ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 1290 by cli2, Wed Sep 10 19:51:45 2008 UTC vs.
Revision 1929 by gezelter, Mon Aug 19 13:12:00 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
63 <
71 <
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
75 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 <    std::map<int, std::set<int> >::iterator i = container.find(index);
80 <    std::set<int> result;
81 <    if (i != container.end()) {
82 <        result = i->second;
83 <    }
84 <
85 <    return result;
86 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
79 <    calcBoxDipole_(false), useAtomicVirial_(true) {
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      if ( (*i)->haveRegion() ) {        
95 >        molStamp->setRegion( (*i)->getRegion() );
96 >      } else {
97 >        // set the region to a disallowed value:
98 >        molStamp->setRegion( -1 );
99 >      }
100  
101 <
99 <      MoleculeStamp* molStamp;
100 <      int nMolWithSameStamp;
101 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
102 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
103 <      CutoffGroupStamp* cgStamp;    
104 <      RigidBodyStamp* rbStamp;
105 <      int nRigidAtoms = 0;
106 <
107 <      std::vector<Component*> components = simParams->getComponents();
101 >      nMolWithSameStamp = (*i)->getNMol();
102        
103 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
104 <        molStamp = (*i)->getMoleculeStamp();
105 <        nMolWithSameStamp = (*i)->getNMol();
106 <        
107 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
108 <
109 <        //calculate atoms in molecules
110 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
111 <
112 <        //calculate atoms in cutoff groups
113 <        int nAtomsInGroups = 0;
114 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
121 <        
122 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
123 <          cgStamp = molStamp->getCutoffGroupStamp(j);
124 <          nAtomsInGroups += cgStamp->getNMembers();
125 <        }
126 <
127 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128 <
129 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
130 <
131 <        //calculate atoms in rigid bodies
132 <        int nAtomsInRigidBodies = 0;
133 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134 <        
135 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
136 <          rbStamp = molStamp->getRigidBodyStamp(j);
137 <          nAtomsInRigidBodies += rbStamp->getNMembers();
138 <        }
139 <
140 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
142 <        
103 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
104 >      
105 >      //calculate atoms in molecules
106 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
107 >      
108 >      //calculate atoms in cutoff groups
109 >      int nAtomsInGroups = 0;
110 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
111 >      
112 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
113 >        cgStamp = molStamp->getCutoffGroupStamp(j);
114 >        nAtomsInGroups += cgStamp->getNMembers();
115        }
116 <
117 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
118 <      //group therefore the total number of cutoff groups in the system is
119 <      //equal to the total number of atoms minus number of atoms belong to
120 <      //cutoff group defined in meta-data file plus the number of cutoff
121 <      //groups defined in meta-data file
122 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
123 <
124 <      //every free atom (atom does not belong to rigid bodies) is an
125 <      //integrable object therefore the total number of integrable objects
126 <      //in the system is equal to the total number of atoms minus number of
127 <      //atoms belong to rigid body defined in meta-data file plus the number
128 <      //of rigid bodies defined in meta-data file
129 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
130 <                                                + nGlobalRigidBodies_;
131 <  
132 <      nGlobalMols_ = molStampIds_.size();
161 <      molToProcMap_.resize(nGlobalMols_);
116 >      
117 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
118 >      
119 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
120 >      
121 >      //calculate atoms in rigid bodies
122 >      int nAtomsInRigidBodies = 0;
123 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
124 >      
125 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
126 >        rbStamp = molStamp->getRigidBodyStamp(j);
127 >        nAtomsInRigidBodies += rbStamp->getNMembers();
128 >      }
129 >      
130 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
131 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
132 >      
133      }
134 +    
135 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
136 +    //group therefore the total number of cutoff groups in the system is
137 +    //equal to the total number of atoms minus number of atoms belong to
138 +    //cutoff group defined in meta-data file plus the number of cutoff
139 +    //groups defined in meta-data file
140  
141 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
142 +    
143 +    //every free atom (atom does not belong to rigid bodies) is an
144 +    //integrable object therefore the total number of integrable objects
145 +    //in the system is equal to the total number of atoms minus number of
146 +    //atoms belong to rigid body defined in meta-data file plus the number
147 +    //of rigid bodies defined in meta-data file
148 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 +      + nGlobalRigidBodies_;
150 +    
151 +    nGlobalMols_ = molStampIds_.size();
152 +    molToProcMap_.resize(nGlobalMols_);
153 +  }
154 +  
155    SimInfo::~SimInfo() {
156 <    std::map<int, Molecule*>::iterator i;
156 >    map<int, Molecule*>::iterator i;
157      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158        delete i->second;
159      }
# Line 173 | Line 164 | namespace oopse {
164      delete forceField_;
165    }
166  
176  int SimInfo::getNGlobalConstraints() {
177    int nGlobalConstraints;
178 #ifdef IS_MPI
179    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180                  MPI_COMM_WORLD);    
181 #else
182    nGlobalConstraints =  nConstraints_;
183 #endif
184    return nGlobalConstraints;
185  }
167  
168    bool SimInfo::addMolecule(Molecule* mol) {
169      MoleculeIterator i;
170 <
170 >    
171      i = molecules_.find(mol->getGlobalIndex());
172      if (i == molecules_.end() ) {
173 <
174 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 <        
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176        nAtoms_ += mol->getNAtoms();
177        nBonds_ += mol->getNBonds();
178        nBends_ += mol->getNBends();
# Line 201 | Line 182 | namespace oopse {
182        nIntegrableObjects_ += mol->getNIntegrableObjects();
183        nCutoffGroups_ += mol->getNCutoffGroups();
184        nConstraints_ += mol->getNConstraintPairs();
185 <
185 >      
186        addInteractionPairs(mol);
187 <  
187 >      
188        return true;
189      } else {
190        return false;
191      }
192    }
193 <
193 >  
194    bool SimInfo::removeMolecule(Molecule* mol) {
195      MoleculeIterator i;
196      i = molecules_.find(mol->getGlobalIndex());
# Line 237 | Line 218 | namespace oopse {
218      } else {
219        return false;
220      }
240
241
221    }    
222  
223          
# Line 254 | Line 233 | namespace oopse {
233  
234  
235    void SimInfo::calcNdf() {
236 <    int ndf_local;
236 >    int ndf_local, nfq_local;
237      MoleculeIterator i;
238 <    std::vector<StuntDouble*>::iterator j;
238 >    vector<StuntDouble*>::iterator j;
239 >    vector<Atom*>::iterator k;
240 >
241      Molecule* mol;
242 <    StuntDouble* integrableObject;
242 >    StuntDouble* sd;
243 >    Atom* atom;
244  
245      ndf_local = 0;
246 +    nfq_local = 0;
247      
248      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267           integrableObject = mol->nextIntegrableObject(j)) {
249  
250 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
251 +           sd = mol->nextIntegrableObject(j)) {
252 +
253          ndf_local += 3;
254  
255 <        if (integrableObject->isDirectional()) {
256 <          if (integrableObject->isLinear()) {
255 >        if (sd->isDirectional()) {
256 >          if (sd->isLinear()) {
257              ndf_local += 2;
258            } else {
259              ndf_local += 3;
260            }
261          }
278            
262        }
263 +
264 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
265 +           atom = mol->nextFluctuatingCharge(k)) {
266 +        if (atom->isFluctuatingCharge()) {
267 +          nfq_local++;
268 +        }
269 +      }
270      }
271      
272 +    ndfLocal_ = ndf_local;
273 +
274      // n_constraints is local, so subtract them on each processor
275      ndf_local -= nConstraints_;
276  
277   #ifdef IS_MPI
278 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
278 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
279 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
280 >                              MPI::INT, MPI::SUM);
281   #else
282      ndf_ = ndf_local;
283 +    nGlobalFluctuatingCharges_ = nfq_local;
284   #endif
285  
286      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 296 | Line 291 | namespace oopse {
291  
292    int SimInfo::getFdf() {
293   #ifdef IS_MPI
294 <    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
294 >    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
295   #else
296      fdf_ = fdf_local;
297   #endif
298      return fdf_;
299    }
300 +  
301 +  unsigned int SimInfo::getNLocalCutoffGroups(){
302 +    int nLocalCutoffAtoms = 0;
303 +    Molecule* mol;
304 +    MoleculeIterator mi;
305 +    CutoffGroup* cg;
306 +    Molecule::CutoffGroupIterator ci;
307      
308 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
309 +      
310 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
311 +           cg = mol->nextCutoffGroup(ci)) {
312 +        nLocalCutoffAtoms += cg->getNumAtom();
313 +        
314 +      }        
315 +    }
316 +    
317 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
318 +  }
319 +    
320    void SimInfo::calcNdfRaw() {
321      int ndfRaw_local;
322  
323      MoleculeIterator i;
324 <    std::vector<StuntDouble*>::iterator j;
324 >    vector<StuntDouble*>::iterator j;
325      Molecule* mol;
326 <    StuntDouble* integrableObject;
326 >    StuntDouble* sd;
327  
328      // Raw degrees of freedom that we have to set
329      ndfRaw_local = 0;
330      
331      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319           integrableObject = mol->nextIntegrableObject(j)) {
332  
333 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
334 +           sd = mol->nextIntegrableObject(j)) {
335 +
336          ndfRaw_local += 3;
337  
338 <        if (integrableObject->isDirectional()) {
339 <          if (integrableObject->isLinear()) {
338 >        if (sd->isDirectional()) {
339 >          if (sd->isLinear()) {
340              ndfRaw_local += 2;
341            } else {
342              ndfRaw_local += 3;
# Line 332 | Line 347 | namespace oopse {
347      }
348      
349   #ifdef IS_MPI
350 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
350 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
351   #else
352      ndfRaw_ = ndfRaw_local;
353   #endif
# Line 345 | Line 360 | namespace oopse {
360  
361  
362   #ifdef IS_MPI
363 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
363 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
364 >                              MPI::INT, MPI::SUM);
365   #else
366      ndfTrans_ = ndfTrans_local;
367   #endif
# Line 356 | Line 372 | namespace oopse {
372  
373    void SimInfo::addInteractionPairs(Molecule* mol) {
374      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
375 <    std::vector<Bond*>::iterator bondIter;
376 <    std::vector<Bend*>::iterator bendIter;
377 <    std::vector<Torsion*>::iterator torsionIter;
378 <    std::vector<Inversion*>::iterator inversionIter;
375 >    vector<Bond*>::iterator bondIter;
376 >    vector<Bend*>::iterator bendIter;
377 >    vector<Torsion*>::iterator torsionIter;
378 >    vector<Inversion*>::iterator inversionIter;
379      Bond* bond;
380      Bend* bend;
381      Torsion* torsion;
# Line 377 | Line 393 | namespace oopse {
393      // always be excluded.  These are done at the bottom of this
394      // function.
395  
396 <    std::map<int, std::set<int> > atomGroups;
396 >    map<int, set<int> > atomGroups;
397      Molecule::RigidBodyIterator rbIter;
398      RigidBody* rb;
399      Molecule::IntegrableObjectIterator ii;
400 <    StuntDouble* integrableObject;
400 >    StuntDouble* sd;
401      
402 <    for (integrableObject = mol->beginIntegrableObject(ii);
403 <         integrableObject != NULL;
388 <         integrableObject = mol->nextIntegrableObject(ii)) {
402 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
403 >         sd = mol->nextIntegrableObject(ii)) {
404        
405 <      if (integrableObject->isRigidBody()) {
406 <        rb = static_cast<RigidBody*>(integrableObject);
407 <        std::vector<Atom*> atoms = rb->getAtoms();
408 <        std::set<int> rigidAtoms;
405 >      if (sd->isRigidBody()) {
406 >        rb = static_cast<RigidBody*>(sd);
407 >        vector<Atom*> atoms = rb->getAtoms();
408 >        set<int> rigidAtoms;
409          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
410            rigidAtoms.insert(atoms[i]->getGlobalIndex());
411          }
412          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
413 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
413 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
414          }      
415        } else {
416 <        std::set<int> oneAtomSet;
417 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
418 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
416 >        set<int> oneAtomSet;
417 >        oneAtomSet.insert(sd->getGlobalIndex());
418 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
419        }
420      }  
421            
# Line 409 | Line 424 | namespace oopse {
424  
425        a = bond->getAtomA()->getGlobalIndex();
426        b = bond->getAtomB()->getGlobalIndex();  
427 <    
427 >
428        if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
429          oneTwoInteractions_.addPair(a, b);
430        } else {
# Line 503 | Line 518 | namespace oopse {
518  
519      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
520           rb = mol->nextRigidBody(rbIter)) {
521 <      std::vector<Atom*> atoms = rb->getAtoms();
521 >      vector<Atom*> atoms = rb->getAtoms();
522        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
523          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
524            a = atoms[i]->getGlobalIndex();
# Line 517 | Line 532 | namespace oopse {
532  
533    void SimInfo::removeInteractionPairs(Molecule* mol) {
534      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
535 <    std::vector<Bond*>::iterator bondIter;
536 <    std::vector<Bend*>::iterator bendIter;
537 <    std::vector<Torsion*>::iterator torsionIter;
538 <    std::vector<Inversion*>::iterator inversionIter;
535 >    vector<Bond*>::iterator bondIter;
536 >    vector<Bend*>::iterator bendIter;
537 >    vector<Torsion*>::iterator torsionIter;
538 >    vector<Inversion*>::iterator inversionIter;
539      Bond* bond;
540      Bend* bend;
541      Torsion* torsion;
# Line 530 | Line 545 | namespace oopse {
545      int c;
546      int d;
547  
548 <    std::map<int, std::set<int> > atomGroups;
548 >    map<int, set<int> > atomGroups;
549      Molecule::RigidBodyIterator rbIter;
550      RigidBody* rb;
551      Molecule::IntegrableObjectIterator ii;
552 <    StuntDouble* integrableObject;
552 >    StuntDouble* sd;
553      
554 <    for (integrableObject = mol->beginIntegrableObject(ii);
555 <         integrableObject != NULL;
541 <         integrableObject = mol->nextIntegrableObject(ii)) {
554 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
555 >         sd = mol->nextIntegrableObject(ii)) {
556        
557 <      if (integrableObject->isRigidBody()) {
558 <        rb = static_cast<RigidBody*>(integrableObject);
559 <        std::vector<Atom*> atoms = rb->getAtoms();
560 <        std::set<int> rigidAtoms;
557 >      if (sd->isRigidBody()) {
558 >        rb = static_cast<RigidBody*>(sd);
559 >        vector<Atom*> atoms = rb->getAtoms();
560 >        set<int> rigidAtoms;
561          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
562            rigidAtoms.insert(atoms[i]->getGlobalIndex());
563          }
564          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
565 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
565 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
566          }      
567        } else {
568 <        std::set<int> oneAtomSet;
569 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
570 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
568 >        set<int> oneAtomSet;
569 >        oneAtomSet.insert(sd->getGlobalIndex());
570 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
571        }
572      }  
573  
# Line 656 | Line 670 | namespace oopse {
670  
671      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
672           rb = mol->nextRigidBody(rbIter)) {
673 <      std::vector<Atom*> atoms = rb->getAtoms();
673 >      vector<Atom*> atoms = rb->getAtoms();
674        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
675          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
676            a = atoms[i]->getGlobalIndex();
# Line 679 | Line 693 | namespace oopse {
693      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
694    }
695  
682  void SimInfo::update() {
696  
697 <    setupSimType();
698 <
699 < #ifdef IS_MPI
700 <    setupFortranParallel();
701 < #endif
702 <
703 <    setupFortranSim();
704 <
705 <    //setup fortran force field
693 <    /** @deprecate */    
694 <    int isError = 0;
695 <    
696 <    setupCutoff();
697 <    
698 <    setupElectrostaticSummationMethod( isError );
699 <    setupSwitchingFunction();
700 <    setupAccumulateBoxDipole();
701 <
702 <    if(isError){
703 <      sprintf( painCave.errMsg,
704 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
705 <      painCave.isFatal = 1;
706 <      simError();
707 <    }
708 <
697 >  /**
698 >   * update
699 >   *
700 >   *  Performs the global checks and variable settings after the
701 >   *  objects have been created.
702 >   *
703 >   */
704 >  void SimInfo::update() {  
705 >    setupSimVariables();
706      calcNdf();
707      calcNdfRaw();
708      calcNdfTrans();
712
713    fortranInitialized_ = true;
709    }
710 <
711 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
710 >  
711 >  /**
712 >   * getSimulatedAtomTypes
713 >   *
714 >   * Returns an STL set of AtomType* that are actually present in this
715 >   * simulation.  Must query all processors to assemble this information.
716 >   *
717 >   */
718 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
719      SimInfo::MoleculeIterator mi;
720      Molecule* mol;
721      Molecule::AtomIterator ai;
722      Atom* atom;
723 <    std::set<AtomType*> atomTypes;
724 <
723 >    set<AtomType*> atomTypes;
724 >    
725      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
726 <
727 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
726 >      for(atom = mol->beginAtom(ai); atom != NULL;
727 >          atom = mol->nextAtom(ai)) {
728          atomTypes.insert(atom->getAtomType());
729 <      }
730 <        
729 <    }
730 <
731 <    return atomTypes;        
732 <  }
733 <
734 <  void SimInfo::setupSimType() {
735 <    std::set<AtomType*>::iterator i;
736 <    std::set<AtomType*> atomTypes;
737 <    atomTypes = getUniqueAtomTypes();
729 >      }      
730 >    }    
731      
732 <    int useLennardJones = 0;
740 <    int useElectrostatic = 0;
741 <    int useEAM = 0;
742 <    int useSC = 0;
743 <    int useCharge = 0;
744 <    int useDirectional = 0;
745 <    int useDipole = 0;
746 <    int useGayBerne = 0;
747 <    int useSticky = 0;
748 <    int useStickyPower = 0;
749 <    int useShape = 0;
750 <    int useFLARB = 0; //it is not in AtomType yet
751 <    int useDirectionalAtom = 0;    
752 <    int useElectrostatics = 0;
753 <    //usePBC and useRF are from simParams
754 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
755 <    int useRF;
756 <    int useSF;
757 <    int useSP;
758 <    int useBoxDipole;
732 > #ifdef IS_MPI
733  
734 <    std::string myMethod;
735 <
762 <    // set the useRF logical
763 <    useRF = 0;
764 <    useSF = 0;
765 <    useSP = 0;
766 <
767 <
768 <    if (simParams_->haveElectrostaticSummationMethod()) {
769 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
770 <      toUpper(myMethod);
771 <      if (myMethod == "REACTION_FIELD"){
772 <        useRF = 1;
773 <      } else if (myMethod == "SHIFTED_FORCE"){
774 <        useSF = 1;
775 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
776 <        useSP = 1;
777 <      }
778 <    }
734 >    // loop over the found atom types on this processor, and add their
735 >    // numerical idents to a vector:
736      
737 <    if (simParams_->haveAccumulateBoxDipole())
738 <      if (simParams_->getAccumulateBoxDipole())
739 <        useBoxDipole = 1;
737 >    vector<int> foundTypes;
738 >    set<AtomType*>::iterator i;
739 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
740 >      foundTypes.push_back( (*i)->getIdent() );
741  
742 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
742 >    // count_local holds the number of found types on this processor
743 >    int count_local = foundTypes.size();
744  
745 <    //loop over all of the atom types
787 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
788 <      useLennardJones |= (*i)->isLennardJones();
789 <      useElectrostatic |= (*i)->isElectrostatic();
790 <      useEAM |= (*i)->isEAM();
791 <      useSC |= (*i)->isSC();
792 <      useCharge |= (*i)->isCharge();
793 <      useDirectional |= (*i)->isDirectional();
794 <      useDipole |= (*i)->isDipole();
795 <      useGayBerne |= (*i)->isGayBerne();
796 <      useSticky |= (*i)->isSticky();
797 <      useStickyPower |= (*i)->isStickyPower();
798 <      useShape |= (*i)->isShape();
799 <    }
745 >    int nproc = MPI::COMM_WORLD.Get_size();
746  
747 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
748 <      useDirectionalAtom = 1;
749 <    }
747 >    // we need arrays to hold the counts and displacement vectors for
748 >    // all processors
749 >    vector<int> counts(nproc, 0);
750 >    vector<int> disps(nproc, 0);
751  
752 <    if (useCharge || useDipole) {
753 <      useElectrostatics = 1;
752 >    // fill the counts array
753 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
754 >                              1, MPI::INT);
755 >  
756 >    // use the processor counts to compute the displacement array
757 >    disps[0] = 0;    
758 >    int totalCount = counts[0];
759 >    for (int iproc = 1; iproc < nproc; iproc++) {
760 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
761 >      totalCount += counts[iproc];
762      }
763  
764 < #ifdef IS_MPI    
765 <    int temp;
764 >    // we need a (possibly redundant) set of all found types:
765 >    vector<int> ftGlobal(totalCount);
766 >    
767 >    // now spray out the foundTypes to all the other processors:    
768 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
769 >                               &ftGlobal[0], &counts[0], &disps[0],
770 >                               MPI::INT);
771  
772 <    temp = usePBC;
813 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
772 >    vector<int>::iterator j;
773  
774 <    temp = useDirectionalAtom;
775 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
774 >    // foundIdents is a stl set, so inserting an already found ident
775 >    // will have no effect.
776 >    set<int> foundIdents;
777  
778 <    temp = useLennardJones;
779 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
778 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
779 >      foundIdents.insert((*j));
780 >    
781 >    // now iterate over the foundIdents and get the actual atom types
782 >    // that correspond to these:
783 >    set<int>::iterator it;
784 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
785 >      atomTypes.insert( forceField_->getAtomType((*it)) );
786 >
787 > #endif
788  
789 <    temp = useElectrostatics;
790 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
789 >    return atomTypes;        
790 >  }
791  
824    temp = useCharge;
825    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
792  
793 <    temp = useDipole;
794 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
793 >  int getGlobalCountOfType(AtomType* atype) {
794 >    /*
795 >    set<AtomType*> atypes = getSimulatedAtomTypes();
796 >    map<AtomType*, int> counts_;
797  
798 <    temp = useSticky;
799 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
798 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
799 >      for(atom = mol->beginAtom(ai); atom != NULL;
800 >          atom = mol->nextAtom(ai)) {
801 >        atom->getAtomType();
802 >      }      
803 >    }    
804 >    */
805 >    return 0;
806 >  }
807  
808 <    temp = useStickyPower;
809 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
808 >  void SimInfo::setupSimVariables() {
809 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
810 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
811 >    // parameter is true
812 >    calcBoxDipole_ = false;
813 >    if ( simParams_->haveAccumulateBoxDipole() )
814 >      if ( simParams_->getAccumulateBoxDipole() ) {
815 >        calcBoxDipole_ = true;      
816 >      }
817      
818 <    temp = useGayBerne;
819 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
818 >    set<AtomType*>::iterator i;
819 >    set<AtomType*> atomTypes;
820 >    atomTypes = getSimulatedAtomTypes();    
821 >    bool usesElectrostatic = false;
822 >    bool usesMetallic = false;
823 >    bool usesDirectional = false;
824 >    bool usesFluctuatingCharges =  false;
825 >    //loop over all of the atom types
826 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
827 >      usesElectrostatic |= (*i)->isElectrostatic();
828 >      usesMetallic |= (*i)->isMetal();
829 >      usesDirectional |= (*i)->isDirectional();
830 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
831 >    }
832  
833 <    temp = useEAM;
834 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
835 <
836 <    temp = useSC;
837 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
833 > #ifdef IS_MPI
834 >    bool temp;
835 >    temp = usesDirectional;
836 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
837 >                              MPI::LOR);
838 >        
839 >    temp = usesMetallic;
840 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
841 >                              MPI::LOR);
842      
843 <    temp = useShape;
844 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
843 >    temp = usesElectrostatic;
844 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
845 >                              MPI::LOR);
846  
847 <    temp = useFLARB;
848 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
847 >    temp = usesFluctuatingCharges;
848 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
849 >                              MPI::LOR);
850 > #else
851  
852 <    temp = useRF;
853 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
852 >    usesDirectionalAtoms_ = usesDirectional;
853 >    usesMetallicAtoms_ = usesMetallic;
854 >    usesElectrostaticAtoms_ = usesElectrostatic;
855 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
856  
857 <    temp = useSF;
858 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
857 > #endif
858 >    
859 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
860 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
861 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
862 >  }
863  
857    temp = useSP;
858    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
864  
865 <    temp = useBoxDipole;
866 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
865 >  vector<int> SimInfo::getGlobalAtomIndices() {
866 >    SimInfo::MoleculeIterator mi;
867 >    Molecule* mol;
868 >    Molecule::AtomIterator ai;
869 >    Atom* atom;
870  
871 <    temp = useAtomicVirial_;
872 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
871 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
872 >    
873 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
874 >      
875 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
876 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
877 >      }
878 >    }
879 >    return GlobalAtomIndices;
880 >  }
881  
866 #endif
882  
883 <    fInfo_.SIM_uses_PBC = usePBC;    
884 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
885 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
886 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
887 <    fInfo_.SIM_uses_Charges = useCharge;
873 <    fInfo_.SIM_uses_Dipoles = useDipole;
874 <    fInfo_.SIM_uses_Sticky = useSticky;
875 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
876 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
877 <    fInfo_.SIM_uses_EAM = useEAM;
878 <    fInfo_.SIM_uses_SC = useSC;
879 <    fInfo_.SIM_uses_Shapes = useShape;
880 <    fInfo_.SIM_uses_FLARB = useFLARB;
881 <    fInfo_.SIM_uses_RF = useRF;
882 <    fInfo_.SIM_uses_SF = useSF;
883 <    fInfo_.SIM_uses_SP = useSP;
884 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
885 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
886 <  }
883 >  vector<int> SimInfo::getGlobalGroupIndices() {
884 >    SimInfo::MoleculeIterator mi;
885 >    Molecule* mol;
886 >    Molecule::CutoffGroupIterator ci;
887 >    CutoffGroup* cg;
888  
889 <  void SimInfo::setupFortranSim() {
889 <    int isError;
890 <    int nExclude, nOneTwo, nOneThree, nOneFour;
891 <    std::vector<int> fortranGlobalGroupMembership;
889 >    vector<int> GlobalGroupIndices;
890      
891 <    isError = 0;
892 <
893 <    //globalGroupMembership_ is filled by SimCreator    
894 <    for (int i = 0; i < nGlobalAtoms_; i++) {
895 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
891 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
892 >      
893 >      //local index of cutoff group is trivial, it only depends on the
894 >      //order of travesing
895 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
896 >           cg = mol->nextCutoffGroup(ci)) {
897 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
898 >      }        
899      }
900 +    return GlobalGroupIndices;
901 +  }
902  
903 +
904 +  void SimInfo::prepareTopology() {
905 +
906      //calculate mass ratio of cutoff group
901    std::vector<RealType> mfact;
907      SimInfo::MoleculeIterator mi;
908      Molecule* mol;
909      Molecule::CutoffGroupIterator ci;
# Line 907 | Line 912 | namespace oopse {
912      Atom* atom;
913      RealType totalMass;
914  
915 <    //to avoid memory reallocation, reserve enough space for mfact
916 <    mfact.reserve(getNCutoffGroups());
915 >    /**
916 >     * The mass factor is the relative mass of an atom to the total
917 >     * mass of the cutoff group it belongs to.  By default, all atoms
918 >     * are their own cutoff groups, and therefore have mass factors of
919 >     * 1.  We need some special handling for massless atoms, which
920 >     * will be treated as carrying the entire mass of the cutoff
921 >     * group.
922 >     */
923 >    massFactors_.clear();
924 >    massFactors_.resize(getNAtoms(), 1.0);
925      
926      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
927 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
927 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
928 >           cg = mol->nextCutoffGroup(ci)) {
929  
930          totalMass = cg->getMass();
931          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
932            // Check for massless groups - set mfact to 1 if true
933 <          if (totalMass != 0)
934 <            mfact.push_back(atom->getMass()/totalMass);
933 >          if (totalMass != 0)
934 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
935            else
936 <            mfact.push_back( 1.0 );
936 >            massFactors_[atom->getLocalIndex()] = 1.0;
937          }
938        }      
939      }
940  
941 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
928 <    std::vector<int> identArray;
941 >    // Build the identArray_ and regions_
942  
943 <    //to avoid memory reallocation, reserve enough space identArray
944 <    identArray.reserve(getNAtoms());
945 <    
946 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
943 >    identArray_.clear();
944 >    identArray_.reserve(getNAtoms());  
945 >    regions_.clear();
946 >    regions_.reserve(getNAtoms());
947 >
948 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
949 >      int reg = mol->getRegion();      
950        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
951 <        identArray.push_back(atom->getIdent());
951 >        identArray_.push_back(atom->getIdent());
952 >        regions_.push_back(reg);
953        }
954      }    
955 +      
956 +    topologyDone_ = true;
957 +  }
958  
959 <    //fill molMembershipArray
960 <    //molMembershipArray is filled by SimCreator    
961 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
942 <    for (int i = 0; i < nGlobalAtoms_; i++) {
943 <      molMembershipArray[i] = globalMolMembership_[i] + 1;
944 <    }
945 <    
946 <    //setup fortran simulation
959 >  void SimInfo::addProperty(GenericData* genData) {
960 >    properties_.addProperty(genData);  
961 >  }
962  
963 <    nExclude = excludedInteractions_.getSize();
964 <    nOneTwo = oneTwoInteractions_.getSize();
950 <    nOneThree = oneThreeInteractions_.getSize();
951 <    nOneFour = oneFourInteractions_.getSize();
952 <
953 <    std::cerr << "excludedInteractions contains: " << excludedInteractions_.getSize() << " pairs \n";
954 <    std::cerr << "oneTwoInteractions contains: " << oneTwoInteractions_.getSize() << " pairs \n";
955 <    std::cerr << "oneThreeInteractions contains: " << oneThreeInteractions_.getSize() << " pairs \n";
956 <    std::cerr << "oneFourInteractions contains: " << oneFourInteractions_.getSize() << " pairs \n";
957 <
958 <    int* excludeList = excludedInteractions_.getPairList();
959 <    int* oneTwoList = oneTwoInteractions_.getPairList();
960 <    int* oneThreeList = oneThreeInteractions_.getPairList();
961 <    int* oneFourList = oneFourInteractions_.getPairList();
962 <
963 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
964 <                   &nExclude, excludeList,
965 <                   &nOneTwo, oneTwoList,
966 <                   &nOneThree, oneThreeList,
967 <                   &nOneFour, oneFourList,
968 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
969 <                   &fortranGlobalGroupMembership[0], &isError);
970 <    
971 <    if( isError ){
972 <      
973 <      sprintf( painCave.errMsg,
974 <               "There was an error setting the simulation information in fortran.\n" );
975 <      painCave.isFatal = 1;
976 <      painCave.severity = OOPSE_ERROR;
977 <      simError();
978 <    }
979 <    
980 <    
981 <    sprintf( checkPointMsg,
982 <             "succesfully sent the simulation information to fortran.\n");
983 <    
984 <    errorCheckPoint();
985 <    
986 <    // Setup number of neighbors in neighbor list if present
987 <    if (simParams_->haveNeighborListNeighbors()) {
988 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
989 <      setNeighbors(&nlistNeighbors);
990 <    }
991 <  
992 <
963 >  void SimInfo::removeProperty(const string& propName) {
964 >    properties_.removeProperty(propName);  
965    }
966  
967 <
968 <  void SimInfo::setupFortranParallel() {
997 < #ifdef IS_MPI    
998 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
999 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1000 <    std::vector<int> localToGlobalCutoffGroupIndex;
1001 <    SimInfo::MoleculeIterator mi;
1002 <    Molecule::AtomIterator ai;
1003 <    Molecule::CutoffGroupIterator ci;
1004 <    Molecule* mol;
1005 <    Atom* atom;
1006 <    CutoffGroup* cg;
1007 <    mpiSimData parallelData;
1008 <    int isError;
1009 <
1010 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
1011 <
1012 <      //local index(index in DataStorge) of atom is important
1013 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1014 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1015 <      }
1016 <
1017 <      //local index of cutoff group is trivial, it only depends on the order of travesing
1018 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1019 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1020 <      }        
1021 <        
1022 <    }
1023 <
1024 <    //fill up mpiSimData struct
1025 <    parallelData.nMolGlobal = getNGlobalMolecules();
1026 <    parallelData.nMolLocal = getNMolecules();
1027 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
1028 <    parallelData.nAtomsLocal = getNAtoms();
1029 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1030 <    parallelData.nGroupsLocal = getNCutoffGroups();
1031 <    parallelData.myNode = worldRank;
1032 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1033 <
1034 <    //pass mpiSimData struct and index arrays to fortran
1035 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1036 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
1037 <                    &localToGlobalCutoffGroupIndex[0], &isError);
1038 <
1039 <    if (isError) {
1040 <      sprintf(painCave.errMsg,
1041 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1042 <      painCave.isFatal = 1;
1043 <      simError();
1044 <    }
1045 <
1046 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
1047 <    errorCheckPoint();
1048 <
1049 < #endif
967 >  void SimInfo::clearProperties() {
968 >    properties_.clearProperties();
969    }
970  
971 <  void SimInfo::setupCutoff() {          
972 <    
973 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1055 <
1056 <    // Check the cutoff policy
1057 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1058 <
1059 <    // Set LJ shifting bools to false
1060 <    ljsp_ = false;
1061 <    ljsf_ = false;
1062 <
1063 <    std::string myPolicy;
1064 <    if (forceFieldOptions_.haveCutoffPolicy()){
1065 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
1066 <    }else if (simParams_->haveCutoffPolicy()) {
1067 <      myPolicy = simParams_->getCutoffPolicy();
1068 <    }
1069 <
1070 <    if (!myPolicy.empty()){
1071 <      toUpper(myPolicy);
1072 <      if (myPolicy == "MIX") {
1073 <        cp = MIX_CUTOFF_POLICY;
1074 <      } else {
1075 <        if (myPolicy == "MAX") {
1076 <          cp = MAX_CUTOFF_POLICY;
1077 <        } else {
1078 <          if (myPolicy == "TRADITIONAL") {            
1079 <            cp = TRADITIONAL_CUTOFF_POLICY;
1080 <          } else {
1081 <            // throw error        
1082 <            sprintf( painCave.errMsg,
1083 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1084 <            painCave.isFatal = 1;
1085 <            simError();
1086 <          }    
1087 <        }          
1088 <      }
1089 <    }          
1090 <    notifyFortranCutoffPolicy(&cp);
1091 <
1092 <    // Check the Skin Thickness for neighborlists
1093 <    RealType skin;
1094 <    if (simParams_->haveSkinThickness()) {
1095 <      skin = simParams_->getSkinThickness();
1096 <      notifyFortranSkinThickness(&skin);
1097 <    }            
1098 <        
1099 <    // Check if the cutoff was set explicitly:
1100 <    if (simParams_->haveCutoffRadius()) {
1101 <      rcut_ = simParams_->getCutoffRadius();
1102 <      if (simParams_->haveSwitchingRadius()) {
1103 <        rsw_  = simParams_->getSwitchingRadius();
1104 <      } else {
1105 <        if (fInfo_.SIM_uses_Charges |
1106 <            fInfo_.SIM_uses_Dipoles |
1107 <            fInfo_.SIM_uses_RF) {
1108 <          
1109 <          rsw_ = 0.85 * rcut_;
1110 <          sprintf(painCave.errMsg,
1111 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1112 <                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1113 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1114 <        painCave.isFatal = 0;
1115 <        simError();
1116 <        } else {
1117 <          rsw_ = rcut_;
1118 <          sprintf(painCave.errMsg,
1119 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1120 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1121 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1122 <          painCave.isFatal = 0;
1123 <          simError();
1124 <        }
1125 <      }
1126 <
1127 <      if (simParams_->haveElectrostaticSummationMethod()) {
1128 <        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1129 <        toUpper(myMethod);
1130 <        
1131 <        if (myMethod == "SHIFTED_POTENTIAL") {
1132 <          ljsp_ = true;
1133 <        } else if (myMethod == "SHIFTED_FORCE") {
1134 <          ljsf_ = true;
1135 <        }
1136 <      }
1137 <      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
971 >  vector<string> SimInfo::getPropertyNames() {
972 >    return properties_.getPropertyNames();  
973 >  }
974        
975 <    } else {
976 <      
1141 <      // For electrostatic atoms, we'll assume a large safe value:
1142 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1143 <        sprintf(painCave.errMsg,
1144 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1145 <                "\tOOPSE will use a default value of 15.0 angstroms"
1146 <                "\tfor the cutoffRadius.\n");
1147 <        painCave.isFatal = 0;
1148 <        simError();
1149 <        rcut_ = 15.0;
1150 <      
1151 <        if (simParams_->haveElectrostaticSummationMethod()) {
1152 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1153 <          toUpper(myMethod);
1154 <      
1155 <      // For the time being, we're tethering the LJ shifted behavior to the
1156 <      // electrostaticSummationMethod keyword options
1157 <          if (myMethod == "SHIFTED_POTENTIAL") {
1158 <            ljsp_ = true;
1159 <          } else if (myMethod == "SHIFTED_FORCE") {
1160 <            ljsf_ = true;
1161 <          }
1162 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1163 <            if (simParams_->haveSwitchingRadius()){
1164 <              sprintf(painCave.errMsg,
1165 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1166 <                      "\teven though the electrostaticSummationMethod was\n"
1167 <                      "\tset to %s\n", myMethod.c_str());
1168 <              painCave.isFatal = 1;
1169 <              simError();            
1170 <            }
1171 <          }
1172 <        }
1173 <      
1174 <        if (simParams_->haveSwitchingRadius()){
1175 <          rsw_ = simParams_->getSwitchingRadius();
1176 <        } else {        
1177 <          sprintf(painCave.errMsg,
1178 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1179 <                  "\tOOPSE will use a default value of\n"
1180 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1181 <          painCave.isFatal = 0;
1182 <          simError();
1183 <          rsw_ = 0.85 * rcut_;
1184 <        }
1185 <
1186 <        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1187 <
1188 <      } else {
1189 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1190 <        // We'll punt and let fortran figure out the cutoffs later.
1191 <        
1192 <        notifyFortranYouAreOnYourOwn();
1193 <
1194 <      }
1195 <    }
975 >  vector<GenericData*> SimInfo::getProperties() {
976 >    return properties_.getProperties();
977    }
978  
979 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1199 <    
1200 <    int errorOut;
1201 <    int esm =  NONE;
1202 <    int sm = UNDAMPED;
1203 <    RealType alphaVal;
1204 <    RealType dielectric;
1205 <    
1206 <    errorOut = isError;
1207 <
1208 <    if (simParams_->haveElectrostaticSummationMethod()) {
1209 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1210 <      toUpper(myMethod);
1211 <      if (myMethod == "NONE") {
1212 <        esm = NONE;
1213 <      } else {
1214 <        if (myMethod == "SWITCHING_FUNCTION") {
1215 <          esm = SWITCHING_FUNCTION;
1216 <        } else {
1217 <          if (myMethod == "SHIFTED_POTENTIAL") {
1218 <            esm = SHIFTED_POTENTIAL;
1219 <          } else {
1220 <            if (myMethod == "SHIFTED_FORCE") {            
1221 <              esm = SHIFTED_FORCE;
1222 <            } else {
1223 <              if (myMethod == "REACTION_FIELD") {
1224 <                esm = REACTION_FIELD;
1225 <                dielectric = simParams_->getDielectric();
1226 <                if (!simParams_->haveDielectric()) {
1227 <                  // throw warning
1228 <                  sprintf( painCave.errMsg,
1229 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1230 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1231 <                  painCave.isFatal = 0;
1232 <                  simError();
1233 <                }
1234 <              } else {
1235 <                // throw error        
1236 <                sprintf( painCave.errMsg,
1237 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1238 <                         "\t(Input file specified %s .)\n"
1239 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1240 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1241 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1242 <                painCave.isFatal = 1;
1243 <                simError();
1244 <              }    
1245 <            }          
1246 <          }
1247 <        }
1248 <      }
1249 <    }
1250 <    
1251 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1252 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1253 <      toUpper(myScreen);
1254 <      if (myScreen == "UNDAMPED") {
1255 <        sm = UNDAMPED;
1256 <      } else {
1257 <        if (myScreen == "DAMPED") {
1258 <          sm = DAMPED;
1259 <          if (!simParams_->haveDampingAlpha()) {
1260 <            // first set a cutoff dependent alpha value
1261 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1262 <            alphaVal = 0.5125 - rcut_* 0.025;
1263 <            // for values rcut > 20.5, alpha is zero
1264 <            if (alphaVal < 0) alphaVal = 0;
1265 <
1266 <            // throw warning
1267 <            sprintf( painCave.errMsg,
1268 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1269 <                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1270 <            painCave.isFatal = 0;
1271 <            simError();
1272 <          } else {
1273 <            alphaVal = simParams_->getDampingAlpha();
1274 <          }
1275 <          
1276 <        } else {
1277 <          // throw error        
1278 <          sprintf( painCave.errMsg,
1279 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1280 <                   "\t(Input file specified %s .)\n"
1281 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1282 <                   "or \"damped\".\n", myScreen.c_str() );
1283 <          painCave.isFatal = 1;
1284 <          simError();
1285 <        }
1286 <      }
1287 <    }
1288 <    
1289 <    // let's pass some summation method variables to fortran
1290 <    setElectrostaticSummationMethod( &esm );
1291 <    setFortranElectrostaticMethod( &esm );
1292 <    setScreeningMethod( &sm );
1293 <    setDampingAlpha( &alphaVal );
1294 <    setReactionFieldDielectric( &dielectric );
1295 <    initFortranFF( &errorOut );
1296 <  }
1297 <
1298 <  void SimInfo::setupSwitchingFunction() {    
1299 <    int ft = CUBIC;
1300 <
1301 <    if (simParams_->haveSwitchingFunctionType()) {
1302 <      std::string funcType = simParams_->getSwitchingFunctionType();
1303 <      toUpper(funcType);
1304 <      if (funcType == "CUBIC") {
1305 <        ft = CUBIC;
1306 <      } else {
1307 <        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1308 <          ft = FIFTH_ORDER_POLY;
1309 <        } else {
1310 <          // throw error        
1311 <          sprintf( painCave.errMsg,
1312 <                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1313 <          painCave.isFatal = 1;
1314 <          simError();
1315 <        }          
1316 <      }
1317 <    }
1318 <
1319 <    // send switching function notification to switcheroo
1320 <    setFunctionType(&ft);
1321 <
1322 <  }
1323 <
1324 <  void SimInfo::setupAccumulateBoxDipole() {    
1325 <
1326 <    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1327 <    if ( simParams_->haveAccumulateBoxDipole() )
1328 <      if ( simParams_->getAccumulateBoxDipole() ) {
1329 <        setAccumulateBoxDipole();
1330 <        calcBoxDipole_ = true;
1331 <      }
1332 <
1333 <  }
1334 <
1335 <  void SimInfo::addProperty(GenericData* genData) {
1336 <    properties_.addProperty(genData);  
1337 <  }
1338 <
1339 <  void SimInfo::removeProperty(const std::string& propName) {
1340 <    properties_.removeProperty(propName);  
1341 <  }
1342 <
1343 <  void SimInfo::clearProperties() {
1344 <    properties_.clearProperties();
1345 <  }
1346 <
1347 <  std::vector<std::string> SimInfo::getPropertyNames() {
1348 <    return properties_.getPropertyNames();  
1349 <  }
1350 <      
1351 <  std::vector<GenericData*> SimInfo::getProperties() {
1352 <    return properties_.getProperties();
1353 <  }
1354 <
1355 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
979 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
980      return properties_.getPropertyByName(propName);
981    }
982  
# Line 1366 | Line 990 | namespace oopse {
990      Molecule* mol;
991      RigidBody* rb;
992      Atom* atom;
993 +    CutoffGroup* cg;
994      SimInfo::MoleculeIterator mi;
995      Molecule::RigidBodyIterator rbIter;
996 <    Molecule::AtomIterator atomIter;;
996 >    Molecule::AtomIterator atomIter;
997 >    Molecule::CutoffGroupIterator cgIter;
998  
999      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1000          
1001 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1001 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
1002 >           atom = mol->nextAtom(atomIter)) {
1003          atom->setSnapshotManager(sman_);
1004        }
1005          
1006 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1006 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1007 >           rb = mol->nextRigidBody(rbIter)) {
1008          rb->setSnapshotManager(sman_);
1009        }
1010 +
1011 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1012 +           cg = mol->nextCutoffGroup(cgIter)) {
1013 +        cg->setSnapshotManager(sman_);
1014 +      }
1015      }    
1016      
1017    }
1018  
1386  Vector3d SimInfo::getComVel(){
1387    SimInfo::MoleculeIterator i;
1388    Molecule* mol;
1019  
1020 <    Vector3d comVel(0.0);
1391 <    RealType totalMass = 0.0;
1392 <    
1393 <
1394 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1395 <      RealType mass = mol->getMass();
1396 <      totalMass += mass;
1397 <      comVel += mass * mol->getComVel();
1398 <    }  
1020 >  ostream& operator <<(ostream& o, SimInfo& info) {
1021  
1400 #ifdef IS_MPI
1401    RealType tmpMass = totalMass;
1402    Vector3d tmpComVel(comVel);    
1403    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1404    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1405 #endif
1406
1407    comVel /= totalMass;
1408
1409    return comVel;
1410  }
1411
1412  Vector3d SimInfo::getCom(){
1413    SimInfo::MoleculeIterator i;
1414    Molecule* mol;
1415
1416    Vector3d com(0.0);
1417    RealType totalMass = 0.0;
1418    
1419    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1420      RealType mass = mol->getMass();
1421      totalMass += mass;
1422      com += mass * mol->getCom();
1423    }  
1424
1425 #ifdef IS_MPI
1426    RealType tmpMass = totalMass;
1427    Vector3d tmpCom(com);    
1428    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1429    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1430 #endif
1431
1432    com /= totalMass;
1433
1434    return com;
1435
1436  }        
1437
1438  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1439
1022      return o;
1023    }
1024    
1025 <  
1444 <   /*
1445 <   Returns center of mass and center of mass velocity in one function call.
1446 <   */
1447 <  
1448 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1449 <      SimInfo::MoleculeIterator i;
1450 <      Molecule* mol;
1451 <      
1452 <    
1453 <      RealType totalMass = 0.0;
1454 <    
1455 <
1456 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1457 <         RealType mass = mol->getMass();
1458 <         totalMass += mass;
1459 <         com += mass * mol->getCom();
1460 <         comVel += mass * mol->getComVel();          
1461 <      }  
1462 <      
1463 < #ifdef IS_MPI
1464 <      RealType tmpMass = totalMass;
1465 <      Vector3d tmpCom(com);  
1466 <      Vector3d tmpComVel(comVel);
1467 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1468 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1469 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1470 < #endif
1471 <      
1472 <      com /= totalMass;
1473 <      comVel /= totalMass;
1474 <   }        
1475 <  
1476 <   /*
1477 <   Return intertia tensor for entire system and angular momentum Vector.
1478 <
1479 <
1480 <       [  Ixx -Ixy  -Ixz ]
1481 <  J =| -Iyx  Iyy  -Iyz |
1482 <       [ -Izx -Iyz   Izz ]
1483 <    */
1484 <
1485 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1486 <      
1487 <
1488 <      RealType xx = 0.0;
1489 <      RealType yy = 0.0;
1490 <      RealType zz = 0.0;
1491 <      RealType xy = 0.0;
1492 <      RealType xz = 0.0;
1493 <      RealType yz = 0.0;
1494 <      Vector3d com(0.0);
1495 <      Vector3d comVel(0.0);
1496 <      
1497 <      getComAll(com, comVel);
1498 <      
1499 <      SimInfo::MoleculeIterator i;
1500 <      Molecule* mol;
1501 <      
1502 <      Vector3d thisq(0.0);
1503 <      Vector3d thisv(0.0);
1504 <
1505 <      RealType thisMass = 0.0;
1506 <    
1507 <      
1508 <      
1509 <  
1510 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1511 <        
1512 <         thisq = mol->getCom()-com;
1513 <         thisv = mol->getComVel()-comVel;
1514 <         thisMass = mol->getMass();
1515 <         // Compute moment of intertia coefficients.
1516 <         xx += thisq[0]*thisq[0]*thisMass;
1517 <         yy += thisq[1]*thisq[1]*thisMass;
1518 <         zz += thisq[2]*thisq[2]*thisMass;
1519 <        
1520 <         // compute products of intertia
1521 <         xy += thisq[0]*thisq[1]*thisMass;
1522 <         xz += thisq[0]*thisq[2]*thisMass;
1523 <         yz += thisq[1]*thisq[2]*thisMass;
1524 <            
1525 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1526 <            
1527 <      }  
1528 <      
1529 <      
1530 <      inertiaTensor(0,0) = yy + zz;
1531 <      inertiaTensor(0,1) = -xy;
1532 <      inertiaTensor(0,2) = -xz;
1533 <      inertiaTensor(1,0) = -xy;
1534 <      inertiaTensor(1,1) = xx + zz;
1535 <      inertiaTensor(1,2) = -yz;
1536 <      inertiaTensor(2,0) = -xz;
1537 <      inertiaTensor(2,1) = -yz;
1538 <      inertiaTensor(2,2) = xx + yy;
1539 <      
1540 < #ifdef IS_MPI
1541 <      Mat3x3d tmpI(inertiaTensor);
1542 <      Vector3d tmpAngMom;
1543 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1544 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1545 < #endif
1546 <              
1547 <      return;
1548 <   }
1549 <
1550 <   //Returns the angular momentum of the system
1551 <   Vector3d SimInfo::getAngularMomentum(){
1552 <      
1553 <      Vector3d com(0.0);
1554 <      Vector3d comVel(0.0);
1555 <      Vector3d angularMomentum(0.0);
1556 <      
1557 <      getComAll(com,comVel);
1558 <      
1559 <      SimInfo::MoleculeIterator i;
1560 <      Molecule* mol;
1561 <      
1562 <      Vector3d thisr(0.0);
1563 <      Vector3d thisp(0.0);
1564 <      
1565 <      RealType thisMass;
1566 <      
1567 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1568 <        thisMass = mol->getMass();
1569 <        thisr = mol->getCom()-com;
1570 <        thisp = (mol->getComVel()-comVel)*thisMass;
1571 <        
1572 <        angularMomentum += cross( thisr, thisp );
1573 <        
1574 <      }  
1575 <      
1576 < #ifdef IS_MPI
1577 <      Vector3d tmpAngMom;
1578 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1579 < #endif
1580 <      
1581 <      return angularMomentum;
1582 <   }
1583 <  
1025 >  
1026    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1027 <    return IOIndexToIntegrableObject.at(index);
1027 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1028 >      sprintf(painCave.errMsg,
1029 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1030 >              "\tindex exceeds number of known objects!\n");
1031 >      painCave.isFatal = 1;
1032 >      simError();
1033 >      return NULL;
1034 >    } else
1035 >      return IOIndexToIntegrableObject.at(index);
1036    }
1037    
1038 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1038 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1039      IOIndexToIntegrableObject= v;
1040    }
1041  
1042 <  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1043 <     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1044 <     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1045 <     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1046 <  */
1047 <  void SimInfo::getGyrationalVolume(RealType &volume){
1048 <    Mat3x3d intTensor;
1049 <    RealType det;
1050 <    Vector3d dummyAngMom;
1601 <    RealType sysconstants;
1602 <    RealType geomCnst;
1603 <
1604 <    geomCnst = 3.0/2.0;
1605 <    /* Get the inertial tensor and angular momentum for free*/
1606 <    getInertiaTensor(intTensor,dummyAngMom);
1607 <    
1608 <    det = intTensor.determinant();
1609 <    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1610 <    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1611 <    return;
1042 >  int SimInfo::getNGlobalConstraints() {
1043 >    int nGlobalConstraints;
1044 > #ifdef IS_MPI
1045 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1046 >                              MPI::INT, MPI::SUM);
1047 > #else
1048 >    nGlobalConstraints =  nConstraints_;
1049 > #endif
1050 >    return nGlobalConstraints;
1051    }
1052  
1053 <  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1615 <    Mat3x3d intTensor;
1616 <    Vector3d dummyAngMom;
1617 <    RealType sysconstants;
1618 <    RealType geomCnst;
1053 > }//end namespace OpenMD
1054  
1620    geomCnst = 3.0/2.0;
1621    /* Get the inertial tensor and angular momentum for free*/
1622    getInertiaTensor(intTensor,dummyAngMom);
1623    
1624    detI = intTensor.determinant();
1625    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1626    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1627    return;
1628  }
1629 /*
1630   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1631      assert( v.size() == nAtoms_ + nRigidBodies_);
1632      sdByGlobalIndex_ = v;
1633    }
1634
1635    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1636      //assert(index < nAtoms_ + nRigidBodies_);
1637      return sdByGlobalIndex_.at(index);
1638    }  
1639 */  
1640 }//end namespace oopse
1641

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 1290 by cli2, Wed Sep 10 19:51:45 2008 UTC vs.
Revision 1929 by gezelter, Mon Aug 19 13:12:00 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines