ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 143 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
Revision 1782 by gezelter, Wed Aug 22 02:28:28 2012 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file SimInfo.cpp
45 > * @author    tlin
46 > * @date  11/02/2004
47 > * @version 1.0
48 > */
49  
50 < #include <iostream>
51 < using namespace std;
50 > #include <algorithm>
51 > #include <set>
52 > #include <map>
53  
54   #include "brains/SimInfo.hpp"
55 < #define __C
56 < #include "brains/fSimulation.h"
55 > #include "math/Vector3.hpp"
56 > #include "primitives/Molecule.hpp"
57 > #include "primitives/StuntDouble.hpp"
58 > #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60 < #include "UseTheForce/DarkSide/simulation_interface.h"
61 < #include "UseTheForce/notifyCutoffs_interface.h"
62 <
63 < //#include "UseTheForce/fortranWrappers.hpp"
16 <
17 < #include "math/MatVec3.h"
18 <
60 > #include "selection/SelectionManager.hpp"
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "brains/mpiSimulation.hpp"
65 > #include <mpi.h>
66   #endif
67  
68 < inline double roundMe( double x ){
69 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
70 < }
71 <          
72 < inline double min( double a, double b ){
73 <  return (a < b ) ? a : b;
74 < }
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      nMolWithSameStamp = (*i)->getNMol();
95 >      
96 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
97 >      
98 >      //calculate atoms in molecules
99 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
100 >      
101 >      //calculate atoms in cutoff groups
102 >      int nAtomsInGroups = 0;
103 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104 >      
105 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 >        cgStamp = molStamp->getCutoffGroupStamp(j);
107 >        nAtomsInGroups += cgStamp->getNMembers();
108 >      }
109 >      
110 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111 >      
112 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
113 >      
114 >      //calculate atoms in rigid bodies
115 >      int nAtomsInRigidBodies = 0;
116 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 >      
118 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
119 >        rbStamp = molStamp->getRigidBodyStamp(j);
120 >        nAtomsInRigidBodies += rbStamp->getNMembers();
121 >      }
122 >      
123 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125 >      
126 >    }
127 >    
128 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
129 >    //group therefore the total number of cutoff groups in the system is
130 >    //equal to the total number of atoms minus number of atoms belong to
131 >    //cutoff group defined in meta-data file plus the number of cutoff
132 >    //groups defined in meta-data file
133  
134 < SimInfo* currentInfo;
134 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
135 >    
136 >    //every free atom (atom does not belong to rigid bodies) is an
137 >    //integrable object therefore the total number of integrable objects
138 >    //in the system is equal to the total number of atoms minus number of
139 >    //atoms belong to rigid body defined in meta-data file plus the number
140 >    //of rigid bodies defined in meta-data file
141 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 >      + nGlobalRigidBodies_;
143 >    
144 >    nGlobalMols_ = molStampIds_.size();
145 >    molToProcMap_.resize(nGlobalMols_);
146 >  }
147 >  
148 >  SimInfo::~SimInfo() {
149 >    map<int, Molecule*>::iterator i;
150 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151 >      delete i->second;
152 >    }
153 >    molecules_.clear();
154 >      
155 >    delete sman_;
156 >    delete simParams_;
157 >    delete forceField_;
158 >  }
159  
33 SimInfo::SimInfo(){
160  
161 <  n_constraints = 0;
162 <  nZconstraints = 0;
163 <  n_oriented = 0;
164 <  n_dipoles = 0;
165 <  ndf = 0;
166 <  ndfRaw = 0;
167 <  nZconstraints = 0;
168 <  the_integrator = NULL;
169 <  setTemp = 0;
170 <  thermalTime = 0.0;
171 <  currentTime = 0.0;
172 <  rCut = 0.0;
173 <  rSw = 0.0;
174 <
175 <  haveRcut = 0;
176 <  haveRsw = 0;
177 <  boxIsInit = 0;
161 >  bool SimInfo::addMolecule(Molecule* mol) {
162 >    MoleculeIterator i;
163 >    
164 >    i = molecules_.find(mol->getGlobalIndex());
165 >    if (i == molecules_.end() ) {
166 >      
167 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168 >      
169 >      nAtoms_ += mol->getNAtoms();
170 >      nBonds_ += mol->getNBonds();
171 >      nBends_ += mol->getNBends();
172 >      nTorsions_ += mol->getNTorsions();
173 >      nInversions_ += mol->getNInversions();
174 >      nRigidBodies_ += mol->getNRigidBodies();
175 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
176 >      nCutoffGroups_ += mol->getNCutoffGroups();
177 >      nConstraints_ += mol->getNConstraintPairs();
178 >      
179 >      addInteractionPairs(mol);
180 >      
181 >      return true;
182 >    } else {
183 >      return false;
184 >    }
185 >  }
186    
187 <  resetTime = 1e99;
187 >  bool SimInfo::removeMolecule(Molecule* mol) {
188 >    MoleculeIterator i;
189 >    i = molecules_.find(mol->getGlobalIndex());
190  
191 <  orthoRhombic = 0;
56 <  orthoTolerance = 1E-6;
57 <  useInitXSstate = true;
191 >    if (i != molecules_.end() ) {
192  
193 <  usePBC = 0;
194 <  useDirectionalAtoms = 0;
195 <  useLennardJones = 0;
196 <  useElectrostatics = 0;
197 <  useCharges = 0;
198 <  useDipoles = 0;
199 <  useSticky = 0;
200 <  useGayBerne = 0;
201 <  useEAM = 0;
202 <  useShapes = 0;
203 <  useFLARB = 0;
193 >      assert(mol == i->second);
194 >        
195 >      nAtoms_ -= mol->getNAtoms();
196 >      nBonds_ -= mol->getNBonds();
197 >      nBends_ -= mol->getNBends();
198 >      nTorsions_ -= mol->getNTorsions();
199 >      nInversions_ -= mol->getNInversions();
200 >      nRigidBodies_ -= mol->getNRigidBodies();
201 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
202 >      nCutoffGroups_ -= mol->getNCutoffGroups();
203 >      nConstraints_ -= mol->getNConstraintPairs();
204  
205 <  useSolidThermInt = 0;
206 <  useLiquidThermInt = 0;
205 >      removeInteractionPairs(mol);
206 >      molecules_.erase(mol->getGlobalIndex());
207  
208 <  haveCutoffGroups = false;
208 >      delete mol;
209 >        
210 >      return true;
211 >    } else {
212 >      return false;
213 >    }
214 >  }    
215  
216 <  excludes = Exclude::Instance();
216 >        
217 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
218 >    i = molecules_.begin();
219 >    return i == molecules_.end() ? NULL : i->second;
220 >  }    
221  
222 <  myConfiguration = new SimState();
222 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
223 >    ++i;
224 >    return i == molecules_.end() ? NULL : i->second;    
225 >  }
226  
80  has_minimizer = false;
81  the_minimizer =NULL;
227  
228 <  ngroup = 0;
228 >  void SimInfo::calcNdf() {
229 >    int ndf_local, nfq_local;
230 >    MoleculeIterator i;
231 >    vector<StuntDouble*>::iterator j;
232 >    vector<Atom*>::iterator k;
233  
234 < }
234 >    Molecule* mol;
235 >    StuntDouble* sd;
236 >    Atom* atom;
237  
238 +    ndf_local = 0;
239 +    nfq_local = 0;
240 +    
241 +    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
242  
243 < SimInfo::~SimInfo(){
243 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
244 >           sd = mol->nextIntegrableObject(j)) {
245  
246 <  delete myConfiguration;
246 >        ndf_local += 3;
247  
248 <  map<string, GenericData*>::iterator i;
249 <  
250 <  for(i = properties.begin(); i != properties.end(); i++)
251 <    delete (*i).second;
248 >        if (sd->isDirectional()) {
249 >          if (sd->isLinear()) {
250 >            ndf_local += 2;
251 >          } else {
252 >            ndf_local += 3;
253 >          }
254 >        }
255 >      }
256  
257 < }
257 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
258 >           atom = mol->nextFluctuatingCharge(k)) {
259 >        if (atom->isFluctuatingCharge()) {
260 >          nfq_local++;
261 >        }
262 >      }
263 >    }
264 >    
265 >    ndfLocal_ = ndf_local;
266  
267 < void SimInfo::setBox(double newBox[3]) {
268 <  
101 <  int i, j;
102 <  double tempMat[3][3];
267 >    // n_constraints is local, so subtract them on each processor
268 >    ndf_local -= nConstraints_;
269  
270 <  for(i=0; i<3; i++)
271 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
270 > #ifdef IS_MPI
271 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
272 >    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
273 > #else
274 >    ndf_ = ndf_local;
275 >    nGlobalFluctuatingCharges_ = nfq_local;
276 > #endif
277  
278 <  tempMat[0][0] = newBox[0];
279 <  tempMat[1][1] = newBox[1];
280 <  tempMat[2][2] = newBox[2];
278 >    // nZconstraints_ is global, as are the 3 COM translations for the
279 >    // entire system:
280 >    ndf_ = ndf_ - 3 - nZconstraint_;
281  
282 <  setBoxM( tempMat );
282 >  }
283  
284 < }
285 <
286 < void SimInfo::setBoxM( double theBox[3][3] ){
284 >  int SimInfo::getFdf() {
285 > #ifdef IS_MPI
286 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287 > #else
288 >    fdf_ = fdf_local;
289 > #endif
290 >    return fdf_;
291 >  }
292    
293 <  int i, j;
294 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
295 <                         // ordering in the array is as follows:
296 <                         // [ 0 3 6 ]
297 <                         // [ 1 4 7 ]
298 <                         // [ 2 5 8 ]
299 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
293 >  unsigned int SimInfo::getNLocalCutoffGroups(){
294 >    int nLocalCutoffAtoms = 0;
295 >    Molecule* mol;
296 >    MoleculeIterator mi;
297 >    CutoffGroup* cg;
298 >    Molecule::CutoffGroupIterator ci;
299 >    
300 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
301 >      
302 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
303 >           cg = mol->nextCutoffGroup(ci)) {
304 >        nLocalCutoffAtoms += cg->getNumAtom();
305 >        
306 >      }        
307 >    }
308 >    
309 >    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
310 >  }
311 >    
312 >  void SimInfo::calcNdfRaw() {
313 >    int ndfRaw_local;
314  
315 <  if( !boxIsInit ) boxIsInit = 1;
315 >    MoleculeIterator i;
316 >    vector<StuntDouble*>::iterator j;
317 >    Molecule* mol;
318 >    StuntDouble* sd;
319  
320 <  for(i=0; i < 3; i++)
321 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
322 <  
323 <  calcBoxL();
131 <  calcHmatInv();
320 >    // Raw degrees of freedom that we have to set
321 >    ndfRaw_local = 0;
322 >    
323 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
324  
325 <  for(i=0; i < 3; i++) {
326 <    for (j=0; j < 3; j++) {
327 <      FortranHmat[3*j + i] = Hmat[i][j];
328 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
325 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
326 >           sd = mol->nextIntegrableObject(j)) {
327 >
328 >        ndfRaw_local += 3;
329 >
330 >        if (sd->isDirectional()) {
331 >          if (sd->isLinear()) {
332 >            ndfRaw_local += 2;
333 >          } else {
334 >            ndfRaw_local += 3;
335 >          }
336 >        }
337 >            
338 >      }
339      }
340 +    
341 + #ifdef IS_MPI
342 +    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
343 + #else
344 +    ndfRaw_ = ndfRaw_local;
345 + #endif
346    }
347  
348 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
349 <
142 < }
143 <
348 >  void SimInfo::calcNdfTrans() {
349 >    int ndfTrans_local;
350  
351 < void SimInfo::getBoxM (double theBox[3][3]) {
351 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
352  
147  int i, j;
148  for(i=0; i<3; i++)
149    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
150 }
353  
354 + #ifdef IS_MPI
355 +    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
356 + #else
357 +    ndfTrans_ = ndfTrans_local;
358 + #endif
359  
360 < void SimInfo::scaleBox(double scale) {
361 <  double theBox[3][3];
362 <  int i, j;
360 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
361 >
362 >  }
363  
364 <  // cerr << "Scaling box by " << scale << "\n";
364 >  void SimInfo::addInteractionPairs(Molecule* mol) {
365 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
366 >    vector<Bond*>::iterator bondIter;
367 >    vector<Bend*>::iterator bendIter;
368 >    vector<Torsion*>::iterator torsionIter;
369 >    vector<Inversion*>::iterator inversionIter;
370 >    Bond* bond;
371 >    Bend* bend;
372 >    Torsion* torsion;
373 >    Inversion* inversion;
374 >    int a;
375 >    int b;
376 >    int c;
377 >    int d;
378  
379 <  for(i=0; i<3; i++)
380 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
379 >    // atomGroups can be used to add special interaction maps between
380 >    // groups of atoms that are in two separate rigid bodies.
381 >    // However, most site-site interactions between two rigid bodies
382 >    // are probably not special, just the ones between the physically
383 >    // bonded atoms.  Interactions *within* a single rigid body should
384 >    // always be excluded.  These are done at the bottom of this
385 >    // function.
386  
387 <  setBoxM(theBox);
387 >    map<int, set<int> > atomGroups;
388 >    Molecule::RigidBodyIterator rbIter;
389 >    RigidBody* rb;
390 >    Molecule::IntegrableObjectIterator ii;
391 >    StuntDouble* sd;
392 >    
393 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
394 >         sd = mol->nextIntegrableObject(ii)) {
395 >      
396 >      if (sd->isRigidBody()) {
397 >        rb = static_cast<RigidBody*>(sd);
398 >        vector<Atom*> atoms = rb->getAtoms();
399 >        set<int> rigidAtoms;
400 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
401 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
402 >        }
403 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
404 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
405 >        }      
406 >      } else {
407 >        set<int> oneAtomSet;
408 >        oneAtomSet.insert(sd->getGlobalIndex());
409 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
410 >      }
411 >    }  
412 >          
413 >    for (bond= mol->beginBond(bondIter); bond != NULL;
414 >         bond = mol->nextBond(bondIter)) {
415  
416 < }
416 >      a = bond->getAtomA()->getGlobalIndex();
417 >      b = bond->getAtomB()->getGlobalIndex();  
418  
419 < void SimInfo::calcHmatInv( void ) {
420 <  
421 <  int oldOrtho;
422 <  int i,j;
423 <  double smallDiag;
424 <  double tol;
172 <  double sanity[3][3];
419 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
420 >        oneTwoInteractions_.addPair(a, b);
421 >      } else {
422 >        excludedInteractions_.addPair(a, b);
423 >      }
424 >    }
425  
426 <  invertMat3( Hmat, HmatInv );
426 >    for (bend= mol->beginBend(bendIter); bend != NULL;
427 >         bend = mol->nextBend(bendIter)) {
428  
429 <  // check to see if Hmat is orthorhombic
430 <  
431 <  oldOrtho = orthoRhombic;
429 >      a = bend->getAtomA()->getGlobalIndex();
430 >      b = bend->getAtomB()->getGlobalIndex();        
431 >      c = bend->getAtomC()->getGlobalIndex();
432 >      
433 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
434 >        oneTwoInteractions_.addPair(a, b);      
435 >        oneTwoInteractions_.addPair(b, c);
436 >      } else {
437 >        excludedInteractions_.addPair(a, b);
438 >        excludedInteractions_.addPair(b, c);
439 >      }
440  
441 <  smallDiag = fabs(Hmat[0][0]);
442 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
443 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
444 <  tol = smallDiag * orthoTolerance;
184 <
185 <  orthoRhombic = 1;
186 <  
187 <  for (i = 0; i < 3; i++ ) {
188 <    for (j = 0 ; j < 3; j++) {
189 <      if (i != j) {
190 <        if (orthoRhombic) {
191 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
192 <        }        
441 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
442 >        oneThreeInteractions_.addPair(a, c);      
443 >      } else {
444 >        excludedInteractions_.addPair(a, c);
445        }
446      }
195  }
447  
448 <  if( oldOrtho != orthoRhombic ){
449 <    
199 <    if( orthoRhombic ) {
200 <      sprintf( painCave.errMsg,
201 <               "OOPSE is switching from the default Non-Orthorhombic\n"
202 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
203 <               "\tThis is usually a good thing, but if you wan't the\n"
204 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
205 <               "\tvariable ( currently set to %G ) smaller.\n",
206 <               orthoTolerance);
207 <      painCave.severity = OOPSE_INFO;
208 <      simError();
209 <    }
210 <    else {
211 <      sprintf( painCave.errMsg,
212 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
213 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
214 <               "\tThis is usually because the box has deformed under\n"
215 <               "\tNPTf integration. If you wan't to live on the edge with\n"
216 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
217 <               "\tvariable ( currently set to %G ) larger.\n",
218 <               orthoTolerance);
219 <      painCave.severity = OOPSE_WARNING;
220 <      simError();
221 <    }
222 <  }
223 < }
448 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
449 >         torsion = mol->nextTorsion(torsionIter)) {
450  
451 < void SimInfo::calcBoxL( void ){
451 >      a = torsion->getAtomA()->getGlobalIndex();
452 >      b = torsion->getAtomB()->getGlobalIndex();        
453 >      c = torsion->getAtomC()->getGlobalIndex();        
454 >      d = torsion->getAtomD()->getGlobalIndex();      
455  
456 <  double dx, dy, dz, dsq;
456 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
457 >        oneTwoInteractions_.addPair(a, b);      
458 >        oneTwoInteractions_.addPair(b, c);
459 >        oneTwoInteractions_.addPair(c, d);
460 >      } else {
461 >        excludedInteractions_.addPair(a, b);
462 >        excludedInteractions_.addPair(b, c);
463 >        excludedInteractions_.addPair(c, d);
464 >      }
465  
466 <  // boxVol = Determinant of Hmat
466 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
467 >        oneThreeInteractions_.addPair(a, c);      
468 >        oneThreeInteractions_.addPair(b, d);      
469 >      } else {
470 >        excludedInteractions_.addPair(a, c);
471 >        excludedInteractions_.addPair(b, d);
472 >      }
473  
474 <  boxVol = matDet3( Hmat );
474 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
475 >        oneFourInteractions_.addPair(a, d);      
476 >      } else {
477 >        excludedInteractions_.addPair(a, d);
478 >      }
479 >    }
480  
481 <  // boxLx
482 <  
235 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
236 <  dsq = dx*dx + dy*dy + dz*dz;
237 <  boxL[0] = sqrt( dsq );
238 <  //maxCutoff = 0.5 * boxL[0];
481 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
482 >         inversion = mol->nextInversion(inversionIter)) {
483  
484 <  // boxLy
485 <  
486 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
487 <  dsq = dx*dx + dy*dy + dz*dz;
244 <  boxL[1] = sqrt( dsq );
245 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
484 >      a = inversion->getAtomA()->getGlobalIndex();
485 >      b = inversion->getAtomB()->getGlobalIndex();        
486 >      c = inversion->getAtomC()->getGlobalIndex();        
487 >      d = inversion->getAtomD()->getGlobalIndex();        
488  
489 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
490 +        oneTwoInteractions_.addPair(a, b);      
491 +        oneTwoInteractions_.addPair(a, c);
492 +        oneTwoInteractions_.addPair(a, d);
493 +      } else {
494 +        excludedInteractions_.addPair(a, b);
495 +        excludedInteractions_.addPair(a, c);
496 +        excludedInteractions_.addPair(a, d);
497 +      }
498  
499 <  // boxLz
500 <  
501 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
502 <  dsq = dx*dx + dy*dy + dz*dz;
503 <  boxL[2] = sqrt( dsq );
504 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
499 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
500 >        oneThreeInteractions_.addPair(b, c);    
501 >        oneThreeInteractions_.addPair(b, d);    
502 >        oneThreeInteractions_.addPair(c, d);      
503 >      } else {
504 >        excludedInteractions_.addPair(b, c);
505 >        excludedInteractions_.addPair(b, d);
506 >        excludedInteractions_.addPair(c, d);
507 >      }
508 >    }
509  
510 <  //calculate the max cutoff
511 <  maxCutoff =  calcMaxCutOff();
512 <  
513 <  checkCutOffs();
510 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
511 >         rb = mol->nextRigidBody(rbIter)) {
512 >      vector<Atom*> atoms = rb->getAtoms();
513 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
514 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
515 >          a = atoms[i]->getGlobalIndex();
516 >          b = atoms[j]->getGlobalIndex();
517 >          excludedInteractions_.addPair(a, b);
518 >        }
519 >      }
520 >    }        
521  
522 < }
522 >  }
523  
524 +  void SimInfo::removeInteractionPairs(Molecule* mol) {
525 +    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
526 +    vector<Bond*>::iterator bondIter;
527 +    vector<Bend*>::iterator bendIter;
528 +    vector<Torsion*>::iterator torsionIter;
529 +    vector<Inversion*>::iterator inversionIter;
530 +    Bond* bond;
531 +    Bend* bend;
532 +    Torsion* torsion;
533 +    Inversion* inversion;
534 +    int a;
535 +    int b;
536 +    int c;
537 +    int d;
538  
539 < double SimInfo::calcMaxCutOff(){
539 >    map<int, set<int> > atomGroups;
540 >    Molecule::RigidBodyIterator rbIter;
541 >    RigidBody* rb;
542 >    Molecule::IntegrableObjectIterator ii;
543 >    StuntDouble* sd;
544 >    
545 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
546 >         sd = mol->nextIntegrableObject(ii)) {
547 >      
548 >      if (sd->isRigidBody()) {
549 >        rb = static_cast<RigidBody*>(sd);
550 >        vector<Atom*> atoms = rb->getAtoms();
551 >        set<int> rigidAtoms;
552 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
553 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
554 >        }
555 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
556 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
557 >        }      
558 >      } else {
559 >        set<int> oneAtomSet;
560 >        oneAtomSet.insert(sd->getGlobalIndex());
561 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
562 >      }
563 >    }  
564  
565 <  double ri[3], rj[3], rk[3];
566 <  double rij[3], rjk[3], rki[3];
567 <  double minDist;
568 <
569 <  ri[0] = Hmat[0][0];
270 <  ri[1] = Hmat[1][0];
271 <  ri[2] = Hmat[2][0];
272 <
273 <  rj[0] = Hmat[0][1];
274 <  rj[1] = Hmat[1][1];
275 <  rj[2] = Hmat[2][1];
276 <
277 <  rk[0] = Hmat[0][2];
278 <  rk[1] = Hmat[1][2];
279 <  rk[2] = Hmat[2][2];
565 >    for (bond= mol->beginBond(bondIter); bond != NULL;
566 >         bond = mol->nextBond(bondIter)) {
567 >      
568 >      a = bond->getAtomA()->getGlobalIndex();
569 >      b = bond->getAtomB()->getGlobalIndex();  
570      
571 <  crossProduct3(ri, rj, rij);
572 <  distXY = dotProduct3(rk,rij) / norm3(rij);
571 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
572 >        oneTwoInteractions_.removePair(a, b);
573 >      } else {
574 >        excludedInteractions_.removePair(a, b);
575 >      }
576 >    }
577  
578 <  crossProduct3(rj,rk, rjk);
579 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
578 >    for (bend= mol->beginBend(bendIter); bend != NULL;
579 >         bend = mol->nextBend(bendIter)) {
580  
581 <  crossProduct3(rk,ri, rki);
582 <  distZX = dotProduct3(rj,rki) / norm3(rki);
581 >      a = bend->getAtomA()->getGlobalIndex();
582 >      b = bend->getAtomB()->getGlobalIndex();        
583 >      c = bend->getAtomC()->getGlobalIndex();
584 >      
585 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
586 >        oneTwoInteractions_.removePair(a, b);      
587 >        oneTwoInteractions_.removePair(b, c);
588 >      } else {
589 >        excludedInteractions_.removePair(a, b);
590 >        excludedInteractions_.removePair(b, c);
591 >      }
592  
593 <  minDist = min(min(distXY, distYZ), distZX);
594 <  return minDist/2;
595 <  
596 < }
597 <
598 < void SimInfo::wrapVector( double thePos[3] ){
296 <
297 <  int i;
298 <  double scaled[3];
593 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
594 >        oneThreeInteractions_.removePair(a, c);      
595 >      } else {
596 >        excludedInteractions_.removePair(a, c);
597 >      }
598 >    }
599  
600 <  if( !orthoRhombic ){
601 <    // calc the scaled coordinates.
600 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
601 >         torsion = mol->nextTorsion(torsionIter)) {
602 >
603 >      a = torsion->getAtomA()->getGlobalIndex();
604 >      b = torsion->getAtomB()->getGlobalIndex();        
605 >      c = torsion->getAtomC()->getGlobalIndex();        
606 >      d = torsion->getAtomD()->getGlobalIndex();      
607    
608 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
609 +        oneTwoInteractions_.removePair(a, b);      
610 +        oneTwoInteractions_.removePair(b, c);
611 +        oneTwoInteractions_.removePair(c, d);
612 +      } else {
613 +        excludedInteractions_.removePair(a, b);
614 +        excludedInteractions_.removePair(b, c);
615 +        excludedInteractions_.removePair(c, d);
616 +      }
617  
618 <    matVecMul3(HmatInv, thePos, scaled);
619 <    
620 <    for(i=0; i<3; i++)
621 <      scaled[i] -= roundMe(scaled[i]);
622 <    
623 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
624 <    
311 <    matVecMul3(Hmat, scaled, thePos);
618 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
619 >        oneThreeInteractions_.removePair(a, c);      
620 >        oneThreeInteractions_.removePair(b, d);      
621 >      } else {
622 >        excludedInteractions_.removePair(a, c);
623 >        excludedInteractions_.removePair(b, d);
624 >      }
625  
626 <  }
627 <  else{
628 <    // calc the scaled coordinates.
629 <    
630 <    for(i=0; i<3; i++)
631 <      scaled[i] = thePos[i]*HmatInv[i][i];
319 <    
320 <    // wrap the scaled coordinates
321 <    
322 <    for(i=0; i<3; i++)
323 <      scaled[i] -= roundMe(scaled[i]);
324 <    
325 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
326 <    
327 <    for(i=0; i<3; i++)
328 <      thePos[i] = scaled[i]*Hmat[i][i];
329 <  }
330 <    
331 < }
626 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
627 >        oneFourInteractions_.removePair(a, d);      
628 >      } else {
629 >        excludedInteractions_.removePair(a, d);
630 >      }
631 >    }
632  
633 +    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
634 +         inversion = mol->nextInversion(inversionIter)) {
635  
636 < int SimInfo::getNDF(){
637 <  int ndf_local;
636 >      a = inversion->getAtomA()->getGlobalIndex();
637 >      b = inversion->getAtomB()->getGlobalIndex();        
638 >      c = inversion->getAtomC()->getGlobalIndex();        
639 >      d = inversion->getAtomD()->getGlobalIndex();        
640  
641 <  ndf_local = 0;
642 <  
643 <  for(int i = 0; i < integrableObjects.size(); i++){
644 <    ndf_local += 3;
645 <    if (integrableObjects[i]->isDirectional()) {
646 <      if (integrableObjects[i]->isLinear())
647 <        ndf_local += 2;
648 <      else
649 <        ndf_local += 3;
641 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
642 >        oneTwoInteractions_.removePair(a, b);      
643 >        oneTwoInteractions_.removePair(a, c);
644 >        oneTwoInteractions_.removePair(a, d);
645 >      } else {
646 >        excludedInteractions_.removePair(a, b);
647 >        excludedInteractions_.removePair(a, c);
648 >        excludedInteractions_.removePair(a, d);
649 >      }
650 >
651 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
652 >        oneThreeInteractions_.removePair(b, c);    
653 >        oneThreeInteractions_.removePair(b, d);    
654 >        oneThreeInteractions_.removePair(c, d);      
655 >      } else {
656 >        excludedInteractions_.removePair(b, c);
657 >        excludedInteractions_.removePair(b, d);
658 >        excludedInteractions_.removePair(c, d);
659 >      }
660      }
661 +
662 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
663 +         rb = mol->nextRigidBody(rbIter)) {
664 +      vector<Atom*> atoms = rb->getAtoms();
665 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
666 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
667 +          a = atoms[i]->getGlobalIndex();
668 +          b = atoms[j]->getGlobalIndex();
669 +          excludedInteractions_.removePair(a, b);
670 +        }
671 +      }
672 +    }        
673 +    
674    }
675 +  
676 +  
677 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
678 +    int curStampId;
679 +    
680 +    //index from 0
681 +    curStampId = moleculeStamps_.size();
682  
683 <  // n_constraints is local, so subtract them on each processor:
683 >    moleculeStamps_.push_back(molStamp);
684 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
685 >  }
686  
351  ndf_local -= n_constraints;
687  
688 +  /**
689 +   * update
690 +   *
691 +   *  Performs the global checks and variable settings after the
692 +   *  objects have been created.
693 +   *
694 +   */
695 +  void SimInfo::update() {  
696 +    setupSimVariables();
697 +    calcNdf();
698 +    calcNdfRaw();
699 +    calcNdfTrans();
700 +  }
701 +  
702 +  /**
703 +   * getSimulatedAtomTypes
704 +   *
705 +   * Returns an STL set of AtomType* that are actually present in this
706 +   * simulation.  Must query all processors to assemble this information.
707 +   *
708 +   */
709 +  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
710 +    SimInfo::MoleculeIterator mi;
711 +    Molecule* mol;
712 +    Molecule::AtomIterator ai;
713 +    Atom* atom;
714 +    set<AtomType*> atomTypes;
715 +    
716 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
717 +      for(atom = mol->beginAtom(ai); atom != NULL;
718 +          atom = mol->nextAtom(ai)) {
719 +        atomTypes.insert(atom->getAtomType());
720 +      }      
721 +    }    
722 +    
723   #ifdef IS_MPI
354  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
355 #else
356  ndf = ndf_local;
357 #endif
724  
725 <  // nZconstraints is global, as are the 3 COM translations for the
726 <  // entire system:
725 >    // loop over the found atom types on this processor, and add their
726 >    // numerical idents to a vector:
727 >    
728 >    vector<int> foundTypes;
729 >    set<AtomType*>::iterator i;
730 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
731 >      foundTypes.push_back( (*i)->getIdent() );
732  
733 <  ndf = ndf - 3 - nZconstraints;
733 >    // count_local holds the number of found types on this processor
734 >    int count_local = foundTypes.size();
735  
736 <  return ndf;
365 < }
736 >    int nproc = MPI::COMM_WORLD.Get_size();
737  
738 < int SimInfo::getNDFraw() {
739 <  int ndfRaw_local;
738 >    // we need arrays to hold the counts and displacement vectors for
739 >    // all processors
740 >    vector<int> counts(nproc, 0);
741 >    vector<int> disps(nproc, 0);
742  
743 <  // Raw degrees of freedom that we have to set
744 <  ndfRaw_local = 0;
745 <
746 <  for(int i = 0; i < integrableObjects.size(); i++){
747 <    ndfRaw_local += 3;
748 <    if (integrableObjects[i]->isDirectional()) {
749 <       if (integrableObjects[i]->isLinear())
750 <        ndfRaw_local += 2;
751 <      else
752 <        ndfRaw_local += 3;
743 >    // fill the counts array
744 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
745 >                              1, MPI::INT);
746 >  
747 >    // use the processor counts to compute the displacement array
748 >    disps[0] = 0;    
749 >    int totalCount = counts[0];
750 >    for (int iproc = 1; iproc < nproc; iproc++) {
751 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
752 >      totalCount += counts[iproc];
753      }
754 <  }
754 >
755 >    // we need a (possibly redundant) set of all found types:
756 >    vector<int> ftGlobal(totalCount);
757      
758 < #ifdef IS_MPI
759 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
760 < #else
761 <  ndfRaw = ndfRaw_local;
387 < #endif
758 >    // now spray out the foundTypes to all the other processors:    
759 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
760 >                               &ftGlobal[0], &counts[0], &disps[0],
761 >                               MPI::INT);
762  
763 <  return ndfRaw;
390 < }
763 >    vector<int>::iterator j;
764  
765 < int SimInfo::getNDFtranslational() {
766 <  int ndfTrans_local;
765 >    // foundIdents is a stl set, so inserting an already found ident
766 >    // will have no effect.
767 >    set<int> foundIdents;
768  
769 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
770 <
771 <
772 < #ifdef IS_MPI
773 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
774 < #else
775 <  ndfTrans = ndfTrans_local;
769 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
770 >      foundIdents.insert((*j));
771 >    
772 >    // now iterate over the foundIdents and get the actual atom types
773 >    // that correspond to these:
774 >    set<int>::iterator it;
775 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
776 >      atomTypes.insert( forceField_->getAtomType((*it)) );
777 >
778   #endif
779  
780 <  ndfTrans = ndfTrans - 3 - nZconstraints;
780 >    return atomTypes;        
781 >  }
782  
783 <  return ndfTrans;
784 < }
783 >  void SimInfo::setupSimVariables() {
784 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
785 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
786 >    // parameter is true
787 >    calcBoxDipole_ = false;
788 >    if ( simParams_->haveAccumulateBoxDipole() )
789 >      if ( simParams_->getAccumulateBoxDipole() ) {
790 >        calcBoxDipole_ = true;      
791 >      }
792 >    
793 >    set<AtomType*>::iterator i;
794 >    set<AtomType*> atomTypes;
795 >    atomTypes = getSimulatedAtomTypes();    
796 >    bool usesElectrostatic = false;
797 >    bool usesMetallic = false;
798 >    bool usesDirectional = false;
799 >    bool usesFluctuatingCharges =  false;
800 >    //loop over all of the atom types
801 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
802 >      usesElectrostatic |= (*i)->isElectrostatic();
803 >      usesMetallic |= (*i)->isMetal();
804 >      usesDirectional |= (*i)->isDirectional();
805 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
806 >    }
807  
808 < int SimInfo::getTotIntegrableObjects() {
809 <  int nObjs_local;
810 <  int nObjs;
808 > #ifdef IS_MPI
809 >    bool temp;
810 >    temp = usesDirectional;
811 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
812 >                              MPI::LOR);
813 >        
814 >    temp = usesMetallic;
815 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
816 >                              MPI::LOR);
817 >    
818 >    temp = usesElectrostatic;
819 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
820 >                              MPI::LOR);
821  
822 <  nObjs_local =  integrableObjects.size();
822 >    temp = usesFluctuatingCharges;
823 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
824 >                              MPI::LOR);
825 > #else
826  
827 +    usesDirectionalAtoms_ = usesDirectional;
828 +    usesMetallicAtoms_ = usesMetallic;
829 +    usesElectrostaticAtoms_ = usesElectrostatic;
830 +    usesFluctuatingCharges_ = usesFluctuatingCharges;
831  
416 #ifdef IS_MPI
417  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
418 #else
419  nObjs = nObjs_local;
832   #endif
833 +    
834 +    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
835 +    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
836 +    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
837 +  }
838  
839  
840 <  return nObjs;
841 < }
840 >  vector<int> SimInfo::getGlobalAtomIndices() {
841 >    SimInfo::MoleculeIterator mi;
842 >    Molecule* mol;
843 >    Molecule::AtomIterator ai;
844 >    Atom* atom;
845  
846 < void SimInfo::refreshSim(){
846 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
847 >    
848 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
849 >      
850 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
851 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
852 >      }
853 >    }
854 >    return GlobalAtomIndices;
855 >  }
856  
428  simtype fInfo;
429  int isError;
430  int n_global;
431  int* excl;
857  
858 <  fInfo.dielect = 0.0;
858 >  vector<int> SimInfo::getGlobalGroupIndices() {
859 >    SimInfo::MoleculeIterator mi;
860 >    Molecule* mol;
861 >    Molecule::CutoffGroupIterator ci;
862 >    CutoffGroup* cg;
863  
864 <  if( useDipoles ){
865 <    if( useReactionField )fInfo.dielect = dielectric;
864 >    vector<int> GlobalGroupIndices;
865 >    
866 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
867 >      
868 >      //local index of cutoff group is trivial, it only depends on the
869 >      //order of travesing
870 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
871 >           cg = mol->nextCutoffGroup(ci)) {
872 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
873 >      }        
874 >    }
875 >    return GlobalGroupIndices;
876    }
877  
439  fInfo.SIM_uses_PBC = usePBC;
878  
879 <  if (useSticky || useDipoles || useGayBerne || useShapes) {
880 <    useDirectionalAtoms = 1;
443 <    fInfo.SIM_uses_DirectionalAtoms = useDirectionalAtoms;
444 <  }
879 >  void SimInfo::prepareTopology() {
880 >    int nExclude, nOneTwo, nOneThree, nOneFour;
881  
882 <  fInfo.SIM_uses_LennardJones = useLennardJones;
882 >    //calculate mass ratio of cutoff group
883 >    SimInfo::MoleculeIterator mi;
884 >    Molecule* mol;
885 >    Molecule::CutoffGroupIterator ci;
886 >    CutoffGroup* cg;
887 >    Molecule::AtomIterator ai;
888 >    Atom* atom;
889 >    RealType totalMass;
890  
891 <  if (useCharges || useDipoles) {
892 <    useElectrostatics = 1;
893 <    fInfo.SIM_uses_Electrostatics = useElectrostatics;
894 <  }
891 >    /**
892 >     * The mass factor is the relative mass of an atom to the total
893 >     * mass of the cutoff group it belongs to.  By default, all atoms
894 >     * are their own cutoff groups, and therefore have mass factors of
895 >     * 1.  We need some special handling for massless atoms, which
896 >     * will be treated as carrying the entire mass of the cutoff
897 >     * group.
898 >     */
899 >    massFactors_.clear();
900 >    massFactors_.resize(getNAtoms(), 1.0);
901 >    
902 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
903 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
904 >           cg = mol->nextCutoffGroup(ci)) {
905  
906 <  fInfo.SIM_uses_Charges = useCharges;
907 <  fInfo.SIM_uses_Dipoles = useDipoles;
908 <  fInfo.SIM_uses_Sticky = useSticky;
909 <  fInfo.SIM_uses_GayBerne = useGayBerne;
910 <  fInfo.SIM_uses_EAM = useEAM;
911 <  fInfo.SIM_uses_Shapes = useShapes;
912 <  fInfo.SIM_uses_FLARB = useFLARB;
913 <  fInfo.SIM_uses_RF = useReactionField;
906 >        totalMass = cg->getMass();
907 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
908 >          // Check for massless groups - set mfact to 1 if true
909 >          if (totalMass != 0)
910 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
911 >          else
912 >            massFactors_[atom->getLocalIndex()] = 1.0;
913 >        }
914 >      }      
915 >    }
916  
917 <  n_exclude = excludes->getSize();
463 <  excl = excludes->getFortranArray();
464 <  
465 < #ifdef IS_MPI
466 <  n_global = mpiSim->getNAtomsGlobal();
467 < #else
468 <  n_global = n_atoms;
469 < #endif
470 <  
471 <  isError = 0;
472 <  
473 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
474 <  //it may not be a good idea to pass the address of first element in vector
475 <  //since c++ standard does not require vector to be stored continuously in meomory
476 <  //Most of the compilers will organize the memory of vector continuously
477 <  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
478 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
479 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
917 >    // Build the identArray_
918  
919 <  if( isError ){
919 >    identArray_.clear();
920 >    identArray_.reserve(getNAtoms());    
921 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
922 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
923 >        identArray_.push_back(atom->getIdent());
924 >      }
925 >    }    
926      
927 <    sprintf( painCave.errMsg,
484 <             "There was an error setting the simulation information in fortran.\n" );
485 <    painCave.isFatal = 1;
486 <    painCave.severity = OOPSE_ERROR;
487 <    simError();
488 <  }
489 <  
490 < #ifdef IS_MPI
491 <  sprintf( checkPointMsg,
492 <           "succesfully sent the simulation information to fortran.\n");
493 <  MPIcheckPoint();
494 < #endif // is_mpi
495 <  
496 <  this->ndf = this->getNDF();
497 <  this->ndfRaw = this->getNDFraw();
498 <  this->ndfTrans = this->getNDFtranslational();
499 < }
927 >    //scan topology
928  
929 < void SimInfo::setDefaultRcut( double theRcut ){
930 <  
931 <  haveRcut = 1;
932 <  rCut = theRcut;
505 <  rList = rCut + 1.0;
506 <  
507 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
508 < }
929 >    nExclude = excludedInteractions_.getSize();
930 >    nOneTwo = oneTwoInteractions_.getSize();
931 >    nOneThree = oneThreeInteractions_.getSize();
932 >    nOneFour = oneFourInteractions_.getSize();
933  
934 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
934 >    int* excludeList = excludedInteractions_.getPairList();
935 >    int* oneTwoList = oneTwoInteractions_.getPairList();
936 >    int* oneThreeList = oneThreeInteractions_.getPairList();
937 >    int* oneFourList = oneFourInteractions_.getPairList();
938  
939 <  rSw = theRsw;
940 <  setDefaultRcut( theRcut );
514 < }
939 >    topologyDone_ = true;
940 >  }
941  
942 +  void SimInfo::addProperty(GenericData* genData) {
943 +    properties_.addProperty(genData);  
944 +  }
945  
946 < void SimInfo::checkCutOffs( void ){
947 <  
519 <  if( boxIsInit ){
520 <    
521 <    //we need to check cutOffs against the box
522 <    
523 <    if( rCut > maxCutoff ){
524 <      sprintf( painCave.errMsg,
525 <               "cutoffRadius is too large for the current periodic box.\n"
526 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
527 <               "\tThis is larger than half of at least one of the\n"
528 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
529 <               "\n"
530 <               "\t[ %G %G %G ]\n"
531 <               "\t[ %G %G %G ]\n"
532 <               "\t[ %G %G %G ]\n",
533 <               rCut, currentTime,
534 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
535 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
536 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
537 <      painCave.severity = OOPSE_ERROR;
538 <      painCave.isFatal = 1;
539 <      simError();
540 <    }    
541 <  } else {
542 <    // initialize this stuff before using it, OK?
543 <    sprintf( painCave.errMsg,
544 <             "Trying to check cutoffs without a box.\n"
545 <             "\tOOPSE should have better programmers than that.\n" );
546 <    painCave.severity = OOPSE_ERROR;
547 <    painCave.isFatal = 1;
548 <    simError();      
946 >  void SimInfo::removeProperty(const string& propName) {
947 >    properties_.removeProperty(propName);  
948    }
550  
551 }
949  
950 < void SimInfo::addProperty(GenericData* prop){
950 >  void SimInfo::clearProperties() {
951 >    properties_.clearProperties();
952 >  }
953  
954 <  map<string, GenericData*>::iterator result;
955 <  result = properties.find(prop->getID());
956 <  
558 <  //we can't simply use  properties[prop->getID()] = prop,
559 <  //it will cause memory leak if we already contain a propery which has the same name of prop
560 <  
561 <  if(result != properties.end()){
562 <    
563 <    delete (*result).second;
564 <    (*result).second = prop;
954 >  vector<string> SimInfo::getPropertyNames() {
955 >    return properties_.getPropertyNames();  
956 >  }
957        
958 +  vector<GenericData*> SimInfo::getProperties() {
959 +    return properties_.getProperties();
960    }
567  else{
961  
962 <    properties[prop->getID()] = prop;
963 <
962 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
963 >    return properties_.getPropertyByName(propName);
964    }
572    
573 }
965  
966 < GenericData* SimInfo::getProperty(const string& propName){
966 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
967 >    if (sman_ == sman) {
968 >      return;
969 >    }    
970 >    delete sman_;
971 >    sman_ = sman;
972 >
973 >    Molecule* mol;
974 >    RigidBody* rb;
975 >    Atom* atom;
976 >    CutoffGroup* cg;
977 >    SimInfo::MoleculeIterator mi;
978 >    Molecule::RigidBodyIterator rbIter;
979 >    Molecule::AtomIterator atomIter;
980 >    Molecule::CutoffGroupIterator cgIter;
981  
982 <  map<string, GenericData*>::iterator result;
983 <  
984 <  //string lowerCaseName = ();
985 <  
986 <  result = properties.find(propName);
987 <  
988 <  if(result != properties.end())
989 <    return (*result).second;  
990 <  else  
991 <    return NULL;  
992 < }
982 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
983 >        
984 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
985 >           atom = mol->nextAtom(atomIter)) {
986 >        atom->setSnapshotManager(sman_);
987 >      }
988 >        
989 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
990 >           rb = mol->nextRigidBody(rbIter)) {
991 >        rb->setSnapshotManager(sman_);
992 >      }
993  
994 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
995 +           cg = mol->nextCutoffGroup(cgIter)) {
996 +        cg->setSnapshotManager(sman_);
997 +      }
998 +    }    
999 +    
1000 +  }
1001  
1002 < void SimInfo::getFortranGroupArrays(SimInfo* info,
1003 <                                    vector<int>& FglobalGroupMembership,
1004 <                                    vector<double>& mfact){
1002 >
1003 >  ostream& operator <<(ostream& o, SimInfo& info) {
1004 >
1005 >    return o;
1006 >  }
1007 >  
1008    
1009 <  Molecule* myMols;
1010 <  Atom** myAtoms;
1011 <  int numAtom;
1012 <  double mtot;
1013 <  int numMol;
1014 <  int numCutoffGroups;
1015 <  CutoffGroup* myCutoffGroup;
1016 <  vector<CutoffGroup*>::iterator iterCutoff;
1017 <  Atom* cutoffAtom;
1018 <  vector<Atom*>::iterator iterAtom;
1019 <  int atomIndex;
605 <  double totalMass;
1009 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1010 >    if (index >= IOIndexToIntegrableObject.size()) {
1011 >      sprintf(painCave.errMsg,
1012 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1013 >              "\tindex exceeds number of known objects!\n");
1014 >      painCave.isFatal = 1;
1015 >      simError();
1016 >      return NULL;
1017 >    } else
1018 >      return IOIndexToIntegrableObject.at(index);
1019 >  }
1020    
1021 <  mfact.clear();
1022 <  FglobalGroupMembership.clear();
1023 <  
1021 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1022 >    IOIndexToIntegrableObject= v;
1023 >  }
1024  
1025 <  // Fix the silly fortran indexing problem
1025 >  int SimInfo::getNGlobalConstraints() {
1026 >    int nGlobalConstraints;
1027   #ifdef IS_MPI
1028 <  numAtom = mpiSim->getNAtomsGlobal();
1028 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1029 >                  MPI_COMM_WORLD);    
1030   #else
1031 <  numAtom = n_atoms;
1031 >    nGlobalConstraints =  nConstraints_;
1032   #endif
1033 <  for (int i = 0; i < numAtom; i++)
618 <    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
619 <  
620 <
621 <  myMols = info->molecules;
622 <  numMol = info->n_mol;
623 <  for(int i  = 0; i < numMol; i++){
624 <    numCutoffGroups = myMols[i].getNCutoffGroups();
625 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
626 <        myCutoffGroup != NULL;
627 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
628 <
629 <      totalMass = myCutoffGroup->getMass();
630 <      
631 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
632 <          cutoffAtom != NULL;
633 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
634 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
635 <      }  
636 <    }
1033 >    return nGlobalConstraints;
1034    }
1035  
1036 < }
1036 > }//end namespace OpenMD
1037 >

Comparing trunk/src/brains/SimInfo.cpp (property svn:keywords):
Revision 143 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
Revision 1782 by gezelter, Wed Aug 22 02:28:28 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines