1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file SimInfo.cpp |
45 |
* @author tlin |
46 |
* @date 11/02/2004 |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#include <algorithm> |
51 |
#include <set> |
52 |
#include <map> |
53 |
|
54 |
#include "brains/SimInfo.hpp" |
55 |
#include "math/Vector3.hpp" |
56 |
#include "primitives/Molecule.hpp" |
57 |
#include "primitives/StuntDouble.hpp" |
58 |
#include "utils/MemoryUtils.hpp" |
59 |
#include "utils/simError.h" |
60 |
#include "selection/SelectionManager.hpp" |
61 |
#include "io/ForceFieldOptions.hpp" |
62 |
#include "brains/ForceField.hpp" |
63 |
#include "nonbonded/SwitchingFunction.hpp" |
64 |
#ifdef IS_MPI |
65 |
#include <mpi.h> |
66 |
#endif |
67 |
|
68 |
using namespace std; |
69 |
namespace OpenMD { |
70 |
|
71 |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
72 |
forceField_(ff), simParams_(simParams), |
73 |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
74 |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
75 |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), |
76 |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
77 |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
78 |
nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
79 |
calcBoxDipole_(false), useAtomicVirial_(true) { |
80 |
|
81 |
MoleculeStamp* molStamp; |
82 |
int nMolWithSameStamp; |
83 |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
84 |
int nGroups = 0; //total cutoff groups defined in meta-data file |
85 |
CutoffGroupStamp* cgStamp; |
86 |
RigidBodyStamp* rbStamp; |
87 |
int nRigidAtoms = 0; |
88 |
|
89 |
vector<Component*> components = simParams->getComponents(); |
90 |
|
91 |
for (vector<Component*>::iterator i = components.begin(); |
92 |
i !=components.end(); ++i) { |
93 |
molStamp = (*i)->getMoleculeStamp(); |
94 |
if ( (*i)->haveRegion() ) { |
95 |
molStamp->setRegion( (*i)->getRegion() ); |
96 |
} else { |
97 |
// set the region to a disallowed value: |
98 |
molStamp->setRegion( -1 ); |
99 |
} |
100 |
|
101 |
nMolWithSameStamp = (*i)->getNMol(); |
102 |
|
103 |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
104 |
|
105 |
//calculate atoms in molecules |
106 |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
107 |
|
108 |
//calculate atoms in cutoff groups |
109 |
int nAtomsInGroups = 0; |
110 |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
111 |
|
112 |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
113 |
cgStamp = molStamp->getCutoffGroupStamp(j); |
114 |
nAtomsInGroups += cgStamp->getNMembers(); |
115 |
} |
116 |
|
117 |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
118 |
|
119 |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
120 |
|
121 |
//calculate atoms in rigid bodies |
122 |
int nAtomsInRigidBodies = 0; |
123 |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
124 |
|
125 |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
126 |
rbStamp = molStamp->getRigidBodyStamp(j); |
127 |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
128 |
} |
129 |
|
130 |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
131 |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
132 |
|
133 |
} |
134 |
|
135 |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
136 |
//group therefore the total number of cutoff groups in the system is |
137 |
//equal to the total number of atoms minus number of atoms belong to |
138 |
//cutoff group defined in meta-data file plus the number of cutoff |
139 |
//groups defined in meta-data file |
140 |
|
141 |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
142 |
|
143 |
//every free atom (atom does not belong to rigid bodies) is an |
144 |
//integrable object therefore the total number of integrable objects |
145 |
//in the system is equal to the total number of atoms minus number of |
146 |
//atoms belong to rigid body defined in meta-data file plus the number |
147 |
//of rigid bodies defined in meta-data file |
148 |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
149 |
+ nGlobalRigidBodies_; |
150 |
|
151 |
nGlobalMols_ = molStampIds_.size(); |
152 |
molToProcMap_.resize(nGlobalMols_); |
153 |
} |
154 |
|
155 |
SimInfo::~SimInfo() { |
156 |
map<int, Molecule*>::iterator i; |
157 |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
158 |
delete i->second; |
159 |
} |
160 |
molecules_.clear(); |
161 |
|
162 |
delete sman_; |
163 |
delete simParams_; |
164 |
delete forceField_; |
165 |
} |
166 |
|
167 |
|
168 |
bool SimInfo::addMolecule(Molecule* mol) { |
169 |
MoleculeIterator i; |
170 |
|
171 |
i = molecules_.find(mol->getGlobalIndex()); |
172 |
if (i == molecules_.end() ) { |
173 |
|
174 |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
175 |
|
176 |
nAtoms_ += mol->getNAtoms(); |
177 |
nBonds_ += mol->getNBonds(); |
178 |
nBends_ += mol->getNBends(); |
179 |
nTorsions_ += mol->getNTorsions(); |
180 |
nInversions_ += mol->getNInversions(); |
181 |
nRigidBodies_ += mol->getNRigidBodies(); |
182 |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
183 |
nCutoffGroups_ += mol->getNCutoffGroups(); |
184 |
nConstraints_ += mol->getNConstraintPairs(); |
185 |
|
186 |
addInteractionPairs(mol); |
187 |
|
188 |
return true; |
189 |
} else { |
190 |
return false; |
191 |
} |
192 |
} |
193 |
|
194 |
bool SimInfo::removeMolecule(Molecule* mol) { |
195 |
MoleculeIterator i; |
196 |
i = molecules_.find(mol->getGlobalIndex()); |
197 |
|
198 |
if (i != molecules_.end() ) { |
199 |
|
200 |
assert(mol == i->second); |
201 |
|
202 |
nAtoms_ -= mol->getNAtoms(); |
203 |
nBonds_ -= mol->getNBonds(); |
204 |
nBends_ -= mol->getNBends(); |
205 |
nTorsions_ -= mol->getNTorsions(); |
206 |
nInversions_ -= mol->getNInversions(); |
207 |
nRigidBodies_ -= mol->getNRigidBodies(); |
208 |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
209 |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
210 |
nConstraints_ -= mol->getNConstraintPairs(); |
211 |
|
212 |
removeInteractionPairs(mol); |
213 |
molecules_.erase(mol->getGlobalIndex()); |
214 |
|
215 |
delete mol; |
216 |
|
217 |
return true; |
218 |
} else { |
219 |
return false; |
220 |
} |
221 |
} |
222 |
|
223 |
|
224 |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
225 |
i = molecules_.begin(); |
226 |
return i == molecules_.end() ? NULL : i->second; |
227 |
} |
228 |
|
229 |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
230 |
++i; |
231 |
return i == molecules_.end() ? NULL : i->second; |
232 |
} |
233 |
|
234 |
|
235 |
void SimInfo::calcNdf() { |
236 |
int ndf_local, nfq_local; |
237 |
MoleculeIterator i; |
238 |
vector<StuntDouble*>::iterator j; |
239 |
vector<Atom*>::iterator k; |
240 |
|
241 |
Molecule* mol; |
242 |
StuntDouble* sd; |
243 |
Atom* atom; |
244 |
|
245 |
ndf_local = 0; |
246 |
nfq_local = 0; |
247 |
|
248 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
249 |
|
250 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
251 |
sd = mol->nextIntegrableObject(j)) { |
252 |
|
253 |
ndf_local += 3; |
254 |
|
255 |
if (sd->isDirectional()) { |
256 |
if (sd->isLinear()) { |
257 |
ndf_local += 2; |
258 |
} else { |
259 |
ndf_local += 3; |
260 |
} |
261 |
} |
262 |
} |
263 |
|
264 |
for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
265 |
atom = mol->nextFluctuatingCharge(k)) { |
266 |
if (atom->isFluctuatingCharge()) { |
267 |
nfq_local++; |
268 |
} |
269 |
} |
270 |
} |
271 |
|
272 |
ndfLocal_ = ndf_local; |
273 |
|
274 |
// n_constraints is local, so subtract them on each processor |
275 |
ndf_local -= nConstraints_; |
276 |
|
277 |
#ifdef IS_MPI |
278 |
MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM); |
279 |
MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1, |
280 |
MPI::INT, MPI::SUM); |
281 |
#else |
282 |
ndf_ = ndf_local; |
283 |
nGlobalFluctuatingCharges_ = nfq_local; |
284 |
#endif |
285 |
|
286 |
// nZconstraints_ is global, as are the 3 COM translations for the |
287 |
// entire system: |
288 |
ndf_ = ndf_ - 3 - nZconstraint_; |
289 |
|
290 |
} |
291 |
|
292 |
int SimInfo::getFdf() { |
293 |
#ifdef IS_MPI |
294 |
MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM); |
295 |
#else |
296 |
fdf_ = fdf_local; |
297 |
#endif |
298 |
return fdf_; |
299 |
} |
300 |
|
301 |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
302 |
int nLocalCutoffAtoms = 0; |
303 |
Molecule* mol; |
304 |
MoleculeIterator mi; |
305 |
CutoffGroup* cg; |
306 |
Molecule::CutoffGroupIterator ci; |
307 |
|
308 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
309 |
|
310 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
311 |
cg = mol->nextCutoffGroup(ci)) { |
312 |
nLocalCutoffAtoms += cg->getNumAtom(); |
313 |
|
314 |
} |
315 |
} |
316 |
|
317 |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
318 |
} |
319 |
|
320 |
void SimInfo::calcNdfRaw() { |
321 |
int ndfRaw_local; |
322 |
|
323 |
MoleculeIterator i; |
324 |
vector<StuntDouble*>::iterator j; |
325 |
Molecule* mol; |
326 |
StuntDouble* sd; |
327 |
|
328 |
// Raw degrees of freedom that we have to set |
329 |
ndfRaw_local = 0; |
330 |
|
331 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
332 |
|
333 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
334 |
sd = mol->nextIntegrableObject(j)) { |
335 |
|
336 |
ndfRaw_local += 3; |
337 |
|
338 |
if (sd->isDirectional()) { |
339 |
if (sd->isLinear()) { |
340 |
ndfRaw_local += 2; |
341 |
} else { |
342 |
ndfRaw_local += 3; |
343 |
} |
344 |
} |
345 |
|
346 |
} |
347 |
} |
348 |
|
349 |
#ifdef IS_MPI |
350 |
MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM); |
351 |
#else |
352 |
ndfRaw_ = ndfRaw_local; |
353 |
#endif |
354 |
} |
355 |
|
356 |
void SimInfo::calcNdfTrans() { |
357 |
int ndfTrans_local; |
358 |
|
359 |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
360 |
|
361 |
|
362 |
#ifdef IS_MPI |
363 |
MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1, |
364 |
MPI::INT, MPI::SUM); |
365 |
#else |
366 |
ndfTrans_ = ndfTrans_local; |
367 |
#endif |
368 |
|
369 |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
370 |
|
371 |
} |
372 |
|
373 |
void SimInfo::addInteractionPairs(Molecule* mol) { |
374 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
375 |
vector<Bond*>::iterator bondIter; |
376 |
vector<Bend*>::iterator bendIter; |
377 |
vector<Torsion*>::iterator torsionIter; |
378 |
vector<Inversion*>::iterator inversionIter; |
379 |
Bond* bond; |
380 |
Bend* bend; |
381 |
Torsion* torsion; |
382 |
Inversion* inversion; |
383 |
int a; |
384 |
int b; |
385 |
int c; |
386 |
int d; |
387 |
|
388 |
// atomGroups can be used to add special interaction maps between |
389 |
// groups of atoms that are in two separate rigid bodies. |
390 |
// However, most site-site interactions between two rigid bodies |
391 |
// are probably not special, just the ones between the physically |
392 |
// bonded atoms. Interactions *within* a single rigid body should |
393 |
// always be excluded. These are done at the bottom of this |
394 |
// function. |
395 |
|
396 |
map<int, set<int> > atomGroups; |
397 |
Molecule::RigidBodyIterator rbIter; |
398 |
RigidBody* rb; |
399 |
Molecule::IntegrableObjectIterator ii; |
400 |
StuntDouble* sd; |
401 |
|
402 |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
403 |
sd = mol->nextIntegrableObject(ii)) { |
404 |
|
405 |
if (sd->isRigidBody()) { |
406 |
rb = static_cast<RigidBody*>(sd); |
407 |
vector<Atom*> atoms = rb->getAtoms(); |
408 |
set<int> rigidAtoms; |
409 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
410 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
411 |
} |
412 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
413 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
414 |
} |
415 |
} else { |
416 |
set<int> oneAtomSet; |
417 |
oneAtomSet.insert(sd->getGlobalIndex()); |
418 |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
419 |
} |
420 |
} |
421 |
|
422 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
423 |
bond = mol->nextBond(bondIter)) { |
424 |
|
425 |
a = bond->getAtomA()->getGlobalIndex(); |
426 |
b = bond->getAtomB()->getGlobalIndex(); |
427 |
|
428 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
429 |
oneTwoInteractions_.addPair(a, b); |
430 |
} else { |
431 |
excludedInteractions_.addPair(a, b); |
432 |
} |
433 |
} |
434 |
|
435 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
436 |
bend = mol->nextBend(bendIter)) { |
437 |
|
438 |
a = bend->getAtomA()->getGlobalIndex(); |
439 |
b = bend->getAtomB()->getGlobalIndex(); |
440 |
c = bend->getAtomC()->getGlobalIndex(); |
441 |
|
442 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
443 |
oneTwoInteractions_.addPair(a, b); |
444 |
oneTwoInteractions_.addPair(b, c); |
445 |
} else { |
446 |
excludedInteractions_.addPair(a, b); |
447 |
excludedInteractions_.addPair(b, c); |
448 |
} |
449 |
|
450 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
451 |
oneThreeInteractions_.addPair(a, c); |
452 |
} else { |
453 |
excludedInteractions_.addPair(a, c); |
454 |
} |
455 |
} |
456 |
|
457 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
458 |
torsion = mol->nextTorsion(torsionIter)) { |
459 |
|
460 |
a = torsion->getAtomA()->getGlobalIndex(); |
461 |
b = torsion->getAtomB()->getGlobalIndex(); |
462 |
c = torsion->getAtomC()->getGlobalIndex(); |
463 |
d = torsion->getAtomD()->getGlobalIndex(); |
464 |
|
465 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
466 |
oneTwoInteractions_.addPair(a, b); |
467 |
oneTwoInteractions_.addPair(b, c); |
468 |
oneTwoInteractions_.addPair(c, d); |
469 |
} else { |
470 |
excludedInteractions_.addPair(a, b); |
471 |
excludedInteractions_.addPair(b, c); |
472 |
excludedInteractions_.addPair(c, d); |
473 |
} |
474 |
|
475 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
476 |
oneThreeInteractions_.addPair(a, c); |
477 |
oneThreeInteractions_.addPair(b, d); |
478 |
} else { |
479 |
excludedInteractions_.addPair(a, c); |
480 |
excludedInteractions_.addPair(b, d); |
481 |
} |
482 |
|
483 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
484 |
oneFourInteractions_.addPair(a, d); |
485 |
} else { |
486 |
excludedInteractions_.addPair(a, d); |
487 |
} |
488 |
} |
489 |
|
490 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
491 |
inversion = mol->nextInversion(inversionIter)) { |
492 |
|
493 |
a = inversion->getAtomA()->getGlobalIndex(); |
494 |
b = inversion->getAtomB()->getGlobalIndex(); |
495 |
c = inversion->getAtomC()->getGlobalIndex(); |
496 |
d = inversion->getAtomD()->getGlobalIndex(); |
497 |
|
498 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
499 |
oneTwoInteractions_.addPair(a, b); |
500 |
oneTwoInteractions_.addPair(a, c); |
501 |
oneTwoInteractions_.addPair(a, d); |
502 |
} else { |
503 |
excludedInteractions_.addPair(a, b); |
504 |
excludedInteractions_.addPair(a, c); |
505 |
excludedInteractions_.addPair(a, d); |
506 |
} |
507 |
|
508 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
509 |
oneThreeInteractions_.addPair(b, c); |
510 |
oneThreeInteractions_.addPair(b, d); |
511 |
oneThreeInteractions_.addPair(c, d); |
512 |
} else { |
513 |
excludedInteractions_.addPair(b, c); |
514 |
excludedInteractions_.addPair(b, d); |
515 |
excludedInteractions_.addPair(c, d); |
516 |
} |
517 |
} |
518 |
|
519 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
520 |
rb = mol->nextRigidBody(rbIter)) { |
521 |
vector<Atom*> atoms = rb->getAtoms(); |
522 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
523 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
524 |
a = atoms[i]->getGlobalIndex(); |
525 |
b = atoms[j]->getGlobalIndex(); |
526 |
excludedInteractions_.addPair(a, b); |
527 |
} |
528 |
} |
529 |
} |
530 |
|
531 |
} |
532 |
|
533 |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
534 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
535 |
vector<Bond*>::iterator bondIter; |
536 |
vector<Bend*>::iterator bendIter; |
537 |
vector<Torsion*>::iterator torsionIter; |
538 |
vector<Inversion*>::iterator inversionIter; |
539 |
Bond* bond; |
540 |
Bend* bend; |
541 |
Torsion* torsion; |
542 |
Inversion* inversion; |
543 |
int a; |
544 |
int b; |
545 |
int c; |
546 |
int d; |
547 |
|
548 |
map<int, set<int> > atomGroups; |
549 |
Molecule::RigidBodyIterator rbIter; |
550 |
RigidBody* rb; |
551 |
Molecule::IntegrableObjectIterator ii; |
552 |
StuntDouble* sd; |
553 |
|
554 |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
555 |
sd = mol->nextIntegrableObject(ii)) { |
556 |
|
557 |
if (sd->isRigidBody()) { |
558 |
rb = static_cast<RigidBody*>(sd); |
559 |
vector<Atom*> atoms = rb->getAtoms(); |
560 |
set<int> rigidAtoms; |
561 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
562 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
563 |
} |
564 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
565 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
566 |
} |
567 |
} else { |
568 |
set<int> oneAtomSet; |
569 |
oneAtomSet.insert(sd->getGlobalIndex()); |
570 |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
571 |
} |
572 |
} |
573 |
|
574 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
575 |
bond = mol->nextBond(bondIter)) { |
576 |
|
577 |
a = bond->getAtomA()->getGlobalIndex(); |
578 |
b = bond->getAtomB()->getGlobalIndex(); |
579 |
|
580 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
581 |
oneTwoInteractions_.removePair(a, b); |
582 |
} else { |
583 |
excludedInteractions_.removePair(a, b); |
584 |
} |
585 |
} |
586 |
|
587 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
588 |
bend = mol->nextBend(bendIter)) { |
589 |
|
590 |
a = bend->getAtomA()->getGlobalIndex(); |
591 |
b = bend->getAtomB()->getGlobalIndex(); |
592 |
c = bend->getAtomC()->getGlobalIndex(); |
593 |
|
594 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
595 |
oneTwoInteractions_.removePair(a, b); |
596 |
oneTwoInteractions_.removePair(b, c); |
597 |
} else { |
598 |
excludedInteractions_.removePair(a, b); |
599 |
excludedInteractions_.removePair(b, c); |
600 |
} |
601 |
|
602 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
603 |
oneThreeInteractions_.removePair(a, c); |
604 |
} else { |
605 |
excludedInteractions_.removePair(a, c); |
606 |
} |
607 |
} |
608 |
|
609 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
610 |
torsion = mol->nextTorsion(torsionIter)) { |
611 |
|
612 |
a = torsion->getAtomA()->getGlobalIndex(); |
613 |
b = torsion->getAtomB()->getGlobalIndex(); |
614 |
c = torsion->getAtomC()->getGlobalIndex(); |
615 |
d = torsion->getAtomD()->getGlobalIndex(); |
616 |
|
617 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
618 |
oneTwoInteractions_.removePair(a, b); |
619 |
oneTwoInteractions_.removePair(b, c); |
620 |
oneTwoInteractions_.removePair(c, d); |
621 |
} else { |
622 |
excludedInteractions_.removePair(a, b); |
623 |
excludedInteractions_.removePair(b, c); |
624 |
excludedInteractions_.removePair(c, d); |
625 |
} |
626 |
|
627 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
628 |
oneThreeInteractions_.removePair(a, c); |
629 |
oneThreeInteractions_.removePair(b, d); |
630 |
} else { |
631 |
excludedInteractions_.removePair(a, c); |
632 |
excludedInteractions_.removePair(b, d); |
633 |
} |
634 |
|
635 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
636 |
oneFourInteractions_.removePair(a, d); |
637 |
} else { |
638 |
excludedInteractions_.removePair(a, d); |
639 |
} |
640 |
} |
641 |
|
642 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
643 |
inversion = mol->nextInversion(inversionIter)) { |
644 |
|
645 |
a = inversion->getAtomA()->getGlobalIndex(); |
646 |
b = inversion->getAtomB()->getGlobalIndex(); |
647 |
c = inversion->getAtomC()->getGlobalIndex(); |
648 |
d = inversion->getAtomD()->getGlobalIndex(); |
649 |
|
650 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
651 |
oneTwoInteractions_.removePair(a, b); |
652 |
oneTwoInteractions_.removePair(a, c); |
653 |
oneTwoInteractions_.removePair(a, d); |
654 |
} else { |
655 |
excludedInteractions_.removePair(a, b); |
656 |
excludedInteractions_.removePair(a, c); |
657 |
excludedInteractions_.removePair(a, d); |
658 |
} |
659 |
|
660 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
661 |
oneThreeInteractions_.removePair(b, c); |
662 |
oneThreeInteractions_.removePair(b, d); |
663 |
oneThreeInteractions_.removePair(c, d); |
664 |
} else { |
665 |
excludedInteractions_.removePair(b, c); |
666 |
excludedInteractions_.removePair(b, d); |
667 |
excludedInteractions_.removePair(c, d); |
668 |
} |
669 |
} |
670 |
|
671 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
672 |
rb = mol->nextRigidBody(rbIter)) { |
673 |
vector<Atom*> atoms = rb->getAtoms(); |
674 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
675 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
676 |
a = atoms[i]->getGlobalIndex(); |
677 |
b = atoms[j]->getGlobalIndex(); |
678 |
excludedInteractions_.removePair(a, b); |
679 |
} |
680 |
} |
681 |
} |
682 |
|
683 |
} |
684 |
|
685 |
|
686 |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
687 |
int curStampId; |
688 |
|
689 |
//index from 0 |
690 |
curStampId = moleculeStamps_.size(); |
691 |
|
692 |
moleculeStamps_.push_back(molStamp); |
693 |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
694 |
} |
695 |
|
696 |
|
697 |
/** |
698 |
* update |
699 |
* |
700 |
* Performs the global checks and variable settings after the |
701 |
* objects have been created. |
702 |
* |
703 |
*/ |
704 |
void SimInfo::update() { |
705 |
setupSimVariables(); |
706 |
calcNdf(); |
707 |
calcNdfRaw(); |
708 |
calcNdfTrans(); |
709 |
} |
710 |
|
711 |
/** |
712 |
* getSimulatedAtomTypes |
713 |
* |
714 |
* Returns an STL set of AtomType* that are actually present in this |
715 |
* simulation. Must query all processors to assemble this information. |
716 |
* |
717 |
*/ |
718 |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
719 |
SimInfo::MoleculeIterator mi; |
720 |
Molecule* mol; |
721 |
Molecule::AtomIterator ai; |
722 |
Atom* atom; |
723 |
set<AtomType*> atomTypes; |
724 |
|
725 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
726 |
for(atom = mol->beginAtom(ai); atom != NULL; |
727 |
atom = mol->nextAtom(ai)) { |
728 |
atomTypes.insert(atom->getAtomType()); |
729 |
} |
730 |
} |
731 |
|
732 |
#ifdef IS_MPI |
733 |
|
734 |
// loop over the found atom types on this processor, and add their |
735 |
// numerical idents to a vector: |
736 |
|
737 |
vector<int> foundTypes; |
738 |
set<AtomType*>::iterator i; |
739 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
740 |
foundTypes.push_back( (*i)->getIdent() ); |
741 |
|
742 |
// count_local holds the number of found types on this processor |
743 |
int count_local = foundTypes.size(); |
744 |
|
745 |
int nproc = MPI::COMM_WORLD.Get_size(); |
746 |
|
747 |
// we need arrays to hold the counts and displacement vectors for |
748 |
// all processors |
749 |
vector<int> counts(nproc, 0); |
750 |
vector<int> disps(nproc, 0); |
751 |
|
752 |
// fill the counts array |
753 |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
754 |
1, MPI::INT); |
755 |
|
756 |
// use the processor counts to compute the displacement array |
757 |
disps[0] = 0; |
758 |
int totalCount = counts[0]; |
759 |
for (int iproc = 1; iproc < nproc; iproc++) { |
760 |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
761 |
totalCount += counts[iproc]; |
762 |
} |
763 |
|
764 |
// we need a (possibly redundant) set of all found types: |
765 |
vector<int> ftGlobal(totalCount); |
766 |
|
767 |
// now spray out the foundTypes to all the other processors: |
768 |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
769 |
&ftGlobal[0], &counts[0], &disps[0], |
770 |
MPI::INT); |
771 |
|
772 |
vector<int>::iterator j; |
773 |
|
774 |
// foundIdents is a stl set, so inserting an already found ident |
775 |
// will have no effect. |
776 |
set<int> foundIdents; |
777 |
|
778 |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
779 |
foundIdents.insert((*j)); |
780 |
|
781 |
// now iterate over the foundIdents and get the actual atom types |
782 |
// that correspond to these: |
783 |
set<int>::iterator it; |
784 |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
785 |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
786 |
|
787 |
#endif |
788 |
|
789 |
return atomTypes; |
790 |
} |
791 |
|
792 |
|
793 |
int getGlobalCountOfType(AtomType* atype) { |
794 |
/* |
795 |
set<AtomType*> atypes = getSimulatedAtomTypes(); |
796 |
map<AtomType*, int> counts_; |
797 |
|
798 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
799 |
for(atom = mol->beginAtom(ai); atom != NULL; |
800 |
atom = mol->nextAtom(ai)) { |
801 |
atom->getAtomType(); |
802 |
} |
803 |
} |
804 |
*/ |
805 |
return 0; |
806 |
} |
807 |
|
808 |
void SimInfo::setupSimVariables() { |
809 |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
810 |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole |
811 |
// parameter is true |
812 |
calcBoxDipole_ = false; |
813 |
if ( simParams_->haveAccumulateBoxDipole() ) |
814 |
if ( simParams_->getAccumulateBoxDipole() ) { |
815 |
calcBoxDipole_ = true; |
816 |
} |
817 |
|
818 |
set<AtomType*>::iterator i; |
819 |
set<AtomType*> atomTypes; |
820 |
atomTypes = getSimulatedAtomTypes(); |
821 |
bool usesElectrostatic = false; |
822 |
bool usesMetallic = false; |
823 |
bool usesDirectional = false; |
824 |
bool usesFluctuatingCharges = false; |
825 |
//loop over all of the atom types |
826 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
827 |
usesElectrostatic |= (*i)->isElectrostatic(); |
828 |
usesMetallic |= (*i)->isMetal(); |
829 |
usesDirectional |= (*i)->isDirectional(); |
830 |
usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
831 |
} |
832 |
|
833 |
#ifdef IS_MPI |
834 |
bool temp; |
835 |
temp = usesDirectional; |
836 |
MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL, |
837 |
MPI::LOR); |
838 |
|
839 |
temp = usesMetallic; |
840 |
MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL, |
841 |
MPI::LOR); |
842 |
|
843 |
temp = usesElectrostatic; |
844 |
MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL, |
845 |
MPI::LOR); |
846 |
|
847 |
temp = usesFluctuatingCharges; |
848 |
MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL, |
849 |
MPI::LOR); |
850 |
#else |
851 |
|
852 |
usesDirectionalAtoms_ = usesDirectional; |
853 |
usesMetallicAtoms_ = usesMetallic; |
854 |
usesElectrostaticAtoms_ = usesElectrostatic; |
855 |
usesFluctuatingCharges_ = usesFluctuatingCharges; |
856 |
|
857 |
#endif |
858 |
|
859 |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
860 |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
861 |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
862 |
} |
863 |
|
864 |
|
865 |
vector<int> SimInfo::getGlobalAtomIndices() { |
866 |
SimInfo::MoleculeIterator mi; |
867 |
Molecule* mol; |
868 |
Molecule::AtomIterator ai; |
869 |
Atom* atom; |
870 |
|
871 |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
872 |
|
873 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
874 |
|
875 |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
876 |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
877 |
} |
878 |
} |
879 |
return GlobalAtomIndices; |
880 |
} |
881 |
|
882 |
|
883 |
vector<int> SimInfo::getGlobalGroupIndices() { |
884 |
SimInfo::MoleculeIterator mi; |
885 |
Molecule* mol; |
886 |
Molecule::CutoffGroupIterator ci; |
887 |
CutoffGroup* cg; |
888 |
|
889 |
vector<int> GlobalGroupIndices; |
890 |
|
891 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
892 |
|
893 |
//local index of cutoff group is trivial, it only depends on the |
894 |
//order of travesing |
895 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
896 |
cg = mol->nextCutoffGroup(ci)) { |
897 |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
898 |
} |
899 |
} |
900 |
return GlobalGroupIndices; |
901 |
} |
902 |
|
903 |
|
904 |
void SimInfo::prepareTopology() { |
905 |
|
906 |
//calculate mass ratio of cutoff group |
907 |
SimInfo::MoleculeIterator mi; |
908 |
Molecule* mol; |
909 |
Molecule::CutoffGroupIterator ci; |
910 |
CutoffGroup* cg; |
911 |
Molecule::AtomIterator ai; |
912 |
Atom* atom; |
913 |
RealType totalMass; |
914 |
|
915 |
/** |
916 |
* The mass factor is the relative mass of an atom to the total |
917 |
* mass of the cutoff group it belongs to. By default, all atoms |
918 |
* are their own cutoff groups, and therefore have mass factors of |
919 |
* 1. We need some special handling for massless atoms, which |
920 |
* will be treated as carrying the entire mass of the cutoff |
921 |
* group. |
922 |
*/ |
923 |
massFactors_.clear(); |
924 |
massFactors_.resize(getNAtoms(), 1.0); |
925 |
|
926 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
927 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
928 |
cg = mol->nextCutoffGroup(ci)) { |
929 |
|
930 |
totalMass = cg->getMass(); |
931 |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
932 |
// Check for massless groups - set mfact to 1 if true |
933 |
if (totalMass != 0) |
934 |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
935 |
else |
936 |
massFactors_[atom->getLocalIndex()] = 1.0; |
937 |
} |
938 |
} |
939 |
} |
940 |
|
941 |
// Build the identArray_ |
942 |
|
943 |
identArray_.clear(); |
944 |
identArray_.reserve(getNAtoms()); |
945 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
946 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
947 |
identArray_.push_back(atom->getIdent()); |
948 |
} |
949 |
} |
950 |
|
951 |
topologyDone_ = true; |
952 |
} |
953 |
|
954 |
void SimInfo::addProperty(GenericData* genData) { |
955 |
properties_.addProperty(genData); |
956 |
} |
957 |
|
958 |
void SimInfo::removeProperty(const string& propName) { |
959 |
properties_.removeProperty(propName); |
960 |
} |
961 |
|
962 |
void SimInfo::clearProperties() { |
963 |
properties_.clearProperties(); |
964 |
} |
965 |
|
966 |
vector<string> SimInfo::getPropertyNames() { |
967 |
return properties_.getPropertyNames(); |
968 |
} |
969 |
|
970 |
vector<GenericData*> SimInfo::getProperties() { |
971 |
return properties_.getProperties(); |
972 |
} |
973 |
|
974 |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
975 |
return properties_.getPropertyByName(propName); |
976 |
} |
977 |
|
978 |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
979 |
if (sman_ == sman) { |
980 |
return; |
981 |
} |
982 |
delete sman_; |
983 |
sman_ = sman; |
984 |
|
985 |
Molecule* mol; |
986 |
RigidBody* rb; |
987 |
Atom* atom; |
988 |
CutoffGroup* cg; |
989 |
SimInfo::MoleculeIterator mi; |
990 |
Molecule::RigidBodyIterator rbIter; |
991 |
Molecule::AtomIterator atomIter; |
992 |
Molecule::CutoffGroupIterator cgIter; |
993 |
|
994 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
995 |
|
996 |
for (atom = mol->beginAtom(atomIter); atom != NULL; |
997 |
atom = mol->nextAtom(atomIter)) { |
998 |
atom->setSnapshotManager(sman_); |
999 |
} |
1000 |
|
1001 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
1002 |
rb = mol->nextRigidBody(rbIter)) { |
1003 |
rb->setSnapshotManager(sman_); |
1004 |
} |
1005 |
|
1006 |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; |
1007 |
cg = mol->nextCutoffGroup(cgIter)) { |
1008 |
cg->setSnapshotManager(sman_); |
1009 |
} |
1010 |
} |
1011 |
|
1012 |
} |
1013 |
|
1014 |
|
1015 |
ostream& operator <<(ostream& o, SimInfo& info) { |
1016 |
|
1017 |
return o; |
1018 |
} |
1019 |
|
1020 |
|
1021 |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1022 |
if (index >= int(IOIndexToIntegrableObject.size())) { |
1023 |
sprintf(painCave.errMsg, |
1024 |
"SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n" |
1025 |
"\tindex exceeds number of known objects!\n"); |
1026 |
painCave.isFatal = 1; |
1027 |
simError(); |
1028 |
return NULL; |
1029 |
} else |
1030 |
return IOIndexToIntegrableObject.at(index); |
1031 |
} |
1032 |
|
1033 |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1034 |
IOIndexToIntegrableObject= v; |
1035 |
} |
1036 |
|
1037 |
int SimInfo::getNGlobalConstraints() { |
1038 |
int nGlobalConstraints; |
1039 |
#ifdef IS_MPI |
1040 |
MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1, |
1041 |
MPI::INT, MPI::SUM); |
1042 |
#else |
1043 |
nGlobalConstraints = nConstraints_; |
1044 |
#endif |
1045 |
return nGlobalConstraints; |
1046 |
} |
1047 |
|
1048 |
}//end namespace OpenMD |
1049 |
|