ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 507 by gezelter, Fri Apr 15 22:04:00 2005 UTC vs.
Revision 963 by tim, Wed May 17 21:51:42 2006 UTC

# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "UseTheForce/fCutoffPolicy.h"
57 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60   #include "UseTheForce/doForces_interface.h"
61 < #include "UseTheForce/notifyCutoffs_interface.h"
61 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
63   #include "utils/MemoryUtils.hpp"
64   #include "utils/simError.h"
65   #include "selection/SelectionManager.hpp"
66 + #include "io/ForceFieldOptions.hpp"
67 + #include "UseTheForce/ForceField.hpp"
68  
69   #ifdef IS_MPI
70   #include "UseTheForce/mpiComponentPlan.h"
# Line 64 | Line 72 | namespace oopse {
72   #endif
73  
74   namespace oopse {
75 +  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 +    std::map<int, std::set<int> >::iterator i = container.find(index);
77 +    std::set<int> result;
78 +    if (i != container.end()) {
79 +        result = i->second;
80 +    }
81  
82 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
83 <                   ForceField* ff, Globals* simParams) :
84 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
85 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
82 >    return result;
83 >  }
84 >  
85 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
86 >    forceField_(ff), simParams_(simParams),
87 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
88      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
89      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
90      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
91      nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
92      sman_(NULL), fortranInitialized_(false) {
93  
78            
79      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
94        MoleculeStamp* molStamp;
95        int nMolWithSameStamp;
96        int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
97 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
97 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
98        CutoffGroupStamp* cgStamp;    
99        RigidBodyStamp* rbStamp;
100        int nRigidAtoms = 0;
101 <    
102 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
103 <        molStamp = i->first;
104 <        nMolWithSameStamp = i->second;
101 >      std::vector<Component*> components = simParams->getComponents();
102 >      
103 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
104 >        molStamp = (*i)->getMoleculeStamp();
105 >        nMolWithSameStamp = (*i)->getNMol();
106          
107          addMoleculeStamp(molStamp, nMolWithSameStamp);
108  
109          //calculate atoms in molecules
110          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
111  
97
112          //calculate atoms in cutoff groups
113          int nAtomsInGroups = 0;
114          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
115          
116          for (int j=0; j < nCutoffGroupsInStamp; j++) {
117 <          cgStamp = molStamp->getCutoffGroup(j);
117 >          cgStamp = molStamp->getCutoffGroupStamp(j);
118            nAtomsInGroups += cgStamp->getNMembers();
119          }
120  
121          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
122 +
123          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
124  
125          //calculate atoms in rigid bodies
# Line 112 | Line 127 | namespace oopse {
127          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
128          
129          for (int j=0; j < nRigidBodiesInStamp; j++) {
130 <          rbStamp = molStamp->getRigidBody(j);
130 >          rbStamp = molStamp->getRigidBodyStamp(j);
131            nAtomsInRigidBodies += rbStamp->getNMembers();
132          }
133  
# Line 121 | Line 136 | namespace oopse {
136          
137        }
138  
139 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
140 <      //therefore the total number of cutoff groups in the system is equal to
141 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
142 <      //file plus the number of cutoff groups defined in meta-data file
139 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
140 >      //group therefore the total number of cutoff groups in the system is
141 >      //equal to the total number of atoms minus number of atoms belong to
142 >      //cutoff group defined in meta-data file plus the number of cutoff
143 >      //groups defined in meta-data file
144        nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
145  
146 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
147 <      //therefore the total number of  integrable objects in the system is equal to
148 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
149 <      //file plus the number of  rigid bodies defined in meta-data file
150 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
151 <
146 >      //every free atom (atom does not belong to rigid bodies) is an
147 >      //integrable object therefore the total number of integrable objects
148 >      //in the system is equal to the total number of atoms minus number of
149 >      //atoms belong to rigid body defined in meta-data file plus the number
150 >      //of rigid bodies defined in meta-data file
151 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
152 >                                                + nGlobalRigidBodies_;
153 >  
154        nGlobalMols_ = molStampIds_.size();
155  
156   #ifdef IS_MPI    
# Line 148 | Line 166 | namespace oopse {
166      }
167      molecules_.clear();
168        
151    delete stamps_;
169      delete sman_;
170      delete simParams_;
171      delete forceField_;
# Line 255 | Line 272 | namespace oopse {
272            }
273          }
274              
275 <      }//end for (integrableObject)
276 <    }// end for (mol)
275 >      }
276 >    }
277      
278      // n_constraints is local, so subtract them on each processor
279      ndf_local -= nConstraints_;
# Line 273 | Line 290 | namespace oopse {
290  
291    }
292  
293 +  int SimInfo::getFdf() {
294 + #ifdef IS_MPI
295 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
296 + #else
297 +    fdf_ = fdf_local;
298 + #endif
299 +    return fdf_;
300 +  }
301 +    
302    void SimInfo::calcNdfRaw() {
303      int ndfRaw_local;
304  
# Line 335 | Line 361 | namespace oopse {
361      int b;
362      int c;
363      int d;
364 +
365 +    std::map<int, std::set<int> > atomGroups;
366 +
367 +    Molecule::RigidBodyIterator rbIter;
368 +    RigidBody* rb;
369 +    Molecule::IntegrableObjectIterator ii;
370 +    StuntDouble* integrableObject;
371      
372 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
373 +           integrableObject = mol->nextIntegrableObject(ii)) {
374 +
375 +      if (integrableObject->isRigidBody()) {
376 +          rb = static_cast<RigidBody*>(integrableObject);
377 +          std::vector<Atom*> atoms = rb->getAtoms();
378 +          std::set<int> rigidAtoms;
379 +          for (int i = 0; i < atoms.size(); ++i) {
380 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
381 +          }
382 +          for (int i = 0; i < atoms.size(); ++i) {
383 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
384 +          }      
385 +      } else {
386 +        std::set<int> oneAtomSet;
387 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
388 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
389 +      }
390 +    }  
391 +
392 +    
393 +    
394      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
395        a = bond->getAtomA()->getGlobalIndex();
396        b = bond->getAtomB()->getGlobalIndex();        
# Line 346 | Line 401 | namespace oopse {
401        a = bend->getAtomA()->getGlobalIndex();
402        b = bend->getAtomB()->getGlobalIndex();        
403        c = bend->getAtomC()->getGlobalIndex();
404 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
405 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
406 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
407  
408 <      exclude_.addPair(a, b);
409 <      exclude_.addPair(a, c);
410 <      exclude_.addPair(b, c);        
408 >      exclude_.addPairs(rigidSetA, rigidSetB);
409 >      exclude_.addPairs(rigidSetA, rigidSetC);
410 >      exclude_.addPairs(rigidSetB, rigidSetC);
411 >      
412 >      //exclude_.addPair(a, b);
413 >      //exclude_.addPair(a, c);
414 >      //exclude_.addPair(b, c);        
415      }
416  
417      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
# Line 357 | Line 419 | namespace oopse {
419        b = torsion->getAtomB()->getGlobalIndex();        
420        c = torsion->getAtomC()->getGlobalIndex();        
421        d = torsion->getAtomD()->getGlobalIndex();        
422 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
423 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
424 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
425 +      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
426  
427 +      exclude_.addPairs(rigidSetA, rigidSetB);
428 +      exclude_.addPairs(rigidSetA, rigidSetC);
429 +      exclude_.addPairs(rigidSetA, rigidSetD);
430 +      exclude_.addPairs(rigidSetB, rigidSetC);
431 +      exclude_.addPairs(rigidSetB, rigidSetD);
432 +      exclude_.addPairs(rigidSetC, rigidSetD);
433 +
434 +      /*
435 +      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
436 +      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
437 +      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
438 +      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
439 +      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
440 +      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
441 +        
442 +      
443        exclude_.addPair(a, b);
444        exclude_.addPair(a, c);
445        exclude_.addPair(a, d);
446        exclude_.addPair(b, c);
447        exclude_.addPair(b, d);
448        exclude_.addPair(c, d);        
449 +      */
450      }
451  
369    Molecule::RigidBodyIterator rbIter;
370    RigidBody* rb;
452      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
453        std::vector<Atom*> atoms = rb->getAtoms();
454        for (int i = 0; i < atoms.size() -1 ; ++i) {
# Line 392 | Line 473 | namespace oopse {
473      int b;
474      int c;
475      int d;
476 +
477 +    std::map<int, std::set<int> > atomGroups;
478 +
479 +    Molecule::RigidBodyIterator rbIter;
480 +    RigidBody* rb;
481 +    Molecule::IntegrableObjectIterator ii;
482 +    StuntDouble* integrableObject;
483      
484 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
485 +           integrableObject = mol->nextIntegrableObject(ii)) {
486 +
487 +      if (integrableObject->isRigidBody()) {
488 +          rb = static_cast<RigidBody*>(integrableObject);
489 +          std::vector<Atom*> atoms = rb->getAtoms();
490 +          std::set<int> rigidAtoms;
491 +          for (int i = 0; i < atoms.size(); ++i) {
492 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
493 +          }
494 +          for (int i = 0; i < atoms.size(); ++i) {
495 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
496 +          }      
497 +      } else {
498 +        std::set<int> oneAtomSet;
499 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
500 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
501 +      }
502 +    }  
503 +
504 +    
505      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
506        a = bond->getAtomA()->getGlobalIndex();
507        b = bond->getAtomB()->getGlobalIndex();        
# Line 404 | Line 513 | namespace oopse {
513        b = bend->getAtomB()->getGlobalIndex();        
514        c = bend->getAtomC()->getGlobalIndex();
515  
516 <      exclude_.removePair(a, b);
517 <      exclude_.removePair(a, c);
518 <      exclude_.removePair(b, c);        
516 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
517 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
518 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
519 >
520 >      exclude_.removePairs(rigidSetA, rigidSetB);
521 >      exclude_.removePairs(rigidSetA, rigidSetC);
522 >      exclude_.removePairs(rigidSetB, rigidSetC);
523 >      
524 >      //exclude_.removePair(a, b);
525 >      //exclude_.removePair(a, c);
526 >      //exclude_.removePair(b, c);        
527      }
528  
529      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
# Line 415 | Line 532 | namespace oopse {
532        c = torsion->getAtomC()->getGlobalIndex();        
533        d = torsion->getAtomD()->getGlobalIndex();        
534  
535 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
536 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
537 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
538 +      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
539 +
540 +      exclude_.removePairs(rigidSetA, rigidSetB);
541 +      exclude_.removePairs(rigidSetA, rigidSetC);
542 +      exclude_.removePairs(rigidSetA, rigidSetD);
543 +      exclude_.removePairs(rigidSetB, rigidSetC);
544 +      exclude_.removePairs(rigidSetB, rigidSetD);
545 +      exclude_.removePairs(rigidSetC, rigidSetD);
546 +
547 +      /*
548 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
549 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
550 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
551 +      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
552 +      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
553 +      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
554 +
555 +      
556        exclude_.removePair(a, b);
557        exclude_.removePair(a, c);
558        exclude_.removePair(a, d);
559        exclude_.removePair(b, c);
560        exclude_.removePair(b, d);
561        exclude_.removePair(c, d);        
562 +      */
563      }
564  
426    Molecule::RigidBodyIterator rbIter;
427    RigidBody* rb;
565      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
566        std::vector<Atom*> atoms = rb->getAtoms();
567        for (int i = 0; i < atoms.size() -1 ; ++i) {
# Line 462 | Line 599 | namespace oopse {
599      //setup fortran force field
600      /** @deprecate */    
601      int isError = 0;
602 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
602 >    
603 >    setupElectrostaticSummationMethod( isError );
604 >    setupSwitchingFunction();
605 >
606      if(isError){
607        sprintf( painCave.errMsg,
608                 "ForceField error: There was an error initializing the forceField in fortran.\n" );
# Line 506 | Line 646 | namespace oopse {
646      int useLennardJones = 0;
647      int useElectrostatic = 0;
648      int useEAM = 0;
649 +    int useSC = 0;
650      int useCharge = 0;
651      int useDirectional = 0;
652      int useDipole = 0;
653      int useGayBerne = 0;
654      int useSticky = 0;
655 +    int useStickyPower = 0;
656      int useShape = 0;
657      int useFLARB = 0; //it is not in AtomType yet
658      int useDirectionalAtom = 0;    
659      int useElectrostatics = 0;
660      //usePBC and useRF are from simParams
661 <    int usePBC = simParams_->getPBC();
662 <    int useRF = simParams_->getUseRF();
661 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
662 >    int useRF;
663 >    int useSF;
664 >    std::string myMethod;
665  
666 +    // set the useRF logical
667 +    useRF = 0;
668 +    useSF = 0;
669 +
670 +
671 +    if (simParams_->haveElectrostaticSummationMethod()) {
672 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
673 +      toUpper(myMethod);
674 +      if (myMethod == "REACTION_FIELD") {
675 +        useRF=1;
676 +      } else {
677 +        if (myMethod == "SHIFTED_FORCE") {
678 +          useSF = 1;
679 +        }
680 +      }
681 +    }
682 +
683      //loop over all of the atom types
684      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
685        useLennardJones |= (*i)->isLennardJones();
686        useElectrostatic |= (*i)->isElectrostatic();
687        useEAM |= (*i)->isEAM();
688 +      useSC |= (*i)->isSC();
689        useCharge |= (*i)->isCharge();
690        useDirectional |= (*i)->isDirectional();
691        useDipole |= (*i)->isDipole();
692        useGayBerne |= (*i)->isGayBerne();
693        useSticky |= (*i)->isSticky();
694 +      useStickyPower |= (*i)->isStickyPower();
695        useShape |= (*i)->isShape();
696      }
697  
698 <    if (useSticky || useDipole || useGayBerne || useShape) {
698 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
699        useDirectionalAtom = 1;
700      }
701  
# Line 564 | Line 727 | namespace oopse {
727      temp = useSticky;
728      MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
729  
730 +    temp = useStickyPower;
731 +    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
732 +    
733      temp = useGayBerne;
734      MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
735  
736      temp = useEAM;
737      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
738  
739 +    temp = useSC;
740 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
741 +    
742      temp = useShape;
743      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
744  
# Line 578 | Line 747 | namespace oopse {
747  
748      temp = useRF;
749      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
750 <    
750 >
751 >    temp = useSF;
752 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
753 >
754   #endif
755  
756      fInfo_.SIM_uses_PBC = usePBC;    
# Line 588 | Line 760 | namespace oopse {
760      fInfo_.SIM_uses_Charges = useCharge;
761      fInfo_.SIM_uses_Dipoles = useDipole;
762      fInfo_.SIM_uses_Sticky = useSticky;
763 +    fInfo_.SIM_uses_StickyPower = useStickyPower;
764      fInfo_.SIM_uses_GayBerne = useGayBerne;
765      fInfo_.SIM_uses_EAM = useEAM;
766 +    fInfo_.SIM_uses_SC = useSC;
767      fInfo_.SIM_uses_Shapes = useShape;
768      fInfo_.SIM_uses_FLARB = useFLARB;
769      fInfo_.SIM_uses_RF = useRF;
770 +    fInfo_.SIM_uses_SF = useSF;
771  
772 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
773 <
772 >    if( myMethod == "REACTION_FIELD") {
773 >      
774        if (simParams_->haveDielectric()) {
775          fInfo_.dielect = simParams_->getDielectric();
776        } else {
# Line 605 | Line 780 | namespace oopse {
780                  "\tsetting a dielectric constant!\n");
781          painCave.isFatal = 1;
782          simError();
783 <      }
609 <        
610 <    } else {
611 <      fInfo_.dielect = 0.0;
783 >      }      
784      }
785  
786    }
# Line 627 | Line 799 | namespace oopse {
799      }
800  
801      //calculate mass ratio of cutoff group
802 <    std::vector<double> mfact;
802 >    std::vector<RealType> mfact;
803      SimInfo::MoleculeIterator mi;
804      Molecule* mol;
805      Molecule::CutoffGroupIterator ci;
806      CutoffGroup* cg;
807      Molecule::AtomIterator ai;
808      Atom* atom;
809 <    double totalMass;
809 >    RealType totalMass;
810  
811      //to avoid memory reallocation, reserve enough space for mfact
812      mfact.reserve(getNCutoffGroups());
# Line 644 | Line 816 | namespace oopse {
816  
817          totalMass = cg->getMass();
818          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
819 <          mfact.push_back(atom->getMass()/totalMass);
819 >          // Check for massless groups - set mfact to 1 if true
820 >          if (totalMass != 0)
821 >            mfact.push_back(atom->getMass()/totalMass);
822 >          else
823 >            mfact.push_back( 1.0 );
824          }
825  
826        }      
# Line 753 | Line 929 | namespace oopse {
929  
930   #endif
931  
932 <  double SimInfo::calcMaxCutoffRadius() {
932 >  void SimInfo::setupCutoff() {          
933 >    
934 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
935  
936 +    // Check the cutoff policy
937 +    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
938  
939 <    std::set<AtomType*> atomTypes;
940 <    std::set<AtomType*>::iterator i;
941 <    std::vector<double> cutoffRadius;
942 <
943 <    //get the unique atom types
764 <    atomTypes = getUniqueAtomTypes();
765 <
766 <    //query the max cutoff radius among these atom types
767 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
768 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
939 >    std::string myPolicy;
940 >    if (forceFieldOptions_.haveCutoffPolicy()){
941 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
942 >    }else if (simParams_->haveCutoffPolicy()) {
943 >      myPolicy = simParams_->getCutoffPolicy();
944      }
945  
946 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
947 < #ifdef IS_MPI
948 <    //pick the max cutoff radius among the processors
949 < #endif
946 >    if (!myPolicy.empty()){
947 >      toUpper(myPolicy);
948 >      if (myPolicy == "MIX") {
949 >        cp = MIX_CUTOFF_POLICY;
950 >      } else {
951 >        if (myPolicy == "MAX") {
952 >          cp = MAX_CUTOFF_POLICY;
953 >        } else {
954 >          if (myPolicy == "TRADITIONAL") {            
955 >            cp = TRADITIONAL_CUTOFF_POLICY;
956 >          } else {
957 >            // throw error        
958 >            sprintf( painCave.errMsg,
959 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
960 >            painCave.isFatal = 1;
961 >            simError();
962 >          }    
963 >        }          
964 >      }
965 >    }          
966 >    notifyFortranCutoffPolicy(&cp);
967  
968 <    return maxCutoffRadius;
969 <  }
970 <
971 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
972 <    
973 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
968 >    // Check the Skin Thickness for neighborlists
969 >    RealType skin;
970 >    if (simParams_->haveSkinThickness()) {
971 >      skin = simParams_->getSkinThickness();
972 >      notifyFortranSkinThickness(&skin);
973 >    }            
974          
975 <      if (!simParams_->haveRcut()){
976 <        sprintf(painCave.errMsg,
977 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
978 <                "\tOOPSE will use a default value of 15.0 angstroms"
979 <                "\tfor the cutoffRadius.\n");
980 <        painCave.isFatal = 0;
975 >    // Check if the cutoff was set explicitly:
976 >    if (simParams_->haveCutoffRadius()) {
977 >      rcut_ = simParams_->getCutoffRadius();
978 >      if (simParams_->haveSwitchingRadius()) {
979 >        rsw_  = simParams_->getSwitchingRadius();
980 >      } else {
981 >        if (fInfo_.SIM_uses_Charges |
982 >            fInfo_.SIM_uses_Dipoles |
983 >            fInfo_.SIM_uses_RF) {
984 >          
985 >          rsw_ = 0.85 * rcut_;
986 >          sprintf(painCave.errMsg,
987 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
988 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
989 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
990 >        painCave.isFatal = 0;
991          simError();
992 <        rcut = 15.0;
993 <      } else{
994 <        rcut = simParams_->getRcut();
992 >        } else {
993 >          rsw_ = rcut_;
994 >          sprintf(painCave.errMsg,
995 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
996 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
997 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
998 >          painCave.isFatal = 0;
999 >          simError();
1000 >        }
1001        }
1002 <
1003 <      if (!simParams_->haveRsw()){
1004 <        sprintf(painCave.errMsg,
797 <                "SimCreator Warning: No value was set for switchingRadius.\n"
798 <                "\tOOPSE will use a default value of\n"
799 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
800 <        painCave.isFatal = 0;
801 <        simError();
802 <        rsw = 0.95 * rcut;
803 <      } else{
804 <        rsw = simParams_->getRsw();
805 <      }
806 <
1002 >      
1003 >      notifyFortranCutoffs(&rcut_, &rsw_);
1004 >      
1005      } else {
1006 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
1007 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
1008 <        
1009 <      if (simParams_->haveRcut()) {
1010 <        rcut = simParams_->getRcut();
1006 >      
1007 >      // For electrostatic atoms, we'll assume a large safe value:
1008 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1009 >        sprintf(painCave.errMsg,
1010 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1011 >                "\tOOPSE will use a default value of 15.0 angstroms"
1012 >                "\tfor the cutoffRadius.\n");
1013 >        painCave.isFatal = 0;
1014 >        simError();
1015 >        rcut_ = 15.0;
1016 >      
1017 >        if (simParams_->haveElectrostaticSummationMethod()) {
1018 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1019 >          toUpper(myMethod);
1020 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1021 >            if (simParams_->haveSwitchingRadius()){
1022 >              sprintf(painCave.errMsg,
1023 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1024 >                      "\teven though the electrostaticSummationMethod was\n"
1025 >                      "\tset to %s\n", myMethod.c_str());
1026 >              painCave.isFatal = 1;
1027 >              simError();            
1028 >            }
1029 >          }
1030 >        }
1031 >      
1032 >        if (simParams_->haveSwitchingRadius()){
1033 >          rsw_ = simParams_->getSwitchingRadius();
1034 >        } else {        
1035 >          sprintf(painCave.errMsg,
1036 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1037 >                  "\tOOPSE will use a default value of\n"
1038 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1039 >          painCave.isFatal = 0;
1040 >          simError();
1041 >          rsw_ = 0.85 * rcut_;
1042 >        }
1043 >        notifyFortranCutoffs(&rcut_, &rsw_);
1044        } else {
1045 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
1046 <        rcut = calcMaxCutoffRadius();
1045 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1046 >        // We'll punt and let fortran figure out the cutoffs later.
1047 >        
1048 >        notifyFortranYouAreOnYourOwn();
1049 >
1050        }
1051 +    }
1052 +  }
1053  
1054 <      if (simParams_->haveRsw()) {
1055 <        rsw  = simParams_->getRsw();
1054 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1055 >    
1056 >    int errorOut;
1057 >    int esm =  NONE;
1058 >    int sm = UNDAMPED;
1059 >    RealType alphaVal;
1060 >    RealType dielectric;
1061 >
1062 >    errorOut = isError;
1063 >    alphaVal = simParams_->getDampingAlpha();
1064 >    dielectric = simParams_->getDielectric();
1065 >
1066 >    if (simParams_->haveElectrostaticSummationMethod()) {
1067 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1068 >      toUpper(myMethod);
1069 >      if (myMethod == "NONE") {
1070 >        esm = NONE;
1071        } else {
1072 <        rsw = rcut;
1072 >        if (myMethod == "SWITCHING_FUNCTION") {
1073 >          esm = SWITCHING_FUNCTION;
1074 >        } else {
1075 >          if (myMethod == "SHIFTED_POTENTIAL") {
1076 >            esm = SHIFTED_POTENTIAL;
1077 >          } else {
1078 >            if (myMethod == "SHIFTED_FORCE") {            
1079 >              esm = SHIFTED_FORCE;
1080 >            } else {
1081 >              if (myMethod == "REACTION_FIELD") {            
1082 >                esm = REACTION_FIELD;
1083 >              } else {
1084 >                // throw error        
1085 >                sprintf( painCave.errMsg,
1086 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1087 >                         "\t(Input file specified %s .)\n"
1088 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1089 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1090 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1091 >                painCave.isFatal = 1;
1092 >                simError();
1093 >              }    
1094 >            }          
1095 >          }
1096 >        }
1097        }
1098 +    }
1099      
1100 +    if (simParams_->haveElectrostaticScreeningMethod()) {
1101 +      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1102 +      toUpper(myScreen);
1103 +      if (myScreen == "UNDAMPED") {
1104 +        sm = UNDAMPED;
1105 +      } else {
1106 +        if (myScreen == "DAMPED") {
1107 +          sm = DAMPED;
1108 +          if (!simParams_->haveDampingAlpha()) {
1109 +            //throw error
1110 +            sprintf( painCave.errMsg,
1111 +                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1112 +                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1113 +            painCave.isFatal = 0;
1114 +            simError();
1115 +          }
1116 +        } else {
1117 +          // throw error        
1118 +          sprintf( painCave.errMsg,
1119 +                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1120 +                   "\t(Input file specified %s .)\n"
1121 +                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1122 +                   "or \"damped\".\n", myScreen.c_str() );
1123 +          painCave.isFatal = 1;
1124 +          simError();
1125 +        }
1126 +      }
1127      }
1128 +    
1129 +    // let's pass some summation method variables to fortran
1130 +    setElectrostaticSummationMethod( &esm );
1131 +    setFortranElectrostaticMethod( &esm );
1132 +    setScreeningMethod( &sm );
1133 +    setDampingAlpha( &alphaVal );
1134 +    setReactionFieldDielectric( &dielectric );
1135 +    initFortranFF( &errorOut );
1136    }
1137  
1138 <  void SimInfo::setupCutoff() {
1139 <    getCutoff(rcut_, rsw_);    
829 <    double rnblist = rcut_ + 1; // skin of neighbor list
1138 >  void SimInfo::setupSwitchingFunction() {    
1139 >    int ft = CUBIC;
1140  
1141 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1142 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
1141 >    if (simParams_->haveSwitchingFunctionType()) {
1142 >      std::string funcType = simParams_->getSwitchingFunctionType();
1143 >      toUpper(funcType);
1144 >      if (funcType == "CUBIC") {
1145 >        ft = CUBIC;
1146 >      } else {
1147 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1148 >          ft = FIFTH_ORDER_POLY;
1149 >        } else {
1150 >          // throw error        
1151 >          sprintf( painCave.errMsg,
1152 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1153 >          painCave.isFatal = 1;
1154 >          simError();
1155 >        }          
1156 >      }
1157 >    }
1158 >
1159 >    // send switching function notification to switcheroo
1160 >    setFunctionType(&ft);
1161 >
1162    }
1163  
1164    void SimInfo::addProperty(GenericData* genData) {
# Line 888 | Line 1217 | namespace oopse {
1217      Molecule* mol;
1218  
1219      Vector3d comVel(0.0);
1220 <    double totalMass = 0.0;
1220 >    RealType totalMass = 0.0;
1221      
1222  
1223      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1224 <      double mass = mol->getMass();
1224 >      RealType mass = mol->getMass();
1225        totalMass += mass;
1226        comVel += mass * mol->getComVel();
1227      }  
1228  
1229   #ifdef IS_MPI
1230 <    double tmpMass = totalMass;
1230 >    RealType tmpMass = totalMass;
1231      Vector3d tmpComVel(comVel);    
1232 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1233 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1232 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1233 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1234   #endif
1235  
1236      comVel /= totalMass;
# Line 914 | Line 1243 | namespace oopse {
1243      Molecule* mol;
1244  
1245      Vector3d com(0.0);
1246 <    double totalMass = 0.0;
1246 >    RealType totalMass = 0.0;
1247      
1248      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1249 <      double mass = mol->getMass();
1249 >      RealType mass = mol->getMass();
1250        totalMass += mass;
1251        com += mass * mol->getCom();
1252      }  
1253  
1254   #ifdef IS_MPI
1255 <    double tmpMass = totalMass;
1255 >    RealType tmpMass = totalMass;
1256      Vector3d tmpCom(com);    
1257 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1258 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1257 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1258 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1259   #endif
1260  
1261      com /= totalMass;
# Line 939 | Line 1268 | namespace oopse {
1268  
1269      return o;
1270    }
1271 +  
1272 +  
1273 +   /*
1274 +   Returns center of mass and center of mass velocity in one function call.
1275 +   */
1276 +  
1277 +   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1278 +      SimInfo::MoleculeIterator i;
1279 +      Molecule* mol;
1280 +      
1281 +    
1282 +      RealType totalMass = 0.0;
1283 +    
1284  
1285 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1286 +         RealType mass = mol->getMass();
1287 +         totalMass += mass;
1288 +         com += mass * mol->getCom();
1289 +         comVel += mass * mol->getComVel();          
1290 +      }  
1291 +      
1292 + #ifdef IS_MPI
1293 +      RealType tmpMass = totalMass;
1294 +      Vector3d tmpCom(com);  
1295 +      Vector3d tmpComVel(comVel);
1296 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1297 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1298 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1299 + #endif
1300 +      
1301 +      com /= totalMass;
1302 +      comVel /= totalMass;
1303 +   }        
1304 +  
1305 +   /*
1306 +   Return intertia tensor for entire system and angular momentum Vector.
1307 +
1308 +
1309 +       [  Ixx -Ixy  -Ixz ]
1310 +  J =| -Iyx  Iyy  -Iyz |
1311 +       [ -Izx -Iyz   Izz ]
1312 +    */
1313 +
1314 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1315 +      
1316 +
1317 +      RealType xx = 0.0;
1318 +      RealType yy = 0.0;
1319 +      RealType zz = 0.0;
1320 +      RealType xy = 0.0;
1321 +      RealType xz = 0.0;
1322 +      RealType yz = 0.0;
1323 +      Vector3d com(0.0);
1324 +      Vector3d comVel(0.0);
1325 +      
1326 +      getComAll(com, comVel);
1327 +      
1328 +      SimInfo::MoleculeIterator i;
1329 +      Molecule* mol;
1330 +      
1331 +      Vector3d thisq(0.0);
1332 +      Vector3d thisv(0.0);
1333 +
1334 +      RealType thisMass = 0.0;
1335 +    
1336 +      
1337 +      
1338 +  
1339 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1340 +        
1341 +         thisq = mol->getCom()-com;
1342 +         thisv = mol->getComVel()-comVel;
1343 +         thisMass = mol->getMass();
1344 +         // Compute moment of intertia coefficients.
1345 +         xx += thisq[0]*thisq[0]*thisMass;
1346 +         yy += thisq[1]*thisq[1]*thisMass;
1347 +         zz += thisq[2]*thisq[2]*thisMass;
1348 +        
1349 +         // compute products of intertia
1350 +         xy += thisq[0]*thisq[1]*thisMass;
1351 +         xz += thisq[0]*thisq[2]*thisMass;
1352 +         yz += thisq[1]*thisq[2]*thisMass;
1353 +            
1354 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1355 +            
1356 +      }  
1357 +      
1358 +      
1359 +      inertiaTensor(0,0) = yy + zz;
1360 +      inertiaTensor(0,1) = -xy;
1361 +      inertiaTensor(0,2) = -xz;
1362 +      inertiaTensor(1,0) = -xy;
1363 +      inertiaTensor(1,1) = xx + zz;
1364 +      inertiaTensor(1,2) = -yz;
1365 +      inertiaTensor(2,0) = -xz;
1366 +      inertiaTensor(2,1) = -yz;
1367 +      inertiaTensor(2,2) = xx + yy;
1368 +      
1369 + #ifdef IS_MPI
1370 +      Mat3x3d tmpI(inertiaTensor);
1371 +      Vector3d tmpAngMom;
1372 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1373 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1374 + #endif
1375 +              
1376 +      return;
1377 +   }
1378 +
1379 +   //Returns the angular momentum of the system
1380 +   Vector3d SimInfo::getAngularMomentum(){
1381 +      
1382 +      Vector3d com(0.0);
1383 +      Vector3d comVel(0.0);
1384 +      Vector3d angularMomentum(0.0);
1385 +      
1386 +      getComAll(com,comVel);
1387 +      
1388 +      SimInfo::MoleculeIterator i;
1389 +      Molecule* mol;
1390 +      
1391 +      Vector3d thisr(0.0);
1392 +      Vector3d thisp(0.0);
1393 +      
1394 +      RealType thisMass;
1395 +      
1396 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1397 +        thisMass = mol->getMass();
1398 +        thisr = mol->getCom()-com;
1399 +        thisp = (mol->getComVel()-comVel)*thisMass;
1400 +        
1401 +        angularMomentum += cross( thisr, thisp );
1402 +        
1403 +      }  
1404 +      
1405 + #ifdef IS_MPI
1406 +      Vector3d tmpAngMom;
1407 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1408 + #endif
1409 +      
1410 +      return angularMomentum;
1411 +   }
1412 +  
1413 +  
1414   }//end namespace oopse
1415  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines