol->getCom();
1460 <         comVel += mass * mol->getComVel();          
1461 <      }  
1462 <      
1463 < #ifdef IS_MPI
1464 <      RealType tmpMass = totalMass;
1465 <      Vector3d tmpCom(com);  
1466 <      Vector3d tmpComVel(comVel);
1467 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1468 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1469 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1470 < #endif
1471 <      
1472 <      com /= totalMass;
1473 <      comVel /= totalMass;
1474 <   }        
1475 <  
1476 <   /*
1477 <   Return intertia tensor for entire system and angular momentum Vector.
1478 <
1479 <
1480 <       [  Ixx -Ixy  -Ixz ]
1481 <  J =| -Iyx  Iyy  -Iyz |
1482 <       [ -Izx -Iyz   Izz ]
1483 <    */
1484 <
1485 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1486 <      
1487 <
1488 <      RealType xx = 0.0;
1489 <      RealType yy = 0.0;
1490 <      RealType zz = 0.0;
1491 <      RealType xy = 0.0;
1492 <      RealType xz = 0.0;
1493 <      RealType yz = 0.0;
1494 <      Vector3d com(0.0);
1495 <      Vector3d comVel(0.0);
1496 <      
1497 <      getComAll(com, comVel);
1498 <      
1499 <      SimInfo::MoleculeIterator i;
1500 <      Molecule* mol;
1501 <      
1502 <      Vector3d thisq(0.0);
1503 <      Vector3d thisv(0.0);
1504 <
1505 <      RealType thisMass = 0.0;
1506 <    
1507 <      
1508 <      
1509 <  
1510 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1511 <        
1512 <         thisq = mol->getCom()-com;
1513 <         thisv = mol->getComVel()-comVel;
1514 <         thisMass = mol->getMass();
1515 <         // Compute moment of intertia coefficients.
1516 <         xx += thisq[0]*thisq[0]*thisMass;
1517 <         yy += thisq[1]*thisq[1]*thisMass;
1518 <         zz += thisq[2]*thisq[2]*thisMass;
1519 <        
1520 <         // compute products of intertia
1521 <         xy += thisq[0]*thisq[1]*thisMass;
1522 <         xz += thisq[0]*thisq[2]*thisMass;
1523 <         yz += thisq[1]*thisq[2]*thisMass;
1524 <            
1525 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1526 <            
1527 <      }  
1528 <      
1529 <      
1530 <      inertiaTensor(0,0) = yy + zz;
1531 <      inertiaTensor(0,1) = -xy;
1532 <      inertiaTensor(0,2) = -xz;
1533 <      inertiaTensor(1,0) = -xy;
1534 <      inertiaTensor(1,1) = xx + zz;
1535 <      inertiaTensor(1,2) = -yz;
1536 <      inertiaTensor(2,0) = -xz;
1537 <      inertiaTensor(2,1) = -yz;
1538 <      inertiaTensor(2,2) = xx + yy;
1539 <      
1540 < #ifdef IS_MPI
1541 <      Mat3x3d tmpI(inertiaTensor);
1542 <      Vector3d tmpAngMom;
1543 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1544 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1545 < #endif
1546 <              
1547 <      return;
1548 <   }
1549 <
1550 <   //Returns the angular momentum of the system
1551 <   Vector3d SimInfo::getAngularMomentum(){
1552 <      
1553 <      Vector3d com(0.0);
1554 <      Vector3d comVel(0.0);
1555 <      Vector3d angularMomentum(0.0);
1556 <      
1557 <      getComAll(com,comVel);
1558 <      
1559 <      SimInfo::MoleculeIterator i;
1560 <      Molecule* mol;
1561 <      
1562 <      Vector3d thisr(0.0);
1563 <      Vector3d thisp(0.0);
1564 <      
1565 <      RealType thisMass;
1566 <      
1567 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1568 <        thisMass = mol->getMass();
1569 <        thisr = mol->getCom()-com;
1570 <        thisp = (mol->getComVel()-comVel)*thisMass;
1571 <        
1572 <        angularMomentum += cross( thisr, thisp );
1573 <        
1574 <      }  
1575 <      
1576 < #ifdef IS_MPI
1577 <      Vector3d tmpAngMom;
1578 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1579 < #endif
1580 <      
1581 <      return angularMomentum;
1582 <   }
1583 <  
1028 >  
1029    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1030 <    return IOIndexToIntegrableObject.at(index);
1030 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1031 >      sprintf(painCave.errMsg,
1032 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1033 >              "\tindex exceeds number of known objects!\n");
1034 >      painCave.isFatal = 1;
1035 >      simError();
1036 >      return NULL;
1037 >    } else
1038 >      return IOIndexToIntegrableObject.at(index);
1039    }
1040    
1041 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1041 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1042      IOIndexToIntegrableObject= v;
1043    }
1044  
1045 <  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1046 <     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1047 <     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1048 <     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1049 <  */
1050 <  void SimInfo::getGyrationalVolume(RealType &volume){
1051 <    Mat3x3d intTensor;
1052 <    RealType det;
1053 <    Vector3d dummyAngMom;
1601 <    RealType sysconstants;
1602 <    RealType geomCnst;
1603 <
1604 <    geomCnst = 3.0/2.0;
1605 <    /* Get the inertial tensor and angular momentum for free*/
1606 <    getInertiaTensor(intTensor,dummyAngMom);
1607 <    
1608 <    det = intTensor.determinant();
1609 <    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1610 <    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1611 <    return;
1045 >  int SimInfo::getNGlobalConstraints() {
1046 >    int nGlobalConstraints;
1047 > #ifdef IS_MPI
1048 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1049 >                              MPI::INT, MPI::SUM);
1050 > #else
1051 >    nGlobalConstraints =  nConstraints_;
1052 > #endif
1053 >    return nGlobalConstraints;
1054    }
1055  
1056 <  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1615 <    Mat3x3d intTensor;
1616 <    Vector3d dummyAngMom;
1617 <    RealType sysconstants;
1618 <    RealType geomCnst;
1056 > }//end namespace OpenMD
1057  
1620    geomCnst = 3.0/2.0;
1621    /* Get the inertial tensor and angular momentum for free*/
1622    getInertiaTensor(intTensor,dummyAngMom);
1623    
1624    detI = intTensor.determinant();
1625    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1626    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1627    return;
1628  }
1629 /*
1630   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1631      assert( v.size() == nAtoms_ + nRigidBodies_);
1632      sdByGlobalIndex_ = v;
1633    }
1634
1635    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1636      //assert(index < nAtoms_ + nRigidBodies_);
1637      return sdByGlobalIndex_.at(index);
1638    }  
1639 */  
1640 }//end namespace oopse
1641

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 1290 by cli2, Wed Sep 10 19:51:45 2008 UTC vs.
Revision 1930 by gezelter, Mon Aug 19 13:51:04 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines