ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 720 by chrisfen, Tue Nov 8 13:32:06 2005 UTC vs.
Revision 1940 by gezelter, Fri Nov 1 19:31:41 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 46 | Line 47
47   * @version 1.0
48   */
49  
50 + #ifdef IS_MPI
51 + #include <mpi.h>
52 + #endif
53   #include <algorithm>
54   #include <set>
55 + #include <map>
56  
57   #include "brains/SimInfo.hpp"
58   #include "math/Vector3.hpp"
59   #include "primitives/Molecule.hpp"
60 < #include "UseTheForce/fCutoffPolicy.h"
56 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 < #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
58 < #include "UseTheForce/doForces_interface.h"
59 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
60 < #include "UseTheForce/notifyCutoffs_interface.h"
60 > #include "primitives/StuntDouble.hpp"
61   #include "utils/MemoryUtils.hpp"
62   #include "utils/simError.h"
63   #include "selection/SelectionManager.hpp"
64 + #include "io/ForceFieldOptions.hpp"
65 + #include "brains/ForceField.hpp"
66 + #include "nonbonded/SwitchingFunction.hpp"
67  
68 < #ifdef IS_MPI
69 < #include "UseTheForce/mpiComponentPlan.h"
70 < #include "UseTheForce/DarkSide/simParallel_interface.h"
71 < #endif
72 <
73 < namespace oopse {
71 <
72 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
73 <                   ForceField* ff, Globals* simParams) :
74 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
75 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false) {
79 <
82 <            
83 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
84 <      MoleculeStamp* molStamp;
85 <      int nMolWithSameStamp;
86 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
88 <      CutoffGroupStamp* cgStamp;    
89 <      RigidBodyStamp* rbStamp;
90 <      int nRigidAtoms = 0;
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
82 <        molStamp = i->first;
83 <        nMolWithSameStamp = i->second;
84 <        
85 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
86 <
87 <        //calculate atoms in molecules
88 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
89 <
90 <
91 <        //calculate atoms in cutoff groups
92 <        int nAtomsInGroups = 0;
93 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
94 <        
95 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
96 <          cgStamp = molStamp->getCutoffGroup(j);
97 <          nAtomsInGroups += cgStamp->getNMembers();
98 <        }
110 <
111 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
112 <
113 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
114 <
115 <        //calculate atoms in rigid bodies
116 <        int nAtomsInRigidBodies = 0;
117 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
118 <        
119 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
120 <          rbStamp = molStamp->getRigidBody(j);
121 <          nAtomsInRigidBodies += rbStamp->getNMembers();
122 <        }
123 <
124 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
125 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
126 <        
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      if ( (*i)->haveRegion() ) {        
95 >        molStamp->setRegion( (*i)->getRegion() );
96 >      } else {
97 >        // set the region to a disallowed value:
98 >        molStamp->setRegion( -1 );
99        }
100  
101 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
102 <      //group therefore the total number of cutoff groups in the system is
103 <      //equal to the total number of atoms minus number of atoms belong to
104 <      //cutoff group defined in meta-data file plus the number of cutoff
105 <      //groups defined in meta-data file
106 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
107 <
108 <      //every free atom (atom does not belong to rigid bodies) is an
109 <      //integrable object therefore the total number of integrable objects
110 <      //in the system is equal to the total number of atoms minus number of
111 <      //atoms belong to rigid body defined in meta-data file plus the number
112 <      //of rigid bodies defined in meta-data file
113 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
114 <                                                + nGlobalRigidBodies_;
115 <  
116 <      nGlobalMols_ = molStampIds_.size();
117 <
118 < #ifdef IS_MPI    
119 <      molToProcMap_.resize(nGlobalMols_);
120 < #endif
121 <
101 >      nMolWithSameStamp = (*i)->getNMol();
102 >      
103 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
104 >      
105 >      //calculate atoms in molecules
106 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
107 >      
108 >      //calculate atoms in cutoff groups
109 >      int nAtomsInGroups = 0;
110 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
111 >      
112 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
113 >        cgStamp = molStamp->getCutoffGroupStamp(j);
114 >        nAtomsInGroups += cgStamp->getNMembers();
115 >      }
116 >      
117 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
118 >      
119 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
120 >      
121 >      //calculate atoms in rigid bodies
122 >      int nAtomsInRigidBodies = 0;
123 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
124 >      
125 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
126 >        rbStamp = molStamp->getRigidBodyStamp(j);
127 >        nAtomsInRigidBodies += rbStamp->getNMembers();
128 >      }
129 >      
130 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
131 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
132 >      
133      }
134 +    
135 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
136 +    //group therefore the total number of cutoff groups in the system is
137 +    //equal to the total number of atoms minus number of atoms belong to
138 +    //cutoff group defined in meta-data file plus the number of cutoff
139 +    //groups defined in meta-data file
140  
141 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
142 +    
143 +    //every free atom (atom does not belong to rigid bodies) is an
144 +    //integrable object therefore the total number of integrable objects
145 +    //in the system is equal to the total number of atoms minus number of
146 +    //atoms belong to rigid body defined in meta-data file plus the number
147 +    //of rigid bodies defined in meta-data file
148 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 +      + nGlobalRigidBodies_;
150 +    
151 +    nGlobalMols_ = molStampIds_.size();
152 +    molToProcMap_.resize(nGlobalMols_);
153 +  }
154 +  
155    SimInfo::~SimInfo() {
156 <    std::map<int, Molecule*>::iterator i;
156 >    map<int, Molecule*>::iterator i;
157      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158        delete i->second;
159      }
160      molecules_.clear();
161        
159    delete stamps_;
162      delete sman_;
163      delete simParams_;
164      delete forceField_;
165    }
166  
165  int SimInfo::getNGlobalConstraints() {
166    int nGlobalConstraints;
167 #ifdef IS_MPI
168    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
169                  MPI_COMM_WORLD);    
170 #else
171    nGlobalConstraints =  nConstraints_;
172 #endif
173    return nGlobalConstraints;
174  }
167  
168    bool SimInfo::addMolecule(Molecule* mol) {
169      MoleculeIterator i;
170 <
170 >    
171      i = molecules_.find(mol->getGlobalIndex());
172      if (i == molecules_.end() ) {
173 <
174 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 <        
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176        nAtoms_ += mol->getNAtoms();
177        nBonds_ += mol->getNBonds();
178        nBends_ += mol->getNBends();
179        nTorsions_ += mol->getNTorsions();
180 +      nInversions_ += mol->getNInversions();
181        nRigidBodies_ += mol->getNRigidBodies();
182        nIntegrableObjects_ += mol->getNIntegrableObjects();
183        nCutoffGroups_ += mol->getNCutoffGroups();
184        nConstraints_ += mol->getNConstraintPairs();
185 <
186 <      addExcludePairs(mol);
187 <        
185 >      
186 >      addInteractionPairs(mol);
187 >      
188        return true;
189      } else {
190        return false;
191      }
192    }
193 <
193 >  
194    bool SimInfo::removeMolecule(Molecule* mol) {
195      MoleculeIterator i;
196      i = molecules_.find(mol->getGlobalIndex());
# Line 210 | Line 203 | namespace oopse {
203        nBonds_ -= mol->getNBonds();
204        nBends_ -= mol->getNBends();
205        nTorsions_ -= mol->getNTorsions();
206 +      nInversions_ -= mol->getNInversions();
207        nRigidBodies_ -= mol->getNRigidBodies();
208        nIntegrableObjects_ -= mol->getNIntegrableObjects();
209        nCutoffGroups_ -= mol->getNCutoffGroups();
210        nConstraints_ -= mol->getNConstraintPairs();
211  
212 <      removeExcludePairs(mol);
212 >      removeInteractionPairs(mol);
213        molecules_.erase(mol->getGlobalIndex());
214  
215        delete mol;
# Line 224 | Line 218 | namespace oopse {
218      } else {
219        return false;
220      }
227
228
221    }    
222  
223          
# Line 241 | Line 233 | namespace oopse {
233  
234  
235    void SimInfo::calcNdf() {
236 <    int ndf_local;
236 >    int ndf_local, nfq_local;
237      MoleculeIterator i;
238 <    std::vector<StuntDouble*>::iterator j;
238 >    vector<StuntDouble*>::iterator j;
239 >    vector<Atom*>::iterator k;
240 >
241      Molecule* mol;
242 <    StuntDouble* integrableObject;
242 >    StuntDouble* sd;
243 >    Atom* atom;
244  
245      ndf_local = 0;
246 +    nfq_local = 0;
247      
248      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
253      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
254           integrableObject = mol->nextIntegrableObject(j)) {
249  
250 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
251 +           sd = mol->nextIntegrableObject(j)) {
252 +
253          ndf_local += 3;
254  
255 <        if (integrableObject->isDirectional()) {
256 <          if (integrableObject->isLinear()) {
255 >        if (sd->isDirectional()) {
256 >          if (sd->isLinear()) {
257              ndf_local += 2;
258            } else {
259              ndf_local += 3;
260            }
261          }
262 <            
263 <      }//end for (integrableObject)
264 <    }// end for (mol)
262 >      }
263 >
264 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
265 >           atom = mol->nextFluctuatingCharge(k)) {
266 >        if (atom->isFluctuatingCharge()) {
267 >          nfq_local++;
268 >        }
269 >      }
270 >    }
271      
272 +    ndfLocal_ = ndf_local;
273 +
274      // n_constraints is local, so subtract them on each processor
275      ndf_local -= nConstraints_;
276  
277   #ifdef IS_MPI
278 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
278 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
279 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
280 >                              MPI::INT, MPI::SUM);
281   #else
282      ndf_ = ndf_local;
283 +    nGlobalFluctuatingCharges_ = nfq_local;
284   #endif
285  
286      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 281 | Line 289 | namespace oopse {
289  
290    }
291  
292 +  int SimInfo::getFdf() {
293 + #ifdef IS_MPI
294 +    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
295 + #else
296 +    fdf_ = fdf_local;
297 + #endif
298 +    return fdf_;
299 +  }
300 +  
301 +  unsigned int SimInfo::getNLocalCutoffGroups(){
302 +    int nLocalCutoffAtoms = 0;
303 +    Molecule* mol;
304 +    MoleculeIterator mi;
305 +    CutoffGroup* cg;
306 +    Molecule::CutoffGroupIterator ci;
307 +    
308 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
309 +      
310 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
311 +           cg = mol->nextCutoffGroup(ci)) {
312 +        nLocalCutoffAtoms += cg->getNumAtom();
313 +        
314 +      }        
315 +    }
316 +    
317 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
318 +  }
319 +    
320    void SimInfo::calcNdfRaw() {
321      int ndfRaw_local;
322  
323      MoleculeIterator i;
324 <    std::vector<StuntDouble*>::iterator j;
324 >    vector<StuntDouble*>::iterator j;
325      Molecule* mol;
326 <    StuntDouble* integrableObject;
326 >    StuntDouble* sd;
327  
328      // Raw degrees of freedom that we have to set
329      ndfRaw_local = 0;
330      
331      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
296      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
297           integrableObject = mol->nextIntegrableObject(j)) {
332  
333 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
334 +           sd = mol->nextIntegrableObject(j)) {
335 +
336          ndfRaw_local += 3;
337  
338 <        if (integrableObject->isDirectional()) {
339 <          if (integrableObject->isLinear()) {
338 >        if (sd->isDirectional()) {
339 >          if (sd->isLinear()) {
340              ndfRaw_local += 2;
341            } else {
342              ndfRaw_local += 3;
# Line 310 | Line 347 | namespace oopse {
347      }
348      
349   #ifdef IS_MPI
350 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
350 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
351   #else
352      ndfRaw_ = ndfRaw_local;
353   #endif
# Line 323 | Line 360 | namespace oopse {
360  
361  
362   #ifdef IS_MPI
363 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
363 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
364 >                              MPI::INT, MPI::SUM);
365   #else
366      ndfTrans_ = ndfTrans_local;
367   #endif
# Line 332 | Line 370 | namespace oopse {
370  
371    }
372  
373 <  void SimInfo::addExcludePairs(Molecule* mol) {
374 <    std::vector<Bond*>::iterator bondIter;
375 <    std::vector<Bend*>::iterator bendIter;
376 <    std::vector<Torsion*>::iterator torsionIter;
373 >  void SimInfo::addInteractionPairs(Molecule* mol) {
374 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
375 >    vector<Bond*>::iterator bondIter;
376 >    vector<Bend*>::iterator bendIter;
377 >    vector<Torsion*>::iterator torsionIter;
378 >    vector<Inversion*>::iterator inversionIter;
379      Bond* bond;
380      Bend* bend;
381      Torsion* torsion;
382 +    Inversion* inversion;
383      int a;
384      int b;
385      int c;
386      int d;
387 +
388 +    // atomGroups can be used to add special interaction maps between
389 +    // groups of atoms that are in two separate rigid bodies.
390 +    // However, most site-site interactions between two rigid bodies
391 +    // are probably not special, just the ones between the physically
392 +    // bonded atoms.  Interactions *within* a single rigid body should
393 +    // always be excluded.  These are done at the bottom of this
394 +    // function.
395 +
396 +    map<int, set<int> > atomGroups;
397 +    Molecule::RigidBodyIterator rbIter;
398 +    RigidBody* rb;
399 +    Molecule::IntegrableObjectIterator ii;
400 +    StuntDouble* sd;
401      
402 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
402 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
403 >         sd = mol->nextIntegrableObject(ii)) {
404 >      
405 >      if (sd->isRigidBody()) {
406 >        rb = static_cast<RigidBody*>(sd);
407 >        vector<Atom*> atoms = rb->getAtoms();
408 >        set<int> rigidAtoms;
409 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
410 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
411 >        }
412 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
413 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
414 >        }      
415 >      } else {
416 >        set<int> oneAtomSet;
417 >        oneAtomSet.insert(sd->getGlobalIndex());
418 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
419 >      }
420 >    }  
421 >
422 >          
423 >    for (bond= mol->beginBond(bondIter); bond != NULL;
424 >         bond = mol->nextBond(bondIter)) {
425 >
426        a = bond->getAtomA()->getGlobalIndex();
427 <      b = bond->getAtomB()->getGlobalIndex();        
428 <      exclude_.addPair(a, b);
427 >      b = bond->getAtomB()->getGlobalIndex();  
428 >
429 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
430 >        oneTwoInteractions_.addPair(a, b);
431 >      } else {
432 >        excludedInteractions_.addPair(a, b);
433 >      }
434      }
435  
436 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
436 >    for (bend= mol->beginBend(bendIter); bend != NULL;
437 >         bend = mol->nextBend(bendIter)) {
438 >
439        a = bend->getAtomA()->getGlobalIndex();
440        b = bend->getAtomB()->getGlobalIndex();        
441        c = bend->getAtomC()->getGlobalIndex();
442 +      
443 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
444 +        oneTwoInteractions_.addPair(a, b);      
445 +        oneTwoInteractions_.addPair(b, c);
446 +      } else {
447 +        excludedInteractions_.addPair(a, b);
448 +        excludedInteractions_.addPair(b, c);
449 +      }
450  
451 <      exclude_.addPair(a, b);
452 <      exclude_.addPair(a, c);
453 <      exclude_.addPair(b, c);        
451 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
452 >        oneThreeInteractions_.addPair(a, c);      
453 >      } else {
454 >        excludedInteractions_.addPair(a, c);
455 >      }
456      }
457  
458 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
458 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
459 >         torsion = mol->nextTorsion(torsionIter)) {
460 >
461        a = torsion->getAtomA()->getGlobalIndex();
462        b = torsion->getAtomB()->getGlobalIndex();        
463        c = torsion->getAtomC()->getGlobalIndex();        
464 <      d = torsion->getAtomD()->getGlobalIndex();        
464 >      d = torsion->getAtomD()->getGlobalIndex();      
465  
466 <      exclude_.addPair(a, b);
467 <      exclude_.addPair(a, c);
468 <      exclude_.addPair(a, d);
469 <      exclude_.addPair(b, c);
470 <      exclude_.addPair(b, d);
471 <      exclude_.addPair(c, d);        
466 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
467 >        oneTwoInteractions_.addPair(a, b);      
468 >        oneTwoInteractions_.addPair(b, c);
469 >        oneTwoInteractions_.addPair(c, d);
470 >      } else {
471 >        excludedInteractions_.addPair(a, b);
472 >        excludedInteractions_.addPair(b, c);
473 >        excludedInteractions_.addPair(c, d);
474 >      }
475 >
476 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
477 >        oneThreeInteractions_.addPair(a, c);      
478 >        oneThreeInteractions_.addPair(b, d);      
479 >      } else {
480 >        excludedInteractions_.addPair(a, c);
481 >        excludedInteractions_.addPair(b, d);
482 >      }
483 >
484 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
485 >        oneFourInteractions_.addPair(a, d);      
486 >      } else {
487 >        excludedInteractions_.addPair(a, d);
488 >      }
489      }
490  
491 <    Molecule::RigidBodyIterator rbIter;
492 <    RigidBody* rb;
493 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
494 <      std::vector<Atom*> atoms = rb->getAtoms();
495 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
496 <        for (int j = i + 1; j < atoms.size(); ++j) {
491 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
492 >         inversion = mol->nextInversion(inversionIter)) {
493 >
494 >      a = inversion->getAtomA()->getGlobalIndex();
495 >      b = inversion->getAtomB()->getGlobalIndex();        
496 >      c = inversion->getAtomC()->getGlobalIndex();        
497 >      d = inversion->getAtomD()->getGlobalIndex();        
498 >
499 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
500 >        oneTwoInteractions_.addPair(a, b);      
501 >        oneTwoInteractions_.addPair(a, c);
502 >        oneTwoInteractions_.addPair(a, d);
503 >      } else {
504 >        excludedInteractions_.addPair(a, b);
505 >        excludedInteractions_.addPair(a, c);
506 >        excludedInteractions_.addPair(a, d);
507 >      }
508 >
509 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
510 >        oneThreeInteractions_.addPair(b, c);    
511 >        oneThreeInteractions_.addPair(b, d);    
512 >        oneThreeInteractions_.addPair(c, d);      
513 >      } else {
514 >        excludedInteractions_.addPair(b, c);
515 >        excludedInteractions_.addPair(b, d);
516 >        excludedInteractions_.addPair(c, d);
517 >      }
518 >    }
519 >
520 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
521 >         rb = mol->nextRigidBody(rbIter)) {
522 >      vector<Atom*> atoms = rb->getAtoms();
523 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
524 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
525            a = atoms[i]->getGlobalIndex();
526            b = atoms[j]->getGlobalIndex();
527 <          exclude_.addPair(a, b);
527 >          excludedInteractions_.addPair(a, b);
528          }
529        }
530      }        
531  
532    }
533  
534 <  void SimInfo::removeExcludePairs(Molecule* mol) {
535 <    std::vector<Bond*>::iterator bondIter;
536 <    std::vector<Bend*>::iterator bendIter;
537 <    std::vector<Torsion*>::iterator torsionIter;
534 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
535 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
536 >    vector<Bond*>::iterator bondIter;
537 >    vector<Bend*>::iterator bendIter;
538 >    vector<Torsion*>::iterator torsionIter;
539 >    vector<Inversion*>::iterator inversionIter;
540      Bond* bond;
541      Bend* bend;
542      Torsion* torsion;
543 +    Inversion* inversion;
544      int a;
545      int b;
546      int c;
547      int d;
548 +
549 +    map<int, set<int> > atomGroups;
550 +    Molecule::RigidBodyIterator rbIter;
551 +    RigidBody* rb;
552 +    Molecule::IntegrableObjectIterator ii;
553 +    StuntDouble* sd;
554      
555 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
555 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
556 >         sd = mol->nextIntegrableObject(ii)) {
557 >      
558 >      if (sd->isRigidBody()) {
559 >        rb = static_cast<RigidBody*>(sd);
560 >        vector<Atom*> atoms = rb->getAtoms();
561 >        set<int> rigidAtoms;
562 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
563 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
564 >        }
565 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
566 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
567 >        }      
568 >      } else {
569 >        set<int> oneAtomSet;
570 >        oneAtomSet.insert(sd->getGlobalIndex());
571 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
572 >      }
573 >    }  
574 >
575 >    for (bond= mol->beginBond(bondIter); bond != NULL;
576 >         bond = mol->nextBond(bondIter)) {
577 >      
578        a = bond->getAtomA()->getGlobalIndex();
579 <      b = bond->getAtomB()->getGlobalIndex();        
580 <      exclude_.removePair(a, b);
579 >      b = bond->getAtomB()->getGlobalIndex();  
580 >    
581 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
582 >        oneTwoInteractions_.removePair(a, b);
583 >      } else {
584 >        excludedInteractions_.removePair(a, b);
585 >      }
586      }
587  
588 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
588 >    for (bend= mol->beginBend(bendIter); bend != NULL;
589 >         bend = mol->nextBend(bendIter)) {
590 >
591        a = bend->getAtomA()->getGlobalIndex();
592        b = bend->getAtomB()->getGlobalIndex();        
593        c = bend->getAtomC()->getGlobalIndex();
594 +      
595 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
596 +        oneTwoInteractions_.removePair(a, b);      
597 +        oneTwoInteractions_.removePair(b, c);
598 +      } else {
599 +        excludedInteractions_.removePair(a, b);
600 +        excludedInteractions_.removePair(b, c);
601 +      }
602  
603 <      exclude_.removePair(a, b);
604 <      exclude_.removePair(a, c);
605 <      exclude_.removePair(b, c);        
603 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
604 >        oneThreeInteractions_.removePair(a, c);      
605 >      } else {
606 >        excludedInteractions_.removePair(a, c);
607 >      }
608      }
609  
610 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
610 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
611 >         torsion = mol->nextTorsion(torsionIter)) {
612 >
613        a = torsion->getAtomA()->getGlobalIndex();
614        b = torsion->getAtomB()->getGlobalIndex();        
615        c = torsion->getAtomC()->getGlobalIndex();        
616 <      d = torsion->getAtomD()->getGlobalIndex();        
616 >      d = torsion->getAtomD()->getGlobalIndex();      
617 >  
618 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
619 >        oneTwoInteractions_.removePair(a, b);      
620 >        oneTwoInteractions_.removePair(b, c);
621 >        oneTwoInteractions_.removePair(c, d);
622 >      } else {
623 >        excludedInteractions_.removePair(a, b);
624 >        excludedInteractions_.removePair(b, c);
625 >        excludedInteractions_.removePair(c, d);
626 >      }
627  
628 <      exclude_.removePair(a, b);
629 <      exclude_.removePair(a, c);
630 <      exclude_.removePair(a, d);
631 <      exclude_.removePair(b, c);
632 <      exclude_.removePair(b, d);
633 <      exclude_.removePair(c, d);        
628 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
629 >        oneThreeInteractions_.removePair(a, c);      
630 >        oneThreeInteractions_.removePair(b, d);      
631 >      } else {
632 >        excludedInteractions_.removePair(a, c);
633 >        excludedInteractions_.removePair(b, d);
634 >      }
635 >
636 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
637 >        oneFourInteractions_.removePair(a, d);      
638 >      } else {
639 >        excludedInteractions_.removePair(a, d);
640 >      }
641      }
642  
643 <    Molecule::RigidBodyIterator rbIter;
644 <    RigidBody* rb;
645 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
646 <      std::vector<Atom*> atoms = rb->getAtoms();
647 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
648 <        for (int j = i + 1; j < atoms.size(); ++j) {
643 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
644 >         inversion = mol->nextInversion(inversionIter)) {
645 >
646 >      a = inversion->getAtomA()->getGlobalIndex();
647 >      b = inversion->getAtomB()->getGlobalIndex();        
648 >      c = inversion->getAtomC()->getGlobalIndex();        
649 >      d = inversion->getAtomD()->getGlobalIndex();        
650 >
651 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
652 >        oneTwoInteractions_.removePair(a, b);      
653 >        oneTwoInteractions_.removePair(a, c);
654 >        oneTwoInteractions_.removePair(a, d);
655 >      } else {
656 >        excludedInteractions_.removePair(a, b);
657 >        excludedInteractions_.removePair(a, c);
658 >        excludedInteractions_.removePair(a, d);
659 >      }
660 >
661 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
662 >        oneThreeInteractions_.removePair(b, c);    
663 >        oneThreeInteractions_.removePair(b, d);    
664 >        oneThreeInteractions_.removePair(c, d);      
665 >      } else {
666 >        excludedInteractions_.removePair(b, c);
667 >        excludedInteractions_.removePair(b, d);
668 >        excludedInteractions_.removePair(c, d);
669 >      }
670 >    }
671 >
672 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
673 >         rb = mol->nextRigidBody(rbIter)) {
674 >      vector<Atom*> atoms = rb->getAtoms();
675 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
676 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
677            a = atoms[i]->getGlobalIndex();
678            b = atoms[j]->getGlobalIndex();
679 <          exclude_.removePair(a, b);
679 >          excludedInteractions_.removePair(a, b);
680          }
681        }
682      }        
683 <
683 >    
684    }
685 <
686 <
685 >  
686 >  
687    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
688      int curStampId;
689 <
689 >    
690      //index from 0
691      curStampId = moleculeStamps_.size();
692  
# Line 457 | Line 694 | namespace oopse {
694      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
695    }
696  
460  void SimInfo::update() {
697  
698 <    setupSimType();
699 <
700 < #ifdef IS_MPI
701 <    setupFortranParallel();
702 < #endif
703 <
704 <    setupFortranSim();
705 <
706 <    //setup fortran force field
471 <    /** @deprecate */    
472 <    int isError = 0;
473 <    
474 <    setupElectrostaticSummationMethod( isError );
475 <
476 <    if(isError){
477 <      sprintf( painCave.errMsg,
478 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
479 <      painCave.isFatal = 1;
480 <      simError();
481 <    }
482 <  
483 <    
484 <    setupCutoff();
485 <
698 >  /**
699 >   * update
700 >   *
701 >   *  Performs the global checks and variable settings after the
702 >   *  objects have been created.
703 >   *
704 >   */
705 >  void SimInfo::update() {  
706 >    setupSimVariables();
707      calcNdf();
708      calcNdfRaw();
709      calcNdfTrans();
489
490    fortranInitialized_ = true;
710    }
711 <
712 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
711 >  
712 >  /**
713 >   * getSimulatedAtomTypes
714 >   *
715 >   * Returns an STL set of AtomType* that are actually present in this
716 >   * simulation.  Must query all processors to assemble this information.
717 >   *
718 >   */
719 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
720      SimInfo::MoleculeIterator mi;
721      Molecule* mol;
722      Molecule::AtomIterator ai;
723      Atom* atom;
724 <    std::set<AtomType*> atomTypes;
725 <
724 >    set<AtomType*> atomTypes;
725 >    
726      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
727 <
728 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
727 >      for(atom = mol->beginAtom(ai); atom != NULL;
728 >          atom = mol->nextAtom(ai)) {
729          atomTypes.insert(atom->getAtomType());
730 <      }
731 <        
730 >      }      
731 >    }    
732 >    
733 > #ifdef IS_MPI
734 >
735 >    // loop over the found atom types on this processor, and add their
736 >    // numerical idents to a vector:
737 >    
738 >    vector<int> foundTypes;
739 >    set<AtomType*>::iterator i;
740 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
741 >      foundTypes.push_back( (*i)->getIdent() );
742 >
743 >    // count_local holds the number of found types on this processor
744 >    int count_local = foundTypes.size();
745 >
746 >    int nproc = MPI::COMM_WORLD.Get_size();
747 >
748 >    // we need arrays to hold the counts and displacement vectors for
749 >    // all processors
750 >    vector<int> counts(nproc, 0);
751 >    vector<int> disps(nproc, 0);
752 >
753 >    // fill the counts array
754 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
755 >                              1, MPI::INT);
756 >  
757 >    // use the processor counts to compute the displacement array
758 >    disps[0] = 0;    
759 >    int totalCount = counts[0];
760 >    for (int iproc = 1; iproc < nproc; iproc++) {
761 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
762 >      totalCount += counts[iproc];
763      }
764  
765 <    return atomTypes;        
766 <  }
765 >    // we need a (possibly redundant) set of all found types:
766 >    vector<int> ftGlobal(totalCount);
767 >    
768 >    // now spray out the foundTypes to all the other processors:    
769 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
770 >                               &ftGlobal[0], &counts[0], &disps[0],
771 >                               MPI::INT);
772  
773 <  void SimInfo::setupSimType() {
774 <    std::set<AtomType*>::iterator i;
775 <    std::set<AtomType*> atomTypes;
776 <    atomTypes = getUniqueAtomTypes();
773 >    vector<int>::iterator j;
774 >
775 >    // foundIdents is a stl set, so inserting an already found ident
776 >    // will have no effect.
777 >    set<int> foundIdents;
778 >
779 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
780 >      foundIdents.insert((*j));
781      
782 <    int useLennardJones = 0;
783 <    int useElectrostatic = 0;
784 <    int useEAM = 0;
785 <    int useCharge = 0;
786 <    int useDirectional = 0;
787 <    int useDipole = 0;
788 <    int useGayBerne = 0;
523 <    int useSticky = 0;
524 <    int useStickyPower = 0;
525 <    int useShape = 0;
526 <    int useFLARB = 0; //it is not in AtomType yet
527 <    int useDirectionalAtom = 0;    
528 <    int useElectrostatics = 0;
529 <    //usePBC and useRF are from simParams
530 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
531 <    int useRF;
532 <    int useSF;
533 <    std::string myMethod;
782 >    // now iterate over the foundIdents and get the actual atom types
783 >    // that correspond to these:
784 >    set<int>::iterator it;
785 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
786 >      atomTypes.insert( forceField_->getAtomType((*it)) );
787 >
788 > #endif
789  
790 <    // set the useRF logical
791 <    useRF = 0;
537 <    useSF = 0;
790 >    return atomTypes;        
791 >  }
792  
793  
794 <    if (simParams_->haveElectrostaticSummationMethod()) {
795 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
796 <      toUpper(myMethod);
797 <      if (myMethod == "REACTION_FIELD") {
544 <        useRF=1;
545 <      } else {
546 <        if (myMethod == "SHIFTED_FORCE") {
547 <          useSF = 1;
548 <        }
549 <      }
550 <    }
794 >  int getGlobalCountOfType(AtomType* atype) {
795 >    /*
796 >    set<AtomType*> atypes = getSimulatedAtomTypes();
797 >    map<AtomType*, int> counts_;
798  
799 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
800 +      for(atom = mol->beginAtom(ai); atom != NULL;
801 +          atom = mol->nextAtom(ai)) {
802 +        atom->getAtomType();
803 +      }      
804 +    }    
805 +    */
806 +    return 0;
807 +  }
808 +
809 +  void SimInfo::setupSimVariables() {
810 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
811 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
812 +    // parameter is true
813 +    calcBoxDipole_ = false;
814 +    if ( simParams_->haveAccumulateBoxDipole() )
815 +      if ( simParams_->getAccumulateBoxDipole() ) {
816 +        calcBoxDipole_ = true;      
817 +      }
818 +    
819 +    set<AtomType*>::iterator i;
820 +    set<AtomType*> atomTypes;
821 +    atomTypes = getSimulatedAtomTypes();    
822 +    bool usesElectrostatic = false;
823 +    bool usesMetallic = false;
824 +    bool usesDirectional = false;
825 +    bool usesFluctuatingCharges =  false;
826      //loop over all of the atom types
827      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
828 <      useLennardJones |= (*i)->isLennardJones();
829 <      useElectrostatic |= (*i)->isElectrostatic();
830 <      useEAM |= (*i)->isEAM();
831 <      useCharge |= (*i)->isCharge();
558 <      useDirectional |= (*i)->isDirectional();
559 <      useDipole |= (*i)->isDipole();
560 <      useGayBerne |= (*i)->isGayBerne();
561 <      useSticky |= (*i)->isSticky();
562 <      useStickyPower |= (*i)->isStickyPower();
563 <      useShape |= (*i)->isShape();
828 >      usesElectrostatic |= (*i)->isElectrostatic();
829 >      usesMetallic |= (*i)->isMetal();
830 >      usesDirectional |= (*i)->isDirectional();
831 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
832      }
833  
834 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
835 <      useDirectionalAtom = 1;
836 <    }
834 > #ifdef IS_MPI
835 >    bool temp;
836 >    temp = usesDirectional;
837 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
838 >                              MPI::LOR);
839 >        
840 >    temp = usesMetallic;
841 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
842 >                              MPI::LOR);
843 >    
844 >    temp = usesElectrostatic;
845 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
846 >                              MPI::LOR);
847  
848 <    if (useCharge || useDipole) {
849 <      useElectrostatics = 1;
850 <    }
848 >    temp = usesFluctuatingCharges;
849 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
850 >                              MPI::LOR);
851 > #else
852  
853 < #ifdef IS_MPI    
854 <    int temp;
853 >    usesDirectionalAtoms_ = usesDirectional;
854 >    usesMetallicAtoms_ = usesMetallic;
855 >    usesElectrostaticAtoms_ = usesElectrostatic;
856 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
857  
858 <    temp = usePBC;
859 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
858 > #endif
859 >    
860 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
861 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
862 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
863 >  }
864  
580    temp = useDirectionalAtom;
581    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
865  
866 <    temp = useLennardJones;
867 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
866 >  vector<int> SimInfo::getGlobalAtomIndices() {
867 >    SimInfo::MoleculeIterator mi;
868 >    Molecule* mol;
869 >    Molecule::AtomIterator ai;
870 >    Atom* atom;
871  
872 <    temp = useElectrostatics;
587 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
588 <
589 <    temp = useCharge;
590 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
591 <
592 <    temp = useDipole;
593 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
594 <
595 <    temp = useSticky;
596 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
597 <
598 <    temp = useStickyPower;
599 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
872 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
873      
874 <    temp = useGayBerne;
875 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
874 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
875 >      
876 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
877 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
878 >      }
879 >    }
880 >    return GlobalAtomIndices;
881 >  }
882  
604    temp = useEAM;
605    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
883  
884 <    temp = useShape;
885 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
884 >  vector<int> SimInfo::getGlobalGroupIndices() {
885 >    SimInfo::MoleculeIterator mi;
886 >    Molecule* mol;
887 >    Molecule::CutoffGroupIterator ci;
888 >    CutoffGroup* cg;
889  
890 <    temp = useFLARB;
891 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
892 <
613 <    temp = useRF;
614 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
615 <
616 <    temp = useSF;
617 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
618 <
619 < #endif
620 <
621 <    fInfo_.SIM_uses_PBC = usePBC;    
622 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
623 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
624 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
625 <    fInfo_.SIM_uses_Charges = useCharge;
626 <    fInfo_.SIM_uses_Dipoles = useDipole;
627 <    fInfo_.SIM_uses_Sticky = useSticky;
628 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
629 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
630 <    fInfo_.SIM_uses_EAM = useEAM;
631 <    fInfo_.SIM_uses_Shapes = useShape;
632 <    fInfo_.SIM_uses_FLARB = useFLARB;
633 <    fInfo_.SIM_uses_RF = useRF;
634 <    fInfo_.SIM_uses_SF = useSF;
635 <
636 <    if( myMethod == "REACTION_FIELD") {
890 >    vector<int> GlobalGroupIndices;
891 >    
892 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
893        
894 <      if (simParams_->haveDielectric()) {
895 <        fInfo_.dielect = simParams_->getDielectric();
896 <      } else {
897 <        sprintf(painCave.errMsg,
898 <                "SimSetup Error: No Dielectric constant was set.\n"
899 <                "\tYou are trying to use Reaction Field without"
644 <                "\tsetting a dielectric constant!\n");
645 <        painCave.isFatal = 1;
646 <        simError();
647 <      }      
894 >      //local index of cutoff group is trivial, it only depends on the
895 >      //order of travesing
896 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
897 >           cg = mol->nextCutoffGroup(ci)) {
898 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
899 >      }        
900      }
901 <
901 >    return GlobalGroupIndices;
902    }
903  
652  void SimInfo::setupFortranSim() {
653    int isError;
654    int nExclude;
655    std::vector<int> fortranGlobalGroupMembership;
656    
657    nExclude = exclude_.getSize();
658    isError = 0;
904  
905 <    //globalGroupMembership_ is filled by SimCreator    
661 <    for (int i = 0; i < nGlobalAtoms_; i++) {
662 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
663 <    }
905 >  void SimInfo::prepareTopology() {
906  
907      //calculate mass ratio of cutoff group
666    std::vector<double> mfact;
908      SimInfo::MoleculeIterator mi;
909      Molecule* mol;
910      Molecule::CutoffGroupIterator ci;
911      CutoffGroup* cg;
912      Molecule::AtomIterator ai;
913      Atom* atom;
914 <    double totalMass;
914 >    RealType totalMass;
915  
916 <    //to avoid memory reallocation, reserve enough space for mfact
917 <    mfact.reserve(getNCutoffGroups());
916 >    /**
917 >     * The mass factor is the relative mass of an atom to the total
918 >     * mass of the cutoff group it belongs to.  By default, all atoms
919 >     * are their own cutoff groups, and therefore have mass factors of
920 >     * 1.  We need some special handling for massless atoms, which
921 >     * will be treated as carrying the entire mass of the cutoff
922 >     * group.
923 >     */
924 >    massFactors_.clear();
925 >    massFactors_.resize(getNAtoms(), 1.0);
926      
927      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
928 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
928 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
929 >           cg = mol->nextCutoffGroup(ci)) {
930  
931          totalMass = cg->getMass();
932          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
933            // Check for massless groups - set mfact to 1 if true
934 <          if (totalMass != 0)
935 <            mfact.push_back(atom->getMass()/totalMass);
934 >          if (totalMass != 0)
935 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
936            else
937 <            mfact.push_back( 1.0 );
937 >            massFactors_[atom->getLocalIndex()] = 1.0;
938          }
689
939        }      
940      }
941  
942 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
694 <    std::vector<int> identArray;
942 >    // Build the identArray_ and regions_
943  
944 <    //to avoid memory reallocation, reserve enough space identArray
945 <    identArray.reserve(getNAtoms());
946 <    
947 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
944 >    identArray_.clear();
945 >    identArray_.reserve(getNAtoms());  
946 >    regions_.clear();
947 >    regions_.reserve(getNAtoms());
948 >
949 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
950 >      int reg = mol->getRegion();      
951        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
952 <        identArray.push_back(atom->getIdent());
952 >        identArray_.push_back(atom->getIdent());
953 >        regions_.push_back(reg);
954        }
955      }    
956 <
957 <    //fill molMembershipArray
706 <    //molMembershipArray is filled by SimCreator    
707 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
708 <    for (int i = 0; i < nGlobalAtoms_; i++) {
709 <      molMembershipArray[i] = globalMolMembership_[i] + 1;
710 <    }
711 <    
712 <    //setup fortran simulation
713 <    int nGlobalExcludes = 0;
714 <    int* globalExcludes = NULL;
715 <    int* excludeList = exclude_.getExcludeList();
716 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
717 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
718 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
719 <
720 <    if( isError ){
721 <
722 <      sprintf( painCave.errMsg,
723 <               "There was an error setting the simulation information in fortran.\n" );
724 <      painCave.isFatal = 1;
725 <      painCave.severity = OOPSE_ERROR;
726 <      simError();
727 <    }
728 <
729 < #ifdef IS_MPI
730 <    sprintf( checkPointMsg,
731 <             "succesfully sent the simulation information to fortran.\n");
732 <    MPIcheckPoint();
733 < #endif // is_mpi
734 <  }
735 <
736 <
737 < #ifdef IS_MPI
738 <  void SimInfo::setupFortranParallel() {
739 <    
740 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
741 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
742 <    std::vector<int> localToGlobalCutoffGroupIndex;
743 <    SimInfo::MoleculeIterator mi;
744 <    Molecule::AtomIterator ai;
745 <    Molecule::CutoffGroupIterator ci;
746 <    Molecule* mol;
747 <    Atom* atom;
748 <    CutoffGroup* cg;
749 <    mpiSimData parallelData;
750 <    int isError;
751 <
752 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
753 <
754 <      //local index(index in DataStorge) of atom is important
755 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
756 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
757 <      }
758 <
759 <      //local index of cutoff group is trivial, it only depends on the order of travesing
760 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
761 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
762 <      }        
763 <        
764 <    }
765 <
766 <    //fill up mpiSimData struct
767 <    parallelData.nMolGlobal = getNGlobalMolecules();
768 <    parallelData.nMolLocal = getNMolecules();
769 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
770 <    parallelData.nAtomsLocal = getNAtoms();
771 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
772 <    parallelData.nGroupsLocal = getNCutoffGroups();
773 <    parallelData.myNode = worldRank;
774 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
775 <
776 <    //pass mpiSimData struct and index arrays to fortran
777 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
778 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
779 <                    &localToGlobalCutoffGroupIndex[0], &isError);
780 <
781 <    if (isError) {
782 <      sprintf(painCave.errMsg,
783 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
784 <      painCave.isFatal = 1;
785 <      simError();
786 <    }
787 <
788 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
789 <    MPIcheckPoint();
790 <
791 <
792 <  }
793 <
794 < #endif
795 <
796 <  double SimInfo::calcMaxCutoffRadius() {
797 <
798 <
799 <    std::set<AtomType*> atomTypes;
800 <    std::set<AtomType*>::iterator i;
801 <    std::vector<double> cutoffRadius;
802 <
803 <    //get the unique atom types
804 <    atomTypes = getUniqueAtomTypes();
805 <
806 <    //query the max cutoff radius among these atom types
807 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
808 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
809 <    }
810 <
811 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
812 < #ifdef IS_MPI
813 <    //pick the max cutoff radius among the processors
814 < #endif
815 <
816 <    return maxCutoffRadius;
817 <  }
818 <
819 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
820 <    
821 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
822 <        
823 <      if (!simParams_->haveCutoffRadius()){
824 <        sprintf(painCave.errMsg,
825 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
826 <                "\tOOPSE will use a default value of 15.0 angstroms"
827 <                "\tfor the cutoffRadius.\n");
828 <        painCave.isFatal = 0;
829 <        simError();
830 <        rcut = 15.0;
831 <      } else{
832 <        rcut = simParams_->getCutoffRadius();
833 <      }
834 <
835 <      if (!simParams_->haveSwitchingRadius()){
836 <        sprintf(painCave.errMsg,
837 <                "SimCreator Warning: No value was set for switchingRadius.\n"
838 <                "\tOOPSE will use a default value of\n"
839 <                "\t0.85 * cutoffRadius for the switchingRadius\n");
840 <        painCave.isFatal = 0;
841 <        simError();
842 <        rsw = 0.85 * rcut;
843 <      } else{
844 <        rsw = simParams_->getSwitchingRadius();
845 <      }
846 <
847 <    } else {
848 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
849 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
850 <        
851 <      if (simParams_->haveCutoffRadius()) {
852 <        rcut = simParams_->getCutoffRadius();
853 <      } else {
854 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
855 <        rcut = calcMaxCutoffRadius();
856 <      }
857 <
858 <      if (simParams_->haveSwitchingRadius()) {
859 <        rsw  = simParams_->getSwitchingRadius();
860 <      } else {
861 <        rsw = rcut;
862 <      }
863 <    
864 <    }
956 >      
957 >    topologyDone_ = true;
958    }
959  
867  void SimInfo::setupCutoff() {    
868    getCutoff(rcut_, rsw_);    
869    double rnblist = rcut_ + 1; // skin of neighbor list
870
871    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
872    
873    int cp =  TRADITIONAL_CUTOFF_POLICY;
874    if (simParams_->haveCutoffPolicy()) {
875      std::string myPolicy = simParams_->getCutoffPolicy();
876      toUpper(myPolicy);
877      if (myPolicy == "MIX") {
878        cp = MIX_CUTOFF_POLICY;
879      } else {
880        if (myPolicy == "MAX") {
881          cp = MAX_CUTOFF_POLICY;
882        } else {
883          if (myPolicy == "TRADITIONAL") {            
884            cp = TRADITIONAL_CUTOFF_POLICY;
885          } else {
886            // throw error        
887            sprintf( painCave.errMsg,
888                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
889            painCave.isFatal = 1;
890            simError();
891          }    
892        }          
893      }
894    }
895
896
897    if (simParams_->haveSkinThickness()) {
898      double skinThickness = simParams_->getSkinThickness();
899    }
900
901    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
902    // also send cutoff notification to electrostatics
903    setElectrostaticCutoffRadius(&rcut_, &rsw_);
904  }
905
906  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
907    
908    int errorOut;
909    int esm =  NONE;
910    int sm = UNDAMPED;
911    double alphaVal;
912    double dielectric;
913
914    errorOut = isError;
915    alphaVal = simParams_->getDampingAlpha();
916    dielectric = simParams_->getDielectric();
917
918    if (simParams_->haveElectrostaticSummationMethod()) {
919      std::string myMethod = simParams_->getElectrostaticSummationMethod();
920      toUpper(myMethod);
921      if (myMethod == "NONE") {
922        esm = NONE;
923      } else {
924        if (myMethod == "SWITCHING_FUNCTION") {
925          esm = SWITCHING_FUNCTION;
926        } else {
927          if (myMethod == "SHIFTED_POTENTIAL") {
928            esm = SHIFTED_POTENTIAL;
929          } else {
930            if (myMethod == "SHIFTED_FORCE") {            
931              esm = SHIFTED_FORCE;
932            } else {
933              if (myMethod == "REACTION_FIELD") {            
934                esm = REACTION_FIELD;
935              } else {
936                // throw error        
937                sprintf( painCave.errMsg,
938                         "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
939                painCave.isFatal = 1;
940                simError();
941              }    
942            }          
943          }
944        }
945      }
946    }
947    
948    if (simParams_->haveElectrostaticScreeningMethod()) {
949      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
950      toUpper(myScreen);
951      if (myScreen == "UNDAMPED") {
952        sm = UNDAMPED;
953      } else {
954        if (myScreen == "DAMPED") {
955          sm = DAMPED;
956          if (!simParams_->haveDampingAlpha()) {
957            //throw error
958            sprintf( painCave.errMsg,
959                     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
960            painCave.isFatal = 0;
961            simError();
962          }
963        } else {
964          // throw error        
965          sprintf( painCave.errMsg,
966                   "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
967          painCave.isFatal = 1;
968          simError();
969        }
970      }
971    }
972    
973    // let's pass some summation method variables to fortran
974    setElectrostaticSummationMethod( &esm );
975    setScreeningMethod( &sm );
976    setDampingAlpha( &alphaVal );
977    setReactionFieldDielectric( &dielectric );
978    initFortranFF( &esm, &errorOut );
979  }
980
960    void SimInfo::addProperty(GenericData* genData) {
961      properties_.addProperty(genData);  
962    }
963  
964 <  void SimInfo::removeProperty(const std::string& propName) {
964 >  void SimInfo::removeProperty(const string& propName) {
965      properties_.removeProperty(propName);  
966    }
967  
# Line 990 | Line 969 | namespace oopse {
969      properties_.clearProperties();
970    }
971  
972 <  std::vector<std::string> SimInfo::getPropertyNames() {
972 >  vector<string> SimInfo::getPropertyNames() {
973      return properties_.getPropertyNames();  
974    }
975        
976 <  std::vector<GenericData*> SimInfo::getProperties() {
976 >  vector<GenericData*> SimInfo::getProperties() {
977      return properties_.getProperties();
978    }
979  
980 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
980 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
981      return properties_.getPropertyByName(propName);
982    }
983  
# Line 1012 | Line 991 | namespace oopse {
991      Molecule* mol;
992      RigidBody* rb;
993      Atom* atom;
994 +    CutoffGroup* cg;
995      SimInfo::MoleculeIterator mi;
996      Molecule::RigidBodyIterator rbIter;
997 <    Molecule::AtomIterator atomIter;;
997 >    Molecule::AtomIterator atomIter;
998 >    Molecule::CutoffGroupIterator cgIter;
999  
1000      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1001          
1002 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1002 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
1003 >           atom = mol->nextAtom(atomIter)) {
1004          atom->setSnapshotManager(sman_);
1005        }
1006          
1007 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1007 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1008 >           rb = mol->nextRigidBody(rbIter)) {
1009          rb->setSnapshotManager(sman_);
1010        }
1011 +
1012 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1013 +           cg = mol->nextCutoffGroup(cgIter)) {
1014 +        cg->setSnapshotManager(sman_);
1015 +      }
1016      }    
1017      
1018    }
1019  
1032  Vector3d SimInfo::getComVel(){
1033    SimInfo::MoleculeIterator i;
1034    Molecule* mol;
1020  
1021 <    Vector3d comVel(0.0);
1037 <    double totalMass = 0.0;
1038 <    
1039 <
1040 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1041 <      double mass = mol->getMass();
1042 <      totalMass += mass;
1043 <      comVel += mass * mol->getComVel();
1044 <    }  
1021 >  ostream& operator <<(ostream& o, SimInfo& info) {
1022  
1046 #ifdef IS_MPI
1047    double tmpMass = totalMass;
1048    Vector3d tmpComVel(comVel);    
1049    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1050    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1051 #endif
1052
1053    comVel /= totalMass;
1054
1055    return comVel;
1056  }
1057
1058  Vector3d SimInfo::getCom(){
1059    SimInfo::MoleculeIterator i;
1060    Molecule* mol;
1061
1062    Vector3d com(0.0);
1063    double totalMass = 0.0;
1064    
1065    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1066      double mass = mol->getMass();
1067      totalMass += mass;
1068      com += mass * mol->getCom();
1069    }  
1070
1071 #ifdef IS_MPI
1072    double tmpMass = totalMass;
1073    Vector3d tmpCom(com);    
1074    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1075    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1076 #endif
1077
1078    com /= totalMass;
1079
1080    return com;
1081
1082  }        
1083
1084  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1085
1023      return o;
1024    }
1025    
1026 <  
1027 <   /*
1028 <   Returns center of mass and center of mass velocity in one function call.
1029 <   */
1030 <  
1031 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1032 <      SimInfo::MoleculeIterator i;
1033 <      Molecule* mol;
1034 <      
1035 <    
1036 <      double totalMass = 0.0;
1037 <    
1026 >  
1027 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1028 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1029 >      sprintf(painCave.errMsg,
1030 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1031 >              "\tindex exceeds number of known objects!\n");
1032 >      painCave.isFatal = 1;
1033 >      simError();
1034 >      return NULL;
1035 >    } else
1036 >      return IOIndexToIntegrableObject.at(index);
1037 >  }
1038 >  
1039 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1040 >    IOIndexToIntegrableObject= v;
1041 >  }
1042  
1043 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1044 <         double mass = mol->getMass();
1104 <         totalMass += mass;
1105 <         com += mass * mol->getCom();
1106 <         comVel += mass * mol->getComVel();          
1107 <      }  
1108 <      
1043 >  int SimInfo::getNGlobalConstraints() {
1044 >    int nGlobalConstraints;
1045   #ifdef IS_MPI
1046 <      double tmpMass = totalMass;
1047 <      Vector3d tmpCom(com);  
1048 <      Vector3d tmpComVel(comVel);
1049 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1114 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1115 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1046 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1047 >                              MPI::INT, MPI::SUM);
1048 > #else
1049 >    nGlobalConstraints =  nConstraints_;
1050   #endif
1051 <      
1052 <      com /= totalMass;
1119 <      comVel /= totalMass;
1120 <   }        
1121 <  
1122 <   /*
1123 <   Return intertia tensor for entire system and angular momentum Vector.
1051 >    return nGlobalConstraints;
1052 >  }
1053  
1054 + }//end namespace OpenMD
1055  
1126       [  Ixx -Ixy  -Ixz ]
1127  J =| -Iyx  Iyy  -Iyz |
1128       [ -Izx -Iyz   Izz ]
1129    */
1130
1131   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1132      
1133
1134      double xx = 0.0;
1135      double yy = 0.0;
1136      double zz = 0.0;
1137      double xy = 0.0;
1138      double xz = 0.0;
1139      double yz = 0.0;
1140      Vector3d com(0.0);
1141      Vector3d comVel(0.0);
1142      
1143      getComAll(com, comVel);
1144      
1145      SimInfo::MoleculeIterator i;
1146      Molecule* mol;
1147      
1148      Vector3d thisq(0.0);
1149      Vector3d thisv(0.0);
1150
1151      double thisMass = 0.0;
1152    
1153      
1154      
1155  
1156      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1157        
1158         thisq = mol->getCom()-com;
1159         thisv = mol->getComVel()-comVel;
1160         thisMass = mol->getMass();
1161         // Compute moment of intertia coefficients.
1162         xx += thisq[0]*thisq[0]*thisMass;
1163         yy += thisq[1]*thisq[1]*thisMass;
1164         zz += thisq[2]*thisq[2]*thisMass;
1165        
1166         // compute products of intertia
1167         xy += thisq[0]*thisq[1]*thisMass;
1168         xz += thisq[0]*thisq[2]*thisMass;
1169         yz += thisq[1]*thisq[2]*thisMass;
1170            
1171         angularMomentum += cross( thisq, thisv ) * thisMass;
1172            
1173      }  
1174      
1175      
1176      inertiaTensor(0,0) = yy + zz;
1177      inertiaTensor(0,1) = -xy;
1178      inertiaTensor(0,2) = -xz;
1179      inertiaTensor(1,0) = -xy;
1180      inertiaTensor(1,1) = xx + zz;
1181      inertiaTensor(1,2) = -yz;
1182      inertiaTensor(2,0) = -xz;
1183      inertiaTensor(2,1) = -yz;
1184      inertiaTensor(2,2) = xx + yy;
1185      
1186 #ifdef IS_MPI
1187      Mat3x3d tmpI(inertiaTensor);
1188      Vector3d tmpAngMom;
1189      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1190      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1191 #endif
1192              
1193      return;
1194   }
1195
1196   //Returns the angular momentum of the system
1197   Vector3d SimInfo::getAngularMomentum(){
1198      
1199      Vector3d com(0.0);
1200      Vector3d comVel(0.0);
1201      Vector3d angularMomentum(0.0);
1202      
1203      getComAll(com,comVel);
1204      
1205      SimInfo::MoleculeIterator i;
1206      Molecule* mol;
1207      
1208      Vector3d thisr(0.0);
1209      Vector3d thisp(0.0);
1210      
1211      double thisMass;
1212      
1213      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1214        thisMass = mol->getMass();
1215        thisr = mol->getCom()-com;
1216        thisp = (mol->getComVel()-comVel)*thisMass;
1217        
1218        angularMomentum += cross( thisr, thisp );
1219        
1220      }  
1221      
1222 #ifdef IS_MPI
1223      Vector3d tmpAngMom;
1224      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1225 #endif
1226      
1227      return angularMomentum;
1228   }
1229  
1230  
1231 }//end namespace oopse
1232

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 720 by chrisfen, Tue Nov 8 13:32:06 2005 UTC vs.
Revision 1940 by gezelter, Fri Nov 1 19:31:41 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines