ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 413 by tim, Wed Mar 9 17:30:29 2005 UTC vs.
Revision 1908 by gezelter, Fri Jul 19 21:25:45 2013 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 48 | Line 49
49  
50   #include <algorithm>
51   #include <set>
52 + #include <map>
53  
54   #include "brains/SimInfo.hpp"
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57 < #include "UseTheForce/doForces_interface.h"
56 < #include "UseTheForce/notifyCutoffs_interface.h"
57 > #include "primitives/StuntDouble.hpp"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61 <
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
64 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <
70 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
71 <                                ForceField* ff, Globals* simParams) :
72 <                                forceField_(ff), simParams_(simParams),
73 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <                                sman_(NULL), fortranInitialized_(false) {
79 <
80 <            
79 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81      MoleculeStamp* molStamp;
82      int nMolWithSameStamp;
83      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85      CutoffGroupStamp* cgStamp;    
86      RigidBodyStamp* rbStamp;
87      int nRigidAtoms = 0;
88      
89 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
90 <        molStamp = i->first;
91 <        nMolWithSameStamp = i->second;
92 <        
93 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      if ( (*i)->haveRegion() ) {        
95 >        molStamp->setRegion( (*i)->getRegion() );
96 >      } else {
97 >        // set the region to a disallowed value:
98 >        molStamp->setRegion( -1 );
99 >      }
100  
101 <        //calculate atoms in molecules
102 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
103 <
104 <
105 <        //calculate atoms in cutoff groups
106 <        int nAtomsInGroups = 0;
107 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
108 <        
109 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
110 <            cgStamp = molStamp->getCutoffGroup(j);
111 <            nAtomsInGroups += cgStamp->getNMembers();
112 <        }
113 <
114 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
115 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
116 <
117 <        //calculate atoms in rigid bodies
118 <        int nAtomsInRigidBodies = 0;
119 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
120 <        
121 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
122 <            rbStamp = molStamp->getRigidBody(j);
123 <            nAtomsInRigidBodies += rbStamp->getNMembers();
124 <        }
125 <
126 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
127 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
128 <        
101 >      nMolWithSameStamp = (*i)->getNMol();
102 >      
103 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
104 >      
105 >      //calculate atoms in molecules
106 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
107 >      
108 >      //calculate atoms in cutoff groups
109 >      int nAtomsInGroups = 0;
110 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
111 >      
112 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
113 >        cgStamp = molStamp->getCutoffGroupStamp(j);
114 >        nAtomsInGroups += cgStamp->getNMembers();
115 >      }
116 >      
117 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
118 >      
119 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
120 >      
121 >      //calculate atoms in rigid bodies
122 >      int nAtomsInRigidBodies = 0;
123 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
124 >      
125 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
126 >        rbStamp = molStamp->getRigidBodyStamp(j);
127 >        nAtomsInRigidBodies += rbStamp->getNMembers();
128 >      }
129 >      
130 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
131 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
132 >      
133      }
134 +    
135 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
136 +    //group therefore the total number of cutoff groups in the system is
137 +    //equal to the total number of atoms minus number of atoms belong to
138 +    //cutoff group defined in meta-data file plus the number of cutoff
139 +    //groups defined in meta-data file
140  
124    //every free atom (atom does not belong to cutoff groups) is a cutoff group
125    //therefore the total number of cutoff groups in the system is equal to
126    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127    //file plus the number of cutoff groups defined in meta-data file
141      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
142 <
143 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
144 <    //therefore the total number of  integrable objects in the system is equal to
145 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
146 <    //file plus the number of  rigid bodies defined in meta-data file
147 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
148 <
142 >    
143 >    //every free atom (atom does not belong to rigid bodies) is an
144 >    //integrable object therefore the total number of integrable objects
145 >    //in the system is equal to the total number of atoms minus number of
146 >    //atoms belong to rigid body defined in meta-data file plus the number
147 >    //of rigid bodies defined in meta-data file
148 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 >      + nGlobalRigidBodies_;
150 >    
151      nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI    
152      molToProcMap_.resize(nGlobalMols_);
153 < #endif
154 <
155 < }
156 <
144 < SimInfo::~SimInfo() {
145 <    std::map<int, Molecule*>::iterator i;
153 >  }
154 >  
155 >  SimInfo::~SimInfo() {
156 >    map<int, Molecule*>::iterator i;
157      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158 <        delete i->second;
158 >      delete i->second;
159      }
160      molecules_.clear();
161 <    
151 <    MemoryUtils::deletePointers(moleculeStamps_);
152 <    
161 >      
162      delete sman_;
163      delete simParams_;
164      delete forceField_;
165 < }
165 >  }
166  
158 int SimInfo::getNGlobalConstraints() {
159    int nGlobalConstraints;
160 #ifdef IS_MPI
161    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
162                  MPI_COMM_WORLD);    
163 #else
164    nGlobalConstraints =  nConstraints_;
165 #endif
166    return nGlobalConstraints;
167 }
167  
168 < bool SimInfo::addMolecule(Molecule* mol) {
168 >  bool SimInfo::addMolecule(Molecule* mol) {
169      MoleculeIterator i;
170 <
170 >    
171      i = molecules_.find(mol->getGlobalIndex());
172      if (i == molecules_.end() ) {
173 <
174 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 <        
176 <        nAtoms_ += mol->getNAtoms();
177 <        nBonds_ += mol->getNBonds();
178 <        nBends_ += mol->getNBends();
179 <        nTorsions_ += mol->getNTorsions();
180 <        nRigidBodies_ += mol->getNRigidBodies();
181 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
182 <        nCutoffGroups_ += mol->getNCutoffGroups();
183 <        nConstraints_ += mol->getNConstraintPairs();
184 <
185 <        addExcludePairs(mol);
186 <        
187 <        return true;
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176 >      nAtoms_ += mol->getNAtoms();
177 >      nBonds_ += mol->getNBonds();
178 >      nBends_ += mol->getNBends();
179 >      nTorsions_ += mol->getNTorsions();
180 >      nInversions_ += mol->getNInversions();
181 >      nRigidBodies_ += mol->getNRigidBodies();
182 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
183 >      nCutoffGroups_ += mol->getNCutoffGroups();
184 >      nConstraints_ += mol->getNConstraintPairs();
185 >      
186 >      addInteractionPairs(mol);
187 >      
188 >      return true;
189      } else {
190 <        return false;
190 >      return false;
191      }
192 < }
193 <
194 < bool SimInfo::removeMolecule(Molecule* mol) {
192 >  }
193 >  
194 >  bool SimInfo::removeMolecule(Molecule* mol) {
195      MoleculeIterator i;
196      i = molecules_.find(mol->getGlobalIndex());
197  
198      if (i != molecules_.end() ) {
199  
200 <        assert(mol == i->second);
200 >      assert(mol == i->second);
201          
202 <        nAtoms_ -= mol->getNAtoms();
203 <        nBonds_ -= mol->getNBonds();
204 <        nBends_ -= mol->getNBends();
205 <        nTorsions_ -= mol->getNTorsions();
206 <        nRigidBodies_ -= mol->getNRigidBodies();
207 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
208 <        nCutoffGroups_ -= mol->getNCutoffGroups();
209 <        nConstraints_ -= mol->getNConstraintPairs();
202 >      nAtoms_ -= mol->getNAtoms();
203 >      nBonds_ -= mol->getNBonds();
204 >      nBends_ -= mol->getNBends();
205 >      nTorsions_ -= mol->getNTorsions();
206 >      nInversions_ -= mol->getNInversions();
207 >      nRigidBodies_ -= mol->getNRigidBodies();
208 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
209 >      nCutoffGroups_ -= mol->getNCutoffGroups();
210 >      nConstraints_ -= mol->getNConstraintPairs();
211  
212 <        removeExcludePairs(mol);
213 <        molecules_.erase(mol->getGlobalIndex());
212 >      removeInteractionPairs(mol);
213 >      molecules_.erase(mol->getGlobalIndex());
214  
215 <        delete mol;
215 >      delete mol;
216          
217 <        return true;
217 >      return true;
218      } else {
219 <        return false;
219 >      return false;
220      }
221 +  }    
222  
221
222 }    
223
223          
224 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
224 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
225      i = molecules_.begin();
226      return i == molecules_.end() ? NULL : i->second;
227 < }    
227 >  }    
228  
229 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
229 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
230      ++i;
231      return i == molecules_.end() ? NULL : i->second;    
232 < }
232 >  }
233  
234  
235 < void SimInfo::calcNdf() {
236 <    int ndf_local;
235 >  void SimInfo::calcNdf() {
236 >    int ndf_local, nfq_local;
237      MoleculeIterator i;
238 <    std::vector<StuntDouble*>::iterator j;
238 >    vector<StuntDouble*>::iterator j;
239 >    vector<Atom*>::iterator k;
240 >
241      Molecule* mol;
242 <    StuntDouble* integrableObject;
242 >    StuntDouble* sd;
243 >    Atom* atom;
244  
245      ndf_local = 0;
246 +    nfq_local = 0;
247      
248      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
246        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
247               integrableObject = mol->nextIntegrableObject(j)) {
249  
250 <            ndf_local += 3;
250 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
251 >           sd = mol->nextIntegrableObject(j)) {
252  
253 <            if (integrableObject->isDirectional()) {
254 <                if (integrableObject->isLinear()) {
255 <                    ndf_local += 2;
256 <                } else {
257 <                    ndf_local += 3;
258 <                }
259 <            }
260 <            
261 <        }//end for (integrableObject)
262 <    }// end for (mol)
253 >        ndf_local += 3;
254 >
255 >        if (sd->isDirectional()) {
256 >          if (sd->isLinear()) {
257 >            ndf_local += 2;
258 >          } else {
259 >            ndf_local += 3;
260 >          }
261 >        }
262 >      }
263 >
264 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
265 >           atom = mol->nextFluctuatingCharge(k)) {
266 >        if (atom->isFluctuatingCharge()) {
267 >          nfq_local++;
268 >        }
269 >      }
270 >    }
271      
272 +    ndfLocal_ = ndf_local;
273 +
274      // n_constraints is local, so subtract them on each processor
275      ndf_local -= nConstraints_;
276  
277   #ifdef IS_MPI
278 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
278 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
279 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
280 >                              MPI::INT, MPI::SUM);
281   #else
282      ndf_ = ndf_local;
283 +    nGlobalFluctuatingCharges_ = nfq_local;
284   #endif
285  
286      // nZconstraints_ is global, as are the 3 COM translations for the
287      // entire system:
288      ndf_ = ndf_ - 3 - nZconstraint_;
289  
290 < }
290 >  }
291  
292 < void SimInfo::calcNdfRaw() {
292 >  int SimInfo::getFdf() {
293 > #ifdef IS_MPI
294 >    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
295 > #else
296 >    fdf_ = fdf_local;
297 > #endif
298 >    return fdf_;
299 >  }
300 >  
301 >  unsigned int SimInfo::getNLocalCutoffGroups(){
302 >    int nLocalCutoffAtoms = 0;
303 >    Molecule* mol;
304 >    MoleculeIterator mi;
305 >    CutoffGroup* cg;
306 >    Molecule::CutoffGroupIterator ci;
307 >    
308 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
309 >      
310 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
311 >           cg = mol->nextCutoffGroup(ci)) {
312 >        nLocalCutoffAtoms += cg->getNumAtom();
313 >        
314 >      }        
315 >    }
316 >    
317 >    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
318 >  }
319 >    
320 >  void SimInfo::calcNdfRaw() {
321      int ndfRaw_local;
322  
323      MoleculeIterator i;
324 <    std::vector<StuntDouble*>::iterator j;
324 >    vector<StuntDouble*>::iterator j;
325      Molecule* mol;
326 <    StuntDouble* integrableObject;
326 >    StuntDouble* sd;
327  
328      // Raw degrees of freedom that we have to set
329      ndfRaw_local = 0;
330      
331      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
289        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
290               integrableObject = mol->nextIntegrableObject(j)) {
332  
333 <            ndfRaw_local += 3;
333 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
334 >           sd = mol->nextIntegrableObject(j)) {
335  
336 <            if (integrableObject->isDirectional()) {
337 <                if (integrableObject->isLinear()) {
338 <                    ndfRaw_local += 2;
339 <                } else {
340 <                    ndfRaw_local += 3;
341 <                }
342 <            }
336 >        ndfRaw_local += 3;
337 >
338 >        if (sd->isDirectional()) {
339 >          if (sd->isLinear()) {
340 >            ndfRaw_local += 2;
341 >          } else {
342 >            ndfRaw_local += 3;
343 >          }
344 >        }
345              
346 <        }
346 >      }
347      }
348      
349   #ifdef IS_MPI
350 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
350 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
351   #else
352      ndfRaw_ = ndfRaw_local;
353   #endif
354 < }
354 >  }
355  
356 < void SimInfo::calcNdfTrans() {
356 >  void SimInfo::calcNdfTrans() {
357      int ndfTrans_local;
358  
359      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
360  
361  
362   #ifdef IS_MPI
363 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
363 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
364 >                              MPI::INT, MPI::SUM);
365   #else
366      ndfTrans_ = ndfTrans_local;
367   #endif
368  
369      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
370  
371 < }
371 >  }
372  
373 < void SimInfo::addExcludePairs(Molecule* mol) {
374 <    std::vector<Bond*>::iterator bondIter;
375 <    std::vector<Bend*>::iterator bendIter;
376 <    std::vector<Torsion*>::iterator torsionIter;
373 >  void SimInfo::addInteractionPairs(Molecule* mol) {
374 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
375 >    vector<Bond*>::iterator bondIter;
376 >    vector<Bend*>::iterator bendIter;
377 >    vector<Torsion*>::iterator torsionIter;
378 >    vector<Inversion*>::iterator inversionIter;
379      Bond* bond;
380      Bend* bend;
381      Torsion* torsion;
382 +    Inversion* inversion;
383      int a;
384      int b;
385      int c;
386      int d;
387 +
388 +    // atomGroups can be used to add special interaction maps between
389 +    // groups of atoms that are in two separate rigid bodies.
390 +    // However, most site-site interactions between two rigid bodies
391 +    // are probably not special, just the ones between the physically
392 +    // bonded atoms.  Interactions *within* a single rigid body should
393 +    // always be excluded.  These are done at the bottom of this
394 +    // function.
395 +
396 +    map<int, set<int> > atomGroups;
397 +    Molecule::RigidBodyIterator rbIter;
398 +    RigidBody* rb;
399 +    Molecule::IntegrableObjectIterator ii;
400 +    StuntDouble* sd;
401      
402 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
403 <        a = bond->getAtomA()->getGlobalIndex();
404 <        b = bond->getAtomB()->getGlobalIndex();        
405 <        exclude_.addPair(a, b);
402 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
403 >         sd = mol->nextIntegrableObject(ii)) {
404 >      
405 >      if (sd->isRigidBody()) {
406 >        rb = static_cast<RigidBody*>(sd);
407 >        vector<Atom*> atoms = rb->getAtoms();
408 >        set<int> rigidAtoms;
409 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
410 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
411 >        }
412 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
413 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
414 >        }      
415 >      } else {
416 >        set<int> oneAtomSet;
417 >        oneAtomSet.insert(sd->getGlobalIndex());
418 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
419 >      }
420 >    }  
421 >          
422 >    for (bond= mol->beginBond(bondIter); bond != NULL;
423 >         bond = mol->nextBond(bondIter)) {
424 >
425 >      a = bond->getAtomA()->getGlobalIndex();
426 >      b = bond->getAtomB()->getGlobalIndex();  
427 >
428 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
429 >        oneTwoInteractions_.addPair(a, b);
430 >      } else {
431 >        excludedInteractions_.addPair(a, b);
432 >      }
433      }
434  
435 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
436 <        a = bend->getAtomA()->getGlobalIndex();
348 <        b = bend->getAtomB()->getGlobalIndex();        
349 <        c = bend->getAtomC()->getGlobalIndex();
435 >    for (bend= mol->beginBend(bendIter); bend != NULL;
436 >         bend = mol->nextBend(bendIter)) {
437  
438 <        exclude_.addPair(a, b);
439 <        exclude_.addPair(a, c);
440 <        exclude_.addPair(b, c);        
438 >      a = bend->getAtomA()->getGlobalIndex();
439 >      b = bend->getAtomB()->getGlobalIndex();        
440 >      c = bend->getAtomC()->getGlobalIndex();
441 >      
442 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
443 >        oneTwoInteractions_.addPair(a, b);      
444 >        oneTwoInteractions_.addPair(b, c);
445 >      } else {
446 >        excludedInteractions_.addPair(a, b);
447 >        excludedInteractions_.addPair(b, c);
448 >      }
449 >
450 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
451 >        oneThreeInteractions_.addPair(a, c);      
452 >      } else {
453 >        excludedInteractions_.addPair(a, c);
454 >      }
455      }
456  
457 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
458 <        a = torsion->getAtomA()->getGlobalIndex();
358 <        b = torsion->getAtomB()->getGlobalIndex();        
359 <        c = torsion->getAtomC()->getGlobalIndex();        
360 <        d = torsion->getAtomD()->getGlobalIndex();        
457 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
458 >         torsion = mol->nextTorsion(torsionIter)) {
459  
460 <        exclude_.addPair(a, b);
461 <        exclude_.addPair(a, c);
462 <        exclude_.addPair(a, d);
463 <        exclude_.addPair(b, c);
464 <        exclude_.addPair(b, d);
465 <        exclude_.addPair(c, d);        
460 >      a = torsion->getAtomA()->getGlobalIndex();
461 >      b = torsion->getAtomB()->getGlobalIndex();        
462 >      c = torsion->getAtomC()->getGlobalIndex();        
463 >      d = torsion->getAtomD()->getGlobalIndex();      
464 >
465 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
466 >        oneTwoInteractions_.addPair(a, b);      
467 >        oneTwoInteractions_.addPair(b, c);
468 >        oneTwoInteractions_.addPair(c, d);
469 >      } else {
470 >        excludedInteractions_.addPair(a, b);
471 >        excludedInteractions_.addPair(b, c);
472 >        excludedInteractions_.addPair(c, d);
473 >      }
474 >
475 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
476 >        oneThreeInteractions_.addPair(a, c);      
477 >        oneThreeInteractions_.addPair(b, d);      
478 >      } else {
479 >        excludedInteractions_.addPair(a, c);
480 >        excludedInteractions_.addPair(b, d);
481 >      }
482 >
483 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
484 >        oneFourInteractions_.addPair(a, d);      
485 >      } else {
486 >        excludedInteractions_.addPair(a, d);
487 >      }
488      }
489  
490 <    
491 < }
490 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
491 >         inversion = mol->nextInversion(inversionIter)) {
492  
493 < void SimInfo::removeExcludePairs(Molecule* mol) {
494 <    std::vector<Bond*>::iterator bondIter;
495 <    std::vector<Bend*>::iterator bendIter;
496 <    std::vector<Torsion*>::iterator torsionIter;
493 >      a = inversion->getAtomA()->getGlobalIndex();
494 >      b = inversion->getAtomB()->getGlobalIndex();        
495 >      c = inversion->getAtomC()->getGlobalIndex();        
496 >      d = inversion->getAtomD()->getGlobalIndex();        
497 >
498 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
499 >        oneTwoInteractions_.addPair(a, b);      
500 >        oneTwoInteractions_.addPair(a, c);
501 >        oneTwoInteractions_.addPair(a, d);
502 >      } else {
503 >        excludedInteractions_.addPair(a, b);
504 >        excludedInteractions_.addPair(a, c);
505 >        excludedInteractions_.addPair(a, d);
506 >      }
507 >
508 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
509 >        oneThreeInteractions_.addPair(b, c);    
510 >        oneThreeInteractions_.addPair(b, d);    
511 >        oneThreeInteractions_.addPair(c, d);      
512 >      } else {
513 >        excludedInteractions_.addPair(b, c);
514 >        excludedInteractions_.addPair(b, d);
515 >        excludedInteractions_.addPair(c, d);
516 >      }
517 >    }
518 >
519 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
520 >         rb = mol->nextRigidBody(rbIter)) {
521 >      vector<Atom*> atoms = rb->getAtoms();
522 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
523 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
524 >          a = atoms[i]->getGlobalIndex();
525 >          b = atoms[j]->getGlobalIndex();
526 >          excludedInteractions_.addPair(a, b);
527 >        }
528 >      }
529 >    }        
530 >
531 >  }
532 >
533 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
534 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
535 >    vector<Bond*>::iterator bondIter;
536 >    vector<Bend*>::iterator bendIter;
537 >    vector<Torsion*>::iterator torsionIter;
538 >    vector<Inversion*>::iterator inversionIter;
539      Bond* bond;
540      Bend* bend;
541      Torsion* torsion;
542 +    Inversion* inversion;
543      int a;
544      int b;
545      int c;
546      int d;
547 +
548 +    map<int, set<int> > atomGroups;
549 +    Molecule::RigidBodyIterator rbIter;
550 +    RigidBody* rb;
551 +    Molecule::IntegrableObjectIterator ii;
552 +    StuntDouble* sd;
553      
554 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
555 <        a = bond->getAtomA()->getGlobalIndex();
556 <        b = bond->getAtomB()->getGlobalIndex();        
557 <        exclude_.removePair(a, b);
554 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
555 >         sd = mol->nextIntegrableObject(ii)) {
556 >      
557 >      if (sd->isRigidBody()) {
558 >        rb = static_cast<RigidBody*>(sd);
559 >        vector<Atom*> atoms = rb->getAtoms();
560 >        set<int> rigidAtoms;
561 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
562 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
563 >        }
564 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
565 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
566 >        }      
567 >      } else {
568 >        set<int> oneAtomSet;
569 >        oneAtomSet.insert(sd->getGlobalIndex());
570 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
571 >      }
572 >    }  
573 >
574 >    for (bond= mol->beginBond(bondIter); bond != NULL;
575 >         bond = mol->nextBond(bondIter)) {
576 >      
577 >      a = bond->getAtomA()->getGlobalIndex();
578 >      b = bond->getAtomB()->getGlobalIndex();  
579 >    
580 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581 >        oneTwoInteractions_.removePair(a, b);
582 >      } else {
583 >        excludedInteractions_.removePair(a, b);
584 >      }
585      }
586  
587 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
588 <        a = bend->getAtomA()->getGlobalIndex();
393 <        b = bend->getAtomB()->getGlobalIndex();        
394 <        c = bend->getAtomC()->getGlobalIndex();
587 >    for (bend= mol->beginBend(bendIter); bend != NULL;
588 >         bend = mol->nextBend(bendIter)) {
589  
590 <        exclude_.removePair(a, b);
591 <        exclude_.removePair(a, c);
592 <        exclude_.removePair(b, c);        
590 >      a = bend->getAtomA()->getGlobalIndex();
591 >      b = bend->getAtomB()->getGlobalIndex();        
592 >      c = bend->getAtomC()->getGlobalIndex();
593 >      
594 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
595 >        oneTwoInteractions_.removePair(a, b);      
596 >        oneTwoInteractions_.removePair(b, c);
597 >      } else {
598 >        excludedInteractions_.removePair(a, b);
599 >        excludedInteractions_.removePair(b, c);
600 >      }
601 >
602 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
603 >        oneThreeInteractions_.removePair(a, c);      
604 >      } else {
605 >        excludedInteractions_.removePair(a, c);
606 >      }
607      }
608  
609 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
610 <        a = torsion->getAtomA()->getGlobalIndex();
403 <        b = torsion->getAtomB()->getGlobalIndex();        
404 <        c = torsion->getAtomC()->getGlobalIndex();        
405 <        d = torsion->getAtomD()->getGlobalIndex();        
609 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
610 >         torsion = mol->nextTorsion(torsionIter)) {
611  
612 <        exclude_.removePair(a, b);
613 <        exclude_.removePair(a, c);
614 <        exclude_.removePair(a, d);
615 <        exclude_.removePair(b, c);
616 <        exclude_.removePair(b, d);
617 <        exclude_.removePair(c, d);        
612 >      a = torsion->getAtomA()->getGlobalIndex();
613 >      b = torsion->getAtomB()->getGlobalIndex();        
614 >      c = torsion->getAtomC()->getGlobalIndex();        
615 >      d = torsion->getAtomD()->getGlobalIndex();      
616 >  
617 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
618 >        oneTwoInteractions_.removePair(a, b);      
619 >        oneTwoInteractions_.removePair(b, c);
620 >        oneTwoInteractions_.removePair(c, d);
621 >      } else {
622 >        excludedInteractions_.removePair(a, b);
623 >        excludedInteractions_.removePair(b, c);
624 >        excludedInteractions_.removePair(c, d);
625 >      }
626 >
627 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
628 >        oneThreeInteractions_.removePair(a, c);      
629 >        oneThreeInteractions_.removePair(b, d);      
630 >      } else {
631 >        excludedInteractions_.removePair(a, c);
632 >        excludedInteractions_.removePair(b, d);
633 >      }
634 >
635 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
636 >        oneFourInteractions_.removePair(a, d);      
637 >      } else {
638 >        excludedInteractions_.removePair(a, d);
639 >      }
640      }
641  
642 < }
642 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
643 >         inversion = mol->nextInversion(inversionIter)) {
644  
645 +      a = inversion->getAtomA()->getGlobalIndex();
646 +      b = inversion->getAtomB()->getGlobalIndex();        
647 +      c = inversion->getAtomC()->getGlobalIndex();        
648 +      d = inversion->getAtomD()->getGlobalIndex();        
649  
650 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
651 <    int curStampId;
650 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
651 >        oneTwoInteractions_.removePair(a, b);      
652 >        oneTwoInteractions_.removePair(a, c);
653 >        oneTwoInteractions_.removePair(a, d);
654 >      } else {
655 >        excludedInteractions_.removePair(a, b);
656 >        excludedInteractions_.removePair(a, c);
657 >        excludedInteractions_.removePair(a, d);
658 >      }
659  
660 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
661 +        oneThreeInteractions_.removePair(b, c);    
662 +        oneThreeInteractions_.removePair(b, d);    
663 +        oneThreeInteractions_.removePair(c, d);      
664 +      } else {
665 +        excludedInteractions_.removePair(b, c);
666 +        excludedInteractions_.removePair(b, d);
667 +        excludedInteractions_.removePair(c, d);
668 +      }
669 +    }
670 +
671 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
672 +         rb = mol->nextRigidBody(rbIter)) {
673 +      vector<Atom*> atoms = rb->getAtoms();
674 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
675 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
676 +          a = atoms[i]->getGlobalIndex();
677 +          b = atoms[j]->getGlobalIndex();
678 +          excludedInteractions_.removePair(a, b);
679 +        }
680 +      }
681 +    }        
682 +    
683 +  }
684 +  
685 +  
686 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
687 +    int curStampId;
688 +    
689      //index from 0
690      curStampId = moleculeStamps_.size();
691  
692      moleculeStamps_.push_back(molStamp);
693      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
694 < }
694 >  }
695  
428 void SimInfo::update() {
696  
697 <    setupSimType();
698 <
699 < #ifdef IS_MPI
700 <    setupFortranParallel();
701 < #endif
702 <
703 <    setupFortranSim();
704 <
705 <    //setup fortran force field
439 <    /** @deprecate */    
440 <    int isError = 0;
441 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
442 <    if(isError){
443 <        sprintf( painCave.errMsg,
444 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
445 <        painCave.isFatal = 1;
446 <        simError();
447 <    }
448 <  
449 <    
450 <    setupCutoff();
451 <
697 >  /**
698 >   * update
699 >   *
700 >   *  Performs the global checks and variable settings after the
701 >   *  objects have been created.
702 >   *
703 >   */
704 >  void SimInfo::update() {  
705 >    setupSimVariables();
706      calcNdf();
707      calcNdfRaw();
708      calcNdfTrans();
709 <
710 <    fortranInitialized_ = true;
711 < }
712 <
713 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
709 >  }
710 >  
711 >  /**
712 >   * getSimulatedAtomTypes
713 >   *
714 >   * Returns an STL set of AtomType* that are actually present in this
715 >   * simulation.  Must query all processors to assemble this information.
716 >   *
717 >   */
718 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
719      SimInfo::MoleculeIterator mi;
720      Molecule* mol;
721      Molecule::AtomIterator ai;
722      Atom* atom;
723 <    std::set<AtomType*> atomTypes;
724 <
723 >    set<AtomType*> atomTypes;
724 >    
725      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
726 +      for(atom = mol->beginAtom(ai); atom != NULL;
727 +          atom = mol->nextAtom(ai)) {
728 +        atomTypes.insert(atom->getAtomType());
729 +      }      
730 +    }    
731 +    
732 + #ifdef IS_MPI
733  
734 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
735 <            atomTypes.insert(atom->getAtomType());
736 <        }
737 <        
738 <    }
734 >    // loop over the found atom types on this processor, and add their
735 >    // numerical idents to a vector:
736 >    
737 >    vector<int> foundTypes;
738 >    set<AtomType*>::iterator i;
739 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
740 >      foundTypes.push_back( (*i)->getIdent() );
741  
742 <    return atomTypes;        
743 < }
742 >    // count_local holds the number of found types on this processor
743 >    int count_local = foundTypes.size();
744  
745 < void SimInfo::setupSimType() {
478 <    std::set<AtomType*>::iterator i;
479 <    std::set<AtomType*> atomTypes;
480 <    atomTypes = getUniqueAtomTypes();
481 <    
482 <    int useLennardJones = 0;
483 <    int useElectrostatic = 0;
484 <    int useEAM = 0;
485 <    int useCharge = 0;
486 <    int useDirectional = 0;
487 <    int useDipole = 0;
488 <    int useGayBerne = 0;
489 <    int useSticky = 0;
490 <    int useShape = 0;
491 <    int useFLARB = 0; //it is not in AtomType yet
492 <    int useDirectionalAtom = 0;    
493 <    int useElectrostatics = 0;
494 <    //usePBC and useRF are from simParams
495 <    int usePBC = simParams_->getPBC();
496 <    int useRF = simParams_->getUseRF();
745 >    int nproc = MPI::COMM_WORLD.Get_size();
746  
747 <    //loop over all of the atom types
748 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
749 <        useLennardJones |= (*i)->isLennardJones();
750 <        useElectrostatic |= (*i)->isElectrostatic();
502 <        useEAM |= (*i)->isEAM();
503 <        useCharge |= (*i)->isCharge();
504 <        useDirectional |= (*i)->isDirectional();
505 <        useDipole |= (*i)->isDipole();
506 <        useGayBerne |= (*i)->isGayBerne();
507 <        useSticky |= (*i)->isSticky();
508 <        useShape |= (*i)->isShape();
509 <    }
747 >    // we need arrays to hold the counts and displacement vectors for
748 >    // all processors
749 >    vector<int> counts(nproc, 0);
750 >    vector<int> disps(nproc, 0);
751  
752 <    if (useSticky || useDipole || useGayBerne || useShape) {
753 <        useDirectionalAtom = 1;
752 >    // fill the counts array
753 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
754 >                              1, MPI::INT);
755 >  
756 >    // use the processor counts to compute the displacement array
757 >    disps[0] = 0;    
758 >    int totalCount = counts[0];
759 >    for (int iproc = 1; iproc < nproc; iproc++) {
760 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
761 >      totalCount += counts[iproc];
762      }
763  
764 <    if (useCharge || useDipole) {
765 <        useElectrostatics = 1;
766 <    }
764 >    // we need a (possibly redundant) set of all found types:
765 >    vector<int> ftGlobal(totalCount);
766 >    
767 >    // now spray out the foundTypes to all the other processors:    
768 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
769 >                               &ftGlobal[0], &counts[0], &disps[0],
770 >                               MPI::INT);
771  
772 < #ifdef IS_MPI    
520 <    int temp;
772 >    vector<int>::iterator j;
773  
774 <    temp = usePBC;
775 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
774 >    // foundIdents is a stl set, so inserting an already found ident
775 >    // will have no effect.
776 >    set<int> foundIdents;
777  
778 <    temp = useDirectionalAtom;
779 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
778 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
779 >      foundIdents.insert((*j));
780 >    
781 >    // now iterate over the foundIdents and get the actual atom types
782 >    // that correspond to these:
783 >    set<int>::iterator it;
784 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
785 >      atomTypes.insert( forceField_->getAtomType((*it)) );
786 >
787 > #endif
788  
789 <    temp = useLennardJones;
790 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
789 >    return atomTypes;        
790 >  }
791  
531    temp = useElectrostatics;
532    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
792  
793 <    temp = useCharge;
794 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
793 >  int getGlobalCountOfType(AtomType* atype) {
794 >    /*
795 >    set<AtomType*> atypes = getSimulatedAtomTypes();
796 >    map<AtomType*, int> counts_;
797  
798 <    temp = useDipole;
799 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
798 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
799 >      for(atom = mol->beginAtom(ai); atom != NULL;
800 >          atom = mol->nextAtom(ai)) {
801 >        atom->getAtomType();
802 >      }      
803 >    }    
804 >    */
805 >    return 0;
806 >  }
807  
808 <    temp = useSticky;
809 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
808 >  void SimInfo::setupSimVariables() {
809 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
810 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
811 >    // parameter is true
812 >    calcBoxDipole_ = false;
813 >    if ( simParams_->haveAccumulateBoxDipole() )
814 >      if ( simParams_->getAccumulateBoxDipole() ) {
815 >        calcBoxDipole_ = true;      
816 >      }
817 >    
818 >    set<AtomType*>::iterator i;
819 >    set<AtomType*> atomTypes;
820 >    atomTypes = getSimulatedAtomTypes();    
821 >    bool usesElectrostatic = false;
822 >    bool usesMetallic = false;
823 >    bool usesDirectional = false;
824 >    bool usesFluctuatingCharges =  false;
825 >    //loop over all of the atom types
826 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
827 >      usesElectrostatic |= (*i)->isElectrostatic();
828 >      usesMetallic |= (*i)->isMetal();
829 >      usesDirectional |= (*i)->isDirectional();
830 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
831 >    }
832  
833 <    temp = useGayBerne;
834 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
833 > #ifdef IS_MPI
834 >    bool temp;
835 >    temp = usesDirectional;
836 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
837 >                              MPI::LOR);
838 >        
839 >    temp = usesMetallic;
840 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
841 >                              MPI::LOR);
842 >    
843 >    temp = usesElectrostatic;
844 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
845 >                              MPI::LOR);
846  
847 <    temp = useEAM;
848 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
847 >    temp = usesFluctuatingCharges;
848 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
849 >                              MPI::LOR);
850 > #else
851  
852 <    temp = useShape;
853 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
852 >    usesDirectionalAtoms_ = usesDirectional;
853 >    usesMetallicAtoms_ = usesMetallic;
854 >    usesElectrostaticAtoms_ = usesElectrostatic;
855 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
856  
552    temp = useFLARB;
553    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
554
555    temp = useRF;
556    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
557    
857   #endif
858 +    
859 +    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
860 +    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
861 +    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
862 +  }
863  
560    fInfo_.SIM_uses_PBC = usePBC;    
561    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
562    fInfo_.SIM_uses_LennardJones = useLennardJones;
563    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
564    fInfo_.SIM_uses_Charges = useCharge;
565    fInfo_.SIM_uses_Dipoles = useDipole;
566    fInfo_.SIM_uses_Sticky = useSticky;
567    fInfo_.SIM_uses_GayBerne = useGayBerne;
568    fInfo_.SIM_uses_EAM = useEAM;
569    fInfo_.SIM_uses_Shapes = useShape;
570    fInfo_.SIM_uses_FLARB = useFLARB;
571    fInfo_.SIM_uses_RF = useRF;
864  
865 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
865 >  vector<int> SimInfo::getGlobalAtomIndices() {
866 >    SimInfo::MoleculeIterator mi;
867 >    Molecule* mol;
868 >    Molecule::AtomIterator ai;
869 >    Atom* atom;
870  
871 <        if (simParams_->haveDielectric()) {
872 <            fInfo_.dielect = simParams_->getDielectric();
873 <        } else {
874 <            sprintf(painCave.errMsg,
875 <                    "SimSetup Error: No Dielectric constant was set.\n"
876 <                    "\tYou are trying to use Reaction Field without"
877 <                    "\tsetting a dielectric constant!\n");
582 <            painCave.isFatal = 1;
583 <            simError();
584 <        }
585 <        
586 <    } else {
587 <        fInfo_.dielect = 0.0;
871 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
872 >    
873 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
874 >      
875 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
876 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
877 >      }
878      }
879 +    return GlobalAtomIndices;
880 +  }
881  
590 }
882  
883 < void SimInfo::setupFortranSim() {
884 <    int isError;
885 <    int nExclude;
886 <    std::vector<int> fortranGlobalGroupMembership;
887 <    
597 <    nExclude = exclude_.getSize();
598 <    isError = 0;
883 >  vector<int> SimInfo::getGlobalGroupIndices() {
884 >    SimInfo::MoleculeIterator mi;
885 >    Molecule* mol;
886 >    Molecule::CutoffGroupIterator ci;
887 >    CutoffGroup* cg;
888  
889 <    //globalGroupMembership_ is filled by SimCreator    
890 <    for (int i = 0; i < nGlobalAtoms_; i++) {
891 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
889 >    vector<int> GlobalGroupIndices;
890 >    
891 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
892 >      
893 >      //local index of cutoff group is trivial, it only depends on the
894 >      //order of travesing
895 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
896 >           cg = mol->nextCutoffGroup(ci)) {
897 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
898 >      }        
899      }
900 +    return GlobalGroupIndices;
901 +  }
902  
903 +
904 +  void SimInfo::prepareTopology() {
905 +
906      //calculate mass ratio of cutoff group
606    std::vector<double> mfact;
907      SimInfo::MoleculeIterator mi;
908      Molecule* mol;
909      Molecule::CutoffGroupIterator ci;
910      CutoffGroup* cg;
911      Molecule::AtomIterator ai;
912      Atom* atom;
913 <    double totalMass;
913 >    RealType totalMass;
914  
915 <    //to avoid memory reallocation, reserve enough space for mfact
916 <    mfact.reserve(getNCutoffGroups());
915 >    /**
916 >     * The mass factor is the relative mass of an atom to the total
917 >     * mass of the cutoff group it belongs to.  By default, all atoms
918 >     * are their own cutoff groups, and therefore have mass factors of
919 >     * 1.  We need some special handling for massless atoms, which
920 >     * will be treated as carrying the entire mass of the cutoff
921 >     * group.
922 >     */
923 >    massFactors_.clear();
924 >    massFactors_.resize(getNAtoms(), 1.0);
925      
926      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
927 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
927 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
928 >           cg = mol->nextCutoffGroup(ci)) {
929  
930 <            totalMass = cg->getMass();
931 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
932 <                        mfact.push_back(atom->getMass()/totalMass);
933 <            }
934 <
935 <        }      
930 >        totalMass = cg->getMass();
931 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
932 >          // Check for massless groups - set mfact to 1 if true
933 >          if (totalMass != 0)
934 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
935 >          else
936 >            massFactors_[atom->getLocalIndex()] = 1.0;
937 >        }
938 >      }      
939      }
940  
941 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
630 <    std::vector<int> identArray;
941 >    // Build the identArray_
942  
943 <    //to avoid memory reallocation, reserve enough space identArray
944 <    identArray.reserve(getNAtoms());
634 <    
943 >    identArray_.clear();
944 >    identArray_.reserve(getNAtoms());    
945      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
946 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
947 <            identArray.push_back(atom->getIdent());
948 <        }
946 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
947 >        identArray_.push_back(atom->getIdent());
948 >      }
949      }    
950 +    
951 +    topologyDone_ = true;
952 +  }
953  
954 <    //fill molMembershipArray
642 <    //molMembershipArray is filled by SimCreator    
643 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
644 <    for (int i = 0; i < nGlobalAtoms_; i++) {
645 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
646 <    }
647 <    
648 <    //setup fortran simulation
649 <    //gloalExcludes and molMembershipArray should go away (They are never used)
650 <    //why the hell fortran need to know molecule?
651 <    //OOPSE = Object-Obfuscated Parallel Simulation Engine
652 <    int nGlobalExcludes = 0;
653 <    int* globalExcludes = NULL;
654 <    int* excludeList = exclude_.getExcludeList();
655 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
656 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
657 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
658 <
659 <    if( isError ){
660 <
661 <        sprintf( painCave.errMsg,
662 <                 "There was an error setting the simulation information in fortran.\n" );
663 <        painCave.isFatal = 1;
664 <        painCave.severity = OOPSE_ERROR;
665 <        simError();
666 <    }
667 <
668 < #ifdef IS_MPI
669 <    sprintf( checkPointMsg,
670 <       "succesfully sent the simulation information to fortran.\n");
671 <    MPIcheckPoint();
672 < #endif // is_mpi
673 < }
674 <
675 <
676 < #ifdef IS_MPI
677 < void SimInfo::setupFortranParallel() {
678 <    
679 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
680 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
681 <    std::vector<int> localToGlobalCutoffGroupIndex;
682 <    SimInfo::MoleculeIterator mi;
683 <    Molecule::AtomIterator ai;
684 <    Molecule::CutoffGroupIterator ci;
685 <    Molecule* mol;
686 <    Atom* atom;
687 <    CutoffGroup* cg;
688 <    mpiSimData parallelData;
689 <    int isError;
690 <
691 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
692 <
693 <        //local index(index in DataStorge) of atom is important
694 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
695 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
696 <        }
697 <
698 <        //local index of cutoff group is trivial, it only depends on the order of travesing
699 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
700 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
701 <        }        
702 <        
703 <    }
704 <
705 <    //fill up mpiSimData struct
706 <    parallelData.nMolGlobal = getNGlobalMolecules();
707 <    parallelData.nMolLocal = getNMolecules();
708 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
709 <    parallelData.nAtomsLocal = getNAtoms();
710 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
711 <    parallelData.nGroupsLocal = getNCutoffGroups();
712 <    parallelData.myNode = worldRank;
713 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
714 <
715 <    //pass mpiSimData struct and index arrays to fortran
716 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
717 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
718 <                    &localToGlobalCutoffGroupIndex[0], &isError);
719 <
720 <    if (isError) {
721 <        sprintf(painCave.errMsg,
722 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
723 <        painCave.isFatal = 1;
724 <        simError();
725 <    }
726 <
727 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
728 <    MPIcheckPoint();
729 <
730 <
731 < }
732 <
733 < #endif
734 <
735 < double SimInfo::calcMaxCutoffRadius() {
736 <
737 <
738 <    std::set<AtomType*> atomTypes;
739 <    std::set<AtomType*>::iterator i;
740 <    std::vector<double> cutoffRadius;
741 <
742 <    //get the unique atom types
743 <    atomTypes = getUniqueAtomTypes();
744 <
745 <    //query the max cutoff radius among these atom types
746 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
747 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
748 <    }
749 <
750 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
751 < #ifdef IS_MPI
752 <    //pick the max cutoff radius among the processors
753 < #endif
754 <
755 <    return maxCutoffRadius;
756 < }
757 <
758 < void SimInfo::getCutoff(double& rcut, double& rsw) {
759 <    
760 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
761 <        
762 <        if (!simParams_->haveRcut()){
763 <            sprintf(painCave.errMsg,
764 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
765 <                "\tOOPSE will use a default value of 15.0 angstroms"
766 <                "\tfor the cutoffRadius.\n");
767 <            painCave.isFatal = 0;
768 <            simError();
769 <            rcut = 15.0;
770 <        } else{
771 <            rcut = simParams_->getRcut();
772 <        }
773 <
774 <        if (!simParams_->haveRsw()){
775 <            sprintf(painCave.errMsg,
776 <                "SimCreator Warning: No value was set for switchingRadius.\n"
777 <                "\tOOPSE will use a default value of\n"
778 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
779 <            painCave.isFatal = 0;
780 <            simError();
781 <            rsw = 0.95 * rcut;
782 <        } else{
783 <            rsw = simParams_->getRsw();
784 <        }
785 <
786 <    } else {
787 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
788 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
789 <        
790 <        if (simParams_->haveRcut()) {
791 <            rcut = simParams_->getRcut();
792 <        } else {
793 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
794 <            rcut = calcMaxCutoffRadius();
795 <        }
796 <
797 <        if (simParams_->haveRsw()) {
798 <            rsw  = simParams_->getRsw();
799 <        } else {
800 <            rsw = rcut;
801 <        }
802 <    
803 <    }
804 < }
805 <
806 < void SimInfo::setupCutoff() {
807 <    getCutoff(rcut_, rsw_);    
808 <    double rnblist = rcut_ + 1; // skin of neighbor list
809 <
810 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
811 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
812 < }
813 <
814 < void SimInfo::addProperty(GenericData* genData) {
954 >  void SimInfo::addProperty(GenericData* genData) {
955      properties_.addProperty(genData);  
956 < }
956 >  }
957  
958 < void SimInfo::removeProperty(const std::string& propName) {
958 >  void SimInfo::removeProperty(const string& propName) {
959      properties_.removeProperty(propName);  
960 < }
960 >  }
961  
962 < void SimInfo::clearProperties() {
962 >  void SimInfo::clearProperties() {
963      properties_.clearProperties();
964 < }
964 >  }
965  
966 < std::vector<std::string> SimInfo::getPropertyNames() {
966 >  vector<string> SimInfo::getPropertyNames() {
967      return properties_.getPropertyNames();  
968 < }
968 >  }
969        
970 < std::vector<GenericData*> SimInfo::getProperties() {
970 >  vector<GenericData*> SimInfo::getProperties() {
971      return properties_.getProperties();
972 < }
972 >  }
973  
974 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
974 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
975      return properties_.getPropertyByName(propName);
976 < }
976 >  }
977  
978 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
979 <    //if (sman_ == sman_) {
980 <    //    return;
981 <    //}
982 <    
843 <    //delete sman_;
978 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
979 >    if (sman_ == sman) {
980 >      return;
981 >    }    
982 >    delete sman_;
983      sman_ = sman;
984  
985      Molecule* mol;
986      RigidBody* rb;
987      Atom* atom;
988 +    CutoffGroup* cg;
989      SimInfo::MoleculeIterator mi;
990      Molecule::RigidBodyIterator rbIter;
991 <    Molecule::AtomIterator atomIter;;
991 >    Molecule::AtomIterator atomIter;
992 >    Molecule::CutoffGroupIterator cgIter;
993  
994      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
995          
996 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
997 <            atom->setSnapshotManager(sman_);
998 <        }
996 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
997 >           atom = mol->nextAtom(atomIter)) {
998 >        atom->setSnapshotManager(sman_);
999 >      }
1000          
1001 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1002 <            rb->setSnapshotManager(sman_);
1003 <        }
1001 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1002 >           rb = mol->nextRigidBody(rbIter)) {
1003 >        rb->setSnapshotManager(sman_);
1004 >      }
1005 >
1006 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1007 >           cg = mol->nextCutoffGroup(cgIter)) {
1008 >        cg->setSnapshotManager(sman_);
1009 >      }
1010      }    
1011      
1012 < }
1012 >  }
1013  
866 Vector3d SimInfo::getComVel(){
867    SimInfo::MoleculeIterator i;
868    Molecule* mol;
1014  
1015 <    Vector3d comVel(0.0);
871 <    double totalMass = 0.0;
872 <    
873 <
874 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
875 <        double mass = mol->getMass();
876 <        totalMass += mass;
877 <        comVel += mass * mol->getComVel();
878 <    }  
1015 >  ostream& operator <<(ostream& o, SimInfo& info) {
1016  
1017 < #ifdef IS_MPI
1018 <    double tmpMass = totalMass;
1019 <    Vector3d tmpComVel(comVel);    
1020 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1021 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1022 < #endif
1017 >    return o;
1018 >  }
1019 >  
1020 >  
1021 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1022 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1023 >      sprintf(painCave.errMsg,
1024 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1025 >              "\tindex exceeds number of known objects!\n");
1026 >      painCave.isFatal = 1;
1027 >      simError();
1028 >      return NULL;
1029 >    } else
1030 >      return IOIndexToIntegrableObject.at(index);
1031 >  }
1032 >  
1033 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1034 >    IOIndexToIntegrableObject= v;
1035 >  }
1036  
1037 <    comVel /= totalMass;
1038 <
889 <    return comVel;
890 < }
891 <
892 < Vector3d SimInfo::getCom(){
893 <    SimInfo::MoleculeIterator i;
894 <    Molecule* mol;
895 <
896 <    Vector3d com(0.0);
897 <    double totalMass = 0.0;
898 <    
899 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
900 <        double mass = mol->getMass();
901 <        totalMass += mass;
902 <        com += mass * mol->getCom();
903 <    }  
904 <
1037 >  int SimInfo::getNGlobalConstraints() {
1038 >    int nGlobalConstraints;
1039   #ifdef IS_MPI
1040 <    double tmpMass = totalMass;
1041 <    Vector3d tmpCom(com);    
1042 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1043 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1040 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1041 >                              MPI::INT, MPI::SUM);
1042 > #else
1043 >    nGlobalConstraints =  nConstraints_;
1044   #endif
1045 +    return nGlobalConstraints;
1046 +  }
1047  
1048 <    com /= totalMass;
1048 > }//end namespace OpenMD
1049  
914    return com;
915
916 }        
917
918 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
919
920    return o;
921 }
922
923 }//end namespace oopse
924

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 413 by tim, Wed Mar 9 17:30:29 2005 UTC vs.
Revision 1908 by gezelter, Fri Jul 19 21:25:45 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines