ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 1277 by gezelter, Mon Jul 14 12:35:58 2008 UTC vs.
Revision 1908 by gezelter, Fri Jul 19 21:25:45 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
63 <
71 <
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
75 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 <    std::map<int, std::set<int> >::iterator i = container.find(index);
80 <    std::set<int> result;
81 <    if (i != container.end()) {
82 <        result = i->second;
83 <    }
84 <
85 <    return result;
86 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
79 <    calcBoxDipole_(false), useAtomicVirial_(true) {
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      if ( (*i)->haveRegion() ) {        
95 >        molStamp->setRegion( (*i)->getRegion() );
96 >      } else {
97 >        // set the region to a disallowed value:
98 >        molStamp->setRegion( -1 );
99 >      }
100  
101 <
99 <      MoleculeStamp* molStamp;
100 <      int nMolWithSameStamp;
101 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
102 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
103 <      CutoffGroupStamp* cgStamp;    
104 <      RigidBodyStamp* rbStamp;
105 <      int nRigidAtoms = 0;
106 <
107 <      std::vector<Component*> components = simParams->getComponents();
101 >      nMolWithSameStamp = (*i)->getNMol();
102        
103 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
104 <        molStamp = (*i)->getMoleculeStamp();
105 <        nMolWithSameStamp = (*i)->getNMol();
106 <        
107 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
108 <
109 <        //calculate atoms in molecules
110 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
111 <
112 <        //calculate atoms in cutoff groups
113 <        int nAtomsInGroups = 0;
114 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
121 <        
122 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
123 <          cgStamp = molStamp->getCutoffGroupStamp(j);
124 <          nAtomsInGroups += cgStamp->getNMembers();
125 <        }
126 <
127 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128 <
129 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
130 <
131 <        //calculate atoms in rigid bodies
132 <        int nAtomsInRigidBodies = 0;
133 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134 <        
135 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
136 <          rbStamp = molStamp->getRigidBodyStamp(j);
137 <          nAtomsInRigidBodies += rbStamp->getNMembers();
138 <        }
139 <
140 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
142 <        
103 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
104 >      
105 >      //calculate atoms in molecules
106 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
107 >      
108 >      //calculate atoms in cutoff groups
109 >      int nAtomsInGroups = 0;
110 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
111 >      
112 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
113 >        cgStamp = molStamp->getCutoffGroupStamp(j);
114 >        nAtomsInGroups += cgStamp->getNMembers();
115        }
116 <
117 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
118 <      //group therefore the total number of cutoff groups in the system is
119 <      //equal to the total number of atoms minus number of atoms belong to
120 <      //cutoff group defined in meta-data file plus the number of cutoff
121 <      //groups defined in meta-data file
122 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
123 <
124 <      //every free atom (atom does not belong to rigid bodies) is an
125 <      //integrable object therefore the total number of integrable objects
126 <      //in the system is equal to the total number of atoms minus number of
127 <      //atoms belong to rigid body defined in meta-data file plus the number
128 <      //of rigid bodies defined in meta-data file
129 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
130 <                                                + nGlobalRigidBodies_;
131 <  
132 <      nGlobalMols_ = molStampIds_.size();
161 <      molToProcMap_.resize(nGlobalMols_);
116 >      
117 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
118 >      
119 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
120 >      
121 >      //calculate atoms in rigid bodies
122 >      int nAtomsInRigidBodies = 0;
123 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
124 >      
125 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
126 >        rbStamp = molStamp->getRigidBodyStamp(j);
127 >        nAtomsInRigidBodies += rbStamp->getNMembers();
128 >      }
129 >      
130 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
131 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
132 >      
133      }
134 +    
135 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
136 +    //group therefore the total number of cutoff groups in the system is
137 +    //equal to the total number of atoms minus number of atoms belong to
138 +    //cutoff group defined in meta-data file plus the number of cutoff
139 +    //groups defined in meta-data file
140  
141 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
142 +    
143 +    //every free atom (atom does not belong to rigid bodies) is an
144 +    //integrable object therefore the total number of integrable objects
145 +    //in the system is equal to the total number of atoms minus number of
146 +    //atoms belong to rigid body defined in meta-data file plus the number
147 +    //of rigid bodies defined in meta-data file
148 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 +      + nGlobalRigidBodies_;
150 +    
151 +    nGlobalMols_ = molStampIds_.size();
152 +    molToProcMap_.resize(nGlobalMols_);
153 +  }
154 +  
155    SimInfo::~SimInfo() {
156 <    std::map<int, Molecule*>::iterator i;
156 >    map<int, Molecule*>::iterator i;
157      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158        delete i->second;
159      }
# Line 173 | Line 164 | namespace oopse {
164      delete forceField_;
165    }
166  
176  int SimInfo::getNGlobalConstraints() {
177    int nGlobalConstraints;
178 #ifdef IS_MPI
179    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180                  MPI_COMM_WORLD);    
181 #else
182    nGlobalConstraints =  nConstraints_;
183 #endif
184    return nGlobalConstraints;
185  }
167  
168    bool SimInfo::addMolecule(Molecule* mol) {
169      MoleculeIterator i;
170 <
170 >    
171      i = molecules_.find(mol->getGlobalIndex());
172      if (i == molecules_.end() ) {
173 <
174 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 <        
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176        nAtoms_ += mol->getNAtoms();
177        nBonds_ += mol->getNBonds();
178        nBends_ += mol->getNBends();
# Line 201 | Line 182 | namespace oopse {
182        nIntegrableObjects_ += mol->getNIntegrableObjects();
183        nCutoffGroups_ += mol->getNCutoffGroups();
184        nConstraints_ += mol->getNConstraintPairs();
185 <
186 <      addExcludePairs(mol);
187 <        
185 >      
186 >      addInteractionPairs(mol);
187 >      
188        return true;
189      } else {
190        return false;
191      }
192    }
193 <
193 >  
194    bool SimInfo::removeMolecule(Molecule* mol) {
195      MoleculeIterator i;
196      i = molecules_.find(mol->getGlobalIndex());
# Line 228 | Line 209 | namespace oopse {
209        nCutoffGroups_ -= mol->getNCutoffGroups();
210        nConstraints_ -= mol->getNConstraintPairs();
211  
212 <      removeExcludePairs(mol);
212 >      removeInteractionPairs(mol);
213        molecules_.erase(mol->getGlobalIndex());
214  
215        delete mol;
# Line 237 | Line 218 | namespace oopse {
218      } else {
219        return false;
220      }
240
241
221    }    
222  
223          
# Line 254 | Line 233 | namespace oopse {
233  
234  
235    void SimInfo::calcNdf() {
236 <    int ndf_local;
236 >    int ndf_local, nfq_local;
237      MoleculeIterator i;
238 <    std::vector<StuntDouble*>::iterator j;
238 >    vector<StuntDouble*>::iterator j;
239 >    vector<Atom*>::iterator k;
240 >
241      Molecule* mol;
242 <    StuntDouble* integrableObject;
242 >    StuntDouble* sd;
243 >    Atom* atom;
244  
245      ndf_local = 0;
246 +    nfq_local = 0;
247      
248      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267           integrableObject = mol->nextIntegrableObject(j)) {
249  
250 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
251 +           sd = mol->nextIntegrableObject(j)) {
252 +
253          ndf_local += 3;
254  
255 <        if (integrableObject->isDirectional()) {
256 <          if (integrableObject->isLinear()) {
255 >        if (sd->isDirectional()) {
256 >          if (sd->isLinear()) {
257              ndf_local += 2;
258            } else {
259              ndf_local += 3;
260            }
261          }
278            
262        }
263 +
264 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
265 +           atom = mol->nextFluctuatingCharge(k)) {
266 +        if (atom->isFluctuatingCharge()) {
267 +          nfq_local++;
268 +        }
269 +      }
270      }
271      
272 +    ndfLocal_ = ndf_local;
273 +
274      // n_constraints is local, so subtract them on each processor
275      ndf_local -= nConstraints_;
276  
277   #ifdef IS_MPI
278 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
278 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
279 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
280 >                              MPI::INT, MPI::SUM);
281   #else
282      ndf_ = ndf_local;
283 +    nGlobalFluctuatingCharges_ = nfq_local;
284   #endif
285  
286      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 296 | Line 291 | namespace oopse {
291  
292    int SimInfo::getFdf() {
293   #ifdef IS_MPI
294 <    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
294 >    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
295   #else
296      fdf_ = fdf_local;
297   #endif
298      return fdf_;
299    }
300 +  
301 +  unsigned int SimInfo::getNLocalCutoffGroups(){
302 +    int nLocalCutoffAtoms = 0;
303 +    Molecule* mol;
304 +    MoleculeIterator mi;
305 +    CutoffGroup* cg;
306 +    Molecule::CutoffGroupIterator ci;
307      
308 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
309 +      
310 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
311 +           cg = mol->nextCutoffGroup(ci)) {
312 +        nLocalCutoffAtoms += cg->getNumAtom();
313 +        
314 +      }        
315 +    }
316 +    
317 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
318 +  }
319 +    
320    void SimInfo::calcNdfRaw() {
321      int ndfRaw_local;
322  
323      MoleculeIterator i;
324 <    std::vector<StuntDouble*>::iterator j;
324 >    vector<StuntDouble*>::iterator j;
325      Molecule* mol;
326 <    StuntDouble* integrableObject;
326 >    StuntDouble* sd;
327  
328      // Raw degrees of freedom that we have to set
329      ndfRaw_local = 0;
330      
331      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319           integrableObject = mol->nextIntegrableObject(j)) {
332  
333 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
334 +           sd = mol->nextIntegrableObject(j)) {
335 +
336          ndfRaw_local += 3;
337  
338 <        if (integrableObject->isDirectional()) {
339 <          if (integrableObject->isLinear()) {
338 >        if (sd->isDirectional()) {
339 >          if (sd->isLinear()) {
340              ndfRaw_local += 2;
341            } else {
342              ndfRaw_local += 3;
# Line 332 | Line 347 | namespace oopse {
347      }
348      
349   #ifdef IS_MPI
350 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
350 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
351   #else
352      ndfRaw_ = ndfRaw_local;
353   #endif
# Line 345 | Line 360 | namespace oopse {
360  
361  
362   #ifdef IS_MPI
363 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
363 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
364 >                              MPI::INT, MPI::SUM);
365   #else
366      ndfTrans_ = ndfTrans_local;
367   #endif
# Line 354 | Line 370 | namespace oopse {
370  
371    }
372  
373 <  void SimInfo::addExcludePairs(Molecule* mol) {
374 <    std::vector<Bond*>::iterator bondIter;
375 <    std::vector<Bend*>::iterator bendIter;
376 <    std::vector<Torsion*>::iterator torsionIter;
377 <    std::vector<Inversion*>::iterator inversionIter;
373 >  void SimInfo::addInteractionPairs(Molecule* mol) {
374 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
375 >    vector<Bond*>::iterator bondIter;
376 >    vector<Bend*>::iterator bendIter;
377 >    vector<Torsion*>::iterator torsionIter;
378 >    vector<Inversion*>::iterator inversionIter;
379      Bond* bond;
380      Bend* bend;
381      Torsion* torsion;
# Line 368 | Line 385 | namespace oopse {
385      int c;
386      int d;
387  
388 <    std::map<int, std::set<int> > atomGroups;
388 >    // atomGroups can be used to add special interaction maps between
389 >    // groups of atoms that are in two separate rigid bodies.
390 >    // However, most site-site interactions between two rigid bodies
391 >    // are probably not special, just the ones between the physically
392 >    // bonded atoms.  Interactions *within* a single rigid body should
393 >    // always be excluded.  These are done at the bottom of this
394 >    // function.
395  
396 +    map<int, set<int> > atomGroups;
397      Molecule::RigidBodyIterator rbIter;
398      RigidBody* rb;
399      Molecule::IntegrableObjectIterator ii;
400 <    StuntDouble* integrableObject;
400 >    StuntDouble* sd;
401      
402 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
403 <           integrableObject = mol->nextIntegrableObject(ii)) {
404 <
405 <      if (integrableObject->isRigidBody()) {
406 <          rb = static_cast<RigidBody*>(integrableObject);
407 <          std::vector<Atom*> atoms = rb->getAtoms();
408 <          std::set<int> rigidAtoms;
409 <          for (int i = 0; i < atoms.size(); ++i) {
410 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
411 <          }
412 <          for (int i = 0; i < atoms.size(); ++i) {
413 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
414 <          }      
402 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
403 >         sd = mol->nextIntegrableObject(ii)) {
404 >      
405 >      if (sd->isRigidBody()) {
406 >        rb = static_cast<RigidBody*>(sd);
407 >        vector<Atom*> atoms = rb->getAtoms();
408 >        set<int> rigidAtoms;
409 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
410 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
411 >        }
412 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
413 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
414 >        }      
415        } else {
416 <        std::set<int> oneAtomSet;
417 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
418 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
416 >        set<int> oneAtomSet;
417 >        oneAtomSet.insert(sd->getGlobalIndex());
418 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
419        }
420      }  
421 +          
422 +    for (bond= mol->beginBond(bondIter); bond != NULL;
423 +         bond = mol->nextBond(bondIter)) {
424  
398    
399    
400    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
425        a = bond->getAtomA()->getGlobalIndex();
426 <      b = bond->getAtomB()->getGlobalIndex();        
427 <      exclude_.addPair(a, b);
426 >      b = bond->getAtomB()->getGlobalIndex();  
427 >
428 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
429 >        oneTwoInteractions_.addPair(a, b);
430 >      } else {
431 >        excludedInteractions_.addPair(a, b);
432 >      }
433      }
434  
435 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
435 >    for (bend= mol->beginBend(bendIter); bend != NULL;
436 >         bend = mol->nextBend(bendIter)) {
437 >
438        a = bend->getAtomA()->getGlobalIndex();
439        b = bend->getAtomB()->getGlobalIndex();        
440        c = bend->getAtomC()->getGlobalIndex();
410      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
411      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
412      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
413
414      exclude_.addPairs(rigidSetA, rigidSetB);
415      exclude_.addPairs(rigidSetA, rigidSetC);
416      exclude_.addPairs(rigidSetB, rigidSetC);
441        
442 <      //exclude_.addPair(a, b);
443 <      //exclude_.addPair(a, c);
444 <      //exclude_.addPair(b, c);        
442 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
443 >        oneTwoInteractions_.addPair(a, b);      
444 >        oneTwoInteractions_.addPair(b, c);
445 >      } else {
446 >        excludedInteractions_.addPair(a, b);
447 >        excludedInteractions_.addPair(b, c);
448 >      }
449 >
450 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
451 >        oneThreeInteractions_.addPair(a, c);      
452 >      } else {
453 >        excludedInteractions_.addPair(a, c);
454 >      }
455      }
456  
457 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
457 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
458 >         torsion = mol->nextTorsion(torsionIter)) {
459 >
460        a = torsion->getAtomA()->getGlobalIndex();
461        b = torsion->getAtomB()->getGlobalIndex();        
462        c = torsion->getAtomC()->getGlobalIndex();        
463 <      d = torsion->getAtomD()->getGlobalIndex();        
428 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
429 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
430 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
431 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
463 >      d = torsion->getAtomD()->getGlobalIndex();      
464  
465 <      exclude_.addPairs(rigidSetA, rigidSetB);
466 <      exclude_.addPairs(rigidSetA, rigidSetC);
467 <      exclude_.addPairs(rigidSetA, rigidSetD);
468 <      exclude_.addPairs(rigidSetB, rigidSetC);
469 <      exclude_.addPairs(rigidSetB, rigidSetD);
470 <      exclude_.addPairs(rigidSetC, rigidSetD);
465 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
466 >        oneTwoInteractions_.addPair(a, b);      
467 >        oneTwoInteractions_.addPair(b, c);
468 >        oneTwoInteractions_.addPair(c, d);
469 >      } else {
470 >        excludedInteractions_.addPair(a, b);
471 >        excludedInteractions_.addPair(b, c);
472 >        excludedInteractions_.addPair(c, d);
473 >      }
474  
475 <      /*
476 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
477 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
478 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
479 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
480 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
481 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
482 <        
483 <      
484 <      exclude_.addPair(a, b);
485 <      exclude_.addPair(a, c);
486 <      exclude_.addPair(a, d);
487 <      exclude_.addPair(b, c);
453 <      exclude_.addPair(b, d);
454 <      exclude_.addPair(c, d);        
455 <      */
475 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
476 >        oneThreeInteractions_.addPair(a, c);      
477 >        oneThreeInteractions_.addPair(b, d);      
478 >      } else {
479 >        excludedInteractions_.addPair(a, c);
480 >        excludedInteractions_.addPair(b, d);
481 >      }
482 >
483 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
484 >        oneFourInteractions_.addPair(a, d);      
485 >      } else {
486 >        excludedInteractions_.addPair(a, d);
487 >      }
488      }
489  
490      for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
491           inversion = mol->nextInversion(inversionIter)) {
492 +
493        a = inversion->getAtomA()->getGlobalIndex();
494        b = inversion->getAtomB()->getGlobalIndex();        
495        c = inversion->getAtomC()->getGlobalIndex();        
496        d = inversion->getAtomD()->getGlobalIndex();        
464      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
465      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
466      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
467      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
497  
498 <      exclude_.addPairs(rigidSetA, rigidSetB);
499 <      exclude_.addPairs(rigidSetA, rigidSetC);
500 <      exclude_.addPairs(rigidSetA, rigidSetD);
501 <      exclude_.addPairs(rigidSetB, rigidSetC);
502 <      exclude_.addPairs(rigidSetB, rigidSetD);
503 <      exclude_.addPairs(rigidSetC, rigidSetD);
498 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
499 >        oneTwoInteractions_.addPair(a, b);      
500 >        oneTwoInteractions_.addPair(a, c);
501 >        oneTwoInteractions_.addPair(a, d);
502 >      } else {
503 >        excludedInteractions_.addPair(a, b);
504 >        excludedInteractions_.addPair(a, c);
505 >        excludedInteractions_.addPair(a, d);
506 >      }
507  
508 <      /*
509 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
510 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
511 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
512 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
513 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
514 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
515 <        
516 <      
485 <      exclude_.addPair(a, b);
486 <      exclude_.addPair(a, c);
487 <      exclude_.addPair(a, d);
488 <      exclude_.addPair(b, c);
489 <      exclude_.addPair(b, d);
490 <      exclude_.addPair(c, d);        
491 <      */
508 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
509 >        oneThreeInteractions_.addPair(b, c);    
510 >        oneThreeInteractions_.addPair(b, d);    
511 >        oneThreeInteractions_.addPair(c, d);      
512 >      } else {
513 >        excludedInteractions_.addPair(b, c);
514 >        excludedInteractions_.addPair(b, d);
515 >        excludedInteractions_.addPair(c, d);
516 >      }
517      }
518  
519 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
520 <      std::vector<Atom*> atoms = rb->getAtoms();
521 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
522 <        for (int j = i + 1; j < atoms.size(); ++j) {
519 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
520 >         rb = mol->nextRigidBody(rbIter)) {
521 >      vector<Atom*> atoms = rb->getAtoms();
522 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
523 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
524            a = atoms[i]->getGlobalIndex();
525            b = atoms[j]->getGlobalIndex();
526 <          exclude_.addPair(a, b);
526 >          excludedInteractions_.addPair(a, b);
527          }
528        }
529      }        
530  
531    }
532  
533 <  void SimInfo::removeExcludePairs(Molecule* mol) {
534 <    std::vector<Bond*>::iterator bondIter;
535 <    std::vector<Bend*>::iterator bendIter;
536 <    std::vector<Torsion*>::iterator torsionIter;
537 <    std::vector<Inversion*>::iterator inversionIter;
533 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
534 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
535 >    vector<Bond*>::iterator bondIter;
536 >    vector<Bend*>::iterator bendIter;
537 >    vector<Torsion*>::iterator torsionIter;
538 >    vector<Inversion*>::iterator inversionIter;
539      Bond* bond;
540      Bend* bend;
541      Torsion* torsion;
# Line 518 | Line 545 | namespace oopse {
545      int c;
546      int d;
547  
548 <    std::map<int, std::set<int> > atomGroups;
522 <
548 >    map<int, set<int> > atomGroups;
549      Molecule::RigidBodyIterator rbIter;
550      RigidBody* rb;
551      Molecule::IntegrableObjectIterator ii;
552 <    StuntDouble* integrableObject;
552 >    StuntDouble* sd;
553      
554 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
555 <           integrableObject = mol->nextIntegrableObject(ii)) {
556 <
557 <      if (integrableObject->isRigidBody()) {
558 <          rb = static_cast<RigidBody*>(integrableObject);
559 <          std::vector<Atom*> atoms = rb->getAtoms();
560 <          std::set<int> rigidAtoms;
561 <          for (int i = 0; i < atoms.size(); ++i) {
562 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
563 <          }
564 <          for (int i = 0; i < atoms.size(); ++i) {
565 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
566 <          }      
554 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
555 >         sd = mol->nextIntegrableObject(ii)) {
556 >      
557 >      if (sd->isRigidBody()) {
558 >        rb = static_cast<RigidBody*>(sd);
559 >        vector<Atom*> atoms = rb->getAtoms();
560 >        set<int> rigidAtoms;
561 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
562 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
563 >        }
564 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
565 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
566 >        }      
567        } else {
568 <        std::set<int> oneAtomSet;
569 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
570 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
568 >        set<int> oneAtomSet;
569 >        oneAtomSet.insert(sd->getGlobalIndex());
570 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
571        }
572      }  
573  
574 <    
575 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
574 >    for (bond= mol->beginBond(bondIter); bond != NULL;
575 >         bond = mol->nextBond(bondIter)) {
576 >      
577        a = bond->getAtomA()->getGlobalIndex();
578 <      b = bond->getAtomB()->getGlobalIndex();        
579 <      exclude_.removePair(a, b);
578 >      b = bond->getAtomB()->getGlobalIndex();  
579 >    
580 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581 >        oneTwoInteractions_.removePair(a, b);
582 >      } else {
583 >        excludedInteractions_.removePair(a, b);
584 >      }
585      }
586  
587 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
587 >    for (bend= mol->beginBend(bendIter); bend != NULL;
588 >         bend = mol->nextBend(bendIter)) {
589 >
590        a = bend->getAtomA()->getGlobalIndex();
591        b = bend->getAtomB()->getGlobalIndex();        
592        c = bend->getAtomC()->getGlobalIndex();
559
560      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
561      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
562      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
563
564      exclude_.removePairs(rigidSetA, rigidSetB);
565      exclude_.removePairs(rigidSetA, rigidSetC);
566      exclude_.removePairs(rigidSetB, rigidSetC);
593        
594 <      //exclude_.removePair(a, b);
595 <      //exclude_.removePair(a, c);
596 <      //exclude_.removePair(b, c);        
594 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
595 >        oneTwoInteractions_.removePair(a, b);      
596 >        oneTwoInteractions_.removePair(b, c);
597 >      } else {
598 >        excludedInteractions_.removePair(a, b);
599 >        excludedInteractions_.removePair(b, c);
600 >      }
601 >
602 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
603 >        oneThreeInteractions_.removePair(a, c);      
604 >      } else {
605 >        excludedInteractions_.removePair(a, c);
606 >      }
607      }
608  
609 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
609 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
610 >         torsion = mol->nextTorsion(torsionIter)) {
611 >
612        a = torsion->getAtomA()->getGlobalIndex();
613        b = torsion->getAtomB()->getGlobalIndex();        
614        c = torsion->getAtomC()->getGlobalIndex();        
615 <      d = torsion->getAtomD()->getGlobalIndex();        
615 >      d = torsion->getAtomD()->getGlobalIndex();      
616 >  
617 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
618 >        oneTwoInteractions_.removePair(a, b);      
619 >        oneTwoInteractions_.removePair(b, c);
620 >        oneTwoInteractions_.removePair(c, d);
621 >      } else {
622 >        excludedInteractions_.removePair(a, b);
623 >        excludedInteractions_.removePair(b, c);
624 >        excludedInteractions_.removePair(c, d);
625 >      }
626  
627 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
628 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
629 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
630 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
627 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
628 >        oneThreeInteractions_.removePair(a, c);      
629 >        oneThreeInteractions_.removePair(b, d);      
630 >      } else {
631 >        excludedInteractions_.removePair(a, c);
632 >        excludedInteractions_.removePair(b, d);
633 >      }
634  
635 <      exclude_.removePairs(rigidSetA, rigidSetB);
636 <      exclude_.removePairs(rigidSetA, rigidSetC);
637 <      exclude_.removePairs(rigidSetA, rigidSetD);
638 <      exclude_.removePairs(rigidSetB, rigidSetC);
639 <      exclude_.removePairs(rigidSetB, rigidSetD);
589 <      exclude_.removePairs(rigidSetC, rigidSetD);
590 <
591 <      /*
592 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
593 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
594 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
595 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
596 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
597 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
598 <
599 <      
600 <      exclude_.removePair(a, b);
601 <      exclude_.removePair(a, c);
602 <      exclude_.removePair(a, d);
603 <      exclude_.removePair(b, c);
604 <      exclude_.removePair(b, d);
605 <      exclude_.removePair(c, d);        
606 <      */
635 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
636 >        oneFourInteractions_.removePair(a, d);      
637 >      } else {
638 >        excludedInteractions_.removePair(a, d);
639 >      }
640      }
641  
642 <    for (inversion= mol->beginInversion(inversionIter); inversion != NULL; inversion = mol->nextInversion(inversionIter)) {
642 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
643 >         inversion = mol->nextInversion(inversionIter)) {
644 >
645        a = inversion->getAtomA()->getGlobalIndex();
646        b = inversion->getAtomB()->getGlobalIndex();        
647        c = inversion->getAtomC()->getGlobalIndex();        
648        d = inversion->getAtomD()->getGlobalIndex();        
649  
650 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
651 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
652 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
653 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
650 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
651 >        oneTwoInteractions_.removePair(a, b);      
652 >        oneTwoInteractions_.removePair(a, c);
653 >        oneTwoInteractions_.removePair(a, d);
654 >      } else {
655 >        excludedInteractions_.removePair(a, b);
656 >        excludedInteractions_.removePair(a, c);
657 >        excludedInteractions_.removePair(a, d);
658 >      }
659  
660 <      exclude_.removePairs(rigidSetA, rigidSetB);
661 <      exclude_.removePairs(rigidSetA, rigidSetC);
662 <      exclude_.removePairs(rigidSetA, rigidSetD);
663 <      exclude_.removePairs(rigidSetB, rigidSetC);
664 <      exclude_.removePairs(rigidSetB, rigidSetD);
665 <      exclude_.removePairs(rigidSetC, rigidSetD);
666 <
667 <      /*
668 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
629 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
630 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
631 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
632 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
633 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
634 <
635 <      
636 <      exclude_.removePair(a, b);
637 <      exclude_.removePair(a, c);
638 <      exclude_.removePair(a, d);
639 <      exclude_.removePair(b, c);
640 <      exclude_.removePair(b, d);
641 <      exclude_.removePair(c, d);        
642 <      */
660 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
661 >        oneThreeInteractions_.removePair(b, c);    
662 >        oneThreeInteractions_.removePair(b, d);    
663 >        oneThreeInteractions_.removePair(c, d);      
664 >      } else {
665 >        excludedInteractions_.removePair(b, c);
666 >        excludedInteractions_.removePair(b, d);
667 >        excludedInteractions_.removePair(c, d);
668 >      }
669      }
670  
671 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
672 <      std::vector<Atom*> atoms = rb->getAtoms();
673 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
674 <        for (int j = i + 1; j < atoms.size(); ++j) {
671 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
672 >         rb = mol->nextRigidBody(rbIter)) {
673 >      vector<Atom*> atoms = rb->getAtoms();
674 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
675 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
676            a = atoms[i]->getGlobalIndex();
677            b = atoms[j]->getGlobalIndex();
678 <          exclude_.removePair(a, b);
678 >          excludedInteractions_.removePair(a, b);
679          }
680        }
681      }        
682 <
682 >    
683    }
684 <
685 <
684 >  
685 >  
686    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
687      int curStampId;
688 <
688 >    
689      //index from 0
690      curStampId = moleculeStamps_.size();
691  
# Line 666 | Line 693 | namespace oopse {
693      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
694    }
695  
669  void SimInfo::update() {
696  
697 <    setupSimType();
698 <
699 < #ifdef IS_MPI
700 <    setupFortranParallel();
701 < #endif
702 <
703 <    setupFortranSim();
704 <
705 <    //setup fortran force field
680 <    /** @deprecate */    
681 <    int isError = 0;
682 <    
683 <    setupCutoff();
684 <    
685 <    setupElectrostaticSummationMethod( isError );
686 <    setupSwitchingFunction();
687 <    setupAccumulateBoxDipole();
688 <
689 <    if(isError){
690 <      sprintf( painCave.errMsg,
691 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
692 <      painCave.isFatal = 1;
693 <      simError();
694 <    }
695 <
697 >  /**
698 >   * update
699 >   *
700 >   *  Performs the global checks and variable settings after the
701 >   *  objects have been created.
702 >   *
703 >   */
704 >  void SimInfo::update() {  
705 >    setupSimVariables();
706      calcNdf();
707      calcNdfRaw();
708      calcNdfTrans();
699
700    fortranInitialized_ = true;
709    }
710 <
711 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
710 >  
711 >  /**
712 >   * getSimulatedAtomTypes
713 >   *
714 >   * Returns an STL set of AtomType* that are actually present in this
715 >   * simulation.  Must query all processors to assemble this information.
716 >   *
717 >   */
718 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
719      SimInfo::MoleculeIterator mi;
720      Molecule* mol;
721      Molecule::AtomIterator ai;
722      Atom* atom;
723 <    std::set<AtomType*> atomTypes;
724 <
723 >    set<AtomType*> atomTypes;
724 >    
725      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
726 <
727 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
726 >      for(atom = mol->beginAtom(ai); atom != NULL;
727 >          atom = mol->nextAtom(ai)) {
728          atomTypes.insert(atom->getAtomType());
729 <      }
730 <        
731 <    }
729 >      }      
730 >    }    
731 >    
732 > #ifdef IS_MPI
733  
734 <    return atomTypes;        
735 <  }
720 <
721 <  void SimInfo::setupSimType() {
722 <    std::set<AtomType*>::iterator i;
723 <    std::set<AtomType*> atomTypes;
724 <    atomTypes = getUniqueAtomTypes();
734 >    // loop over the found atom types on this processor, and add their
735 >    // numerical idents to a vector:
736      
737 <    int useLennardJones = 0;
738 <    int useElectrostatic = 0;
739 <    int useEAM = 0;
740 <    int useSC = 0;
730 <    int useCharge = 0;
731 <    int useDirectional = 0;
732 <    int useDipole = 0;
733 <    int useGayBerne = 0;
734 <    int useSticky = 0;
735 <    int useStickyPower = 0;
736 <    int useShape = 0;
737 <    int useFLARB = 0; //it is not in AtomType yet
738 <    int useDirectionalAtom = 0;    
739 <    int useElectrostatics = 0;
740 <    //usePBC and useRF are from simParams
741 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
742 <    int useRF;
743 <    int useSF;
744 <    int useSP;
745 <    int useBoxDipole;
737 >    vector<int> foundTypes;
738 >    set<AtomType*>::iterator i;
739 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
740 >      foundTypes.push_back( (*i)->getIdent() );
741  
742 <    std::string myMethod;
742 >    // count_local holds the number of found types on this processor
743 >    int count_local = foundTypes.size();
744  
745 <    // set the useRF logical
750 <    useRF = 0;
751 <    useSF = 0;
752 <    useSP = 0;
745 >    int nproc = MPI::COMM_WORLD.Get_size();
746  
747 +    // we need arrays to hold the counts and displacement vectors for
748 +    // all processors
749 +    vector<int> counts(nproc, 0);
750 +    vector<int> disps(nproc, 0);
751  
752 <    if (simParams_->haveElectrostaticSummationMethod()) {
753 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
754 <      toUpper(myMethod);
755 <      if (myMethod == "REACTION_FIELD"){
756 <        useRF = 1;
757 <      } else if (myMethod == "SHIFTED_FORCE"){
758 <        useSF = 1;
759 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
760 <        useSP = 1;
761 <      }
752 >    // fill the counts array
753 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
754 >                              1, MPI::INT);
755 >  
756 >    // use the processor counts to compute the displacement array
757 >    disps[0] = 0;    
758 >    int totalCount = counts[0];
759 >    for (int iproc = 1; iproc < nproc; iproc++) {
760 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
761 >      totalCount += counts[iproc];
762      }
763 +
764 +    // we need a (possibly redundant) set of all found types:
765 +    vector<int> ftGlobal(totalCount);
766      
767 <    if (simParams_->haveAccumulateBoxDipole())
768 <      if (simParams_->getAccumulateBoxDipole())
769 <        useBoxDipole = 1;
767 >    // now spray out the foundTypes to all the other processors:    
768 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
769 >                               &ftGlobal[0], &counts[0], &disps[0],
770 >                               MPI::INT);
771  
772 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
772 >    vector<int>::iterator j;
773  
774 <    //loop over all of the atom types
775 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
776 <      useLennardJones |= (*i)->isLennardJones();
776 <      useElectrostatic |= (*i)->isElectrostatic();
777 <      useEAM |= (*i)->isEAM();
778 <      useSC |= (*i)->isSC();
779 <      useCharge |= (*i)->isCharge();
780 <      useDirectional |= (*i)->isDirectional();
781 <      useDipole |= (*i)->isDipole();
782 <      useGayBerne |= (*i)->isGayBerne();
783 <      useSticky |= (*i)->isSticky();
784 <      useStickyPower |= (*i)->isStickyPower();
785 <      useShape |= (*i)->isShape();
786 <    }
774 >    // foundIdents is a stl set, so inserting an already found ident
775 >    // will have no effect.
776 >    set<int> foundIdents;
777  
778 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
779 <      useDirectionalAtom = 1;
780 <    }
778 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
779 >      foundIdents.insert((*j));
780 >    
781 >    // now iterate over the foundIdents and get the actual atom types
782 >    // that correspond to these:
783 >    set<int>::iterator it;
784 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
785 >      atomTypes.insert( forceField_->getAtomType((*it)) );
786 >
787 > #endif
788  
789 <    if (useCharge || useDipole) {
790 <      useElectrostatics = 1;
794 <    }
789 >    return atomTypes;        
790 >  }
791  
796 #ifdef IS_MPI    
797    int temp;
792  
793 <    temp = usePBC;
794 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
793 >  int getGlobalCountOfType(AtomType* atype) {
794 >    /*
795 >    set<AtomType*> atypes = getSimulatedAtomTypes();
796 >    map<AtomType*, int> counts_;
797  
798 <    temp = useDirectionalAtom;
799 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
798 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
799 >      for(atom = mol->beginAtom(ai); atom != NULL;
800 >          atom = mol->nextAtom(ai)) {
801 >        atom->getAtomType();
802 >      }      
803 >    }    
804 >    */
805 >    return 0;
806 >  }
807  
808 <    temp = useLennardJones;
809 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810 <
811 <    temp = useElectrostatics;
812 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813 <
814 <    temp = useCharge;
815 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
816 <
814 <    temp = useDipole;
815 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
816 <
817 <    temp = useSticky;
818 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
819 <
820 <    temp = useStickyPower;
821 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
808 >  void SimInfo::setupSimVariables() {
809 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
810 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
811 >    // parameter is true
812 >    calcBoxDipole_ = false;
813 >    if ( simParams_->haveAccumulateBoxDipole() )
814 >      if ( simParams_->getAccumulateBoxDipole() ) {
815 >        calcBoxDipole_ = true;      
816 >      }
817      
818 <    temp = useGayBerne;
819 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
818 >    set<AtomType*>::iterator i;
819 >    set<AtomType*> atomTypes;
820 >    atomTypes = getSimulatedAtomTypes();    
821 >    bool usesElectrostatic = false;
822 >    bool usesMetallic = false;
823 >    bool usesDirectional = false;
824 >    bool usesFluctuatingCharges =  false;
825 >    //loop over all of the atom types
826 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
827 >      usesElectrostatic |= (*i)->isElectrostatic();
828 >      usesMetallic |= (*i)->isMetal();
829 >      usesDirectional |= (*i)->isDirectional();
830 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
831 >    }
832  
833 <    temp = useEAM;
834 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
835 <
836 <    temp = useSC;
837 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
833 > #ifdef IS_MPI
834 >    bool temp;
835 >    temp = usesDirectional;
836 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
837 >                              MPI::LOR);
838 >        
839 >    temp = usesMetallic;
840 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
841 >                              MPI::LOR);
842      
843 <    temp = useShape;
844 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
843 >    temp = usesElectrostatic;
844 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
845 >                              MPI::LOR);
846  
847 <    temp = useFLARB;
848 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
847 >    temp = usesFluctuatingCharges;
848 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
849 >                              MPI::LOR);
850 > #else
851  
852 <    temp = useRF;
853 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
852 >    usesDirectionalAtoms_ = usesDirectional;
853 >    usesMetallicAtoms_ = usesMetallic;
854 >    usesElectrostaticAtoms_ = usesElectrostatic;
855 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
856  
857 <    temp = useSF;
858 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
857 > #endif
858 >    
859 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
860 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
861 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
862 >  }
863  
844    temp = useSP;
845    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
864  
865 <    temp = useBoxDipole;
866 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
865 >  vector<int> SimInfo::getGlobalAtomIndices() {
866 >    SimInfo::MoleculeIterator mi;
867 >    Molecule* mol;
868 >    Molecule::AtomIterator ai;
869 >    Atom* atom;
870  
871 <    temp = useAtomicVirial_;
872 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
871 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
872 >    
873 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
874 >      
875 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
876 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
877 >      }
878 >    }
879 >    return GlobalAtomIndices;
880 >  }
881  
853 #endif
882  
883 <    fInfo_.SIM_uses_PBC = usePBC;    
884 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
885 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
886 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
887 <    fInfo_.SIM_uses_Charges = useCharge;
860 <    fInfo_.SIM_uses_Dipoles = useDipole;
861 <    fInfo_.SIM_uses_Sticky = useSticky;
862 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
863 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
864 <    fInfo_.SIM_uses_EAM = useEAM;
865 <    fInfo_.SIM_uses_SC = useSC;
866 <    fInfo_.SIM_uses_Shapes = useShape;
867 <    fInfo_.SIM_uses_FLARB = useFLARB;
868 <    fInfo_.SIM_uses_RF = useRF;
869 <    fInfo_.SIM_uses_SF = useSF;
870 <    fInfo_.SIM_uses_SP = useSP;
871 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
872 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
873 <  }
883 >  vector<int> SimInfo::getGlobalGroupIndices() {
884 >    SimInfo::MoleculeIterator mi;
885 >    Molecule* mol;
886 >    Molecule::CutoffGroupIterator ci;
887 >    CutoffGroup* cg;
888  
889 <  void SimInfo::setupFortranSim() {
876 <    int isError;
877 <    int nExclude;
878 <    std::vector<int> fortranGlobalGroupMembership;
889 >    vector<int> GlobalGroupIndices;
890      
891 <    nExclude = exclude_.getSize();
892 <    isError = 0;
893 <
894 <    //globalGroupMembership_ is filled by SimCreator    
895 <    for (int i = 0; i < nGlobalAtoms_; i++) {
896 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
891 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
892 >      
893 >      //local index of cutoff group is trivial, it only depends on the
894 >      //order of travesing
895 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
896 >           cg = mol->nextCutoffGroup(ci)) {
897 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
898 >      }        
899      }
900 +    return GlobalGroupIndices;
901 +  }
902  
903 +
904 +  void SimInfo::prepareTopology() {
905 +
906      //calculate mass ratio of cutoff group
889    std::vector<RealType> mfact;
907      SimInfo::MoleculeIterator mi;
908      Molecule* mol;
909      Molecule::CutoffGroupIterator ci;
# Line 895 | Line 912 | namespace oopse {
912      Atom* atom;
913      RealType totalMass;
914  
915 <    //to avoid memory reallocation, reserve enough space for mfact
916 <    mfact.reserve(getNCutoffGroups());
915 >    /**
916 >     * The mass factor is the relative mass of an atom to the total
917 >     * mass of the cutoff group it belongs to.  By default, all atoms
918 >     * are their own cutoff groups, and therefore have mass factors of
919 >     * 1.  We need some special handling for massless atoms, which
920 >     * will be treated as carrying the entire mass of the cutoff
921 >     * group.
922 >     */
923 >    massFactors_.clear();
924 >    massFactors_.resize(getNAtoms(), 1.0);
925      
926      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
927 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
927 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
928 >           cg = mol->nextCutoffGroup(ci)) {
929  
930          totalMass = cg->getMass();
931          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
932            // Check for massless groups - set mfact to 1 if true
933 <          if (totalMass != 0)
934 <            mfact.push_back(atom->getMass()/totalMass);
933 >          if (totalMass != 0)
934 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
935            else
936 <            mfact.push_back( 1.0 );
936 >            massFactors_[atom->getLocalIndex()] = 1.0;
937          }
912
938        }      
939      }
940  
941 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
917 <    std::vector<int> identArray;
941 >    // Build the identArray_
942  
943 <    //to avoid memory reallocation, reserve enough space identArray
944 <    identArray.reserve(getNAtoms());
921 <    
943 >    identArray_.clear();
944 >    identArray_.reserve(getNAtoms());    
945      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
946        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
947 <        identArray.push_back(atom->getIdent());
947 >        identArray_.push_back(atom->getIdent());
948        }
949      }    
927
928    //fill molMembershipArray
929    //molMembershipArray is filled by SimCreator    
930    std::vector<int> molMembershipArray(nGlobalAtoms_);
931    for (int i = 0; i < nGlobalAtoms_; i++) {
932      molMembershipArray[i] = globalMolMembership_[i] + 1;
933    }
934    
935    //setup fortran simulation
936    int nGlobalExcludes = 0;
937    int* globalExcludes = NULL;
938    int* excludeList = exclude_.getExcludeList();
939    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
940                   &nExclude, excludeList , &nGlobalExcludes, globalExcludes,
941                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
942                   &fortranGlobalGroupMembership[0], &isError);
943    
944    if( isError ){
945      
946      sprintf( painCave.errMsg,
947               "There was an error setting the simulation information in fortran.\n" );
948      painCave.isFatal = 1;
949      painCave.severity = OOPSE_ERROR;
950      simError();
951    }
952    
953    
954    sprintf( checkPointMsg,
955             "succesfully sent the simulation information to fortran.\n");
956    
957    errorCheckPoint();
958    
959    // Setup number of neighbors in neighbor list if present
960    if (simParams_->haveNeighborListNeighbors()) {
961      int nlistNeighbors = simParams_->getNeighborListNeighbors();
962      setNeighbors(&nlistNeighbors);
963    }
964  
965
966  }
967
968
969  void SimInfo::setupFortranParallel() {
970 #ifdef IS_MPI    
971    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
972    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
973    std::vector<int> localToGlobalCutoffGroupIndex;
974    SimInfo::MoleculeIterator mi;
975    Molecule::AtomIterator ai;
976    Molecule::CutoffGroupIterator ci;
977    Molecule* mol;
978    Atom* atom;
979    CutoffGroup* cg;
980    mpiSimData parallelData;
981    int isError;
982
983    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
984
985      //local index(index in DataStorge) of atom is important
986      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
987        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
988      }
989
990      //local index of cutoff group is trivial, it only depends on the order of travesing
991      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
992        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
993      }        
994        
995    }
996
997    //fill up mpiSimData struct
998    parallelData.nMolGlobal = getNGlobalMolecules();
999    parallelData.nMolLocal = getNMolecules();
1000    parallelData.nAtomsGlobal = getNGlobalAtoms();
1001    parallelData.nAtomsLocal = getNAtoms();
1002    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1003    parallelData.nGroupsLocal = getNCutoffGroups();
1004    parallelData.myNode = worldRank;
1005    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1006
1007    //pass mpiSimData struct and index arrays to fortran
1008    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1009                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
1010                    &localToGlobalCutoffGroupIndex[0], &isError);
1011
1012    if (isError) {
1013      sprintf(painCave.errMsg,
1014              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1015      painCave.isFatal = 1;
1016      simError();
1017    }
1018
1019    sprintf(checkPointMsg, " mpiRefresh successful.\n");
1020    errorCheckPoint();
1021
1022 #endif
1023  }
1024
1025  void SimInfo::setupCutoff() {          
1026    
1027    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1028
1029    // Check the cutoff policy
1030    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1031
1032    // Set LJ shifting bools to false
1033    ljsp_ = false;
1034    ljsf_ = false;
1035
1036    std::string myPolicy;
1037    if (forceFieldOptions_.haveCutoffPolicy()){
1038      myPolicy = forceFieldOptions_.getCutoffPolicy();
1039    }else if (simParams_->haveCutoffPolicy()) {
1040      myPolicy = simParams_->getCutoffPolicy();
1041    }
1042
1043    if (!myPolicy.empty()){
1044      toUpper(myPolicy);
1045      if (myPolicy == "MIX") {
1046        cp = MIX_CUTOFF_POLICY;
1047      } else {
1048        if (myPolicy == "MAX") {
1049          cp = MAX_CUTOFF_POLICY;
1050        } else {
1051          if (myPolicy == "TRADITIONAL") {            
1052            cp = TRADITIONAL_CUTOFF_POLICY;
1053          } else {
1054            // throw error        
1055            sprintf( painCave.errMsg,
1056                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1057            painCave.isFatal = 1;
1058            simError();
1059          }    
1060        }          
1061      }
1062    }          
1063    notifyFortranCutoffPolicy(&cp);
1064
1065    // Check the Skin Thickness for neighborlists
1066    RealType skin;
1067    if (simParams_->haveSkinThickness()) {
1068      skin = simParams_->getSkinThickness();
1069      notifyFortranSkinThickness(&skin);
1070    }            
1071        
1072    // Check if the cutoff was set explicitly:
1073    if (simParams_->haveCutoffRadius()) {
1074      rcut_ = simParams_->getCutoffRadius();
1075      if (simParams_->haveSwitchingRadius()) {
1076        rsw_  = simParams_->getSwitchingRadius();
1077      } else {
1078        if (fInfo_.SIM_uses_Charges |
1079            fInfo_.SIM_uses_Dipoles |
1080            fInfo_.SIM_uses_RF) {
1081          
1082          rsw_ = 0.85 * rcut_;
1083          sprintf(painCave.errMsg,
1084                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1085                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1086                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1087        painCave.isFatal = 0;
1088        simError();
1089        } else {
1090          rsw_ = rcut_;
1091          sprintf(painCave.errMsg,
1092                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1093                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1094                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1095          painCave.isFatal = 0;
1096          simError();
1097        }
1098      }
1099
1100      if (simParams_->haveElectrostaticSummationMethod()) {
1101        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1102        toUpper(myMethod);
1103        
1104        if (myMethod == "SHIFTED_POTENTIAL") {
1105          ljsp_ = true;
1106        } else if (myMethod == "SHIFTED_FORCE") {
1107          ljsf_ = true;
1108        }
1109      }
1110      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1111      
1112    } else {
1113      
1114      // For electrostatic atoms, we'll assume a large safe value:
1115      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1116        sprintf(painCave.errMsg,
1117                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1118                "\tOOPSE will use a default value of 15.0 angstroms"
1119                "\tfor the cutoffRadius.\n");
1120        painCave.isFatal = 0;
1121        simError();
1122        rcut_ = 15.0;
1123      
1124        if (simParams_->haveElectrostaticSummationMethod()) {
1125          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1126          toUpper(myMethod);
1127      
1128      // For the time being, we're tethering the LJ shifted behavior to the
1129      // electrostaticSummationMethod keyword options
1130          if (myMethod == "SHIFTED_POTENTIAL") {
1131            ljsp_ = true;
1132          } else if (myMethod == "SHIFTED_FORCE") {
1133            ljsf_ = true;
1134          }
1135          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1136            if (simParams_->haveSwitchingRadius()){
1137              sprintf(painCave.errMsg,
1138                      "SimInfo Warning: A value was set for the switchingRadius\n"
1139                      "\teven though the electrostaticSummationMethod was\n"
1140                      "\tset to %s\n", myMethod.c_str());
1141              painCave.isFatal = 1;
1142              simError();            
1143            }
1144          }
1145        }
1146      
1147        if (simParams_->haveSwitchingRadius()){
1148          rsw_ = simParams_->getSwitchingRadius();
1149        } else {        
1150          sprintf(painCave.errMsg,
1151                  "SimCreator Warning: No value was set for switchingRadius.\n"
1152                  "\tOOPSE will use a default value of\n"
1153                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1154          painCave.isFatal = 0;
1155          simError();
1156          rsw_ = 0.85 * rcut_;
1157        }
1158
1159        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1160
1161      } else {
1162        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1163        // We'll punt and let fortran figure out the cutoffs later.
1164        
1165        notifyFortranYouAreOnYourOwn();
1166
1167      }
1168    }
1169  }
1170
1171  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1172    
1173    int errorOut;
1174    int esm =  NONE;
1175    int sm = UNDAMPED;
1176    RealType alphaVal;
1177    RealType dielectric;
950      
951 <    errorOut = isError;
1180 <
1181 <    if (simParams_->haveElectrostaticSummationMethod()) {
1182 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1183 <      toUpper(myMethod);
1184 <      if (myMethod == "NONE") {
1185 <        esm = NONE;
1186 <      } else {
1187 <        if (myMethod == "SWITCHING_FUNCTION") {
1188 <          esm = SWITCHING_FUNCTION;
1189 <        } else {
1190 <          if (myMethod == "SHIFTED_POTENTIAL") {
1191 <            esm = SHIFTED_POTENTIAL;
1192 <          } else {
1193 <            if (myMethod == "SHIFTED_FORCE") {            
1194 <              esm = SHIFTED_FORCE;
1195 <            } else {
1196 <              if (myMethod == "REACTION_FIELD") {
1197 <                esm = REACTION_FIELD;
1198 <                dielectric = simParams_->getDielectric();
1199 <                if (!simParams_->haveDielectric()) {
1200 <                  // throw warning
1201 <                  sprintf( painCave.errMsg,
1202 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1203 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1204 <                  painCave.isFatal = 0;
1205 <                  simError();
1206 <                }
1207 <              } else {
1208 <                // throw error        
1209 <                sprintf( painCave.errMsg,
1210 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1211 <                         "\t(Input file specified %s .)\n"
1212 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1213 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1214 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1215 <                painCave.isFatal = 1;
1216 <                simError();
1217 <              }    
1218 <            }          
1219 <          }
1220 <        }
1221 <      }
1222 <    }
1223 <    
1224 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1225 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1226 <      toUpper(myScreen);
1227 <      if (myScreen == "UNDAMPED") {
1228 <        sm = UNDAMPED;
1229 <      } else {
1230 <        if (myScreen == "DAMPED") {
1231 <          sm = DAMPED;
1232 <          if (!simParams_->haveDampingAlpha()) {
1233 <            // first set a cutoff dependent alpha value
1234 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1235 <            alphaVal = 0.5125 - rcut_* 0.025;
1236 <            // for values rcut > 20.5, alpha is zero
1237 <            if (alphaVal < 0) alphaVal = 0;
1238 <
1239 <            // throw warning
1240 <            sprintf( painCave.errMsg,
1241 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1242 <                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1243 <            painCave.isFatal = 0;
1244 <            simError();
1245 <          } else {
1246 <            alphaVal = simParams_->getDampingAlpha();
1247 <          }
1248 <          
1249 <        } else {
1250 <          // throw error        
1251 <          sprintf( painCave.errMsg,
1252 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1253 <                   "\t(Input file specified %s .)\n"
1254 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1255 <                   "or \"damped\".\n", myScreen.c_str() );
1256 <          painCave.isFatal = 1;
1257 <          simError();
1258 <        }
1259 <      }
1260 <    }
1261 <    
1262 <    // let's pass some summation method variables to fortran
1263 <    setElectrostaticSummationMethod( &esm );
1264 <    setFortranElectrostaticMethod( &esm );
1265 <    setScreeningMethod( &sm );
1266 <    setDampingAlpha( &alphaVal );
1267 <    setReactionFieldDielectric( &dielectric );
1268 <    initFortranFF( &errorOut );
951 >    topologyDone_ = true;
952    }
953  
1271  void SimInfo::setupSwitchingFunction() {    
1272    int ft = CUBIC;
1273
1274    if (simParams_->haveSwitchingFunctionType()) {
1275      std::string funcType = simParams_->getSwitchingFunctionType();
1276      toUpper(funcType);
1277      if (funcType == "CUBIC") {
1278        ft = CUBIC;
1279      } else {
1280        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1281          ft = FIFTH_ORDER_POLY;
1282        } else {
1283          // throw error        
1284          sprintf( painCave.errMsg,
1285                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1286          painCave.isFatal = 1;
1287          simError();
1288        }          
1289      }
1290    }
1291
1292    // send switching function notification to switcheroo
1293    setFunctionType(&ft);
1294
1295  }
1296
1297  void SimInfo::setupAccumulateBoxDipole() {    
1298
1299    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1300    if ( simParams_->haveAccumulateBoxDipole() )
1301      if ( simParams_->getAccumulateBoxDipole() ) {
1302        setAccumulateBoxDipole();
1303        calcBoxDipole_ = true;
1304      }
1305
1306  }
1307
954    void SimInfo::addProperty(GenericData* genData) {
955      properties_.addProperty(genData);  
956    }
957  
958 <  void SimInfo::removeProperty(const std::string& propName) {
958 >  void SimInfo::removeProperty(const string& propName) {
959      properties_.removeProperty(propName);  
960    }
961  
# Line 1317 | Line 963 | namespace oopse {
963      properties_.clearProperties();
964    }
965  
966 <  std::vector<std::string> SimInfo::getPropertyNames() {
966 >  vector<string> SimInfo::getPropertyNames() {
967      return properties_.getPropertyNames();  
968    }
969        
970 <  std::vector<GenericData*> SimInfo::getProperties() {
970 >  vector<GenericData*> SimInfo::getProperties() {
971      return properties_.getProperties();
972    }
973  
974 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
974 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
975      return properties_.getPropertyByName(propName);
976    }
977  
# Line 1339 | Line 985 | namespace oopse {
985      Molecule* mol;
986      RigidBody* rb;
987      Atom* atom;
988 +    CutoffGroup* cg;
989      SimInfo::MoleculeIterator mi;
990      Molecule::RigidBodyIterator rbIter;
991 <    Molecule::AtomIterator atomIter;;
991 >    Molecule::AtomIterator atomIter;
992 >    Molecule::CutoffGroupIterator cgIter;
993  
994      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
995          
996 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
996 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
997 >           atom = mol->nextAtom(atomIter)) {
998          atom->setSnapshotManager(sman_);
999        }
1000          
1001 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1001 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1002 >           rb = mol->nextRigidBody(rbIter)) {
1003          rb->setSnapshotManager(sman_);
1004        }
1005 +
1006 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1007 +           cg = mol->nextCutoffGroup(cgIter)) {
1008 +        cg->setSnapshotManager(sman_);
1009 +      }
1010      }    
1011      
1012    }
1013  
1359  Vector3d SimInfo::getComVel(){
1360    SimInfo::MoleculeIterator i;
1361    Molecule* mol;
1014  
1015 <    Vector3d comVel(0.0);
1364 <    RealType totalMass = 0.0;
1365 <    
1366 <
1367 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1368 <      RealType mass = mol->getMass();
1369 <      totalMass += mass;
1370 <      comVel += mass * mol->getComVel();
1371 <    }  
1015 >  ostream& operator <<(ostream& o, SimInfo& info) {
1016  
1373 #ifdef IS_MPI
1374    RealType tmpMass = totalMass;
1375    Vector3d tmpComVel(comVel);    
1376    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1377    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1378 #endif
1379
1380    comVel /= totalMass;
1381
1382    return comVel;
1383  }
1384
1385  Vector3d SimInfo::getCom(){
1386    SimInfo::MoleculeIterator i;
1387    Molecule* mol;
1388
1389    Vector3d com(0.0);
1390    RealType totalMass = 0.0;
1391    
1392    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1393      RealType mass = mol->getMass();
1394      totalMass += mass;
1395      com += mass * mol->getCom();
1396    }  
1397
1398 #ifdef IS_MPI
1399    RealType tmpMass = totalMass;
1400    Vector3d tmpCom(com);    
1401    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1402    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1403 #endif
1404
1405    com /= totalMass;
1406
1407    return com;
1408
1409  }        
1410
1411  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1412
1017      return o;
1018    }
1019    
1020 <  
1417 <   /*
1418 <   Returns center of mass and center of mass velocity in one function call.
1419 <   */
1420 <  
1421 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1422 <      SimInfo::MoleculeIterator i;
1423 <      Molecule* mol;
1424 <      
1425 <    
1426 <      RealType totalMass = 0.0;
1427 <    
1428 <
1429 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1430 <         RealType mass = mol->getMass();
1431 <         totalMass += mass;
1432 <         com += mass * mol->getCom();
1433 <         comVel += mass * mol->getComVel();          
1434 <      }  
1435 <      
1436 < #ifdef IS_MPI
1437 <      RealType tmpMass = totalMass;
1438 <      Vector3d tmpCom(com);  
1439 <      Vector3d tmpComVel(comVel);
1440 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1441 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1442 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1443 < #endif
1444 <      
1445 <      com /= totalMass;
1446 <      comVel /= totalMass;
1447 <   }        
1448 <  
1449 <   /*
1450 <   Return intertia tensor for entire system and angular momentum Vector.
1451 <
1452 <
1453 <       [  Ixx -Ixy  -Ixz ]
1454 <  J =| -Iyx  Iyy  -Iyz |
1455 <       [ -Izx -Iyz   Izz ]
1456 <    */
1457 <
1458 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1459 <      
1460 <
1461 <      RealType xx = 0.0;
1462 <      RealType yy = 0.0;
1463 <      RealType zz = 0.0;
1464 <      RealType xy = 0.0;
1465 <      RealType xz = 0.0;
1466 <      RealType yz = 0.0;
1467 <      Vector3d com(0.0);
1468 <      Vector3d comVel(0.0);
1469 <      
1470 <      getComAll(com, comVel);
1471 <      
1472 <      SimInfo::MoleculeIterator i;
1473 <      Molecule* mol;
1474 <      
1475 <      Vector3d thisq(0.0);
1476 <      Vector3d thisv(0.0);
1477 <
1478 <      RealType thisMass = 0.0;
1479 <    
1480 <      
1481 <      
1482 <  
1483 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1484 <        
1485 <         thisq = mol->getCom()-com;
1486 <         thisv = mol->getComVel()-comVel;
1487 <         thisMass = mol->getMass();
1488 <         // Compute moment of intertia coefficients.
1489 <         xx += thisq[0]*thisq[0]*thisMass;
1490 <         yy += thisq[1]*thisq[1]*thisMass;
1491 <         zz += thisq[2]*thisq[2]*thisMass;
1492 <        
1493 <         // compute products of intertia
1494 <         xy += thisq[0]*thisq[1]*thisMass;
1495 <         xz += thisq[0]*thisq[2]*thisMass;
1496 <         yz += thisq[1]*thisq[2]*thisMass;
1497 <            
1498 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1499 <            
1500 <      }  
1501 <      
1502 <      
1503 <      inertiaTensor(0,0) = yy + zz;
1504 <      inertiaTensor(0,1) = -xy;
1505 <      inertiaTensor(0,2) = -xz;
1506 <      inertiaTensor(1,0) = -xy;
1507 <      inertiaTensor(1,1) = xx + zz;
1508 <      inertiaTensor(1,2) = -yz;
1509 <      inertiaTensor(2,0) = -xz;
1510 <      inertiaTensor(2,1) = -yz;
1511 <      inertiaTensor(2,2) = xx + yy;
1512 <      
1513 < #ifdef IS_MPI
1514 <      Mat3x3d tmpI(inertiaTensor);
1515 <      Vector3d tmpAngMom;
1516 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1517 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1518 < #endif
1519 <              
1520 <      return;
1521 <   }
1522 <
1523 <   //Returns the angular momentum of the system
1524 <   Vector3d SimInfo::getAngularMomentum(){
1525 <      
1526 <      Vector3d com(0.0);
1527 <      Vector3d comVel(0.0);
1528 <      Vector3d angularMomentum(0.0);
1529 <      
1530 <      getComAll(com,comVel);
1531 <      
1532 <      SimInfo::MoleculeIterator i;
1533 <      Molecule* mol;
1534 <      
1535 <      Vector3d thisr(0.0);
1536 <      Vector3d thisp(0.0);
1537 <      
1538 <      RealType thisMass;
1539 <      
1540 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1541 <        thisMass = mol->getMass();
1542 <        thisr = mol->getCom()-com;
1543 <        thisp = (mol->getComVel()-comVel)*thisMass;
1544 <        
1545 <        angularMomentum += cross( thisr, thisp );
1546 <        
1547 <      }  
1548 <      
1549 < #ifdef IS_MPI
1550 <      Vector3d tmpAngMom;
1551 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1552 < #endif
1553 <      
1554 <      return angularMomentum;
1555 <   }
1556 <  
1020 >  
1021    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1022 <    return IOIndexToIntegrableObject.at(index);
1022 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1023 >      sprintf(painCave.errMsg,
1024 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1025 >              "\tindex exceeds number of known objects!\n");
1026 >      painCave.isFatal = 1;
1027 >      simError();
1028 >      return NULL;
1029 >    } else
1030 >      return IOIndexToIntegrableObject.at(index);
1031    }
1032    
1033 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1033 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1034      IOIndexToIntegrableObject= v;
1035    }
1036  
1037 <  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1038 <     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1039 <     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1040 <     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1041 <  */
1042 <  void SimInfo::getGyrationalVolume(RealType &volume){
1043 <    Mat3x3d intTensor;
1044 <    RealType det;
1045 <    Vector3d dummyAngMom;
1574 <    RealType sysconstants;
1575 <    RealType geomCnst;
1576 <
1577 <    geomCnst = 3.0/2.0;
1578 <    /* Get the inertial tensor and angular momentum for free*/
1579 <    getInertiaTensor(intTensor,dummyAngMom);
1580 <    
1581 <    det = intTensor.determinant();
1582 <    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1583 <    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1584 <    return;
1037 >  int SimInfo::getNGlobalConstraints() {
1038 >    int nGlobalConstraints;
1039 > #ifdef IS_MPI
1040 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1041 >                              MPI::INT, MPI::SUM);
1042 > #else
1043 >    nGlobalConstraints =  nConstraints_;
1044 > #endif
1045 >    return nGlobalConstraints;
1046    }
1047  
1048 <  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1588 <    Mat3x3d intTensor;
1589 <    Vector3d dummyAngMom;
1590 <    RealType sysconstants;
1591 <    RealType geomCnst;
1048 > }//end namespace OpenMD
1049  
1593    geomCnst = 3.0/2.0;
1594    /* Get the inertial tensor and angular momentum for free*/
1595    getInertiaTensor(intTensor,dummyAngMom);
1596    
1597    detI = intTensor.determinant();
1598    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1599    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1600    return;
1601  }
1602 /*
1603   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1604      assert( v.size() == nAtoms_ + nRigidBodies_);
1605      sdByGlobalIndex_ = v;
1606    }
1607
1608    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1609      //assert(index < nAtoms_ + nRigidBodies_);
1610      return sdByGlobalIndex_.at(index);
1611    }  
1612 */  
1613 }//end namespace oopse
1614

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 1277 by gezelter, Mon Jul 14 12:35:58 2008 UTC vs.
Revision 1908 by gezelter, Fri Jul 19 21:25:45 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines