1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file SimInfo.cpp |
45 |
* @author tlin |
46 |
* @date 11/02/2004 |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#ifdef IS_MPI |
51 |
#include <mpi.h> |
52 |
#endif |
53 |
#include <algorithm> |
54 |
#include <set> |
55 |
#include <map> |
56 |
|
57 |
#include "brains/SimInfo.hpp" |
58 |
#include "math/Vector3.hpp" |
59 |
#include "primitives/Molecule.hpp" |
60 |
#include "primitives/StuntDouble.hpp" |
61 |
#include "utils/MemoryUtils.hpp" |
62 |
#include "utils/simError.h" |
63 |
#include "selection/SelectionManager.hpp" |
64 |
#include "io/ForceFieldOptions.hpp" |
65 |
#include "brains/ForceField.hpp" |
66 |
#include "nonbonded/SwitchingFunction.hpp" |
67 |
|
68 |
using namespace std; |
69 |
namespace OpenMD { |
70 |
|
71 |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
72 |
forceField_(ff), simParams_(simParams), |
73 |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
74 |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
75 |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), |
76 |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
77 |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
78 |
nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
79 |
calcBoxDipole_(false), useAtomicVirial_(true) { |
80 |
|
81 |
MoleculeStamp* molStamp; |
82 |
int nMolWithSameStamp; |
83 |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
84 |
int nGroups = 0; //total cutoff groups defined in meta-data file |
85 |
CutoffGroupStamp* cgStamp; |
86 |
RigidBodyStamp* rbStamp; |
87 |
int nRigidAtoms = 0; |
88 |
|
89 |
vector<Component*> components = simParams->getComponents(); |
90 |
|
91 |
for (vector<Component*>::iterator i = components.begin(); |
92 |
i !=components.end(); ++i) { |
93 |
molStamp = (*i)->getMoleculeStamp(); |
94 |
if ( (*i)->haveRegion() ) { |
95 |
molStamp->setRegion( (*i)->getRegion() ); |
96 |
} else { |
97 |
// set the region to a disallowed value: |
98 |
molStamp->setRegion( -1 ); |
99 |
} |
100 |
|
101 |
nMolWithSameStamp = (*i)->getNMol(); |
102 |
|
103 |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
104 |
|
105 |
//calculate atoms in molecules |
106 |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
107 |
|
108 |
//calculate atoms in cutoff groups |
109 |
int nAtomsInGroups = 0; |
110 |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
111 |
|
112 |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
113 |
cgStamp = molStamp->getCutoffGroupStamp(j); |
114 |
nAtomsInGroups += cgStamp->getNMembers(); |
115 |
} |
116 |
|
117 |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
118 |
|
119 |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
120 |
|
121 |
//calculate atoms in rigid bodies |
122 |
int nAtomsInRigidBodies = 0; |
123 |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
124 |
|
125 |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
126 |
rbStamp = molStamp->getRigidBodyStamp(j); |
127 |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
128 |
} |
129 |
|
130 |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
131 |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
132 |
|
133 |
} |
134 |
|
135 |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
136 |
//group therefore the total number of cutoff groups in the system is |
137 |
//equal to the total number of atoms minus number of atoms belong to |
138 |
//cutoff group defined in meta-data file plus the number of cutoff |
139 |
//groups defined in meta-data file |
140 |
|
141 |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
142 |
|
143 |
//every free atom (atom does not belong to rigid bodies) is an |
144 |
//integrable object therefore the total number of integrable objects |
145 |
//in the system is equal to the total number of atoms minus number of |
146 |
//atoms belong to rigid body defined in meta-data file plus the number |
147 |
//of rigid bodies defined in meta-data file |
148 |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
149 |
+ nGlobalRigidBodies_; |
150 |
|
151 |
nGlobalMols_ = molStampIds_.size(); |
152 |
molToProcMap_.resize(nGlobalMols_); |
153 |
} |
154 |
|
155 |
SimInfo::~SimInfo() { |
156 |
map<int, Molecule*>::iterator i; |
157 |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
158 |
delete i->second; |
159 |
} |
160 |
molecules_.clear(); |
161 |
|
162 |
delete sman_; |
163 |
delete simParams_; |
164 |
delete forceField_; |
165 |
} |
166 |
|
167 |
|
168 |
bool SimInfo::addMolecule(Molecule* mol) { |
169 |
MoleculeIterator i; |
170 |
|
171 |
i = molecules_.find(mol->getGlobalIndex()); |
172 |
if (i == molecules_.end() ) { |
173 |
|
174 |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
175 |
|
176 |
nAtoms_ += mol->getNAtoms(); |
177 |
nBonds_ += mol->getNBonds(); |
178 |
nBends_ += mol->getNBends(); |
179 |
nTorsions_ += mol->getNTorsions(); |
180 |
nInversions_ += mol->getNInversions(); |
181 |
nRigidBodies_ += mol->getNRigidBodies(); |
182 |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
183 |
nCutoffGroups_ += mol->getNCutoffGroups(); |
184 |
nConstraints_ += mol->getNConstraintPairs(); |
185 |
|
186 |
addInteractionPairs(mol); |
187 |
|
188 |
return true; |
189 |
} else { |
190 |
return false; |
191 |
} |
192 |
} |
193 |
|
194 |
bool SimInfo::removeMolecule(Molecule* mol) { |
195 |
MoleculeIterator i; |
196 |
i = molecules_.find(mol->getGlobalIndex()); |
197 |
|
198 |
if (i != molecules_.end() ) { |
199 |
|
200 |
assert(mol == i->second); |
201 |
|
202 |
nAtoms_ -= mol->getNAtoms(); |
203 |
nBonds_ -= mol->getNBonds(); |
204 |
nBends_ -= mol->getNBends(); |
205 |
nTorsions_ -= mol->getNTorsions(); |
206 |
nInversions_ -= mol->getNInversions(); |
207 |
nRigidBodies_ -= mol->getNRigidBodies(); |
208 |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
209 |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
210 |
nConstraints_ -= mol->getNConstraintPairs(); |
211 |
|
212 |
removeInteractionPairs(mol); |
213 |
molecules_.erase(mol->getGlobalIndex()); |
214 |
|
215 |
delete mol; |
216 |
|
217 |
return true; |
218 |
} else { |
219 |
return false; |
220 |
} |
221 |
} |
222 |
|
223 |
|
224 |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
225 |
i = molecules_.begin(); |
226 |
return i == molecules_.end() ? NULL : i->second; |
227 |
} |
228 |
|
229 |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
230 |
++i; |
231 |
return i == molecules_.end() ? NULL : i->second; |
232 |
} |
233 |
|
234 |
|
235 |
void SimInfo::calcNdf() { |
236 |
int ndf_local, nfq_local; |
237 |
MoleculeIterator i; |
238 |
vector<StuntDouble*>::iterator j; |
239 |
vector<Atom*>::iterator k; |
240 |
|
241 |
Molecule* mol; |
242 |
StuntDouble* sd; |
243 |
Atom* atom; |
244 |
|
245 |
ndf_local = 0; |
246 |
nfq_local = 0; |
247 |
|
248 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
249 |
|
250 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
251 |
sd = mol->nextIntegrableObject(j)) { |
252 |
|
253 |
ndf_local += 3; |
254 |
|
255 |
if (sd->isDirectional()) { |
256 |
if (sd->isLinear()) { |
257 |
ndf_local += 2; |
258 |
} else { |
259 |
ndf_local += 3; |
260 |
} |
261 |
} |
262 |
} |
263 |
|
264 |
for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
265 |
atom = mol->nextFluctuatingCharge(k)) { |
266 |
if (atom->isFluctuatingCharge()) { |
267 |
nfq_local++; |
268 |
} |
269 |
} |
270 |
} |
271 |
|
272 |
ndfLocal_ = ndf_local; |
273 |
|
274 |
// n_constraints is local, so subtract them on each processor |
275 |
ndf_local -= nConstraints_; |
276 |
|
277 |
#ifdef IS_MPI |
278 |
MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM); |
279 |
MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1, |
280 |
MPI::INT, MPI::SUM); |
281 |
#else |
282 |
ndf_ = ndf_local; |
283 |
nGlobalFluctuatingCharges_ = nfq_local; |
284 |
#endif |
285 |
|
286 |
// nZconstraints_ is global, as are the 3 COM translations for the |
287 |
// entire system: |
288 |
ndf_ = ndf_ - 3 - nZconstraint_; |
289 |
|
290 |
} |
291 |
|
292 |
int SimInfo::getFdf() { |
293 |
#ifdef IS_MPI |
294 |
MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM); |
295 |
#else |
296 |
fdf_ = fdf_local; |
297 |
#endif |
298 |
return fdf_; |
299 |
} |
300 |
|
301 |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
302 |
int nLocalCutoffAtoms = 0; |
303 |
Molecule* mol; |
304 |
MoleculeIterator mi; |
305 |
CutoffGroup* cg; |
306 |
Molecule::CutoffGroupIterator ci; |
307 |
|
308 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
309 |
|
310 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
311 |
cg = mol->nextCutoffGroup(ci)) { |
312 |
nLocalCutoffAtoms += cg->getNumAtom(); |
313 |
|
314 |
} |
315 |
} |
316 |
|
317 |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
318 |
} |
319 |
|
320 |
void SimInfo::calcNdfRaw() { |
321 |
int ndfRaw_local; |
322 |
|
323 |
MoleculeIterator i; |
324 |
vector<StuntDouble*>::iterator j; |
325 |
Molecule* mol; |
326 |
StuntDouble* sd; |
327 |
|
328 |
// Raw degrees of freedom that we have to set |
329 |
ndfRaw_local = 0; |
330 |
|
331 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
332 |
|
333 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
334 |
sd = mol->nextIntegrableObject(j)) { |
335 |
|
336 |
ndfRaw_local += 3; |
337 |
|
338 |
if (sd->isDirectional()) { |
339 |
if (sd->isLinear()) { |
340 |
ndfRaw_local += 2; |
341 |
} else { |
342 |
ndfRaw_local += 3; |
343 |
} |
344 |
} |
345 |
|
346 |
} |
347 |
} |
348 |
|
349 |
#ifdef IS_MPI |
350 |
MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM); |
351 |
#else |
352 |
ndfRaw_ = ndfRaw_local; |
353 |
#endif |
354 |
} |
355 |
|
356 |
void SimInfo::calcNdfTrans() { |
357 |
int ndfTrans_local; |
358 |
|
359 |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
360 |
|
361 |
|
362 |
#ifdef IS_MPI |
363 |
MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1, |
364 |
MPI::INT, MPI::SUM); |
365 |
#else |
366 |
ndfTrans_ = ndfTrans_local; |
367 |
#endif |
368 |
|
369 |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
370 |
|
371 |
} |
372 |
|
373 |
void SimInfo::addInteractionPairs(Molecule* mol) { |
374 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
375 |
vector<Atom*>::iterator atomIter; |
376 |
vector<Bond*>::iterator bondIter; |
377 |
vector<Bend*>::iterator bendIter; |
378 |
vector<Torsion*>::iterator torsionIter; |
379 |
vector<Inversion*>::iterator inversionIter; |
380 |
Atom* atom; |
381 |
Bond* bond; |
382 |
Bend* bend; |
383 |
Torsion* torsion; |
384 |
Inversion* inversion; |
385 |
int a; |
386 |
int b; |
387 |
int c; |
388 |
int d; |
389 |
|
390 |
// atomGroups can be used to add special interaction maps between |
391 |
// groups of atoms that are in two separate rigid bodies. |
392 |
// However, most site-site interactions between two rigid bodies |
393 |
// are probably not special, just the ones between the physically |
394 |
// bonded atoms. Interactions *within* a single rigid body should |
395 |
// always be excluded. These are done at the bottom of this |
396 |
// function. |
397 |
|
398 |
map<int, set<int> > atomGroups; |
399 |
Molecule::RigidBodyIterator rbIter; |
400 |
RigidBody* rb; |
401 |
Molecule::IntegrableObjectIterator ii; |
402 |
StuntDouble* sd; |
403 |
|
404 |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
405 |
sd = mol->nextIntegrableObject(ii)) { |
406 |
|
407 |
if (sd->isRigidBody()) { |
408 |
rb = static_cast<RigidBody*>(sd); |
409 |
vector<Atom*> atoms = rb->getAtoms(); |
410 |
set<int> rigidAtoms; |
411 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
412 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
413 |
} |
414 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
415 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
416 |
} |
417 |
} else { |
418 |
set<int> oneAtomSet; |
419 |
oneAtomSet.insert(sd->getGlobalIndex()); |
420 |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
421 |
} |
422 |
} |
423 |
|
424 |
|
425 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
426 |
bond = mol->nextBond(bondIter)) { |
427 |
|
428 |
a = bond->getAtomA()->getGlobalIndex(); |
429 |
b = bond->getAtomB()->getGlobalIndex(); |
430 |
|
431 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
432 |
oneTwoInteractions_.addPair(a, b); |
433 |
} else { |
434 |
excludedInteractions_.addPair(a, b); |
435 |
} |
436 |
} |
437 |
|
438 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
439 |
bend = mol->nextBend(bendIter)) { |
440 |
|
441 |
a = bend->getAtomA()->getGlobalIndex(); |
442 |
b = bend->getAtomB()->getGlobalIndex(); |
443 |
c = bend->getAtomC()->getGlobalIndex(); |
444 |
|
445 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
446 |
oneTwoInteractions_.addPair(a, b); |
447 |
oneTwoInteractions_.addPair(b, c); |
448 |
} else { |
449 |
excludedInteractions_.addPair(a, b); |
450 |
excludedInteractions_.addPair(b, c); |
451 |
} |
452 |
|
453 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
454 |
oneThreeInteractions_.addPair(a, c); |
455 |
} else { |
456 |
excludedInteractions_.addPair(a, c); |
457 |
} |
458 |
} |
459 |
|
460 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
461 |
torsion = mol->nextTorsion(torsionIter)) { |
462 |
|
463 |
a = torsion->getAtomA()->getGlobalIndex(); |
464 |
b = torsion->getAtomB()->getGlobalIndex(); |
465 |
c = torsion->getAtomC()->getGlobalIndex(); |
466 |
d = torsion->getAtomD()->getGlobalIndex(); |
467 |
|
468 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
469 |
oneTwoInteractions_.addPair(a, b); |
470 |
oneTwoInteractions_.addPair(b, c); |
471 |
oneTwoInteractions_.addPair(c, d); |
472 |
} else { |
473 |
excludedInteractions_.addPair(a, b); |
474 |
excludedInteractions_.addPair(b, c); |
475 |
excludedInteractions_.addPair(c, d); |
476 |
} |
477 |
|
478 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
479 |
oneThreeInteractions_.addPair(a, c); |
480 |
oneThreeInteractions_.addPair(b, d); |
481 |
} else { |
482 |
excludedInteractions_.addPair(a, c); |
483 |
excludedInteractions_.addPair(b, d); |
484 |
} |
485 |
|
486 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
487 |
oneFourInteractions_.addPair(a, d); |
488 |
} else { |
489 |
excludedInteractions_.addPair(a, d); |
490 |
} |
491 |
} |
492 |
|
493 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
494 |
inversion = mol->nextInversion(inversionIter)) { |
495 |
|
496 |
a = inversion->getAtomA()->getGlobalIndex(); |
497 |
b = inversion->getAtomB()->getGlobalIndex(); |
498 |
c = inversion->getAtomC()->getGlobalIndex(); |
499 |
d = inversion->getAtomD()->getGlobalIndex(); |
500 |
|
501 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
502 |
oneTwoInteractions_.addPair(a, b); |
503 |
oneTwoInteractions_.addPair(a, c); |
504 |
oneTwoInteractions_.addPair(a, d); |
505 |
} else { |
506 |
excludedInteractions_.addPair(a, b); |
507 |
excludedInteractions_.addPair(a, c); |
508 |
excludedInteractions_.addPair(a, d); |
509 |
} |
510 |
|
511 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
512 |
oneThreeInteractions_.addPair(b, c); |
513 |
oneThreeInteractions_.addPair(b, d); |
514 |
oneThreeInteractions_.addPair(c, d); |
515 |
} else { |
516 |
excludedInteractions_.addPair(b, c); |
517 |
excludedInteractions_.addPair(b, d); |
518 |
excludedInteractions_.addPair(c, d); |
519 |
} |
520 |
} |
521 |
|
522 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
523 |
rb = mol->nextRigidBody(rbIter)) { |
524 |
vector<Atom*> atoms = rb->getAtoms(); |
525 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
526 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
527 |
a = atoms[i]->getGlobalIndex(); |
528 |
b = atoms[j]->getGlobalIndex(); |
529 |
excludedInteractions_.addPair(a, b); |
530 |
} |
531 |
} |
532 |
} |
533 |
|
534 |
} |
535 |
|
536 |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
537 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
538 |
vector<Bond*>::iterator bondIter; |
539 |
vector<Bend*>::iterator bendIter; |
540 |
vector<Torsion*>::iterator torsionIter; |
541 |
vector<Inversion*>::iterator inversionIter; |
542 |
Bond* bond; |
543 |
Bend* bend; |
544 |
Torsion* torsion; |
545 |
Inversion* inversion; |
546 |
int a; |
547 |
int b; |
548 |
int c; |
549 |
int d; |
550 |
|
551 |
map<int, set<int> > atomGroups; |
552 |
Molecule::RigidBodyIterator rbIter; |
553 |
RigidBody* rb; |
554 |
Molecule::IntegrableObjectIterator ii; |
555 |
StuntDouble* sd; |
556 |
|
557 |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
558 |
sd = mol->nextIntegrableObject(ii)) { |
559 |
|
560 |
if (sd->isRigidBody()) { |
561 |
rb = static_cast<RigidBody*>(sd); |
562 |
vector<Atom*> atoms = rb->getAtoms(); |
563 |
set<int> rigidAtoms; |
564 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
565 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
566 |
} |
567 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
568 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
569 |
} |
570 |
} else { |
571 |
set<int> oneAtomSet; |
572 |
oneAtomSet.insert(sd->getGlobalIndex()); |
573 |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
574 |
} |
575 |
} |
576 |
|
577 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
578 |
bond = mol->nextBond(bondIter)) { |
579 |
|
580 |
a = bond->getAtomA()->getGlobalIndex(); |
581 |
b = bond->getAtomB()->getGlobalIndex(); |
582 |
|
583 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
584 |
oneTwoInteractions_.removePair(a, b); |
585 |
} else { |
586 |
excludedInteractions_.removePair(a, b); |
587 |
} |
588 |
} |
589 |
|
590 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
591 |
bend = mol->nextBend(bendIter)) { |
592 |
|
593 |
a = bend->getAtomA()->getGlobalIndex(); |
594 |
b = bend->getAtomB()->getGlobalIndex(); |
595 |
c = bend->getAtomC()->getGlobalIndex(); |
596 |
|
597 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
598 |
oneTwoInteractions_.removePair(a, b); |
599 |
oneTwoInteractions_.removePair(b, c); |
600 |
} else { |
601 |
excludedInteractions_.removePair(a, b); |
602 |
excludedInteractions_.removePair(b, c); |
603 |
} |
604 |
|
605 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
606 |
oneThreeInteractions_.removePair(a, c); |
607 |
} else { |
608 |
excludedInteractions_.removePair(a, c); |
609 |
} |
610 |
} |
611 |
|
612 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
613 |
torsion = mol->nextTorsion(torsionIter)) { |
614 |
|
615 |
a = torsion->getAtomA()->getGlobalIndex(); |
616 |
b = torsion->getAtomB()->getGlobalIndex(); |
617 |
c = torsion->getAtomC()->getGlobalIndex(); |
618 |
d = torsion->getAtomD()->getGlobalIndex(); |
619 |
|
620 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
621 |
oneTwoInteractions_.removePair(a, b); |
622 |
oneTwoInteractions_.removePair(b, c); |
623 |
oneTwoInteractions_.removePair(c, d); |
624 |
} else { |
625 |
excludedInteractions_.removePair(a, b); |
626 |
excludedInteractions_.removePair(b, c); |
627 |
excludedInteractions_.removePair(c, d); |
628 |
} |
629 |
|
630 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
631 |
oneThreeInteractions_.removePair(a, c); |
632 |
oneThreeInteractions_.removePair(b, d); |
633 |
} else { |
634 |
excludedInteractions_.removePair(a, c); |
635 |
excludedInteractions_.removePair(b, d); |
636 |
} |
637 |
|
638 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
639 |
oneFourInteractions_.removePair(a, d); |
640 |
} else { |
641 |
excludedInteractions_.removePair(a, d); |
642 |
} |
643 |
} |
644 |
|
645 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
646 |
inversion = mol->nextInversion(inversionIter)) { |
647 |
|
648 |
a = inversion->getAtomA()->getGlobalIndex(); |
649 |
b = inversion->getAtomB()->getGlobalIndex(); |
650 |
c = inversion->getAtomC()->getGlobalIndex(); |
651 |
d = inversion->getAtomD()->getGlobalIndex(); |
652 |
|
653 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
654 |
oneTwoInteractions_.removePair(a, b); |
655 |
oneTwoInteractions_.removePair(a, c); |
656 |
oneTwoInteractions_.removePair(a, d); |
657 |
} else { |
658 |
excludedInteractions_.removePair(a, b); |
659 |
excludedInteractions_.removePair(a, c); |
660 |
excludedInteractions_.removePair(a, d); |
661 |
} |
662 |
|
663 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
664 |
oneThreeInteractions_.removePair(b, c); |
665 |
oneThreeInteractions_.removePair(b, d); |
666 |
oneThreeInteractions_.removePair(c, d); |
667 |
} else { |
668 |
excludedInteractions_.removePair(b, c); |
669 |
excludedInteractions_.removePair(b, d); |
670 |
excludedInteractions_.removePair(c, d); |
671 |
} |
672 |
} |
673 |
|
674 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
675 |
rb = mol->nextRigidBody(rbIter)) { |
676 |
vector<Atom*> atoms = rb->getAtoms(); |
677 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
678 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
679 |
a = atoms[i]->getGlobalIndex(); |
680 |
b = atoms[j]->getGlobalIndex(); |
681 |
excludedInteractions_.removePair(a, b); |
682 |
} |
683 |
} |
684 |
} |
685 |
|
686 |
} |
687 |
|
688 |
|
689 |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
690 |
int curStampId; |
691 |
|
692 |
//index from 0 |
693 |
curStampId = moleculeStamps_.size(); |
694 |
|
695 |
moleculeStamps_.push_back(molStamp); |
696 |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
697 |
} |
698 |
|
699 |
|
700 |
/** |
701 |
* update |
702 |
* |
703 |
* Performs the global checks and variable settings after the |
704 |
* objects have been created. |
705 |
* |
706 |
*/ |
707 |
void SimInfo::update() { |
708 |
setupSimVariables(); |
709 |
calcNdf(); |
710 |
calcNdfRaw(); |
711 |
calcNdfTrans(); |
712 |
} |
713 |
|
714 |
/** |
715 |
* getSimulatedAtomTypes |
716 |
* |
717 |
* Returns an STL set of AtomType* that are actually present in this |
718 |
* simulation. Must query all processors to assemble this information. |
719 |
* |
720 |
*/ |
721 |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
722 |
SimInfo::MoleculeIterator mi; |
723 |
Molecule* mol; |
724 |
Molecule::AtomIterator ai; |
725 |
Atom* atom; |
726 |
set<AtomType*> atomTypes; |
727 |
|
728 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
729 |
for(atom = mol->beginAtom(ai); atom != NULL; |
730 |
atom = mol->nextAtom(ai)) { |
731 |
atomTypes.insert(atom->getAtomType()); |
732 |
} |
733 |
} |
734 |
|
735 |
#ifdef IS_MPI |
736 |
|
737 |
// loop over the found atom types on this processor, and add their |
738 |
// numerical idents to a vector: |
739 |
|
740 |
vector<int> foundTypes; |
741 |
set<AtomType*>::iterator i; |
742 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
743 |
foundTypes.push_back( (*i)->getIdent() ); |
744 |
|
745 |
// count_local holds the number of found types on this processor |
746 |
int count_local = foundTypes.size(); |
747 |
|
748 |
int nproc = MPI::COMM_WORLD.Get_size(); |
749 |
|
750 |
// we need arrays to hold the counts and displacement vectors for |
751 |
// all processors |
752 |
vector<int> counts(nproc, 0); |
753 |
vector<int> disps(nproc, 0); |
754 |
|
755 |
// fill the counts array |
756 |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
757 |
1, MPI::INT); |
758 |
|
759 |
// use the processor counts to compute the displacement array |
760 |
disps[0] = 0; |
761 |
int totalCount = counts[0]; |
762 |
for (int iproc = 1; iproc < nproc; iproc++) { |
763 |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
764 |
totalCount += counts[iproc]; |
765 |
} |
766 |
|
767 |
// we need a (possibly redundant) set of all found types: |
768 |
vector<int> ftGlobal(totalCount); |
769 |
|
770 |
// now spray out the foundTypes to all the other processors: |
771 |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
772 |
&ftGlobal[0], &counts[0], &disps[0], |
773 |
MPI::INT); |
774 |
|
775 |
vector<int>::iterator j; |
776 |
|
777 |
// foundIdents is a stl set, so inserting an already found ident |
778 |
// will have no effect. |
779 |
set<int> foundIdents; |
780 |
|
781 |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
782 |
foundIdents.insert((*j)); |
783 |
|
784 |
// now iterate over the foundIdents and get the actual atom types |
785 |
// that correspond to these: |
786 |
set<int>::iterator it; |
787 |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
788 |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
789 |
|
790 |
#endif |
791 |
|
792 |
return atomTypes; |
793 |
} |
794 |
|
795 |
|
796 |
int getGlobalCountOfType(AtomType* atype) { |
797 |
/* |
798 |
set<AtomType*> atypes = getSimulatedAtomTypes(); |
799 |
map<AtomType*, int> counts_; |
800 |
|
801 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
802 |
for(atom = mol->beginAtom(ai); atom != NULL; |
803 |
atom = mol->nextAtom(ai)) { |
804 |
atom->getAtomType(); |
805 |
} |
806 |
} |
807 |
*/ |
808 |
return 0; |
809 |
} |
810 |
|
811 |
void SimInfo::setupSimVariables() { |
812 |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
813 |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole |
814 |
// parameter is true |
815 |
calcBoxDipole_ = false; |
816 |
if ( simParams_->haveAccumulateBoxDipole() ) |
817 |
if ( simParams_->getAccumulateBoxDipole() ) { |
818 |
calcBoxDipole_ = true; |
819 |
} |
820 |
|
821 |
set<AtomType*>::iterator i; |
822 |
set<AtomType*> atomTypes; |
823 |
atomTypes = getSimulatedAtomTypes(); |
824 |
bool usesElectrostatic = false; |
825 |
bool usesMetallic = false; |
826 |
bool usesDirectional = false; |
827 |
bool usesFluctuatingCharges = false; |
828 |
//loop over all of the atom types |
829 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
830 |
usesElectrostatic |= (*i)->isElectrostatic(); |
831 |
usesMetallic |= (*i)->isMetal(); |
832 |
usesDirectional |= (*i)->isDirectional(); |
833 |
usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
834 |
} |
835 |
|
836 |
#ifdef IS_MPI |
837 |
bool temp; |
838 |
temp = usesDirectional; |
839 |
MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL, |
840 |
MPI::LOR); |
841 |
|
842 |
temp = usesMetallic; |
843 |
MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL, |
844 |
MPI::LOR); |
845 |
|
846 |
temp = usesElectrostatic; |
847 |
MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL, |
848 |
MPI::LOR); |
849 |
|
850 |
temp = usesFluctuatingCharges; |
851 |
MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL, |
852 |
MPI::LOR); |
853 |
#else |
854 |
|
855 |
usesDirectionalAtoms_ = usesDirectional; |
856 |
usesMetallicAtoms_ = usesMetallic; |
857 |
usesElectrostaticAtoms_ = usesElectrostatic; |
858 |
usesFluctuatingCharges_ = usesFluctuatingCharges; |
859 |
|
860 |
#endif |
861 |
|
862 |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
863 |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
864 |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
865 |
} |
866 |
|
867 |
|
868 |
vector<int> SimInfo::getGlobalAtomIndices() { |
869 |
SimInfo::MoleculeIterator mi; |
870 |
Molecule* mol; |
871 |
Molecule::AtomIterator ai; |
872 |
Atom* atom; |
873 |
|
874 |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
875 |
|
876 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
877 |
|
878 |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
879 |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
880 |
} |
881 |
} |
882 |
return GlobalAtomIndices; |
883 |
} |
884 |
|
885 |
|
886 |
vector<int> SimInfo::getGlobalGroupIndices() { |
887 |
SimInfo::MoleculeIterator mi; |
888 |
Molecule* mol; |
889 |
Molecule::CutoffGroupIterator ci; |
890 |
CutoffGroup* cg; |
891 |
|
892 |
vector<int> GlobalGroupIndices; |
893 |
|
894 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
895 |
|
896 |
//local index of cutoff group is trivial, it only depends on the |
897 |
//order of travesing |
898 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
899 |
cg = mol->nextCutoffGroup(ci)) { |
900 |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
901 |
} |
902 |
} |
903 |
return GlobalGroupIndices; |
904 |
} |
905 |
|
906 |
|
907 |
void SimInfo::prepareTopology() { |
908 |
|
909 |
//calculate mass ratio of cutoff group |
910 |
SimInfo::MoleculeIterator mi; |
911 |
Molecule* mol; |
912 |
Molecule::CutoffGroupIterator ci; |
913 |
CutoffGroup* cg; |
914 |
Molecule::AtomIterator ai; |
915 |
Atom* atom; |
916 |
RealType totalMass; |
917 |
|
918 |
/** |
919 |
* The mass factor is the relative mass of an atom to the total |
920 |
* mass of the cutoff group it belongs to. By default, all atoms |
921 |
* are their own cutoff groups, and therefore have mass factors of |
922 |
* 1. We need some special handling for massless atoms, which |
923 |
* will be treated as carrying the entire mass of the cutoff |
924 |
* group. |
925 |
*/ |
926 |
massFactors_.clear(); |
927 |
massFactors_.resize(getNAtoms(), 1.0); |
928 |
|
929 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
930 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
931 |
cg = mol->nextCutoffGroup(ci)) { |
932 |
|
933 |
totalMass = cg->getMass(); |
934 |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
935 |
// Check for massless groups - set mfact to 1 if true |
936 |
if (totalMass != 0) |
937 |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
938 |
else |
939 |
massFactors_[atom->getLocalIndex()] = 1.0; |
940 |
} |
941 |
} |
942 |
} |
943 |
|
944 |
// Build the identArray_ and regions_ |
945 |
|
946 |
identArray_.clear(); |
947 |
identArray_.reserve(getNAtoms()); |
948 |
regions_.clear(); |
949 |
regions_.reserve(getNAtoms()); |
950 |
|
951 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
952 |
int reg = mol->getRegion(); |
953 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
954 |
identArray_.push_back(atom->getIdent()); |
955 |
regions_.push_back(reg); |
956 |
} |
957 |
} |
958 |
|
959 |
topologyDone_ = true; |
960 |
} |
961 |
|
962 |
void SimInfo::addProperty(GenericData* genData) { |
963 |
properties_.addProperty(genData); |
964 |
} |
965 |
|
966 |
void SimInfo::removeProperty(const string& propName) { |
967 |
properties_.removeProperty(propName); |
968 |
} |
969 |
|
970 |
void SimInfo::clearProperties() { |
971 |
properties_.clearProperties(); |
972 |
} |
973 |
|
974 |
vector<string> SimInfo::getPropertyNames() { |
975 |
return properties_.getPropertyNames(); |
976 |
} |
977 |
|
978 |
vector<GenericData*> SimInfo::getProperties() { |
979 |
return properties_.getProperties(); |
980 |
} |
981 |
|
982 |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
983 |
return properties_.getPropertyByName(propName); |
984 |
} |
985 |
|
986 |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
987 |
if (sman_ == sman) { |
988 |
return; |
989 |
} |
990 |
delete sman_; |
991 |
sman_ = sman; |
992 |
|
993 |
Molecule* mol; |
994 |
RigidBody* rb; |
995 |
Atom* atom; |
996 |
CutoffGroup* cg; |
997 |
SimInfo::MoleculeIterator mi; |
998 |
Molecule::RigidBodyIterator rbIter; |
999 |
Molecule::AtomIterator atomIter; |
1000 |
Molecule::CutoffGroupIterator cgIter; |
1001 |
|
1002 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1003 |
|
1004 |
for (atom = mol->beginAtom(atomIter); atom != NULL; |
1005 |
atom = mol->nextAtom(atomIter)) { |
1006 |
atom->setSnapshotManager(sman_); |
1007 |
} |
1008 |
|
1009 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
1010 |
rb = mol->nextRigidBody(rbIter)) { |
1011 |
rb->setSnapshotManager(sman_); |
1012 |
} |
1013 |
|
1014 |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; |
1015 |
cg = mol->nextCutoffGroup(cgIter)) { |
1016 |
cg->setSnapshotManager(sman_); |
1017 |
} |
1018 |
} |
1019 |
|
1020 |
} |
1021 |
|
1022 |
|
1023 |
ostream& operator <<(ostream& o, SimInfo& info) { |
1024 |
|
1025 |
return o; |
1026 |
} |
1027 |
|
1028 |
|
1029 |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1030 |
if (index >= int(IOIndexToIntegrableObject.size())) { |
1031 |
sprintf(painCave.errMsg, |
1032 |
"SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n" |
1033 |
"\tindex exceeds number of known objects!\n"); |
1034 |
painCave.isFatal = 1; |
1035 |
simError(); |
1036 |
return NULL; |
1037 |
} else |
1038 |
return IOIndexToIntegrableObject.at(index); |
1039 |
} |
1040 |
|
1041 |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1042 |
IOIndexToIntegrableObject= v; |
1043 |
} |
1044 |
|
1045 |
int SimInfo::getNGlobalConstraints() { |
1046 |
int nGlobalConstraints; |
1047 |
#ifdef IS_MPI |
1048 |
MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1, |
1049 |
MPI::INT, MPI::SUM); |
1050 |
#else |
1051 |
nGlobalConstraints = nConstraints_; |
1052 |
#endif |
1053 |
return nGlobalConstraints; |
1054 |
} |
1055 |
|
1056 |
}//end namespace OpenMD |
1057 |
|