1 |
< |
#include <stdlib.h> |
2 |
< |
#include <string.h> |
3 |
< |
#include <math.h> |
1 |
> |
/* |
2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
> |
* |
4 |
> |
* The University of Notre Dame grants you ("Licensee") a |
5 |
> |
* non-exclusive, royalty free, license to use, modify and |
6 |
> |
* redistribute this software in source and binary code form, provided |
7 |
> |
* that the following conditions are met: |
8 |
> |
* |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
> |
* notice, this list of conditions and the following disclaimer. |
11 |
> |
* |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
> |
* notice, this list of conditions and the following disclaimer in the |
14 |
> |
* documentation and/or other materials provided with the |
15 |
> |
* distribution. |
16 |
> |
* |
17 |
> |
* This software is provided "AS IS," without a warranty of any |
18 |
> |
* kind. All express or implied conditions, representations and |
19 |
> |
* warranties, including any implied warranty of merchantability, |
20 |
> |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
> |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
> |
* be liable for any damages suffered by licensee as a result of |
23 |
> |
* using, modifying or distributing the software or its |
24 |
> |
* derivatives. In no event will the University of Notre Dame or its |
25 |
> |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
> |
* direct, indirect, special, consequential, incidental or punitive |
27 |
> |
* damages, however caused and regardless of the theory of liability, |
28 |
> |
* arising out of the use of or inability to use software, even if the |
29 |
> |
* University of Notre Dame has been advised of the possibility of |
30 |
> |
* such damages. |
31 |
> |
* |
32 |
> |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
> |
* research, please cite the appropriate papers when you publish your |
34 |
> |
* work. Good starting points are: |
35 |
> |
* |
36 |
> |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
> |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
> |
*/ |
42 |
> |
|
43 |
> |
/** |
44 |
> |
* @file SimInfo.cpp |
45 |
> |
* @author tlin |
46 |
> |
* @date 11/02/2004 |
47 |
> |
* @version 1.0 |
48 |
> |
*/ |
49 |
|
|
50 |
< |
#include <iostream> |
51 |
< |
using namespace std; |
50 |
> |
#include <algorithm> |
51 |
> |
#include <set> |
52 |
> |
#include <map> |
53 |
|
|
54 |
|
#include "brains/SimInfo.hpp" |
55 |
< |
#define __C |
56 |
< |
#include "brains/fSimulation.h" |
55 |
> |
#include "math/Vector3.hpp" |
56 |
> |
#include "primitives/Molecule.hpp" |
57 |
> |
#include "primitives/StuntDouble.hpp" |
58 |
> |
#include "utils/MemoryUtils.hpp" |
59 |
|
#include "utils/simError.h" |
60 |
< |
|
61 |
< |
#include "UseTheForce/fortranWrappers.hpp" |
62 |
< |
|
63 |
< |
#include "math/MatVec3.h" |
16 |
< |
|
60 |
> |
#include "selection/SelectionManager.hpp" |
61 |
> |
#include "io/ForceFieldOptions.hpp" |
62 |
> |
#include "brains/ForceField.hpp" |
63 |
> |
#include "nonbonded/SwitchingFunction.hpp" |
64 |
|
#ifdef IS_MPI |
65 |
< |
#include "brains/mpiSimulation.hpp" |
65 |
> |
#include <mpi.h> |
66 |
|
#endif |
67 |
|
|
68 |
< |
inline double roundMe( double x ){ |
69 |
< |
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
70 |
< |
} |
71 |
< |
|
72 |
< |
inline double min( double a, double b ){ |
73 |
< |
return (a < b ) ? a : b; |
74 |
< |
} |
68 |
> |
using namespace std; |
69 |
> |
namespace OpenMD { |
70 |
> |
|
71 |
> |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
72 |
> |
forceField_(ff), simParams_(simParams), |
73 |
> |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
74 |
> |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
75 |
> |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), |
76 |
> |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
77 |
> |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
78 |
> |
nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
79 |
> |
calcBoxDipole_(false), useAtomicVirial_(true) { |
80 |
> |
|
81 |
> |
MoleculeStamp* molStamp; |
82 |
> |
int nMolWithSameStamp; |
83 |
> |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
84 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
85 |
> |
CutoffGroupStamp* cgStamp; |
86 |
> |
RigidBodyStamp* rbStamp; |
87 |
> |
int nRigidAtoms = 0; |
88 |
> |
|
89 |
> |
vector<Component*> components = simParams->getComponents(); |
90 |
> |
|
91 |
> |
for (vector<Component*>::iterator i = components.begin(); |
92 |
> |
i !=components.end(); ++i) { |
93 |
> |
molStamp = (*i)->getMoleculeStamp(); |
94 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
95 |
> |
|
96 |
> |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
97 |
> |
|
98 |
> |
//calculate atoms in molecules |
99 |
> |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
100 |
> |
|
101 |
> |
//calculate atoms in cutoff groups |
102 |
> |
int nAtomsInGroups = 0; |
103 |
> |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
104 |
> |
|
105 |
> |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
106 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
107 |
> |
nAtomsInGroups += cgStamp->getNMembers(); |
108 |
> |
} |
109 |
> |
|
110 |
> |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
111 |
> |
|
112 |
> |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
113 |
> |
|
114 |
> |
//calculate atoms in rigid bodies |
115 |
> |
int nAtomsInRigidBodies = 0; |
116 |
> |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
117 |
> |
|
118 |
> |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
119 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
120 |
> |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
121 |
> |
} |
122 |
> |
|
123 |
> |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
124 |
> |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
125 |
> |
|
126 |
> |
} |
127 |
> |
|
128 |
> |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
129 |
> |
//group therefore the total number of cutoff groups in the system is |
130 |
> |
//equal to the total number of atoms minus number of atoms belong to |
131 |
> |
//cutoff group defined in meta-data file plus the number of cutoff |
132 |
> |
//groups defined in meta-data file |
133 |
|
|
134 |
< |
SimInfo* currentInfo; |
134 |
> |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
135 |
> |
|
136 |
> |
//every free atom (atom does not belong to rigid bodies) is an |
137 |
> |
//integrable object therefore the total number of integrable objects |
138 |
> |
//in the system is equal to the total number of atoms minus number of |
139 |
> |
//atoms belong to rigid body defined in meta-data file plus the number |
140 |
> |
//of rigid bodies defined in meta-data file |
141 |
> |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
142 |
> |
+ nGlobalRigidBodies_; |
143 |
> |
|
144 |
> |
nGlobalMols_ = molStampIds_.size(); |
145 |
> |
molToProcMap_.resize(nGlobalMols_); |
146 |
> |
} |
147 |
> |
|
148 |
> |
SimInfo::~SimInfo() { |
149 |
> |
map<int, Molecule*>::iterator i; |
150 |
> |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
151 |
> |
delete i->second; |
152 |
> |
} |
153 |
> |
molecules_.clear(); |
154 |
> |
|
155 |
> |
delete sman_; |
156 |
> |
delete simParams_; |
157 |
> |
delete forceField_; |
158 |
> |
} |
159 |
|
|
31 |
– |
SimInfo::SimInfo(){ |
160 |
|
|
161 |
< |
n_constraints = 0; |
162 |
< |
nZconstraints = 0; |
163 |
< |
n_oriented = 0; |
164 |
< |
n_dipoles = 0; |
165 |
< |
ndf = 0; |
166 |
< |
ndfRaw = 0; |
167 |
< |
nZconstraints = 0; |
168 |
< |
the_integrator = NULL; |
169 |
< |
setTemp = 0; |
170 |
< |
thermalTime = 0.0; |
171 |
< |
currentTime = 0.0; |
172 |
< |
rCut = 0.0; |
173 |
< |
rSw = 0.0; |
174 |
< |
|
175 |
< |
haveRcut = 0; |
176 |
< |
haveRsw = 0; |
177 |
< |
boxIsInit = 0; |
161 |
> |
bool SimInfo::addMolecule(Molecule* mol) { |
162 |
> |
MoleculeIterator i; |
163 |
> |
|
164 |
> |
i = molecules_.find(mol->getGlobalIndex()); |
165 |
> |
if (i == molecules_.end() ) { |
166 |
> |
|
167 |
> |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
168 |
> |
|
169 |
> |
nAtoms_ += mol->getNAtoms(); |
170 |
> |
nBonds_ += mol->getNBonds(); |
171 |
> |
nBends_ += mol->getNBends(); |
172 |
> |
nTorsions_ += mol->getNTorsions(); |
173 |
> |
nInversions_ += mol->getNInversions(); |
174 |
> |
nRigidBodies_ += mol->getNRigidBodies(); |
175 |
> |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
176 |
> |
nCutoffGroups_ += mol->getNCutoffGroups(); |
177 |
> |
nConstraints_ += mol->getNConstraintPairs(); |
178 |
> |
|
179 |
> |
addInteractionPairs(mol); |
180 |
> |
|
181 |
> |
return true; |
182 |
> |
} else { |
183 |
> |
return false; |
184 |
> |
} |
185 |
> |
} |
186 |
|
|
187 |
< |
resetTime = 1e99; |
187 |
> |
bool SimInfo::removeMolecule(Molecule* mol) { |
188 |
> |
MoleculeIterator i; |
189 |
> |
i = molecules_.find(mol->getGlobalIndex()); |
190 |
|
|
191 |
< |
orthoRhombic = 0; |
54 |
< |
orthoTolerance = 1E-6; |
55 |
< |
useInitXSstate = true; |
191 |
> |
if (i != molecules_.end() ) { |
192 |
|
|
193 |
< |
usePBC = 0; |
194 |
< |
useLJ = 0; |
195 |
< |
useSticky = 0; |
196 |
< |
useCharges = 0; |
197 |
< |
useDipoles = 0; |
198 |
< |
useReactionField = 0; |
199 |
< |
useGB = 0; |
200 |
< |
useEAM = 0; |
201 |
< |
useSolidThermInt = 0; |
202 |
< |
useLiquidThermInt = 0; |
193 |
> |
assert(mol == i->second); |
194 |
> |
|
195 |
> |
nAtoms_ -= mol->getNAtoms(); |
196 |
> |
nBonds_ -= mol->getNBonds(); |
197 |
> |
nBends_ -= mol->getNBends(); |
198 |
> |
nTorsions_ -= mol->getNTorsions(); |
199 |
> |
nInversions_ -= mol->getNInversions(); |
200 |
> |
nRigidBodies_ -= mol->getNRigidBodies(); |
201 |
> |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
202 |
> |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
203 |
> |
nConstraints_ -= mol->getNConstraintPairs(); |
204 |
|
|
205 |
< |
haveCutoffGroups = false; |
205 |
> |
removeInteractionPairs(mol); |
206 |
> |
molecules_.erase(mol->getGlobalIndex()); |
207 |
|
|
208 |
< |
excludes = Exclude::Instance(); |
208 |
> |
delete mol; |
209 |
> |
|
210 |
> |
return true; |
211 |
> |
} else { |
212 |
> |
return false; |
213 |
> |
} |
214 |
> |
} |
215 |
|
|
216 |
< |
myConfiguration = new SimState(); |
216 |
> |
|
217 |
> |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
218 |
> |
i = molecules_.begin(); |
219 |
> |
return i == molecules_.end() ? NULL : i->second; |
220 |
> |
} |
221 |
|
|
222 |
< |
has_minimizer = false; |
223 |
< |
the_minimizer =NULL; |
222 |
> |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
223 |
> |
++i; |
224 |
> |
return i == molecules_.end() ? NULL : i->second; |
225 |
> |
} |
226 |
|
|
77 |
– |
ngroup = 0; |
227 |
|
|
228 |
< |
wrapMeSimInfo( this ); |
229 |
< |
} |
228 |
> |
void SimInfo::calcNdf() { |
229 |
> |
int ndf_local, nfq_local; |
230 |
> |
MoleculeIterator i; |
231 |
> |
vector<StuntDouble*>::iterator j; |
232 |
> |
vector<Atom*>::iterator k; |
233 |
|
|
234 |
+ |
Molecule* mol; |
235 |
+ |
StuntDouble* sd; |
236 |
+ |
Atom* atom; |
237 |
|
|
238 |
< |
SimInfo::~SimInfo(){ |
238 |
> |
ndf_local = 0; |
239 |
> |
nfq_local = 0; |
240 |
> |
|
241 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
242 |
|
|
243 |
< |
delete myConfiguration; |
243 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
244 |
> |
sd = mol->nextIntegrableObject(j)) { |
245 |
|
|
246 |
< |
map<string, GenericData*>::iterator i; |
88 |
< |
|
89 |
< |
for(i = properties.begin(); i != properties.end(); i++) |
90 |
< |
delete (*i).second; |
246 |
> |
ndf_local += 3; |
247 |
|
|
248 |
< |
} |
248 |
> |
if (sd->isDirectional()) { |
249 |
> |
if (sd->isLinear()) { |
250 |
> |
ndf_local += 2; |
251 |
> |
} else { |
252 |
> |
ndf_local += 3; |
253 |
> |
} |
254 |
> |
} |
255 |
> |
} |
256 |
|
|
257 |
< |
void SimInfo::setBox(double newBox[3]) { |
258 |
< |
|
259 |
< |
int i, j; |
260 |
< |
double tempMat[3][3]; |
257 |
> |
for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
258 |
> |
atom = mol->nextFluctuatingCharge(k)) { |
259 |
> |
if (atom->isFluctuatingCharge()) { |
260 |
> |
nfq_local++; |
261 |
> |
} |
262 |
> |
} |
263 |
> |
} |
264 |
> |
|
265 |
> |
ndfLocal_ = ndf_local; |
266 |
|
|
267 |
< |
for(i=0; i<3; i++) |
268 |
< |
for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
267 |
> |
// n_constraints is local, so subtract them on each processor |
268 |
> |
ndf_local -= nConstraints_; |
269 |
|
|
270 |
< |
tempMat[0][0] = newBox[0]; |
271 |
< |
tempMat[1][1] = newBox[1]; |
272 |
< |
tempMat[2][2] = newBox[2]; |
270 |
> |
#ifdef IS_MPI |
271 |
> |
MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM); |
272 |
> |
MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1, |
273 |
> |
MPI::INT, MPI::SUM); |
274 |
> |
#else |
275 |
> |
ndf_ = ndf_local; |
276 |
> |
nGlobalFluctuatingCharges_ = nfq_local; |
277 |
> |
#endif |
278 |
|
|
279 |
< |
setBoxM( tempMat ); |
279 |
> |
// nZconstraints_ is global, as are the 3 COM translations for the |
280 |
> |
// entire system: |
281 |
> |
ndf_ = ndf_ - 3 - nZconstraint_; |
282 |
|
|
283 |
< |
} |
283 |
> |
} |
284 |
|
|
285 |
< |
void SimInfo::setBoxM( double theBox[3][3] ){ |
285 |
> |
int SimInfo::getFdf() { |
286 |
> |
#ifdef IS_MPI |
287 |
> |
MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM); |
288 |
> |
#else |
289 |
> |
fdf_ = fdf_local; |
290 |
> |
#endif |
291 |
> |
return fdf_; |
292 |
> |
} |
293 |
|
|
294 |
< |
int i, j; |
295 |
< |
double FortranHmat[9]; // to preserve compatibility with Fortran the |
296 |
< |
// ordering in the array is as follows: |
297 |
< |
// [ 0 3 6 ] |
298 |
< |
// [ 1 4 7 ] |
299 |
< |
// [ 2 5 8 ] |
300 |
< |
double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
301 |
< |
|
302 |
< |
if( !boxIsInit ) boxIsInit = 1; |
303 |
< |
|
304 |
< |
for(i=0; i < 3; i++) |
305 |
< |
for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
306 |
< |
|
307 |
< |
calcBoxL(); |
126 |
< |
calcHmatInv(); |
127 |
< |
|
128 |
< |
for(i=0; i < 3; i++) { |
129 |
< |
for (j=0; j < 3; j++) { |
130 |
< |
FortranHmat[3*j + i] = Hmat[i][j]; |
131 |
< |
FortranHmatInv[3*j + i] = HmatInv[i][j]; |
294 |
> |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
295 |
> |
int nLocalCutoffAtoms = 0; |
296 |
> |
Molecule* mol; |
297 |
> |
MoleculeIterator mi; |
298 |
> |
CutoffGroup* cg; |
299 |
> |
Molecule::CutoffGroupIterator ci; |
300 |
> |
|
301 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
302 |
> |
|
303 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
304 |
> |
cg = mol->nextCutoffGroup(ci)) { |
305 |
> |
nLocalCutoffAtoms += cg->getNumAtom(); |
306 |
> |
|
307 |
> |
} |
308 |
|
} |
309 |
+ |
|
310 |
+ |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
311 |
|
} |
312 |
+ |
|
313 |
+ |
void SimInfo::calcNdfRaw() { |
314 |
+ |
int ndfRaw_local; |
315 |
|
|
316 |
< |
setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
317 |
< |
|
318 |
< |
} |
319 |
< |
|
316 |
> |
MoleculeIterator i; |
317 |
> |
vector<StuntDouble*>::iterator j; |
318 |
> |
Molecule* mol; |
319 |
> |
StuntDouble* sd; |
320 |
|
|
321 |
< |
void SimInfo::getBoxM (double theBox[3][3]) { |
322 |
< |
|
323 |
< |
int i, j; |
324 |
< |
for(i=0; i<3; i++) |
144 |
< |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
145 |
< |
} |
321 |
> |
// Raw degrees of freedom that we have to set |
322 |
> |
ndfRaw_local = 0; |
323 |
> |
|
324 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
325 |
|
|
326 |
+ |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
327 |
+ |
sd = mol->nextIntegrableObject(j)) { |
328 |
|
|
329 |
< |
void SimInfo::scaleBox(double scale) { |
149 |
< |
double theBox[3][3]; |
150 |
< |
int i, j; |
329 |
> |
ndfRaw_local += 3; |
330 |
|
|
331 |
< |
// cerr << "Scaling box by " << scale << "\n"; |
332 |
< |
|
333 |
< |
for(i=0; i<3; i++) |
334 |
< |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
335 |
< |
|
336 |
< |
setBoxM(theBox); |
337 |
< |
|
338 |
< |
} |
160 |
< |
|
161 |
< |
void SimInfo::calcHmatInv( void ) { |
162 |
< |
|
163 |
< |
int oldOrtho; |
164 |
< |
int i,j; |
165 |
< |
double smallDiag; |
166 |
< |
double tol; |
167 |
< |
double sanity[3][3]; |
168 |
< |
|
169 |
< |
invertMat3( Hmat, HmatInv ); |
170 |
< |
|
171 |
< |
// check to see if Hmat is orthorhombic |
172 |
< |
|
173 |
< |
oldOrtho = orthoRhombic; |
174 |
< |
|
175 |
< |
smallDiag = fabs(Hmat[0][0]); |
176 |
< |
if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); |
177 |
< |
if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); |
178 |
< |
tol = smallDiag * orthoTolerance; |
179 |
< |
|
180 |
< |
orthoRhombic = 1; |
181 |
< |
|
182 |
< |
for (i = 0; i < 3; i++ ) { |
183 |
< |
for (j = 0 ; j < 3; j++) { |
184 |
< |
if (i != j) { |
185 |
< |
if (orthoRhombic) { |
186 |
< |
if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; |
187 |
< |
} |
331 |
> |
if (sd->isDirectional()) { |
332 |
> |
if (sd->isLinear()) { |
333 |
> |
ndfRaw_local += 2; |
334 |
> |
} else { |
335 |
> |
ndfRaw_local += 3; |
336 |
> |
} |
337 |
> |
} |
338 |
> |
|
339 |
|
} |
340 |
|
} |
190 |
– |
} |
191 |
– |
|
192 |
– |
if( oldOrtho != orthoRhombic ){ |
341 |
|
|
342 |
< |
if( orthoRhombic ) { |
343 |
< |
sprintf( painCave.errMsg, |
344 |
< |
"OOPSE is switching from the default Non-Orthorhombic\n" |
345 |
< |
"\tto the faster Orthorhombic periodic boundary computations.\n" |
346 |
< |
"\tThis is usually a good thing, but if you wan't the\n" |
199 |
< |
"\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
200 |
< |
"\tvariable ( currently set to %G ) smaller.\n", |
201 |
< |
orthoTolerance); |
202 |
< |
painCave.severity = OOPSE_INFO; |
203 |
< |
simError(); |
204 |
< |
} |
205 |
< |
else { |
206 |
< |
sprintf( painCave.errMsg, |
207 |
< |
"OOPSE is switching from the faster Orthorhombic to the more\n" |
208 |
< |
"\tflexible Non-Orthorhombic periodic boundary computations.\n" |
209 |
< |
"\tThis is usually because the box has deformed under\n" |
210 |
< |
"\tNPTf integration. If you wan't to live on the edge with\n" |
211 |
< |
"\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
212 |
< |
"\tvariable ( currently set to %G ) larger.\n", |
213 |
< |
orthoTolerance); |
214 |
< |
painCave.severity = OOPSE_WARNING; |
215 |
< |
simError(); |
216 |
< |
} |
342 |
> |
#ifdef IS_MPI |
343 |
> |
MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM); |
344 |
> |
#else |
345 |
> |
ndfRaw_ = ndfRaw_local; |
346 |
> |
#endif |
347 |
|
} |
218 |
– |
} |
348 |
|
|
349 |
< |
void SimInfo::calcBoxL( void ){ |
349 |
> |
void SimInfo::calcNdfTrans() { |
350 |
> |
int ndfTrans_local; |
351 |
|
|
352 |
< |
double dx, dy, dz, dsq; |
352 |
> |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
353 |
|
|
224 |
– |
// boxVol = Determinant of Hmat |
354 |
|
|
355 |
< |
boxVol = matDet3( Hmat ); |
355 |
> |
#ifdef IS_MPI |
356 |
> |
MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1, |
357 |
> |
MPI::INT, MPI::SUM); |
358 |
> |
#else |
359 |
> |
ndfTrans_ = ndfTrans_local; |
360 |
> |
#endif |
361 |
|
|
362 |
< |
// boxLx |
363 |
< |
|
364 |
< |
dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
231 |
< |
dsq = dx*dx + dy*dy + dz*dz; |
232 |
< |
boxL[0] = sqrt( dsq ); |
233 |
< |
//maxCutoff = 0.5 * boxL[0]; |
362 |
> |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
363 |
> |
|
364 |
> |
} |
365 |
|
|
366 |
< |
// boxLy |
367 |
< |
|
368 |
< |
dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
369 |
< |
dsq = dx*dx + dy*dy + dz*dz; |
370 |
< |
boxL[1] = sqrt( dsq ); |
371 |
< |
//if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
366 |
> |
void SimInfo::addInteractionPairs(Molecule* mol) { |
367 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
368 |
> |
vector<Bond*>::iterator bondIter; |
369 |
> |
vector<Bend*>::iterator bendIter; |
370 |
> |
vector<Torsion*>::iterator torsionIter; |
371 |
> |
vector<Inversion*>::iterator inversionIter; |
372 |
> |
Bond* bond; |
373 |
> |
Bend* bend; |
374 |
> |
Torsion* torsion; |
375 |
> |
Inversion* inversion; |
376 |
> |
int a; |
377 |
> |
int b; |
378 |
> |
int c; |
379 |
> |
int d; |
380 |
|
|
381 |
+ |
// atomGroups can be used to add special interaction maps between |
382 |
+ |
// groups of atoms that are in two separate rigid bodies. |
383 |
+ |
// However, most site-site interactions between two rigid bodies |
384 |
+ |
// are probably not special, just the ones between the physically |
385 |
+ |
// bonded atoms. Interactions *within* a single rigid body should |
386 |
+ |
// always be excluded. These are done at the bottom of this |
387 |
+ |
// function. |
388 |
|
|
389 |
< |
// boxLz |
390 |
< |
|
391 |
< |
dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
392 |
< |
dsq = dx*dx + dy*dy + dz*dz; |
393 |
< |
boxL[2] = sqrt( dsq ); |
394 |
< |
//if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
389 |
> |
map<int, set<int> > atomGroups; |
390 |
> |
Molecule::RigidBodyIterator rbIter; |
391 |
> |
RigidBody* rb; |
392 |
> |
Molecule::IntegrableObjectIterator ii; |
393 |
> |
StuntDouble* sd; |
394 |
> |
|
395 |
> |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
396 |
> |
sd = mol->nextIntegrableObject(ii)) { |
397 |
> |
|
398 |
> |
if (sd->isRigidBody()) { |
399 |
> |
rb = static_cast<RigidBody*>(sd); |
400 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
401 |
> |
set<int> rigidAtoms; |
402 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
403 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
404 |
> |
} |
405 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
406 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
407 |
> |
} |
408 |
> |
} else { |
409 |
> |
set<int> oneAtomSet; |
410 |
> |
oneAtomSet.insert(sd->getGlobalIndex()); |
411 |
> |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
412 |
> |
} |
413 |
> |
} |
414 |
> |
|
415 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
416 |
> |
bond = mol->nextBond(bondIter)) { |
417 |
|
|
418 |
< |
//calculate the max cutoff |
419 |
< |
maxCutoff = calcMaxCutOff(); |
252 |
< |
|
253 |
< |
checkCutOffs(); |
418 |
> |
a = bond->getAtomA()->getGlobalIndex(); |
419 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
420 |
|
|
421 |
< |
} |
421 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
422 |
> |
oneTwoInteractions_.addPair(a, b); |
423 |
> |
} else { |
424 |
> |
excludedInteractions_.addPair(a, b); |
425 |
> |
} |
426 |
> |
} |
427 |
|
|
428 |
+ |
for (bend= mol->beginBend(bendIter); bend != NULL; |
429 |
+ |
bend = mol->nextBend(bendIter)) { |
430 |
|
|
431 |
< |
double SimInfo::calcMaxCutOff(){ |
431 |
> |
a = bend->getAtomA()->getGlobalIndex(); |
432 |
> |
b = bend->getAtomB()->getGlobalIndex(); |
433 |
> |
c = bend->getAtomC()->getGlobalIndex(); |
434 |
> |
|
435 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
436 |
> |
oneTwoInteractions_.addPair(a, b); |
437 |
> |
oneTwoInteractions_.addPair(b, c); |
438 |
> |
} else { |
439 |
> |
excludedInteractions_.addPair(a, b); |
440 |
> |
excludedInteractions_.addPair(b, c); |
441 |
> |
} |
442 |
|
|
443 |
< |
double ri[3], rj[3], rk[3]; |
444 |
< |
double rij[3], rjk[3], rki[3]; |
445 |
< |
double minDist; |
443 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
444 |
> |
oneThreeInteractions_.addPair(a, c); |
445 |
> |
} else { |
446 |
> |
excludedInteractions_.addPair(a, c); |
447 |
> |
} |
448 |
> |
} |
449 |
|
|
450 |
< |
ri[0] = Hmat[0][0]; |
451 |
< |
ri[1] = Hmat[1][0]; |
266 |
< |
ri[2] = Hmat[2][0]; |
450 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
451 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
452 |
|
|
453 |
< |
rj[0] = Hmat[0][1]; |
454 |
< |
rj[1] = Hmat[1][1]; |
455 |
< |
rj[2] = Hmat[2][1]; |
453 |
> |
a = torsion->getAtomA()->getGlobalIndex(); |
454 |
> |
b = torsion->getAtomB()->getGlobalIndex(); |
455 |
> |
c = torsion->getAtomC()->getGlobalIndex(); |
456 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
457 |
|
|
458 |
< |
rk[0] = Hmat[0][2]; |
459 |
< |
rk[1] = Hmat[1][2]; |
460 |
< |
rk[2] = Hmat[2][2]; |
461 |
< |
|
462 |
< |
crossProduct3(ri, rj, rij); |
463 |
< |
distXY = dotProduct3(rk,rij) / norm3(rij); |
458 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
459 |
> |
oneTwoInteractions_.addPair(a, b); |
460 |
> |
oneTwoInteractions_.addPair(b, c); |
461 |
> |
oneTwoInteractions_.addPair(c, d); |
462 |
> |
} else { |
463 |
> |
excludedInteractions_.addPair(a, b); |
464 |
> |
excludedInteractions_.addPair(b, c); |
465 |
> |
excludedInteractions_.addPair(c, d); |
466 |
> |
} |
467 |
|
|
468 |
< |
crossProduct3(rj,rk, rjk); |
469 |
< |
distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
468 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
469 |
> |
oneThreeInteractions_.addPair(a, c); |
470 |
> |
oneThreeInteractions_.addPair(b, d); |
471 |
> |
} else { |
472 |
> |
excludedInteractions_.addPair(a, c); |
473 |
> |
excludedInteractions_.addPair(b, d); |
474 |
> |
} |
475 |
|
|
476 |
< |
crossProduct3(rk,ri, rki); |
477 |
< |
distZX = dotProduct3(rj,rki) / norm3(rki); |
476 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
477 |
> |
oneFourInteractions_.addPair(a, d); |
478 |
> |
} else { |
479 |
> |
excludedInteractions_.addPair(a, d); |
480 |
> |
} |
481 |
> |
} |
482 |
|
|
483 |
< |
minDist = min(min(distXY, distYZ), distZX); |
484 |
< |
return minDist/2; |
287 |
< |
|
288 |
< |
} |
483 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
484 |
> |
inversion = mol->nextInversion(inversionIter)) { |
485 |
|
|
486 |
< |
void SimInfo::wrapVector( double thePos[3] ){ |
486 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
487 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
488 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
489 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
490 |
|
|
491 |
< |
int i; |
492 |
< |
double scaled[3]; |
491 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
492 |
> |
oneTwoInteractions_.addPair(a, b); |
493 |
> |
oneTwoInteractions_.addPair(a, c); |
494 |
> |
oneTwoInteractions_.addPair(a, d); |
495 |
> |
} else { |
496 |
> |
excludedInteractions_.addPair(a, b); |
497 |
> |
excludedInteractions_.addPair(a, c); |
498 |
> |
excludedInteractions_.addPair(a, d); |
499 |
> |
} |
500 |
|
|
501 |
< |
if( !orthoRhombic ){ |
502 |
< |
// calc the scaled coordinates. |
503 |
< |
|
501 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
502 |
> |
oneThreeInteractions_.addPair(b, c); |
503 |
> |
oneThreeInteractions_.addPair(b, d); |
504 |
> |
oneThreeInteractions_.addPair(c, d); |
505 |
> |
} else { |
506 |
> |
excludedInteractions_.addPair(b, c); |
507 |
> |
excludedInteractions_.addPair(b, d); |
508 |
> |
excludedInteractions_.addPair(c, d); |
509 |
> |
} |
510 |
> |
} |
511 |
|
|
512 |
< |
matVecMul3(HmatInv, thePos, scaled); |
513 |
< |
|
514 |
< |
for(i=0; i<3; i++) |
515 |
< |
scaled[i] -= roundMe(scaled[i]); |
516 |
< |
|
517 |
< |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
518 |
< |
|
519 |
< |
matVecMul3(Hmat, scaled, thePos); |
512 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
513 |
> |
rb = mol->nextRigidBody(rbIter)) { |
514 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
515 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
516 |
> |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
517 |
> |
a = atoms[i]->getGlobalIndex(); |
518 |
> |
b = atoms[j]->getGlobalIndex(); |
519 |
> |
excludedInteractions_.addPair(a, b); |
520 |
> |
} |
521 |
> |
} |
522 |
> |
} |
523 |
|
|
524 |
|
} |
309 |
– |
else{ |
310 |
– |
// calc the scaled coordinates. |
311 |
– |
|
312 |
– |
for(i=0; i<3; i++) |
313 |
– |
scaled[i] = thePos[i]*HmatInv[i][i]; |
314 |
– |
|
315 |
– |
// wrap the scaled coordinates |
316 |
– |
|
317 |
– |
for(i=0; i<3; i++) |
318 |
– |
scaled[i] -= roundMe(scaled[i]); |
319 |
– |
|
320 |
– |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
321 |
– |
|
322 |
– |
for(i=0; i<3; i++) |
323 |
– |
thePos[i] = scaled[i]*Hmat[i][i]; |
324 |
– |
} |
325 |
– |
|
326 |
– |
} |
525 |
|
|
526 |
+ |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
527 |
+ |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
528 |
+ |
vector<Bond*>::iterator bondIter; |
529 |
+ |
vector<Bend*>::iterator bendIter; |
530 |
+ |
vector<Torsion*>::iterator torsionIter; |
531 |
+ |
vector<Inversion*>::iterator inversionIter; |
532 |
+ |
Bond* bond; |
533 |
+ |
Bend* bend; |
534 |
+ |
Torsion* torsion; |
535 |
+ |
Inversion* inversion; |
536 |
+ |
int a; |
537 |
+ |
int b; |
538 |
+ |
int c; |
539 |
+ |
int d; |
540 |
|
|
541 |
< |
int SimInfo::getNDF(){ |
542 |
< |
int ndf_local; |
543 |
< |
|
544 |
< |
ndf_local = 0; |
545 |
< |
|
546 |
< |
for(int i = 0; i < integrableObjects.size(); i++){ |
547 |
< |
ndf_local += 3; |
548 |
< |
if (integrableObjects[i]->isDirectional()) { |
549 |
< |
if (integrableObjects[i]->isLinear()) |
550 |
< |
ndf_local += 2; |
551 |
< |
else |
552 |
< |
ndf_local += 3; |
541 |
> |
map<int, set<int> > atomGroups; |
542 |
> |
Molecule::RigidBodyIterator rbIter; |
543 |
> |
RigidBody* rb; |
544 |
> |
Molecule::IntegrableObjectIterator ii; |
545 |
> |
StuntDouble* sd; |
546 |
> |
|
547 |
> |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
548 |
> |
sd = mol->nextIntegrableObject(ii)) { |
549 |
> |
|
550 |
> |
if (sd->isRigidBody()) { |
551 |
> |
rb = static_cast<RigidBody*>(sd); |
552 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
553 |
> |
set<int> rigidAtoms; |
554 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
555 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
556 |
> |
} |
557 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
558 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
559 |
> |
} |
560 |
> |
} else { |
561 |
> |
set<int> oneAtomSet; |
562 |
> |
oneAtomSet.insert(sd->getGlobalIndex()); |
563 |
> |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
564 |
> |
} |
565 |
> |
} |
566 |
> |
|
567 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
568 |
> |
bond = mol->nextBond(bondIter)) { |
569 |
> |
|
570 |
> |
a = bond->getAtomA()->getGlobalIndex(); |
571 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
572 |
> |
|
573 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
574 |
> |
oneTwoInteractions_.removePair(a, b); |
575 |
> |
} else { |
576 |
> |
excludedInteractions_.removePair(a, b); |
577 |
> |
} |
578 |
|
} |
342 |
– |
} |
579 |
|
|
580 |
< |
// n_constraints is local, so subtract them on each processor: |
580 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
581 |
> |
bend = mol->nextBend(bendIter)) { |
582 |
|
|
583 |
< |
ndf_local -= n_constraints; |
583 |
> |
a = bend->getAtomA()->getGlobalIndex(); |
584 |
> |
b = bend->getAtomB()->getGlobalIndex(); |
585 |
> |
c = bend->getAtomC()->getGlobalIndex(); |
586 |
> |
|
587 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
588 |
> |
oneTwoInteractions_.removePair(a, b); |
589 |
> |
oneTwoInteractions_.removePair(b, c); |
590 |
> |
} else { |
591 |
> |
excludedInteractions_.removePair(a, b); |
592 |
> |
excludedInteractions_.removePair(b, c); |
593 |
> |
} |
594 |
|
|
595 |
< |
#ifdef IS_MPI |
596 |
< |
MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
597 |
< |
#else |
598 |
< |
ndf = ndf_local; |
599 |
< |
#endif |
595 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
596 |
> |
oneThreeInteractions_.removePair(a, c); |
597 |
> |
} else { |
598 |
> |
excludedInteractions_.removePair(a, c); |
599 |
> |
} |
600 |
> |
} |
601 |
|
|
602 |
< |
// nZconstraints is global, as are the 3 COM translations for the |
603 |
< |
// entire system: |
602 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
603 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
604 |
|
|
605 |
< |
ndf = ndf - 3 - nZconstraints; |
605 |
> |
a = torsion->getAtomA()->getGlobalIndex(); |
606 |
> |
b = torsion->getAtomB()->getGlobalIndex(); |
607 |
> |
c = torsion->getAtomC()->getGlobalIndex(); |
608 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
609 |
> |
|
610 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
611 |
> |
oneTwoInteractions_.removePair(a, b); |
612 |
> |
oneTwoInteractions_.removePair(b, c); |
613 |
> |
oneTwoInteractions_.removePair(c, d); |
614 |
> |
} else { |
615 |
> |
excludedInteractions_.removePair(a, b); |
616 |
> |
excludedInteractions_.removePair(b, c); |
617 |
> |
excludedInteractions_.removePair(c, d); |
618 |
> |
} |
619 |
|
|
620 |
< |
return ndf; |
621 |
< |
} |
620 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
621 |
> |
oneThreeInteractions_.removePair(a, c); |
622 |
> |
oneThreeInteractions_.removePair(b, d); |
623 |
> |
} else { |
624 |
> |
excludedInteractions_.removePair(a, c); |
625 |
> |
excludedInteractions_.removePair(b, d); |
626 |
> |
} |
627 |
|
|
628 |
< |
int SimInfo::getNDFraw() { |
629 |
< |
int ndfRaw_local; |
628 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
629 |
> |
oneFourInteractions_.removePair(a, d); |
630 |
> |
} else { |
631 |
> |
excludedInteractions_.removePair(a, d); |
632 |
> |
} |
633 |
> |
} |
634 |
|
|
635 |
< |
// Raw degrees of freedom that we have to set |
636 |
< |
ndfRaw_local = 0; |
635 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
636 |
> |
inversion = mol->nextInversion(inversionIter)) { |
637 |
|
|
638 |
< |
for(int i = 0; i < integrableObjects.size(); i++){ |
639 |
< |
ndfRaw_local += 3; |
640 |
< |
if (integrableObjects[i]->isDirectional()) { |
641 |
< |
if (integrableObjects[i]->isLinear()) |
642 |
< |
ndfRaw_local += 2; |
643 |
< |
else |
644 |
< |
ndfRaw_local += 3; |
638 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
639 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
640 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
641 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
642 |
> |
|
643 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
644 |
> |
oneTwoInteractions_.removePair(a, b); |
645 |
> |
oneTwoInteractions_.removePair(a, c); |
646 |
> |
oneTwoInteractions_.removePair(a, d); |
647 |
> |
} else { |
648 |
> |
excludedInteractions_.removePair(a, b); |
649 |
> |
excludedInteractions_.removePair(a, c); |
650 |
> |
excludedInteractions_.removePair(a, d); |
651 |
> |
} |
652 |
> |
|
653 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
654 |
> |
oneThreeInteractions_.removePair(b, c); |
655 |
> |
oneThreeInteractions_.removePair(b, d); |
656 |
> |
oneThreeInteractions_.removePair(c, d); |
657 |
> |
} else { |
658 |
> |
excludedInteractions_.removePair(b, c); |
659 |
> |
excludedInteractions_.removePair(b, d); |
660 |
> |
excludedInteractions_.removePair(c, d); |
661 |
> |
} |
662 |
|
} |
663 |
+ |
|
664 |
+ |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
665 |
+ |
rb = mol->nextRigidBody(rbIter)) { |
666 |
+ |
vector<Atom*> atoms = rb->getAtoms(); |
667 |
+ |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
668 |
+ |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
669 |
+ |
a = atoms[i]->getGlobalIndex(); |
670 |
+ |
b = atoms[j]->getGlobalIndex(); |
671 |
+ |
excludedInteractions_.removePair(a, b); |
672 |
+ |
} |
673 |
+ |
} |
674 |
+ |
} |
675 |
+ |
|
676 |
|
} |
677 |
+ |
|
678 |
+ |
|
679 |
+ |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
680 |
+ |
int curStampId; |
681 |
|
|
682 |
+ |
//index from 0 |
683 |
+ |
curStampId = moleculeStamps_.size(); |
684 |
+ |
|
685 |
+ |
moleculeStamps_.push_back(molStamp); |
686 |
+ |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
687 |
+ |
} |
688 |
+ |
|
689 |
+ |
|
690 |
+ |
/** |
691 |
+ |
* update |
692 |
+ |
* |
693 |
+ |
* Performs the global checks and variable settings after the |
694 |
+ |
* objects have been created. |
695 |
+ |
* |
696 |
+ |
*/ |
697 |
+ |
void SimInfo::update() { |
698 |
+ |
setupSimVariables(); |
699 |
+ |
calcNdf(); |
700 |
+ |
calcNdfRaw(); |
701 |
+ |
calcNdfTrans(); |
702 |
+ |
} |
703 |
+ |
|
704 |
+ |
/** |
705 |
+ |
* getSimulatedAtomTypes |
706 |
+ |
* |
707 |
+ |
* Returns an STL set of AtomType* that are actually present in this |
708 |
+ |
* simulation. Must query all processors to assemble this information. |
709 |
+ |
* |
710 |
+ |
*/ |
711 |
+ |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
712 |
+ |
SimInfo::MoleculeIterator mi; |
713 |
+ |
Molecule* mol; |
714 |
+ |
Molecule::AtomIterator ai; |
715 |
+ |
Atom* atom; |
716 |
+ |
set<AtomType*> atomTypes; |
717 |
+ |
|
718 |
+ |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
719 |
+ |
for(atom = mol->beginAtom(ai); atom != NULL; |
720 |
+ |
atom = mol->nextAtom(ai)) { |
721 |
+ |
atomTypes.insert(atom->getAtomType()); |
722 |
+ |
} |
723 |
+ |
} |
724 |
+ |
|
725 |
|
#ifdef IS_MPI |
379 |
– |
MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
380 |
– |
#else |
381 |
– |
ndfRaw = ndfRaw_local; |
382 |
– |
#endif |
726 |
|
|
727 |
< |
return ndfRaw; |
728 |
< |
} |
727 |
> |
// loop over the found atom types on this processor, and add their |
728 |
> |
// numerical idents to a vector: |
729 |
> |
|
730 |
> |
vector<int> foundTypes; |
731 |
> |
set<AtomType*>::iterator i; |
732 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
733 |
> |
foundTypes.push_back( (*i)->getIdent() ); |
734 |
|
|
735 |
< |
int SimInfo::getNDFtranslational() { |
736 |
< |
int ndfTrans_local; |
735 |
> |
// count_local holds the number of found types on this processor |
736 |
> |
int count_local = foundTypes.size(); |
737 |
|
|
738 |
< |
ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
738 |
> |
int nproc = MPI::COMM_WORLD.Get_size(); |
739 |
|
|
740 |
+ |
// we need arrays to hold the counts and displacement vectors for |
741 |
+ |
// all processors |
742 |
+ |
vector<int> counts(nproc, 0); |
743 |
+ |
vector<int> disps(nproc, 0); |
744 |
|
|
745 |
< |
#ifdef IS_MPI |
746 |
< |
MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
747 |
< |
#else |
748 |
< |
ndfTrans = ndfTrans_local; |
749 |
< |
#endif |
745 |
> |
// fill the counts array |
746 |
> |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
747 |
> |
1, MPI::INT); |
748 |
> |
|
749 |
> |
// use the processor counts to compute the displacement array |
750 |
> |
disps[0] = 0; |
751 |
> |
int totalCount = counts[0]; |
752 |
> |
for (int iproc = 1; iproc < nproc; iproc++) { |
753 |
> |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
754 |
> |
totalCount += counts[iproc]; |
755 |
> |
} |
756 |
|
|
757 |
< |
ndfTrans = ndfTrans - 3 - nZconstraints; |
757 |
> |
// we need a (possibly redundant) set of all found types: |
758 |
> |
vector<int> ftGlobal(totalCount); |
759 |
> |
|
760 |
> |
// now spray out the foundTypes to all the other processors: |
761 |
> |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
762 |
> |
&ftGlobal[0], &counts[0], &disps[0], |
763 |
> |
MPI::INT); |
764 |
|
|
765 |
< |
return ndfTrans; |
402 |
< |
} |
765 |
> |
vector<int>::iterator j; |
766 |
|
|
767 |
< |
int SimInfo::getTotIntegrableObjects() { |
768 |
< |
int nObjs_local; |
769 |
< |
int nObjs; |
767 |
> |
// foundIdents is a stl set, so inserting an already found ident |
768 |
> |
// will have no effect. |
769 |
> |
set<int> foundIdents; |
770 |
|
|
771 |
< |
nObjs_local = integrableObjects.size(); |
771 |
> |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
772 |
> |
foundIdents.insert((*j)); |
773 |
> |
|
774 |
> |
// now iterate over the foundIdents and get the actual atom types |
775 |
> |
// that correspond to these: |
776 |
> |
set<int>::iterator it; |
777 |
> |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
778 |
> |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
779 |
> |
|
780 |
> |
#endif |
781 |
|
|
782 |
+ |
return atomTypes; |
783 |
+ |
} |
784 |
|
|
785 |
+ |
void SimInfo::setupSimVariables() { |
786 |
+ |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
787 |
+ |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole |
788 |
+ |
// parameter is true |
789 |
+ |
calcBoxDipole_ = false; |
790 |
+ |
if ( simParams_->haveAccumulateBoxDipole() ) |
791 |
+ |
if ( simParams_->getAccumulateBoxDipole() ) { |
792 |
+ |
calcBoxDipole_ = true; |
793 |
+ |
} |
794 |
+ |
|
795 |
+ |
set<AtomType*>::iterator i; |
796 |
+ |
set<AtomType*> atomTypes; |
797 |
+ |
atomTypes = getSimulatedAtomTypes(); |
798 |
+ |
bool usesElectrostatic = false; |
799 |
+ |
bool usesMetallic = false; |
800 |
+ |
bool usesDirectional = false; |
801 |
+ |
bool usesFluctuatingCharges = false; |
802 |
+ |
//loop over all of the atom types |
803 |
+ |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
804 |
+ |
usesElectrostatic |= (*i)->isElectrostatic(); |
805 |
+ |
usesMetallic |= (*i)->isMetal(); |
806 |
+ |
usesDirectional |= (*i)->isDirectional(); |
807 |
+ |
usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
808 |
+ |
} |
809 |
+ |
|
810 |
|
#ifdef IS_MPI |
811 |
< |
MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
811 |
> |
bool temp; |
812 |
> |
temp = usesDirectional; |
813 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL, |
814 |
> |
MPI::LOR); |
815 |
> |
|
816 |
> |
temp = usesMetallic; |
817 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL, |
818 |
> |
MPI::LOR); |
819 |
> |
|
820 |
> |
temp = usesElectrostatic; |
821 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL, |
822 |
> |
MPI::LOR); |
823 |
> |
|
824 |
> |
temp = usesFluctuatingCharges; |
825 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL, |
826 |
> |
MPI::LOR); |
827 |
|
#else |
828 |
< |
nObjs = nObjs_local; |
828 |
> |
|
829 |
> |
usesDirectionalAtoms_ = usesDirectional; |
830 |
> |
usesMetallicAtoms_ = usesMetallic; |
831 |
> |
usesElectrostaticAtoms_ = usesElectrostatic; |
832 |
> |
usesFluctuatingCharges_ = usesFluctuatingCharges; |
833 |
> |
|
834 |
|
#endif |
835 |
+ |
|
836 |
+ |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
837 |
+ |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
838 |
+ |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
839 |
+ |
} |
840 |
|
|
841 |
|
|
842 |
< |
return nObjs; |
843 |
< |
} |
842 |
> |
vector<int> SimInfo::getGlobalAtomIndices() { |
843 |
> |
SimInfo::MoleculeIterator mi; |
844 |
> |
Molecule* mol; |
845 |
> |
Molecule::AtomIterator ai; |
846 |
> |
Atom* atom; |
847 |
|
|
848 |
< |
void SimInfo::refreshSim(){ |
848 |
> |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
849 |
> |
|
850 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
851 |
> |
|
852 |
> |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
853 |
> |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
854 |
> |
} |
855 |
> |
} |
856 |
> |
return GlobalAtomIndices; |
857 |
> |
} |
858 |
|
|
423 |
– |
simtype fInfo; |
424 |
– |
int isError; |
425 |
– |
int n_global; |
426 |
– |
int* excl; |
859 |
|
|
860 |
< |
fInfo.dielect = 0.0; |
860 |
> |
vector<int> SimInfo::getGlobalGroupIndices() { |
861 |
> |
SimInfo::MoleculeIterator mi; |
862 |
> |
Molecule* mol; |
863 |
> |
Molecule::CutoffGroupIterator ci; |
864 |
> |
CutoffGroup* cg; |
865 |
|
|
866 |
< |
if( useDipoles ){ |
867 |
< |
if( useReactionField )fInfo.dielect = dielectric; |
866 |
> |
vector<int> GlobalGroupIndices; |
867 |
> |
|
868 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
869 |
> |
|
870 |
> |
//local index of cutoff group is trivial, it only depends on the |
871 |
> |
//order of travesing |
872 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
873 |
> |
cg = mol->nextCutoffGroup(ci)) { |
874 |
> |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
875 |
> |
} |
876 |
> |
} |
877 |
> |
return GlobalGroupIndices; |
878 |
|
} |
879 |
|
|
434 |
– |
fInfo.SIM_uses_PBC = usePBC; |
435 |
– |
//fInfo.SIM_uses_LJ = 0; |
436 |
– |
fInfo.SIM_uses_LJ = useLJ; |
437 |
– |
fInfo.SIM_uses_sticky = useSticky; |
438 |
– |
//fInfo.SIM_uses_sticky = 0; |
439 |
– |
fInfo.SIM_uses_charges = useCharges; |
440 |
– |
fInfo.SIM_uses_dipoles = useDipoles; |
441 |
– |
//fInfo.SIM_uses_dipoles = 0; |
442 |
– |
fInfo.SIM_uses_RF = useReactionField; |
443 |
– |
//fInfo.SIM_uses_RF = 0; |
444 |
– |
fInfo.SIM_uses_GB = useGB; |
445 |
– |
fInfo.SIM_uses_EAM = useEAM; |
880 |
|
|
881 |
< |
n_exclude = excludes->getSize(); |
448 |
< |
excl = excludes->getFortranArray(); |
449 |
< |
|
450 |
< |
#ifdef IS_MPI |
451 |
< |
n_global = mpiSim->getNAtomsGlobal(); |
452 |
< |
#else |
453 |
< |
n_global = n_atoms; |
454 |
< |
#endif |
455 |
< |
|
456 |
< |
isError = 0; |
457 |
< |
|
458 |
< |
getFortranGroupArrays(this, FglobalGroupMembership, mfact); |
459 |
< |
//it may not be a good idea to pass the address of first element in vector |
460 |
< |
//since c++ standard does not require vector to be stored continuously in meomory |
461 |
< |
//Most of the compilers will organize the memory of vector continuously |
462 |
< |
setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
463 |
< |
&nGlobalExcludes, globalExcludes, molMembershipArray, |
464 |
< |
&mfact[0], &ngroup, &FglobalGroupMembership[0], &isError); |
881 |
> |
void SimInfo::prepareTopology() { |
882 |
|
|
883 |
< |
if( isError ){ |
883 |
> |
//calculate mass ratio of cutoff group |
884 |
> |
SimInfo::MoleculeIterator mi; |
885 |
> |
Molecule* mol; |
886 |
> |
Molecule::CutoffGroupIterator ci; |
887 |
> |
CutoffGroup* cg; |
888 |
> |
Molecule::AtomIterator ai; |
889 |
> |
Atom* atom; |
890 |
> |
RealType totalMass; |
891 |
> |
|
892 |
> |
/** |
893 |
> |
* The mass factor is the relative mass of an atom to the total |
894 |
> |
* mass of the cutoff group it belongs to. By default, all atoms |
895 |
> |
* are their own cutoff groups, and therefore have mass factors of |
896 |
> |
* 1. We need some special handling for massless atoms, which |
897 |
> |
* will be treated as carrying the entire mass of the cutoff |
898 |
> |
* group. |
899 |
> |
*/ |
900 |
> |
massFactors_.clear(); |
901 |
> |
massFactors_.resize(getNAtoms(), 1.0); |
902 |
|
|
903 |
< |
sprintf( painCave.errMsg, |
904 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
905 |
< |
painCave.isFatal = 1; |
471 |
< |
painCave.severity = OOPSE_ERROR; |
472 |
< |
simError(); |
473 |
< |
} |
474 |
< |
|
475 |
< |
#ifdef IS_MPI |
476 |
< |
sprintf( checkPointMsg, |
477 |
< |
"succesfully sent the simulation information to fortran.\n"); |
478 |
< |
MPIcheckPoint(); |
479 |
< |
#endif // is_mpi |
480 |
< |
|
481 |
< |
this->ndf = this->getNDF(); |
482 |
< |
this->ndfRaw = this->getNDFraw(); |
483 |
< |
this->ndfTrans = this->getNDFtranslational(); |
484 |
< |
} |
903 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
904 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
905 |
> |
cg = mol->nextCutoffGroup(ci)) { |
906 |
|
|
907 |
< |
void SimInfo::setDefaultRcut( double theRcut ){ |
908 |
< |
|
909 |
< |
haveRcut = 1; |
910 |
< |
rCut = theRcut; |
911 |
< |
rList = rCut + 1.0; |
912 |
< |
|
913 |
< |
notifyFortranCutOffs( &rCut, &rSw, &rList ); |
914 |
< |
} |
907 |
> |
totalMass = cg->getMass(); |
908 |
> |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
909 |
> |
// Check for massless groups - set mfact to 1 if true |
910 |
> |
if (totalMass != 0) |
911 |
> |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
912 |
> |
else |
913 |
> |
massFactors_[atom->getLocalIndex()] = 1.0; |
914 |
> |
} |
915 |
> |
} |
916 |
> |
} |
917 |
|
|
918 |
< |
void SimInfo::setDefaultRcut( double theRcut, double theRsw ){ |
918 |
> |
// Build the identArray_ |
919 |
|
|
920 |
< |
rSw = theRsw; |
921 |
< |
setDefaultRcut( theRcut ); |
922 |
< |
} |
920 |
> |
identArray_.clear(); |
921 |
> |
identArray_.reserve(getNAtoms()); |
922 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
923 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
924 |
> |
identArray_.push_back(atom->getIdent()); |
925 |
> |
} |
926 |
> |
} |
927 |
> |
|
928 |
> |
//scan topology |
929 |
|
|
930 |
+ |
int* excludeList = excludedInteractions_.getPairList(); |
931 |
+ |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
932 |
+ |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
933 |
+ |
int* oneFourList = oneFourInteractions_.getPairList(); |
934 |
|
|
935 |
< |
void SimInfo::checkCutOffs( void ){ |
503 |
< |
|
504 |
< |
if( boxIsInit ){ |
505 |
< |
|
506 |
< |
//we need to check cutOffs against the box |
507 |
< |
|
508 |
< |
if( rCut > maxCutoff ){ |
509 |
< |
sprintf( painCave.errMsg, |
510 |
< |
"cutoffRadius is too large for the current periodic box.\n" |
511 |
< |
"\tCurrent Value of cutoffRadius = %G at time %G\n " |
512 |
< |
"\tThis is larger than half of at least one of the\n" |
513 |
< |
"\tperiodic box vectors. Right now, the Box matrix is:\n" |
514 |
< |
"\n" |
515 |
< |
"\t[ %G %G %G ]\n" |
516 |
< |
"\t[ %G %G %G ]\n" |
517 |
< |
"\t[ %G %G %G ]\n", |
518 |
< |
rCut, currentTime, |
519 |
< |
Hmat[0][0], Hmat[0][1], Hmat[0][2], |
520 |
< |
Hmat[1][0], Hmat[1][1], Hmat[1][2], |
521 |
< |
Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
522 |
< |
painCave.severity = OOPSE_ERROR; |
523 |
< |
painCave.isFatal = 1; |
524 |
< |
simError(); |
525 |
< |
} |
526 |
< |
} else { |
527 |
< |
// initialize this stuff before using it, OK? |
528 |
< |
sprintf( painCave.errMsg, |
529 |
< |
"Trying to check cutoffs without a box.\n" |
530 |
< |
"\tOOPSE should have better programmers than that.\n" ); |
531 |
< |
painCave.severity = OOPSE_ERROR; |
532 |
< |
painCave.isFatal = 1; |
533 |
< |
simError(); |
935 |
> |
topologyDone_ = true; |
936 |
|
} |
535 |
– |
|
536 |
– |
} |
937 |
|
|
938 |
< |
void SimInfo::addProperty(GenericData* prop){ |
938 |
> |
void SimInfo::addProperty(GenericData* genData) { |
939 |
> |
properties_.addProperty(genData); |
940 |
> |
} |
941 |
|
|
942 |
< |
map<string, GenericData*>::iterator result; |
943 |
< |
result = properties.find(prop->getID()); |
542 |
< |
|
543 |
< |
//we can't simply use properties[prop->getID()] = prop, |
544 |
< |
//it will cause memory leak if we already contain a propery which has the same name of prop |
545 |
< |
|
546 |
< |
if(result != properties.end()){ |
547 |
< |
|
548 |
< |
delete (*result).second; |
549 |
< |
(*result).second = prop; |
550 |
< |
|
942 |
> |
void SimInfo::removeProperty(const string& propName) { |
943 |
> |
properties_.removeProperty(propName); |
944 |
|
} |
552 |
– |
else{ |
945 |
|
|
946 |
< |
properties[prop->getID()] = prop; |
946 |
> |
void SimInfo::clearProperties() { |
947 |
> |
properties_.clearProperties(); |
948 |
> |
} |
949 |
|
|
950 |
+ |
vector<string> SimInfo::getPropertyNames() { |
951 |
+ |
return properties_.getPropertyNames(); |
952 |
|
} |
953 |
< |
|
954 |
< |
} |
953 |
> |
|
954 |
> |
vector<GenericData*> SimInfo::getProperties() { |
955 |
> |
return properties_.getProperties(); |
956 |
> |
} |
957 |
|
|
958 |
< |
GenericData* SimInfo::getProperty(const string& propName){ |
958 |
> |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
959 |
> |
return properties_.getPropertyByName(propName); |
960 |
> |
} |
961 |
> |
|
962 |
> |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
963 |
> |
if (sman_ == sman) { |
964 |
> |
return; |
965 |
> |
} |
966 |
> |
delete sman_; |
967 |
> |
sman_ = sman; |
968 |
> |
|
969 |
> |
Molecule* mol; |
970 |
> |
RigidBody* rb; |
971 |
> |
Atom* atom; |
972 |
> |
CutoffGroup* cg; |
973 |
> |
SimInfo::MoleculeIterator mi; |
974 |
> |
Molecule::RigidBodyIterator rbIter; |
975 |
> |
Molecule::AtomIterator atomIter; |
976 |
> |
Molecule::CutoffGroupIterator cgIter; |
977 |
|
|
978 |
< |
map<string, GenericData*>::iterator result; |
979 |
< |
|
980 |
< |
//string lowerCaseName = (); |
981 |
< |
|
982 |
< |
result = properties.find(propName); |
983 |
< |
|
984 |
< |
if(result != properties.end()) |
985 |
< |
return (*result).second; |
986 |
< |
else |
987 |
< |
return NULL; |
988 |
< |
} |
978 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
979 |
> |
|
980 |
> |
for (atom = mol->beginAtom(atomIter); atom != NULL; |
981 |
> |
atom = mol->nextAtom(atomIter)) { |
982 |
> |
atom->setSnapshotManager(sman_); |
983 |
> |
} |
984 |
> |
|
985 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
986 |
> |
rb = mol->nextRigidBody(rbIter)) { |
987 |
> |
rb->setSnapshotManager(sman_); |
988 |
> |
} |
989 |
|
|
990 |
+ |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; |
991 |
+ |
cg = mol->nextCutoffGroup(cgIter)) { |
992 |
+ |
cg->setSnapshotManager(sman_); |
993 |
+ |
} |
994 |
+ |
} |
995 |
+ |
|
996 |
+ |
} |
997 |
|
|
998 |
< |
void SimInfo::getFortranGroupArrays(SimInfo* info, |
999 |
< |
vector<int>& FglobalGroupMembership, |
1000 |
< |
vector<double>& mfact){ |
998 |
> |
|
999 |
> |
ostream& operator <<(ostream& o, SimInfo& info) { |
1000 |
> |
|
1001 |
> |
return o; |
1002 |
> |
} |
1003 |
> |
|
1004 |
|
|
1005 |
< |
Molecule* myMols; |
1006 |
< |
Atom** myAtoms; |
1007 |
< |
int numAtom; |
1008 |
< |
double mtot; |
1009 |
< |
int numMol; |
1010 |
< |
int numCutoffGroups; |
1011 |
< |
CutoffGroup* myCutoffGroup; |
1012 |
< |
vector<CutoffGroup*>::iterator iterCutoff; |
1013 |
< |
Atom* cutoffAtom; |
1014 |
< |
vector<Atom*>::iterator iterAtom; |
1015 |
< |
int atomIndex; |
590 |
< |
double totalMass; |
1005 |
> |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1006 |
> |
if (index >= IOIndexToIntegrableObject.size()) { |
1007 |
> |
sprintf(painCave.errMsg, |
1008 |
> |
"SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n" |
1009 |
> |
"\tindex exceeds number of known objects!\n"); |
1010 |
> |
painCave.isFatal = 1; |
1011 |
> |
simError(); |
1012 |
> |
return NULL; |
1013 |
> |
} else |
1014 |
> |
return IOIndexToIntegrableObject.at(index); |
1015 |
> |
} |
1016 |
|
|
1017 |
< |
mfact.clear(); |
1018 |
< |
FglobalGroupMembership.clear(); |
1019 |
< |
|
1017 |
> |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1018 |
> |
IOIndexToIntegrableObject= v; |
1019 |
> |
} |
1020 |
|
|
1021 |
< |
// Fix the silly fortran indexing problem |
1021 |
> |
int SimInfo::getNGlobalConstraints() { |
1022 |
> |
int nGlobalConstraints; |
1023 |
|
#ifdef IS_MPI |
1024 |
< |
numAtom = mpiSim->getNAtomsGlobal(); |
1024 |
> |
MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1, |
1025 |
> |
MPI::INT, MPI::SUM); |
1026 |
|
#else |
1027 |
< |
numAtom = n_atoms; |
1027 |
> |
nGlobalConstraints = nConstraints_; |
1028 |
|
#endif |
1029 |
< |
for (int i = 0; i < numAtom; i++) |
603 |
< |
FglobalGroupMembership.push_back(globalGroupMembership[i] + 1); |
604 |
< |
|
605 |
< |
|
606 |
< |
myMols = info->molecules; |
607 |
< |
numMol = info->n_mol; |
608 |
< |
for(int i = 0; i < numMol; i++){ |
609 |
< |
numCutoffGroups = myMols[i].getNCutoffGroups(); |
610 |
< |
for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); |
611 |
< |
myCutoffGroup != NULL; |
612 |
< |
myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){ |
613 |
< |
|
614 |
< |
totalMass = myCutoffGroup->getMass(); |
615 |
< |
|
616 |
< |
for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); |
617 |
< |
cutoffAtom != NULL; |
618 |
< |
cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){ |
619 |
< |
mfact.push_back(cutoffAtom->getMass()/totalMass); |
620 |
< |
} |
621 |
< |
} |
1029 |
> |
return nGlobalConstraints; |
1030 |
|
} |
1031 |
|
|
1032 |
< |
} |
1032 |
> |
}//end namespace OpenMD |
1033 |
> |
|