ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 998 by chrisfen, Mon Jul 3 13:18:43 2006 UTC vs.
Revision 1930 by gezelter, Mon Aug 19 13:51:04 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 53 | Line 54
54   #include "brains/SimInfo.hpp"
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57 < #include "UseTheForce/fCutoffPolicy.h"
57 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 < #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 < #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 < #include "UseTheForce/doForces_interface.h"
61 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 < #include "UseTheForce/DarkSide/switcheroo_interface.h"
57 > #include "primitives/StuntDouble.hpp"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
63 <
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
72 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 <    std::map<int, std::set<int> >::iterator i = container.find(index);
77 <    std::set<int> result;
78 <    if (i != container.end()) {
79 <        result = i->second;
80 <    }
81 <
82 <    return result;
83 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      if ( (*i)->haveRegion() ) {        
95 >        molStamp->setRegion( (*i)->getRegion() );
96 >      } else {
97 >        // set the region to a disallowed value:
98 >        molStamp->setRegion( -1 );
99 >      }
100  
101 <      MoleculeStamp* molStamp;
95 <      int nMolWithSameStamp;
96 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
97 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
98 <      CutoffGroupStamp* cgStamp;    
99 <      RigidBodyStamp* rbStamp;
100 <      int nRigidAtoms = 0;
101 <      std::vector<Component*> components = simParams->getComponents();
101 >      nMolWithSameStamp = (*i)->getNMol();
102        
103 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
104 <        molStamp = (*i)->getMoleculeStamp();
105 <        nMolWithSameStamp = (*i)->getNMol();
106 <        
107 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
108 <
109 <        //calculate atoms in molecules
110 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
111 <
112 <        //calculate atoms in cutoff groups
113 <        int nAtomsInGroups = 0;
114 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
115 <        
116 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
117 <          cgStamp = molStamp->getCutoffGroupStamp(j);
118 <          nAtomsInGroups += cgStamp->getNMembers();
119 <        }
120 <
121 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
122 <
123 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
124 <
125 <        //calculate atoms in rigid bodies
126 <        int nAtomsInRigidBodies = 0;
127 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
128 <        
129 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
130 <          rbStamp = molStamp->getRigidBodyStamp(j);
131 <          nAtomsInRigidBodies += rbStamp->getNMembers();
132 <        }
133 <
134 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
135 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
136 <        
103 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
104 >      
105 >      //calculate atoms in molecules
106 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
107 >      
108 >      //calculate atoms in cutoff groups
109 >      int nAtomsInGroups = 0;
110 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
111 >      
112 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
113 >        cgStamp = molStamp->getCutoffGroupStamp(j);
114 >        nAtomsInGroups += cgStamp->getNMembers();
115        }
116 <
117 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
118 <      //group therefore the total number of cutoff groups in the system is
119 <      //equal to the total number of atoms minus number of atoms belong to
120 <      //cutoff group defined in meta-data file plus the number of cutoff
121 <      //groups defined in meta-data file
122 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
123 <
124 <      //every free atom (atom does not belong to rigid bodies) is an
125 <      //integrable object therefore the total number of integrable objects
126 <      //in the system is equal to the total number of atoms minus number of
127 <      //atoms belong to rigid body defined in meta-data file plus the number
128 <      //of rigid bodies defined in meta-data file
129 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
130 <                                                + nGlobalRigidBodies_;
131 <  
132 <      nGlobalMols_ = molStampIds_.size();
155 <
156 < #ifdef IS_MPI    
157 <      molToProcMap_.resize(nGlobalMols_);
158 < #endif
159 <
116 >      
117 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
118 >      
119 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
120 >      
121 >      //calculate atoms in rigid bodies
122 >      int nAtomsInRigidBodies = 0;
123 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
124 >      
125 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
126 >        rbStamp = molStamp->getRigidBodyStamp(j);
127 >        nAtomsInRigidBodies += rbStamp->getNMembers();
128 >      }
129 >      
130 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
131 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
132 >      
133      }
134 +    
135 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
136 +    //group therefore the total number of cutoff groups in the system is
137 +    //equal to the total number of atoms minus number of atoms belong to
138 +    //cutoff group defined in meta-data file plus the number of cutoff
139 +    //groups defined in meta-data file
140  
141 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
142 +    
143 +    //every free atom (atom does not belong to rigid bodies) is an
144 +    //integrable object therefore the total number of integrable objects
145 +    //in the system is equal to the total number of atoms minus number of
146 +    //atoms belong to rigid body defined in meta-data file plus the number
147 +    //of rigid bodies defined in meta-data file
148 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 +      + nGlobalRigidBodies_;
150 +    
151 +    nGlobalMols_ = molStampIds_.size();
152 +    molToProcMap_.resize(nGlobalMols_);
153 +  }
154 +  
155    SimInfo::~SimInfo() {
156 <    std::map<int, Molecule*>::iterator i;
156 >    map<int, Molecule*>::iterator i;
157      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158        delete i->second;
159      }
# Line 171 | Line 164 | namespace oopse {
164      delete forceField_;
165    }
166  
174  int SimInfo::getNGlobalConstraints() {
175    int nGlobalConstraints;
176 #ifdef IS_MPI
177    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178                  MPI_COMM_WORLD);    
179 #else
180    nGlobalConstraints =  nConstraints_;
181 #endif
182    return nGlobalConstraints;
183  }
167  
168    bool SimInfo::addMolecule(Molecule* mol) {
169      MoleculeIterator i;
170 <
170 >    
171      i = molecules_.find(mol->getGlobalIndex());
172      if (i == molecules_.end() ) {
173 <
174 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 <        
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176        nAtoms_ += mol->getNAtoms();
177        nBonds_ += mol->getNBonds();
178        nBends_ += mol->getNBends();
179        nTorsions_ += mol->getNTorsions();
180 +      nInversions_ += mol->getNInversions();
181        nRigidBodies_ += mol->getNRigidBodies();
182        nIntegrableObjects_ += mol->getNIntegrableObjects();
183        nCutoffGroups_ += mol->getNCutoffGroups();
184        nConstraints_ += mol->getNConstraintPairs();
185 <
186 <      addExcludePairs(mol);
187 <        
185 >      
186 >      addInteractionPairs(mol);
187 >      
188        return true;
189      } else {
190        return false;
191      }
192    }
193 <
193 >  
194    bool SimInfo::removeMolecule(Molecule* mol) {
195      MoleculeIterator i;
196      i = molecules_.find(mol->getGlobalIndex());
# Line 219 | Line 203 | namespace oopse {
203        nBonds_ -= mol->getNBonds();
204        nBends_ -= mol->getNBends();
205        nTorsions_ -= mol->getNTorsions();
206 +      nInversions_ -= mol->getNInversions();
207        nRigidBodies_ -= mol->getNRigidBodies();
208        nIntegrableObjects_ -= mol->getNIntegrableObjects();
209        nCutoffGroups_ -= mol->getNCutoffGroups();
210        nConstraints_ -= mol->getNConstraintPairs();
211  
212 <      removeExcludePairs(mol);
212 >      removeInteractionPairs(mol);
213        molecules_.erase(mol->getGlobalIndex());
214  
215        delete mol;
# Line 233 | Line 218 | namespace oopse {
218      } else {
219        return false;
220      }
236
237
221    }    
222  
223          
# Line 250 | Line 233 | namespace oopse {
233  
234  
235    void SimInfo::calcNdf() {
236 <    int ndf_local;
236 >    int ndf_local, nfq_local;
237      MoleculeIterator i;
238 <    std::vector<StuntDouble*>::iterator j;
238 >    vector<StuntDouble*>::iterator j;
239 >    vector<Atom*>::iterator k;
240 >
241      Molecule* mol;
242 <    StuntDouble* integrableObject;
242 >    StuntDouble* sd;
243 >    Atom* atom;
244  
245      ndf_local = 0;
246 +    nfq_local = 0;
247      
248      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
262      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263           integrableObject = mol->nextIntegrableObject(j)) {
249  
250 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
251 +           sd = mol->nextIntegrableObject(j)) {
252 +
253          ndf_local += 3;
254  
255 <        if (integrableObject->isDirectional()) {
256 <          if (integrableObject->isLinear()) {
255 >        if (sd->isDirectional()) {
256 >          if (sd->isLinear()) {
257              ndf_local += 2;
258            } else {
259              ndf_local += 3;
260            }
261          }
274            
262        }
263 +
264 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
265 +           atom = mol->nextFluctuatingCharge(k)) {
266 +        if (atom->isFluctuatingCharge()) {
267 +          nfq_local++;
268 +        }
269 +      }
270      }
271      
272 +    ndfLocal_ = ndf_local;
273 +
274      // n_constraints is local, so subtract them on each processor
275      ndf_local -= nConstraints_;
276  
277   #ifdef IS_MPI
278 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
278 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
279 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
280 >                              MPI::INT, MPI::SUM);
281   #else
282      ndf_ = ndf_local;
283 +    nGlobalFluctuatingCharges_ = nfq_local;
284   #endif
285  
286      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 292 | Line 291 | namespace oopse {
291  
292    int SimInfo::getFdf() {
293   #ifdef IS_MPI
294 <    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
294 >    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
295   #else
296      fdf_ = fdf_local;
297   #endif
298      return fdf_;
299    }
300 +  
301 +  unsigned int SimInfo::getNLocalCutoffGroups(){
302 +    int nLocalCutoffAtoms = 0;
303 +    Molecule* mol;
304 +    MoleculeIterator mi;
305 +    CutoffGroup* cg;
306 +    Molecule::CutoffGroupIterator ci;
307      
308 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
309 +      
310 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
311 +           cg = mol->nextCutoffGroup(ci)) {
312 +        nLocalCutoffAtoms += cg->getNumAtom();
313 +        
314 +      }        
315 +    }
316 +    
317 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
318 +  }
319 +    
320    void SimInfo::calcNdfRaw() {
321      int ndfRaw_local;
322  
323      MoleculeIterator i;
324 <    std::vector<StuntDouble*>::iterator j;
324 >    vector<StuntDouble*>::iterator j;
325      Molecule* mol;
326 <    StuntDouble* integrableObject;
326 >    StuntDouble* sd;
327  
328      // Raw degrees of freedom that we have to set
329      ndfRaw_local = 0;
330      
331      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
314      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
315           integrableObject = mol->nextIntegrableObject(j)) {
332  
333 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
334 +           sd = mol->nextIntegrableObject(j)) {
335 +
336          ndfRaw_local += 3;
337  
338 <        if (integrableObject->isDirectional()) {
339 <          if (integrableObject->isLinear()) {
338 >        if (sd->isDirectional()) {
339 >          if (sd->isLinear()) {
340              ndfRaw_local += 2;
341            } else {
342              ndfRaw_local += 3;
# Line 328 | Line 347 | namespace oopse {
347      }
348      
349   #ifdef IS_MPI
350 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
350 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
351   #else
352      ndfRaw_ = ndfRaw_local;
353   #endif
# Line 341 | Line 360 | namespace oopse {
360  
361  
362   #ifdef IS_MPI
363 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
363 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
364 >                              MPI::INT, MPI::SUM);
365   #else
366      ndfTrans_ = ndfTrans_local;
367   #endif
# Line 350 | Line 370 | namespace oopse {
370  
371    }
372  
373 <  void SimInfo::addExcludePairs(Molecule* mol) {
374 <    std::vector<Bond*>::iterator bondIter;
375 <    std::vector<Bend*>::iterator bendIter;
376 <    std::vector<Torsion*>::iterator torsionIter;
373 >  void SimInfo::addInteractionPairs(Molecule* mol) {
374 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
375 >    vector<Atom*>::iterator atomIter;
376 >    vector<Bond*>::iterator bondIter;
377 >    vector<Bend*>::iterator bendIter;
378 >    vector<Torsion*>::iterator torsionIter;
379 >    vector<Inversion*>::iterator inversionIter;
380 >    Atom* atom;
381      Bond* bond;
382      Bend* bend;
383      Torsion* torsion;
384 +    Inversion* inversion;
385      int a;
386      int b;
387      int c;
388      int d;
389  
390 <    std::map<int, std::set<int> > atomGroups;
390 >    // atomGroups can be used to add special interaction maps between
391 >    // groups of atoms that are in two separate rigid bodies.
392 >    // However, most site-site interactions between two rigid bodies
393 >    // are probably not special, just the ones between the physically
394 >    // bonded atoms.  Interactions *within* a single rigid body should
395 >    // always be excluded.  These are done at the bottom of this
396 >    // function.
397  
398 +    map<int, set<int> > atomGroups;
399      Molecule::RigidBodyIterator rbIter;
400      RigidBody* rb;
401      Molecule::IntegrableObjectIterator ii;
402 <    StuntDouble* integrableObject;
402 >    StuntDouble* sd;
403      
404 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
405 <           integrableObject = mol->nextIntegrableObject(ii)) {
406 <
407 <      if (integrableObject->isRigidBody()) {
408 <          rb = static_cast<RigidBody*>(integrableObject);
409 <          std::vector<Atom*> atoms = rb->getAtoms();
410 <          std::set<int> rigidAtoms;
411 <          for (int i = 0; i < atoms.size(); ++i) {
412 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
413 <          }
414 <          for (int i = 0; i < atoms.size(); ++i) {
415 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
416 <          }      
404 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
405 >         sd = mol->nextIntegrableObject(ii)) {
406 >      
407 >      if (sd->isRigidBody()) {
408 >        rb = static_cast<RigidBody*>(sd);
409 >        vector<Atom*> atoms = rb->getAtoms();
410 >        set<int> rigidAtoms;
411 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
412 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
413 >        }
414 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
415 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
416 >        }      
417        } else {
418 <        std::set<int> oneAtomSet;
419 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
420 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
418 >        set<int> oneAtomSet;
419 >        oneAtomSet.insert(sd->getGlobalIndex());
420 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
421        }
422      }  
423  
424 <    
425 <    
426 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
424 >          
425 >    for (bond= mol->beginBond(bondIter); bond != NULL;
426 >         bond = mol->nextBond(bondIter)) {
427 >
428        a = bond->getAtomA()->getGlobalIndex();
429 <      b = bond->getAtomB()->getGlobalIndex();        
430 <      exclude_.addPair(a, b);
429 >      b = bond->getAtomB()->getGlobalIndex();  
430 >
431 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
432 >        oneTwoInteractions_.addPair(a, b);
433 >      } else {
434 >        excludedInteractions_.addPair(a, b);
435 >      }
436      }
437  
438 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
438 >    for (bend= mol->beginBend(bendIter); bend != NULL;
439 >         bend = mol->nextBend(bendIter)) {
440 >
441        a = bend->getAtomA()->getGlobalIndex();
442        b = bend->getAtomB()->getGlobalIndex();        
443        c = bend->getAtomC()->getGlobalIndex();
404      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
405      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
406      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
407
408      exclude_.addPairs(rigidSetA, rigidSetB);
409      exclude_.addPairs(rigidSetA, rigidSetC);
410      exclude_.addPairs(rigidSetB, rigidSetC);
444        
445 <      //exclude_.addPair(a, b);
446 <      //exclude_.addPair(a, c);
447 <      //exclude_.addPair(b, c);        
445 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
446 >        oneTwoInteractions_.addPair(a, b);      
447 >        oneTwoInteractions_.addPair(b, c);
448 >      } else {
449 >        excludedInteractions_.addPair(a, b);
450 >        excludedInteractions_.addPair(b, c);
451 >      }
452 >
453 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
454 >        oneThreeInteractions_.addPair(a, c);      
455 >      } else {
456 >        excludedInteractions_.addPair(a, c);
457 >      }
458      }
459  
460 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
460 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
461 >         torsion = mol->nextTorsion(torsionIter)) {
462 >
463        a = torsion->getAtomA()->getGlobalIndex();
464        b = torsion->getAtomB()->getGlobalIndex();        
465        c = torsion->getAtomC()->getGlobalIndex();        
466 <      d = torsion->getAtomD()->getGlobalIndex();        
422 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
423 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
424 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
425 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
466 >      d = torsion->getAtomD()->getGlobalIndex();      
467  
468 <      exclude_.addPairs(rigidSetA, rigidSetB);
469 <      exclude_.addPairs(rigidSetA, rigidSetC);
470 <      exclude_.addPairs(rigidSetA, rigidSetD);
471 <      exclude_.addPairs(rigidSetB, rigidSetC);
472 <      exclude_.addPairs(rigidSetB, rigidSetD);
473 <      exclude_.addPairs(rigidSetC, rigidSetD);
468 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
469 >        oneTwoInteractions_.addPair(a, b);      
470 >        oneTwoInteractions_.addPair(b, c);
471 >        oneTwoInteractions_.addPair(c, d);
472 >      } else {
473 >        excludedInteractions_.addPair(a, b);
474 >        excludedInteractions_.addPair(b, c);
475 >        excludedInteractions_.addPair(c, d);
476 >      }
477  
478 <      /*
479 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
480 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
481 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
482 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
483 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
484 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
485 <        
486 <      
487 <      exclude_.addPair(a, b);
488 <      exclude_.addPair(a, c);
489 <      exclude_.addPair(a, d);
490 <      exclude_.addPair(b, c);
447 <      exclude_.addPair(b, d);
448 <      exclude_.addPair(c, d);        
449 <      */
478 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
479 >        oneThreeInteractions_.addPair(a, c);      
480 >        oneThreeInteractions_.addPair(b, d);      
481 >      } else {
482 >        excludedInteractions_.addPair(a, c);
483 >        excludedInteractions_.addPair(b, d);
484 >      }
485 >
486 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
487 >        oneFourInteractions_.addPair(a, d);      
488 >      } else {
489 >        excludedInteractions_.addPair(a, d);
490 >      }
491      }
492  
493 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
494 <      std::vector<Atom*> atoms = rb->getAtoms();
495 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
496 <        for (int j = i + 1; j < atoms.size(); ++j) {
493 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
494 >         inversion = mol->nextInversion(inversionIter)) {
495 >
496 >      a = inversion->getAtomA()->getGlobalIndex();
497 >      b = inversion->getAtomB()->getGlobalIndex();        
498 >      c = inversion->getAtomC()->getGlobalIndex();        
499 >      d = inversion->getAtomD()->getGlobalIndex();        
500 >
501 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
502 >        oneTwoInteractions_.addPair(a, b);      
503 >        oneTwoInteractions_.addPair(a, c);
504 >        oneTwoInteractions_.addPair(a, d);
505 >      } else {
506 >        excludedInteractions_.addPair(a, b);
507 >        excludedInteractions_.addPair(a, c);
508 >        excludedInteractions_.addPair(a, d);
509 >      }
510 >
511 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
512 >        oneThreeInteractions_.addPair(b, c);    
513 >        oneThreeInteractions_.addPair(b, d);    
514 >        oneThreeInteractions_.addPair(c, d);      
515 >      } else {
516 >        excludedInteractions_.addPair(b, c);
517 >        excludedInteractions_.addPair(b, d);
518 >        excludedInteractions_.addPair(c, d);
519 >      }
520 >    }
521 >
522 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
523 >         rb = mol->nextRigidBody(rbIter)) {
524 >      vector<Atom*> atoms = rb->getAtoms();
525 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
526 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
527            a = atoms[i]->getGlobalIndex();
528            b = atoms[j]->getGlobalIndex();
529 <          exclude_.addPair(a, b);
529 >          excludedInteractions_.addPair(a, b);
530          }
531        }
532      }        
533  
534    }
535  
536 <  void SimInfo::removeExcludePairs(Molecule* mol) {
537 <    std::vector<Bond*>::iterator bondIter;
538 <    std::vector<Bend*>::iterator bendIter;
539 <    std::vector<Torsion*>::iterator torsionIter;
536 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
537 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
538 >    vector<Bond*>::iterator bondIter;
539 >    vector<Bend*>::iterator bendIter;
540 >    vector<Torsion*>::iterator torsionIter;
541 >    vector<Inversion*>::iterator inversionIter;
542      Bond* bond;
543      Bend* bend;
544      Torsion* torsion;
545 +    Inversion* inversion;
546      int a;
547      int b;
548      int c;
549      int d;
550  
551 <    std::map<int, std::set<int> > atomGroups;
478 <
551 >    map<int, set<int> > atomGroups;
552      Molecule::RigidBodyIterator rbIter;
553      RigidBody* rb;
554      Molecule::IntegrableObjectIterator ii;
555 <    StuntDouble* integrableObject;
555 >    StuntDouble* sd;
556      
557 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
558 <           integrableObject = mol->nextIntegrableObject(ii)) {
559 <
560 <      if (integrableObject->isRigidBody()) {
561 <          rb = static_cast<RigidBody*>(integrableObject);
562 <          std::vector<Atom*> atoms = rb->getAtoms();
563 <          std::set<int> rigidAtoms;
564 <          for (int i = 0; i < atoms.size(); ++i) {
565 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
566 <          }
567 <          for (int i = 0; i < atoms.size(); ++i) {
568 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
569 <          }      
557 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
558 >         sd = mol->nextIntegrableObject(ii)) {
559 >      
560 >      if (sd->isRigidBody()) {
561 >        rb = static_cast<RigidBody*>(sd);
562 >        vector<Atom*> atoms = rb->getAtoms();
563 >        set<int> rigidAtoms;
564 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
565 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
566 >        }
567 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
568 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
569 >        }      
570        } else {
571 <        std::set<int> oneAtomSet;
572 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
573 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
571 >        set<int> oneAtomSet;
572 >        oneAtomSet.insert(sd->getGlobalIndex());
573 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
574        }
575      }  
576  
577 <    
578 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
577 >    for (bond= mol->beginBond(bondIter); bond != NULL;
578 >         bond = mol->nextBond(bondIter)) {
579 >      
580        a = bond->getAtomA()->getGlobalIndex();
581 <      b = bond->getAtomB()->getGlobalIndex();        
582 <      exclude_.removePair(a, b);
581 >      b = bond->getAtomB()->getGlobalIndex();  
582 >    
583 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
584 >        oneTwoInteractions_.removePair(a, b);
585 >      } else {
586 >        excludedInteractions_.removePair(a, b);
587 >      }
588      }
589  
590 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
590 >    for (bend= mol->beginBend(bendIter); bend != NULL;
591 >         bend = mol->nextBend(bendIter)) {
592 >
593        a = bend->getAtomA()->getGlobalIndex();
594        b = bend->getAtomB()->getGlobalIndex();        
595        c = bend->getAtomC()->getGlobalIndex();
515
516      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
517      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
518      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
519
520      exclude_.removePairs(rigidSetA, rigidSetB);
521      exclude_.removePairs(rigidSetA, rigidSetC);
522      exclude_.removePairs(rigidSetB, rigidSetC);
596        
597 <      //exclude_.removePair(a, b);
598 <      //exclude_.removePair(a, c);
599 <      //exclude_.removePair(b, c);        
597 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
598 >        oneTwoInteractions_.removePair(a, b);      
599 >        oneTwoInteractions_.removePair(b, c);
600 >      } else {
601 >        excludedInteractions_.removePair(a, b);
602 >        excludedInteractions_.removePair(b, c);
603 >      }
604 >
605 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
606 >        oneThreeInteractions_.removePair(a, c);      
607 >      } else {
608 >        excludedInteractions_.removePair(a, c);
609 >      }
610      }
611  
612 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
612 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
613 >         torsion = mol->nextTorsion(torsionIter)) {
614 >
615        a = torsion->getAtomA()->getGlobalIndex();
616        b = torsion->getAtomB()->getGlobalIndex();        
617        c = torsion->getAtomC()->getGlobalIndex();        
618 <      d = torsion->getAtomD()->getGlobalIndex();        
618 >      d = torsion->getAtomD()->getGlobalIndex();      
619 >  
620 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
621 >        oneTwoInteractions_.removePair(a, b);      
622 >        oneTwoInteractions_.removePair(b, c);
623 >        oneTwoInteractions_.removePair(c, d);
624 >      } else {
625 >        excludedInteractions_.removePair(a, b);
626 >        excludedInteractions_.removePair(b, c);
627 >        excludedInteractions_.removePair(c, d);
628 >      }
629  
630 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
631 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
632 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
633 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
630 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
631 >        oneThreeInteractions_.removePair(a, c);      
632 >        oneThreeInteractions_.removePair(b, d);      
633 >      } else {
634 >        excludedInteractions_.removePair(a, c);
635 >        excludedInteractions_.removePair(b, d);
636 >      }
637  
638 <      exclude_.removePairs(rigidSetA, rigidSetB);
639 <      exclude_.removePairs(rigidSetA, rigidSetC);
640 <      exclude_.removePairs(rigidSetA, rigidSetD);
641 <      exclude_.removePairs(rigidSetB, rigidSetC);
642 <      exclude_.removePairs(rigidSetB, rigidSetD);
643 <      exclude_.removePairs(rigidSetC, rigidSetD);
638 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
639 >        oneFourInteractions_.removePair(a, d);      
640 >      } else {
641 >        excludedInteractions_.removePair(a, d);
642 >      }
643 >    }
644  
645 <      /*
646 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
549 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
550 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
551 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
552 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
553 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
645 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
646 >         inversion = mol->nextInversion(inversionIter)) {
647  
648 <      
649 <      exclude_.removePair(a, b);
650 <      exclude_.removePair(a, c);
651 <      exclude_.removePair(a, d);
652 <      exclude_.removePair(b, c);
653 <      exclude_.removePair(b, d);
654 <      exclude_.removePair(c, d);        
655 <      */
648 >      a = inversion->getAtomA()->getGlobalIndex();
649 >      b = inversion->getAtomB()->getGlobalIndex();        
650 >      c = inversion->getAtomC()->getGlobalIndex();        
651 >      d = inversion->getAtomD()->getGlobalIndex();        
652 >
653 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
654 >        oneTwoInteractions_.removePair(a, b);      
655 >        oneTwoInteractions_.removePair(a, c);
656 >        oneTwoInteractions_.removePair(a, d);
657 >      } else {
658 >        excludedInteractions_.removePair(a, b);
659 >        excludedInteractions_.removePair(a, c);
660 >        excludedInteractions_.removePair(a, d);
661 >      }
662 >
663 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
664 >        oneThreeInteractions_.removePair(b, c);    
665 >        oneThreeInteractions_.removePair(b, d);    
666 >        oneThreeInteractions_.removePair(c, d);      
667 >      } else {
668 >        excludedInteractions_.removePair(b, c);
669 >        excludedInteractions_.removePair(b, d);
670 >        excludedInteractions_.removePair(c, d);
671 >      }
672      }
673  
674 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
675 <      std::vector<Atom*> atoms = rb->getAtoms();
676 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
677 <        for (int j = i + 1; j < atoms.size(); ++j) {
674 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
675 >         rb = mol->nextRigidBody(rbIter)) {
676 >      vector<Atom*> atoms = rb->getAtoms();
677 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
678 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
679            a = atoms[i]->getGlobalIndex();
680            b = atoms[j]->getGlobalIndex();
681 <          exclude_.removePair(a, b);
681 >          excludedInteractions_.removePair(a, b);
682          }
683        }
684      }        
685 <
685 >    
686    }
687 <
688 <
687 >  
688 >  
689    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
690      int curStampId;
691 <
691 >    
692      //index from 0
693      curStampId = moleculeStamps_.size();
694  
# Line 586 | Line 696 | namespace oopse {
696      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
697    }
698  
589  void SimInfo::update() {
699  
700 <    setupSimType();
701 <
702 < #ifdef IS_MPI
703 <    setupFortranParallel();
704 < #endif
705 <
706 <    setupFortranSim();
707 <
708 <    //setup fortran force field
600 <    /** @deprecate */    
601 <    int isError = 0;
602 <    
603 <    setupElectrostaticSummationMethod( isError );
604 <    setupSwitchingFunction();
605 <    setupAccumulateBoxDipole();
606 <
607 <    if(isError){
608 <      sprintf( painCave.errMsg,
609 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
610 <      painCave.isFatal = 1;
611 <      simError();
612 <    }
613 <  
614 <    
615 <    setupCutoff();
616 <
700 >  /**
701 >   * update
702 >   *
703 >   *  Performs the global checks and variable settings after the
704 >   *  objects have been created.
705 >   *
706 >   */
707 >  void SimInfo::update() {  
708 >    setupSimVariables();
709      calcNdf();
710      calcNdfRaw();
711      calcNdfTrans();
620
621    fortranInitialized_ = true;
712    }
713 <
714 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
713 >  
714 >  /**
715 >   * getSimulatedAtomTypes
716 >   *
717 >   * Returns an STL set of AtomType* that are actually present in this
718 >   * simulation.  Must query all processors to assemble this information.
719 >   *
720 >   */
721 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
722      SimInfo::MoleculeIterator mi;
723      Molecule* mol;
724      Molecule::AtomIterator ai;
725      Atom* atom;
726 <    std::set<AtomType*> atomTypes;
727 <
726 >    set<AtomType*> atomTypes;
727 >    
728      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
729 <
730 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
729 >      for(atom = mol->beginAtom(ai); atom != NULL;
730 >          atom = mol->nextAtom(ai)) {
731          atomTypes.insert(atom->getAtomType());
732 <      }
733 <        
734 <    }
732 >      }      
733 >    }    
734 >    
735 > #ifdef IS_MPI
736  
737 <    return atomTypes;        
738 <  }
641 <
642 <  void SimInfo::setupSimType() {
643 <    std::set<AtomType*>::iterator i;
644 <    std::set<AtomType*> atomTypes;
645 <    atomTypes = getUniqueAtomTypes();
737 >    // loop over the found atom types on this processor, and add their
738 >    // numerical idents to a vector:
739      
740 <    int useLennardJones = 0;
741 <    int useElectrostatic = 0;
742 <    int useEAM = 0;
743 <    int useSC = 0;
651 <    int useCharge = 0;
652 <    int useDirectional = 0;
653 <    int useDipole = 0;
654 <    int useGayBerne = 0;
655 <    int useSticky = 0;
656 <    int useStickyPower = 0;
657 <    int useShape = 0;
658 <    int useFLARB = 0; //it is not in AtomType yet
659 <    int useDirectionalAtom = 0;    
660 <    int useElectrostatics = 0;
661 <    //usePBC and useRF are from simParams
662 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
663 <    int useRF;
664 <    int useSF;
665 <    int useSP;
666 <    int useBoxDipole;
667 <    std::string myMethod;
740 >    vector<int> foundTypes;
741 >    set<AtomType*>::iterator i;
742 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
743 >      foundTypes.push_back( (*i)->getIdent() );
744  
745 <    // set the useRF logical
746 <    useRF = 0;
671 <    useSF = 0;
745 >    // count_local holds the number of found types on this processor
746 >    int count_local = foundTypes.size();
747  
748 +    int nproc = MPI::COMM_WORLD.Get_size();
749  
750 <    if (simParams_->haveElectrostaticSummationMethod()) {
751 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
752 <      toUpper(myMethod);
753 <      if (myMethod == "REACTION_FIELD"){
754 <        useRF=1;
755 <      } else if (myMethod == "SHIFTED_FORCE"){
756 <        useSF = 1;
757 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
758 <        useSP = 1;
759 <      }
750 >    // we need arrays to hold the counts and displacement vectors for
751 >    // all processors
752 >    vector<int> counts(nproc, 0);
753 >    vector<int> disps(nproc, 0);
754 >
755 >    // fill the counts array
756 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
757 >                              1, MPI::INT);
758 >  
759 >    // use the processor counts to compute the displacement array
760 >    disps[0] = 0;    
761 >    int totalCount = counts[0];
762 >    for (int iproc = 1; iproc < nproc; iproc++) {
763 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
764 >      totalCount += counts[iproc];
765      }
766 +
767 +    // we need a (possibly redundant) set of all found types:
768 +    vector<int> ftGlobal(totalCount);
769      
770 <    if (simParams_->haveAccumulateBoxDipole())
771 <      if (simParams_->getAccumulateBoxDipole())
772 <        useBoxDipole = 1;
770 >    // now spray out the foundTypes to all the other processors:    
771 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
772 >                               &ftGlobal[0], &counts[0], &disps[0],
773 >                               MPI::INT);
774  
775 <    //loop over all of the atom types
691 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
692 <      useLennardJones |= (*i)->isLennardJones();
693 <      useElectrostatic |= (*i)->isElectrostatic();
694 <      useEAM |= (*i)->isEAM();
695 <      useSC |= (*i)->isSC();
696 <      useCharge |= (*i)->isCharge();
697 <      useDirectional |= (*i)->isDirectional();
698 <      useDipole |= (*i)->isDipole();
699 <      useGayBerne |= (*i)->isGayBerne();
700 <      useSticky |= (*i)->isSticky();
701 <      useStickyPower |= (*i)->isStickyPower();
702 <      useShape |= (*i)->isShape();
703 <    }
775 >    vector<int>::iterator j;
776  
777 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
778 <      useDirectionalAtom = 1;
779 <    }
777 >    // foundIdents is a stl set, so inserting an already found ident
778 >    // will have no effect.
779 >    set<int> foundIdents;
780  
781 <    if (useCharge || useDipole) {
782 <      useElectrostatics = 1;
783 <    }
781 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
782 >      foundIdents.insert((*j));
783 >    
784 >    // now iterate over the foundIdents and get the actual atom types
785 >    // that correspond to these:
786 >    set<int>::iterator it;
787 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
788 >      atomTypes.insert( forceField_->getAtomType((*it)) );
789 >
790 > #endif
791  
792 < #ifdef IS_MPI    
793 <    int temp;
792 >    return atomTypes;        
793 >  }
794  
716    temp = usePBC;
717    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
795  
796 <    temp = useDirectionalAtom;
797 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
796 >  int getGlobalCountOfType(AtomType* atype) {
797 >    /*
798 >    set<AtomType*> atypes = getSimulatedAtomTypes();
799 >    map<AtomType*, int> counts_;
800  
801 <    temp = useLennardJones;
802 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
801 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
802 >      for(atom = mol->beginAtom(ai); atom != NULL;
803 >          atom = mol->nextAtom(ai)) {
804 >        atom->getAtomType();
805 >      }      
806 >    }    
807 >    */
808 >    return 0;
809 >  }
810  
811 <    temp = useElectrostatics;
812 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813 <
814 <    temp = useCharge;
815 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
816 <
817 <    temp = useDipole;
818 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
819 <
734 <    temp = useSticky;
735 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
736 <
737 <    temp = useStickyPower;
738 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
811 >  void SimInfo::setupSimVariables() {
812 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
813 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
814 >    // parameter is true
815 >    calcBoxDipole_ = false;
816 >    if ( simParams_->haveAccumulateBoxDipole() )
817 >      if ( simParams_->getAccumulateBoxDipole() ) {
818 >        calcBoxDipole_ = true;      
819 >      }
820      
821 <    temp = useGayBerne;
822 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
821 >    set<AtomType*>::iterator i;
822 >    set<AtomType*> atomTypes;
823 >    atomTypes = getSimulatedAtomTypes();    
824 >    bool usesElectrostatic = false;
825 >    bool usesMetallic = false;
826 >    bool usesDirectional = false;
827 >    bool usesFluctuatingCharges =  false;
828 >    //loop over all of the atom types
829 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
830 >      usesElectrostatic |= (*i)->isElectrostatic();
831 >      usesMetallic |= (*i)->isMetal();
832 >      usesDirectional |= (*i)->isDirectional();
833 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
834 >    }
835  
836 <    temp = useEAM;
837 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
838 <
839 <    temp = useSC;
840 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
836 > #ifdef IS_MPI
837 >    bool temp;
838 >    temp = usesDirectional;
839 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
840 >                              MPI::LOR);
841 >        
842 >    temp = usesMetallic;
843 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
844 >                              MPI::LOR);
845      
846 <    temp = useShape;
847 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
846 >    temp = usesElectrostatic;
847 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
848 >                              MPI::LOR);
849  
850 <    temp = useFLARB;
851 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
850 >    temp = usesFluctuatingCharges;
851 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
852 >                              MPI::LOR);
853 > #else
854  
855 <    temp = useRF;
856 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
855 >    usesDirectionalAtoms_ = usesDirectional;
856 >    usesMetallicAtoms_ = usesMetallic;
857 >    usesElectrostaticAtoms_ = usesElectrostatic;
858 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
859  
860 <    temp = useSF;
861 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
860 > #endif
861 >    
862 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
863 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
864 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
865 >  }
866  
761    temp = useSP;
762    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
867  
868 <    temp = useBoxDipole;
869 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
868 >  vector<int> SimInfo::getGlobalAtomIndices() {
869 >    SimInfo::MoleculeIterator mi;
870 >    Molecule* mol;
871 >    Molecule::AtomIterator ai;
872 >    Atom* atom;
873  
874 < #endif
874 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
875 >    
876 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
877 >      
878 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
879 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
880 >      }
881 >    }
882 >    return GlobalAtomIndices;
883 >  }
884  
769    fInfo_.SIM_uses_PBC = usePBC;    
770    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
771    fInfo_.SIM_uses_LennardJones = useLennardJones;
772    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
773    fInfo_.SIM_uses_Charges = useCharge;
774    fInfo_.SIM_uses_Dipoles = useDipole;
775    fInfo_.SIM_uses_Sticky = useSticky;
776    fInfo_.SIM_uses_StickyPower = useStickyPower;
777    fInfo_.SIM_uses_GayBerne = useGayBerne;
778    fInfo_.SIM_uses_EAM = useEAM;
779    fInfo_.SIM_uses_SC = useSC;
780    fInfo_.SIM_uses_Shapes = useShape;
781    fInfo_.SIM_uses_FLARB = useFLARB;
782    fInfo_.SIM_uses_RF = useRF;
783    fInfo_.SIM_uses_SF = useSF;
784    fInfo_.SIM_uses_SP = useSP;
785    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
885  
886 <    if( myMethod == "REACTION_FIELD") {
886 >  vector<int> SimInfo::getGlobalGroupIndices() {
887 >    SimInfo::MoleculeIterator mi;
888 >    Molecule* mol;
889 >    Molecule::CutoffGroupIterator ci;
890 >    CutoffGroup* cg;
891 >
892 >    vector<int> GlobalGroupIndices;
893 >    
894 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
895        
896 <      if (simParams_->haveDielectric()) {
897 <        fInfo_.dielect = simParams_->getDielectric();
898 <      } else {
899 <        sprintf(painCave.errMsg,
900 <                "SimSetup Error: No Dielectric constant was set.\n"
901 <                "\tYou are trying to use Reaction Field without"
795 <                "\tsetting a dielectric constant!\n");
796 <        painCave.isFatal = 1;
797 <        simError();
798 <      }      
896 >      //local index of cutoff group is trivial, it only depends on the
897 >      //order of travesing
898 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
899 >           cg = mol->nextCutoffGroup(ci)) {
900 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
901 >      }        
902      }
903 <
903 >    return GlobalGroupIndices;
904    }
905  
803  void SimInfo::setupFortranSim() {
804    int isError;
805    int nExclude;
806    std::vector<int> fortranGlobalGroupMembership;
807    
808    nExclude = exclude_.getSize();
809    isError = 0;
906  
907 <    //globalGroupMembership_ is filled by SimCreator    
812 <    for (int i = 0; i < nGlobalAtoms_; i++) {
813 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
814 <    }
907 >  void SimInfo::prepareTopology() {
908  
909      //calculate mass ratio of cutoff group
817    std::vector<RealType> mfact;
910      SimInfo::MoleculeIterator mi;
911      Molecule* mol;
912      Molecule::CutoffGroupIterator ci;
# Line 823 | Line 915 | namespace oopse {
915      Atom* atom;
916      RealType totalMass;
917  
918 <    //to avoid memory reallocation, reserve enough space for mfact
919 <    mfact.reserve(getNCutoffGroups());
918 >    /**
919 >     * The mass factor is the relative mass of an atom to the total
920 >     * mass of the cutoff group it belongs to.  By default, all atoms
921 >     * are their own cutoff groups, and therefore have mass factors of
922 >     * 1.  We need some special handling for massless atoms, which
923 >     * will be treated as carrying the entire mass of the cutoff
924 >     * group.
925 >     */
926 >    massFactors_.clear();
927 >    massFactors_.resize(getNAtoms(), 1.0);
928      
929      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
930 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
930 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
931 >           cg = mol->nextCutoffGroup(ci)) {
932  
933          totalMass = cg->getMass();
934          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
935            // Check for massless groups - set mfact to 1 if true
936 <          if (totalMass != 0)
937 <            mfact.push_back(atom->getMass()/totalMass);
936 >          if (totalMass != 0)
937 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
938            else
939 <            mfact.push_back( 1.0 );
939 >            massFactors_[atom->getLocalIndex()] = 1.0;
940          }
840
941        }      
942      }
943  
944 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
845 <    std::vector<int> identArray;
944 >    // Build the identArray_ and regions_
945  
946 <    //to avoid memory reallocation, reserve enough space identArray
947 <    identArray.reserve(getNAtoms());
948 <    
949 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
946 >    identArray_.clear();
947 >    identArray_.reserve(getNAtoms());  
948 >    regions_.clear();
949 >    regions_.reserve(getNAtoms());
950 >
951 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
952 >      int reg = mol->getRegion();      
953        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
954 <        identArray.push_back(atom->getIdent());
954 >        identArray_.push_back(atom->getIdent());
955 >        regions_.push_back(reg);
956        }
957      }    
958 <
959 <    //fill molMembershipArray
857 <    //molMembershipArray is filled by SimCreator    
858 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
859 <    for (int i = 0; i < nGlobalAtoms_; i++) {
860 <      molMembershipArray[i] = globalMolMembership_[i] + 1;
861 <    }
862 <    
863 <    //setup fortran simulation
864 <    int nGlobalExcludes = 0;
865 <    int* globalExcludes = NULL;
866 <    int* excludeList = exclude_.getExcludeList();
867 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
868 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
869 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
870 <
871 <    if( isError ){
872 <
873 <      sprintf( painCave.errMsg,
874 <               "There was an error setting the simulation information in fortran.\n" );
875 <      painCave.isFatal = 1;
876 <      painCave.severity = OOPSE_ERROR;
877 <      simError();
878 <    }
879 <
880 < #ifdef IS_MPI
881 <    sprintf( checkPointMsg,
882 <             "succesfully sent the simulation information to fortran.\n");
883 <    MPIcheckPoint();
884 < #endif // is_mpi
885 <  }
886 <
887 <
888 < #ifdef IS_MPI
889 <  void SimInfo::setupFortranParallel() {
890 <    
891 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
892 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
893 <    std::vector<int> localToGlobalCutoffGroupIndex;
894 <    SimInfo::MoleculeIterator mi;
895 <    Molecule::AtomIterator ai;
896 <    Molecule::CutoffGroupIterator ci;
897 <    Molecule* mol;
898 <    Atom* atom;
899 <    CutoffGroup* cg;
900 <    mpiSimData parallelData;
901 <    int isError;
902 <
903 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
904 <
905 <      //local index(index in DataStorge) of atom is important
906 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
907 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
908 <      }
909 <
910 <      //local index of cutoff group is trivial, it only depends on the order of travesing
911 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
912 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
913 <      }        
914 <        
915 <    }
916 <
917 <    //fill up mpiSimData struct
918 <    parallelData.nMolGlobal = getNGlobalMolecules();
919 <    parallelData.nMolLocal = getNMolecules();
920 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
921 <    parallelData.nAtomsLocal = getNAtoms();
922 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
923 <    parallelData.nGroupsLocal = getNCutoffGroups();
924 <    parallelData.myNode = worldRank;
925 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
926 <
927 <    //pass mpiSimData struct and index arrays to fortran
928 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
929 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
930 <                    &localToGlobalCutoffGroupIndex[0], &isError);
931 <
932 <    if (isError) {
933 <      sprintf(painCave.errMsg,
934 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
935 <      painCave.isFatal = 1;
936 <      simError();
937 <    }
938 <
939 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
940 <    MPIcheckPoint();
941 <
942 <
943 <  }
944 <
945 < #endif
946 <
947 <  void SimInfo::setupCutoff() {          
948 <    
949 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
950 <
951 <    // Check the cutoff policy
952 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
953 <
954 <    std::string myPolicy;
955 <    if (forceFieldOptions_.haveCutoffPolicy()){
956 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
957 <    }else if (simParams_->haveCutoffPolicy()) {
958 <      myPolicy = simParams_->getCutoffPolicy();
959 <    }
960 <
961 <    if (!myPolicy.empty()){
962 <      toUpper(myPolicy);
963 <      if (myPolicy == "MIX") {
964 <        cp = MIX_CUTOFF_POLICY;
965 <      } else {
966 <        if (myPolicy == "MAX") {
967 <          cp = MAX_CUTOFF_POLICY;
968 <        } else {
969 <          if (myPolicy == "TRADITIONAL") {            
970 <            cp = TRADITIONAL_CUTOFF_POLICY;
971 <          } else {
972 <            // throw error        
973 <            sprintf( painCave.errMsg,
974 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
975 <            painCave.isFatal = 1;
976 <            simError();
977 <          }    
978 <        }          
979 <      }
980 <    }          
981 <    notifyFortranCutoffPolicy(&cp);
982 <
983 <    // Check the Skin Thickness for neighborlists
984 <    RealType skin;
985 <    if (simParams_->haveSkinThickness()) {
986 <      skin = simParams_->getSkinThickness();
987 <      notifyFortranSkinThickness(&skin);
988 <    }            
989 <        
990 <    // Check if the cutoff was set explicitly:
991 <    if (simParams_->haveCutoffRadius()) {
992 <      rcut_ = simParams_->getCutoffRadius();
993 <      if (simParams_->haveSwitchingRadius()) {
994 <        rsw_  = simParams_->getSwitchingRadius();
995 <      } else {
996 <        if (fInfo_.SIM_uses_Charges |
997 <            fInfo_.SIM_uses_Dipoles |
998 <            fInfo_.SIM_uses_RF) {
999 <          
1000 <          rsw_ = 0.85 * rcut_;
1001 <          sprintf(painCave.errMsg,
1002 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1003 <                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1004 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1005 <        painCave.isFatal = 0;
1006 <        simError();
1007 <        } else {
1008 <          rsw_ = rcut_;
1009 <          sprintf(painCave.errMsg,
1010 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1011 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1012 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1013 <          painCave.isFatal = 0;
1014 <          simError();
1015 <        }
1016 <      }
1017 <      
1018 <      notifyFortranCutoffs(&rcut_, &rsw_);
1019 <      
1020 <    } else {
1021 <      
1022 <      // For electrostatic atoms, we'll assume a large safe value:
1023 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1024 <        sprintf(painCave.errMsg,
1025 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1026 <                "\tOOPSE will use a default value of 15.0 angstroms"
1027 <                "\tfor the cutoffRadius.\n");
1028 <        painCave.isFatal = 0;
1029 <        simError();
1030 <        rcut_ = 15.0;
1031 <      
1032 <        if (simParams_->haveElectrostaticSummationMethod()) {
1033 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1034 <          toUpper(myMethod);
1035 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1036 <            if (simParams_->haveSwitchingRadius()){
1037 <              sprintf(painCave.errMsg,
1038 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1039 <                      "\teven though the electrostaticSummationMethod was\n"
1040 <                      "\tset to %s\n", myMethod.c_str());
1041 <              painCave.isFatal = 1;
1042 <              simError();            
1043 <            }
1044 <          }
1045 <        }
1046 <      
1047 <        if (simParams_->haveSwitchingRadius()){
1048 <          rsw_ = simParams_->getSwitchingRadius();
1049 <        } else {        
1050 <          sprintf(painCave.errMsg,
1051 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1052 <                  "\tOOPSE will use a default value of\n"
1053 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1054 <          painCave.isFatal = 0;
1055 <          simError();
1056 <          rsw_ = 0.85 * rcut_;
1057 <        }
1058 <        notifyFortranCutoffs(&rcut_, &rsw_);
1059 <      } else {
1060 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1061 <        // We'll punt and let fortran figure out the cutoffs later.
1062 <        
1063 <        notifyFortranYouAreOnYourOwn();
1064 <
1065 <      }
1066 <    }
958 >      
959 >    topologyDone_ = true;
960    }
961  
1069  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1070    
1071    int errorOut;
1072    int esm =  NONE;
1073    int sm = UNDAMPED;
1074    RealType alphaVal;
1075    RealType dielectric;
1076
1077    errorOut = isError;
1078    alphaVal = simParams_->getDampingAlpha();
1079    dielectric = simParams_->getDielectric();
1080
1081    if (simParams_->haveElectrostaticSummationMethod()) {
1082      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1083      toUpper(myMethod);
1084      if (myMethod == "NONE") {
1085        esm = NONE;
1086      } else {
1087        if (myMethod == "SWITCHING_FUNCTION") {
1088          esm = SWITCHING_FUNCTION;
1089        } else {
1090          if (myMethod == "SHIFTED_POTENTIAL") {
1091            esm = SHIFTED_POTENTIAL;
1092          } else {
1093            if (myMethod == "SHIFTED_FORCE") {            
1094              esm = SHIFTED_FORCE;
1095            } else {
1096              if (myMethod == "REACTION_FIELD") {            
1097                esm = REACTION_FIELD;
1098              } else {
1099                // throw error        
1100                sprintf( painCave.errMsg,
1101                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1102                         "\t(Input file specified %s .)\n"
1103                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1104                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1105                         "\t\"reaction_field\".\n", myMethod.c_str() );
1106                painCave.isFatal = 1;
1107                simError();
1108              }    
1109            }          
1110          }
1111        }
1112      }
1113    }
1114    
1115    if (simParams_->haveElectrostaticScreeningMethod()) {
1116      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1117      toUpper(myScreen);
1118      if (myScreen == "UNDAMPED") {
1119        sm = UNDAMPED;
1120      } else {
1121        if (myScreen == "DAMPED") {
1122          sm = DAMPED;
1123          if (!simParams_->haveDampingAlpha()) {
1124            //throw error
1125            sprintf( painCave.errMsg,
1126                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1127                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1128            painCave.isFatal = 0;
1129            simError();
1130          }
1131        } else {
1132          // throw error        
1133          sprintf( painCave.errMsg,
1134                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1135                   "\t(Input file specified %s .)\n"
1136                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1137                   "or \"damped\".\n", myScreen.c_str() );
1138          painCave.isFatal = 1;
1139          simError();
1140        }
1141      }
1142    }
1143    
1144    // let's pass some summation method variables to fortran
1145    setElectrostaticSummationMethod( &esm );
1146    setFortranElectrostaticMethod( &esm );
1147    setScreeningMethod( &sm );
1148    setDampingAlpha( &alphaVal );
1149    setReactionFieldDielectric( &dielectric );
1150    initFortranFF( &errorOut );
1151  }
1152
1153  void SimInfo::setupSwitchingFunction() {    
1154    int ft = CUBIC;
1155
1156    if (simParams_->haveSwitchingFunctionType()) {
1157      std::string funcType = simParams_->getSwitchingFunctionType();
1158      toUpper(funcType);
1159      if (funcType == "CUBIC") {
1160        ft = CUBIC;
1161      } else {
1162        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1163          ft = FIFTH_ORDER_POLY;
1164        } else {
1165          // throw error        
1166          sprintf( painCave.errMsg,
1167                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1168          painCave.isFatal = 1;
1169          simError();
1170        }          
1171      }
1172    }
1173
1174    // send switching function notification to switcheroo
1175    setFunctionType(&ft);
1176
1177  }
1178
1179  void SimInfo::setupAccumulateBoxDipole() {    
1180
1181    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1182    if ( simParams_->haveAccumulateBoxDipole() )
1183      if ( simParams_->getAccumulateBoxDipole() ) {
1184        setAccumulateBoxDipole();
1185        calcBoxDipole_ = true;
1186      }
1187
1188  }
1189
962    void SimInfo::addProperty(GenericData* genData) {
963      properties_.addProperty(genData);  
964    }
965  
966 <  void SimInfo::removeProperty(const std::string& propName) {
966 >  void SimInfo::removeProperty(const string& propName) {
967      properties_.removeProperty(propName);  
968    }
969  
# Line 1199 | Line 971 | namespace oopse {
971      properties_.clearProperties();
972    }
973  
974 <  std::vector<std::string> SimInfo::getPropertyNames() {
974 >  vector<string> SimInfo::getPropertyNames() {
975      return properties_.getPropertyNames();  
976    }
977        
978 <  std::vector<GenericData*> SimInfo::getProperties() {
978 >  vector<GenericData*> SimInfo::getProperties() {
979      return properties_.getProperties();
980    }
981  
982 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
982 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
983      return properties_.getPropertyByName(propName);
984    }
985  
# Line 1221 | Line 993 | namespace oopse {
993      Molecule* mol;
994      RigidBody* rb;
995      Atom* atom;
996 +    CutoffGroup* cg;
997      SimInfo::MoleculeIterator mi;
998      Molecule::RigidBodyIterator rbIter;
999 <    Molecule::AtomIterator atomIter;;
999 >    Molecule::AtomIterator atomIter;
1000 >    Molecule::CutoffGroupIterator cgIter;
1001  
1002      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1003          
1004 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1004 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
1005 >           atom = mol->nextAtom(atomIter)) {
1006          atom->setSnapshotManager(sman_);
1007        }
1008          
1009 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1009 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1010 >           rb = mol->nextRigidBody(rbIter)) {
1011          rb->setSnapshotManager(sman_);
1012        }
1013 +
1014 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1015 +           cg = mol->nextCutoffGroup(cgIter)) {
1016 +        cg->setSnapshotManager(sman_);
1017 +      }
1018      }    
1019      
1020    }
1021  
1241  Vector3d SimInfo::getComVel(){
1242    SimInfo::MoleculeIterator i;
1243    Molecule* mol;
1022  
1023 <    Vector3d comVel(0.0);
1246 <    RealType totalMass = 0.0;
1247 <    
1248 <
1249 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1250 <      RealType mass = mol->getMass();
1251 <      totalMass += mass;
1252 <      comVel += mass * mol->getComVel();
1253 <    }  
1023 >  ostream& operator <<(ostream& o, SimInfo& info) {
1024  
1255 #ifdef IS_MPI
1256    RealType tmpMass = totalMass;
1257    Vector3d tmpComVel(comVel);    
1258    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1259    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1260 #endif
1261
1262    comVel /= totalMass;
1263
1264    return comVel;
1265  }
1266
1267  Vector3d SimInfo::getCom(){
1268    SimInfo::MoleculeIterator i;
1269    Molecule* mol;
1270
1271    Vector3d com(0.0);
1272    RealType totalMass = 0.0;
1273    
1274    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1275      RealType mass = mol->getMass();
1276      totalMass += mass;
1277      com += mass * mol->getCom();
1278    }  
1279
1280 #ifdef IS_MPI
1281    RealType tmpMass = totalMass;
1282    Vector3d tmpCom(com);    
1283    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1284    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1285 #endif
1286
1287    com /= totalMass;
1288
1289    return com;
1290
1291  }        
1292
1293  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1294
1025      return o;
1026    }
1027    
1028 <  
1029 <   /*
1030 <   Returns center of mass and center of mass velocity in one function call.
1031 <   */
1032 <  
1033 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1034 <      SimInfo::MoleculeIterator i;
1035 <      Molecule* mol;
1036 <      
1037 <    
1038 <      RealType totalMass = 0.0;
1039 <    
1028 >  
1029 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1030 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1031 >      sprintf(painCave.errMsg,
1032 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1033 >              "\tindex exceeds number of known objects!\n");
1034 >      painCave.isFatal = 1;
1035 >      simError();
1036 >      return NULL;
1037 >    } else
1038 >      return IOIndexToIntegrableObject.at(index);
1039 >  }
1040 >  
1041 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1042 >    IOIndexToIntegrableObject= v;
1043 >  }
1044  
1045 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1046 <         RealType mass = mol->getMass();
1313 <         totalMass += mass;
1314 <         com += mass * mol->getCom();
1315 <         comVel += mass * mol->getComVel();          
1316 <      }  
1317 <      
1045 >  int SimInfo::getNGlobalConstraints() {
1046 >    int nGlobalConstraints;
1047   #ifdef IS_MPI
1048 <      RealType tmpMass = totalMass;
1049 <      Vector3d tmpCom(com);  
1050 <      Vector3d tmpComVel(comVel);
1051 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1323 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1324 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1048 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1049 >                              MPI::INT, MPI::SUM);
1050 > #else
1051 >    nGlobalConstraints =  nConstraints_;
1052   #endif
1053 <      
1054 <      com /= totalMass;
1328 <      comVel /= totalMass;
1329 <   }        
1330 <  
1331 <   /*
1332 <   Return intertia tensor for entire system and angular momentum Vector.
1053 >    return nGlobalConstraints;
1054 >  }
1055  
1056 + }//end namespace OpenMD
1057  
1335       [  Ixx -Ixy  -Ixz ]
1336  J =| -Iyx  Iyy  -Iyz |
1337       [ -Izx -Iyz   Izz ]
1338    */
1339
1340   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1341      
1342
1343      RealType xx = 0.0;
1344      RealType yy = 0.0;
1345      RealType zz = 0.0;
1346      RealType xy = 0.0;
1347      RealType xz = 0.0;
1348      RealType yz = 0.0;
1349      Vector3d com(0.0);
1350      Vector3d comVel(0.0);
1351      
1352      getComAll(com, comVel);
1353      
1354      SimInfo::MoleculeIterator i;
1355      Molecule* mol;
1356      
1357      Vector3d thisq(0.0);
1358      Vector3d thisv(0.0);
1359
1360      RealType thisMass = 0.0;
1361    
1362      
1363      
1364  
1365      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1366        
1367         thisq = mol->getCom()-com;
1368         thisv = mol->getComVel()-comVel;
1369         thisMass = mol->getMass();
1370         // Compute moment of intertia coefficients.
1371         xx += thisq[0]*thisq[0]*thisMass;
1372         yy += thisq[1]*thisq[1]*thisMass;
1373         zz += thisq[2]*thisq[2]*thisMass;
1374        
1375         // compute products of intertia
1376         xy += thisq[0]*thisq[1]*thisMass;
1377         xz += thisq[0]*thisq[2]*thisMass;
1378         yz += thisq[1]*thisq[2]*thisMass;
1379            
1380         angularMomentum += cross( thisq, thisv ) * thisMass;
1381            
1382      }  
1383      
1384      
1385      inertiaTensor(0,0) = yy + zz;
1386      inertiaTensor(0,1) = -xy;
1387      inertiaTensor(0,2) = -xz;
1388      inertiaTensor(1,0) = -xy;
1389      inertiaTensor(1,1) = xx + zz;
1390      inertiaTensor(1,2) = -yz;
1391      inertiaTensor(2,0) = -xz;
1392      inertiaTensor(2,1) = -yz;
1393      inertiaTensor(2,2) = xx + yy;
1394      
1395 #ifdef IS_MPI
1396      Mat3x3d tmpI(inertiaTensor);
1397      Vector3d tmpAngMom;
1398      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1399      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1400 #endif
1401              
1402      return;
1403   }
1404
1405   //Returns the angular momentum of the system
1406   Vector3d SimInfo::getAngularMomentum(){
1407      
1408      Vector3d com(0.0);
1409      Vector3d comVel(0.0);
1410      Vector3d angularMomentum(0.0);
1411      
1412      getComAll(com,comVel);
1413      
1414      SimInfo::MoleculeIterator i;
1415      Molecule* mol;
1416      
1417      Vector3d thisr(0.0);
1418      Vector3d thisp(0.0);
1419      
1420      RealType thisMass;
1421      
1422      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1423        thisMass = mol->getMass();
1424        thisr = mol->getCom()-com;
1425        thisp = (mol->getComVel()-comVel)*thisMass;
1426        
1427        angularMomentum += cross( thisr, thisp );
1428        
1429      }  
1430      
1431 #ifdef IS_MPI
1432      Vector3d tmpAngMom;
1433      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1434 #endif
1435      
1436      return angularMomentum;
1437   }
1438  
1439  
1440 }//end namespace oopse
1441

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 998 by chrisfen, Mon Jul 3 13:18:43 2006 UTC vs.
Revision 1930 by gezelter, Mon Aug 19 13:51:04 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines