ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 608 by chrisfen, Fri Sep 16 21:07:45 2005 UTC vs.
Revision 1313 by gezelter, Wed Oct 22 20:01:49 2008 UTC

# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57   #include "UseTheForce/fCutoffPolicy.h"
58   #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61   #include "UseTheForce/doForces_interface.h"
62 < #include "UseTheForce/notifyCutoffs_interface.h"
62 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
65   #include "utils/MemoryUtils.hpp"
66   #include "utils/simError.h"
67   #include "selection/SelectionManager.hpp"
68 + #include "io/ForceFieldOptions.hpp"
69 + #include "UseTheForce/ForceField.hpp"
70  
71 +
72   #ifdef IS_MPI
73   #include "UseTheForce/mpiComponentPlan.h"
74   #include "UseTheForce/DarkSide/simParallel_interface.h"
75   #endif
76  
77   namespace oopse {
78 +  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 +    std::map<int, std::set<int> >::iterator i = container.find(index);
80 +    std::set<int> result;
81 +    if (i != container.end()) {
82 +        result = i->second;
83 +    }
84  
85 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
86 <                   ForceField* ff, Globals* simParams) :
87 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
88 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
85 >    return result;
86 >  }
87 >  
88 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 >    forceField_(ff), simParams_(simParams),
90 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
94 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
95 <    sman_(NULL), fortranInitialized_(false) {
93 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
94 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
95 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
96 >    calcBoxDipole_(false), useAtomicVirial_(true) {
97  
98 <            
81 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
98 >
99        MoleculeStamp* molStamp;
100        int nMolWithSameStamp;
101        int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
102 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
102 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
103        CutoffGroupStamp* cgStamp;    
104        RigidBodyStamp* rbStamp;
105        int nRigidAtoms = 0;
106 <    
107 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
108 <        molStamp = i->first;
109 <        nMolWithSameStamp = i->second;
106 >
107 >      std::vector<Component*> components = simParams->getComponents();
108 >      
109 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
110 >        molStamp = (*i)->getMoleculeStamp();
111 >        nMolWithSameStamp = (*i)->getNMol();
112          
113          addMoleculeStamp(molStamp, nMolWithSameStamp);
114  
115          //calculate atoms in molecules
116          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
117  
99
118          //calculate atoms in cutoff groups
119          int nAtomsInGroups = 0;
120          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
121          
122          for (int j=0; j < nCutoffGroupsInStamp; j++) {
123 <          cgStamp = molStamp->getCutoffGroup(j);
123 >          cgStamp = molStamp->getCutoffGroupStamp(j);
124            nAtomsInGroups += cgStamp->getNMembers();
125          }
126  
127          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128 +
129          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
130  
131          //calculate atoms in rigid bodies
# Line 114 | Line 133 | namespace oopse {
133          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134          
135          for (int j=0; j < nRigidBodiesInStamp; j++) {
136 <          rbStamp = molStamp->getRigidBody(j);
136 >          rbStamp = molStamp->getRigidBodyStamp(j);
137            nAtomsInRigidBodies += rbStamp->getNMembers();
138          }
139  
# Line 123 | Line 142 | namespace oopse {
142          
143        }
144  
145 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
146 <      //therefore the total number of cutoff groups in the system is equal to
147 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
148 <      //file plus the number of cutoff groups defined in meta-data file
145 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
146 >      //group therefore the total number of cutoff groups in the system is
147 >      //equal to the total number of atoms minus number of atoms belong to
148 >      //cutoff group defined in meta-data file plus the number of cutoff
149 >      //groups defined in meta-data file
150        nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
151  
152 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
153 <      //therefore the total number of  integrable objects in the system is equal to
154 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
155 <      //file plus the number of  rigid bodies defined in meta-data file
156 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
157 <
152 >      //every free atom (atom does not belong to rigid bodies) is an
153 >      //integrable object therefore the total number of integrable objects
154 >      //in the system is equal to the total number of atoms minus number of
155 >      //atoms belong to rigid body defined in meta-data file plus the number
156 >      //of rigid bodies defined in meta-data file
157 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
158 >                                                + nGlobalRigidBodies_;
159 >  
160        nGlobalMols_ = molStampIds_.size();
139
140 #ifdef IS_MPI    
161        molToProcMap_.resize(nGlobalMols_);
142 #endif
143
162      }
163  
164    SimInfo::~SimInfo() {
# Line 150 | Line 168 | namespace oopse {
168      }
169      molecules_.clear();
170        
153    delete stamps_;
171      delete sman_;
172      delete simParams_;
173      delete forceField_;
# Line 179 | Line 196 | namespace oopse {
196        nBonds_ += mol->getNBonds();
197        nBends_ += mol->getNBends();
198        nTorsions_ += mol->getNTorsions();
199 +      nInversions_ += mol->getNInversions();
200        nRigidBodies_ += mol->getNRigidBodies();
201        nIntegrableObjects_ += mol->getNIntegrableObjects();
202        nCutoffGroups_ += mol->getNCutoffGroups();
203        nConstraints_ += mol->getNConstraintPairs();
204  
205 <      addExcludePairs(mol);
206 <        
205 >      addInteractionPairs(mol);
206 >  
207        return true;
208      } else {
209        return false;
# Line 204 | Line 222 | namespace oopse {
222        nBonds_ -= mol->getNBonds();
223        nBends_ -= mol->getNBends();
224        nTorsions_ -= mol->getNTorsions();
225 +      nInversions_ -= mol->getNInversions();
226        nRigidBodies_ -= mol->getNRigidBodies();
227        nIntegrableObjects_ -= mol->getNIntegrableObjects();
228        nCutoffGroups_ -= mol->getNCutoffGroups();
229        nConstraints_ -= mol->getNConstraintPairs();
230  
231 <      removeExcludePairs(mol);
231 >      removeInteractionPairs(mol);
232        molecules_.erase(mol->getGlobalIndex());
233  
234        delete mol;
# Line 257 | Line 276 | namespace oopse {
276            }
277          }
278              
279 <      }//end for (integrableObject)
280 <    }// end for (mol)
279 >      }
280 >    }
281      
282      // n_constraints is local, so subtract them on each processor
283      ndf_local -= nConstraints_;
# Line 275 | Line 294 | namespace oopse {
294  
295    }
296  
297 +  int SimInfo::getFdf() {
298 + #ifdef IS_MPI
299 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
300 + #else
301 +    fdf_ = fdf_local;
302 + #endif
303 +    return fdf_;
304 +  }
305 +    
306    void SimInfo::calcNdfRaw() {
307      int ndfRaw_local;
308  
# Line 326 | Line 354 | namespace oopse {
354  
355    }
356  
357 <  void SimInfo::addExcludePairs(Molecule* mol) {
357 >  void SimInfo::addInteractionPairs(Molecule* mol) {
358 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
359      std::vector<Bond*>::iterator bondIter;
360      std::vector<Bend*>::iterator bendIter;
361      std::vector<Torsion*>::iterator torsionIter;
362 +    std::vector<Inversion*>::iterator inversionIter;
363      Bond* bond;
364      Bend* bend;
365      Torsion* torsion;
366 +    Inversion* inversion;
367      int a;
368      int b;
369      int c;
370      int d;
371 +
372 +    // atomGroups can be used to add special interaction maps between
373 +    // groups of atoms that are in two separate rigid bodies.
374 +    // However, most site-site interactions between two rigid bodies
375 +    // are probably not special, just the ones between the physically
376 +    // bonded atoms.  Interactions *within* a single rigid body should
377 +    // always be excluded.  These are done at the bottom of this
378 +    // function.
379 +
380 +    std::map<int, std::set<int> > atomGroups;
381 +    Molecule::RigidBodyIterator rbIter;
382 +    RigidBody* rb;
383 +    Molecule::IntegrableObjectIterator ii;
384 +    StuntDouble* integrableObject;
385      
386 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
387 <      a = bond->getAtomA()->getGlobalIndex();
388 <      b = bond->getAtomB()->getGlobalIndex();        
389 <      exclude_.addPair(a, b);
386 >    for (integrableObject = mol->beginIntegrableObject(ii);
387 >         integrableObject != NULL;
388 >         integrableObject = mol->nextIntegrableObject(ii)) {
389 >      
390 >      if (integrableObject->isRigidBody()) {
391 >        rb = static_cast<RigidBody*>(integrableObject);
392 >        std::vector<Atom*> atoms = rb->getAtoms();
393 >        std::set<int> rigidAtoms;
394 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
395 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
396 >        }
397 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
398 >          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
399 >        }      
400 >      } else {
401 >        std::set<int> oneAtomSet;
402 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
403 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
404 >      }
405 >    }  
406 >          
407 >    for (bond= mol->beginBond(bondIter); bond != NULL;
408 >         bond = mol->nextBond(bondIter)) {
409 >
410 >      a = bond->getAtomA()->getGlobalIndex();
411 >      b = bond->getAtomB()->getGlobalIndex();  
412 >    
413 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
414 >        oneTwoInteractions_.addPair(a, b);
415 >      } else {
416 >        excludedInteractions_.addPair(a, b);
417 >      }
418      }
419  
420 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
420 >    for (bend= mol->beginBend(bendIter); bend != NULL;
421 >         bend = mol->nextBend(bendIter)) {
422 >
423        a = bend->getAtomA()->getGlobalIndex();
424        b = bend->getAtomB()->getGlobalIndex();        
425        c = bend->getAtomC()->getGlobalIndex();
426 +      
427 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
428 +        oneTwoInteractions_.addPair(a, b);      
429 +        oneTwoInteractions_.addPair(b, c);
430 +      } else {
431 +        excludedInteractions_.addPair(a, b);
432 +        excludedInteractions_.addPair(b, c);
433 +      }
434  
435 <      exclude_.addPair(a, b);
436 <      exclude_.addPair(a, c);
437 <      exclude_.addPair(b, c);        
435 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
436 >        oneThreeInteractions_.addPair(a, c);      
437 >      } else {
438 >        excludedInteractions_.addPair(a, c);
439 >      }
440      }
441  
442 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
442 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
443 >         torsion = mol->nextTorsion(torsionIter)) {
444 >
445        a = torsion->getAtomA()->getGlobalIndex();
446        b = torsion->getAtomB()->getGlobalIndex();        
447        c = torsion->getAtomC()->getGlobalIndex();        
448 <      d = torsion->getAtomD()->getGlobalIndex();        
448 >      d = torsion->getAtomD()->getGlobalIndex();      
449  
450 <      exclude_.addPair(a, b);
451 <      exclude_.addPair(a, c);
452 <      exclude_.addPair(a, d);
453 <      exclude_.addPair(b, c);
454 <      exclude_.addPair(b, d);
455 <      exclude_.addPair(c, d);        
450 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
451 >        oneTwoInteractions_.addPair(a, b);      
452 >        oneTwoInteractions_.addPair(b, c);
453 >        oneTwoInteractions_.addPair(c, d);
454 >      } else {
455 >        excludedInteractions_.addPair(a, b);
456 >        excludedInteractions_.addPair(b, c);
457 >        excludedInteractions_.addPair(c, d);
458 >      }
459 >
460 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
461 >        oneThreeInteractions_.addPair(a, c);      
462 >        oneThreeInteractions_.addPair(b, d);      
463 >      } else {
464 >        excludedInteractions_.addPair(a, c);
465 >        excludedInteractions_.addPair(b, d);
466 >      }
467 >
468 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
469 >        oneFourInteractions_.addPair(a, d);      
470 >      } else {
471 >        excludedInteractions_.addPair(a, d);
472 >      }
473      }
474  
475 <    Molecule::RigidBodyIterator rbIter;
476 <    RigidBody* rb;
477 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
475 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
476 >         inversion = mol->nextInversion(inversionIter)) {
477 >
478 >      a = inversion->getAtomA()->getGlobalIndex();
479 >      b = inversion->getAtomB()->getGlobalIndex();        
480 >      c = inversion->getAtomC()->getGlobalIndex();        
481 >      d = inversion->getAtomD()->getGlobalIndex();        
482 >
483 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
484 >        oneTwoInteractions_.addPair(a, b);      
485 >        oneTwoInteractions_.addPair(a, c);
486 >        oneTwoInteractions_.addPair(a, d);
487 >      } else {
488 >        excludedInteractions_.addPair(a, b);
489 >        excludedInteractions_.addPair(a, c);
490 >        excludedInteractions_.addPair(a, d);
491 >      }
492 >
493 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
494 >        oneThreeInteractions_.addPair(b, c);    
495 >        oneThreeInteractions_.addPair(b, d);    
496 >        oneThreeInteractions_.addPair(c, d);      
497 >      } else {
498 >        excludedInteractions_.addPair(b, c);
499 >        excludedInteractions_.addPair(b, d);
500 >        excludedInteractions_.addPair(c, d);
501 >      }
502 >    }
503 >
504 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
505 >         rb = mol->nextRigidBody(rbIter)) {
506        std::vector<Atom*> atoms = rb->getAtoms();
507 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
508 <        for (int j = i + 1; j < atoms.size(); ++j) {
507 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
508 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
509            a = atoms[i]->getGlobalIndex();
510            b = atoms[j]->getGlobalIndex();
511 <          exclude_.addPair(a, b);
511 >          excludedInteractions_.addPair(a, b);
512          }
513        }
514      }        
515  
516    }
517  
518 <  void SimInfo::removeExcludePairs(Molecule* mol) {
518 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
519 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
520      std::vector<Bond*>::iterator bondIter;
521      std::vector<Bend*>::iterator bendIter;
522      std::vector<Torsion*>::iterator torsionIter;
523 +    std::vector<Inversion*>::iterator inversionIter;
524      Bond* bond;
525      Bend* bend;
526      Torsion* torsion;
527 +    Inversion* inversion;
528      int a;
529      int b;
530      int c;
531      int d;
532 <    
533 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
534 <      a = bond->getAtomA()->getGlobalIndex();
535 <      b = bond->getAtomB()->getGlobalIndex();        
536 <      exclude_.removePair(a, b);
532 >
533 >    std::map<int, std::set<int> > atomGroups;
534 >    Molecule::RigidBodyIterator rbIter;
535 >    RigidBody* rb;
536 >    Molecule::IntegrableObjectIterator ii;
537 >    StuntDouble* integrableObject;
538 >    
539 >    for (integrableObject = mol->beginIntegrableObject(ii);
540 >         integrableObject != NULL;
541 >         integrableObject = mol->nextIntegrableObject(ii)) {
542 >      
543 >      if (integrableObject->isRigidBody()) {
544 >        rb = static_cast<RigidBody*>(integrableObject);
545 >        std::vector<Atom*> atoms = rb->getAtoms();
546 >        std::set<int> rigidAtoms;
547 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
548 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
549 >        }
550 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
551 >          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
552 >        }      
553 >      } else {
554 >        std::set<int> oneAtomSet;
555 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
556 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
557 >      }
558 >    }  
559 >
560 >    for (bond= mol->beginBond(bondIter); bond != NULL;
561 >         bond = mol->nextBond(bondIter)) {
562 >      
563 >      a = bond->getAtomA()->getGlobalIndex();
564 >      b = bond->getAtomB()->getGlobalIndex();  
565 >    
566 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
567 >        oneTwoInteractions_.removePair(a, b);
568 >      } else {
569 >        excludedInteractions_.removePair(a, b);
570 >      }
571      }
572  
573 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
573 >    for (bend= mol->beginBend(bendIter); bend != NULL;
574 >         bend = mol->nextBend(bendIter)) {
575 >
576        a = bend->getAtomA()->getGlobalIndex();
577        b = bend->getAtomB()->getGlobalIndex();        
578        c = bend->getAtomC()->getGlobalIndex();
579 +      
580 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581 +        oneTwoInteractions_.removePair(a, b);      
582 +        oneTwoInteractions_.removePair(b, c);
583 +      } else {
584 +        excludedInteractions_.removePair(a, b);
585 +        excludedInteractions_.removePair(b, c);
586 +      }
587  
588 <      exclude_.removePair(a, b);
589 <      exclude_.removePair(a, c);
590 <      exclude_.removePair(b, c);        
588 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
589 >        oneThreeInteractions_.removePair(a, c);      
590 >      } else {
591 >        excludedInteractions_.removePair(a, c);
592 >      }
593      }
594  
595 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
595 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
596 >         torsion = mol->nextTorsion(torsionIter)) {
597 >
598        a = torsion->getAtomA()->getGlobalIndex();
599        b = torsion->getAtomB()->getGlobalIndex();        
600        c = torsion->getAtomC()->getGlobalIndex();        
601 <      d = torsion->getAtomD()->getGlobalIndex();        
601 >      d = torsion->getAtomD()->getGlobalIndex();      
602 >  
603 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
604 >        oneTwoInteractions_.removePair(a, b);      
605 >        oneTwoInteractions_.removePair(b, c);
606 >        oneTwoInteractions_.removePair(c, d);
607 >      } else {
608 >        excludedInteractions_.removePair(a, b);
609 >        excludedInteractions_.removePair(b, c);
610 >        excludedInteractions_.removePair(c, d);
611 >      }
612  
613 <      exclude_.removePair(a, b);
614 <      exclude_.removePair(a, c);
615 <      exclude_.removePair(a, d);
616 <      exclude_.removePair(b, c);
617 <      exclude_.removePair(b, d);
618 <      exclude_.removePair(c, d);        
613 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
614 >        oneThreeInteractions_.removePair(a, c);      
615 >        oneThreeInteractions_.removePair(b, d);      
616 >      } else {
617 >        excludedInteractions_.removePair(a, c);
618 >        excludedInteractions_.removePair(b, d);
619 >      }
620 >
621 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
622 >        oneFourInteractions_.removePair(a, d);      
623 >      } else {
624 >        excludedInteractions_.removePair(a, d);
625 >      }
626      }
627  
628 <    Molecule::RigidBodyIterator rbIter;
629 <    RigidBody* rb;
630 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
628 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
629 >         inversion = mol->nextInversion(inversionIter)) {
630 >
631 >      a = inversion->getAtomA()->getGlobalIndex();
632 >      b = inversion->getAtomB()->getGlobalIndex();        
633 >      c = inversion->getAtomC()->getGlobalIndex();        
634 >      d = inversion->getAtomD()->getGlobalIndex();        
635 >
636 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
637 >        oneTwoInteractions_.removePair(a, b);      
638 >        oneTwoInteractions_.removePair(a, c);
639 >        oneTwoInteractions_.removePair(a, d);
640 >      } else {
641 >        excludedInteractions_.removePair(a, b);
642 >        excludedInteractions_.removePair(a, c);
643 >        excludedInteractions_.removePair(a, d);
644 >      }
645 >
646 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
647 >        oneThreeInteractions_.removePair(b, c);    
648 >        oneThreeInteractions_.removePair(b, d);    
649 >        oneThreeInteractions_.removePair(c, d);      
650 >      } else {
651 >        excludedInteractions_.removePair(b, c);
652 >        excludedInteractions_.removePair(b, d);
653 >        excludedInteractions_.removePair(c, d);
654 >      }
655 >    }
656 >
657 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
658 >         rb = mol->nextRigidBody(rbIter)) {
659        std::vector<Atom*> atoms = rb->getAtoms();
660 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
661 <        for (int j = i + 1; j < atoms.size(); ++j) {
660 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
661 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
662            a = atoms[i]->getGlobalIndex();
663            b = atoms[j]->getGlobalIndex();
664 <          exclude_.removePair(a, b);
664 >          excludedInteractions_.removePair(a, b);
665          }
666        }
667      }        
668 <
668 >    
669    }
670 <
671 <
670 >  
671 >  
672    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
673      int curStampId;
674 <
674 >    
675      //index from 0
676      curStampId = moleculeStamps_.size();
677  
# Line 465 | Line 693 | namespace oopse {
693      /** @deprecate */    
694      int isError = 0;
695      
696 +    setupCutoff();
697 +    
698      setupElectrostaticSummationMethod( isError );
699 +    setupSwitchingFunction();
700 +    setupAccumulateBoxDipole();
701  
702      if(isError){
703        sprintf( painCave.errMsg,
# Line 473 | Line 705 | namespace oopse {
705        painCave.isFatal = 1;
706        simError();
707      }
476  
477    
478    setupCutoff();
708  
709      calcNdf();
710      calcNdfRaw();
# Line 510 | Line 739 | namespace oopse {
739      int useLennardJones = 0;
740      int useElectrostatic = 0;
741      int useEAM = 0;
742 +    int useSC = 0;
743      int useCharge = 0;
744      int useDirectional = 0;
745      int useDipole = 0;
# Line 521 | Line 751 | namespace oopse {
751      int useDirectionalAtom = 0;    
752      int useElectrostatics = 0;
753      //usePBC and useRF are from simParams
754 <    int usePBC = simParams_->getPBC();
754 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
755 >    int useRF;
756 >    int useSF;
757 >    int useSP;
758 >    int useBoxDipole;
759  
760 +    std::string myMethod;
761 +
762 +    // set the useRF logical
763 +    useRF = 0;
764 +    useSF = 0;
765 +    useSP = 0;
766 +    useBoxDipole = 0;
767 +
768 +
769 +    if (simParams_->haveElectrostaticSummationMethod()) {
770 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
771 +      toUpper(myMethod);
772 +      if (myMethod == "REACTION_FIELD"){
773 +        useRF = 1;
774 +      } else if (myMethod == "SHIFTED_FORCE"){
775 +        useSF = 1;
776 +      } else if (myMethod == "SHIFTED_POTENTIAL"){
777 +        useSP = 1;
778 +      }
779 +    }
780 +    
781 +    if (simParams_->haveAccumulateBoxDipole())
782 +      if (simParams_->getAccumulateBoxDipole())
783 +        useBoxDipole = 1;
784 +
785 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
786 +
787      //loop over all of the atom types
788      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
789        useLennardJones |= (*i)->isLennardJones();
790        useElectrostatic |= (*i)->isElectrostatic();
791        useEAM |= (*i)->isEAM();
792 +      useSC |= (*i)->isSC();
793        useCharge |= (*i)->isCharge();
794        useDirectional |= (*i)->isDirectional();
795        useDipole |= (*i)->isDipole();
# Line 578 | Line 840 | namespace oopse {
840      temp = useEAM;
841      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
842  
843 +    temp = useSC;
844 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
845 +    
846      temp = useShape;
847      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
848  
849      temp = useFLARB;
850      MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
851 +
852 +    temp = useRF;
853 +    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
854 +
855 +    temp = useSF;
856 +    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
857 +
858 +    temp = useSP;
859 +    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
860  
861 +    temp = useBoxDipole;
862 +    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
863 +
864 +    temp = useAtomicVirial_;
865 +    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
866 +
867   #endif
868  
869      fInfo_.SIM_uses_PBC = usePBC;    
# Line 596 | Line 876 | namespace oopse {
876      fInfo_.SIM_uses_StickyPower = useStickyPower;
877      fInfo_.SIM_uses_GayBerne = useGayBerne;
878      fInfo_.SIM_uses_EAM = useEAM;
879 +    fInfo_.SIM_uses_SC = useSC;
880      fInfo_.SIM_uses_Shapes = useShape;
881      fInfo_.SIM_uses_FLARB = useFLARB;
882 <
883 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
884 <
885 <      if (simParams_->haveDielectric()) {
886 <        fInfo_.dielect = simParams_->getDielectric();
606 <      } else {
607 <        sprintf(painCave.errMsg,
608 <                "SimSetup Error: No Dielectric constant was set.\n"
609 <                "\tYou are trying to use Reaction Field without"
610 <                "\tsetting a dielectric constant!\n");
611 <        painCave.isFatal = 1;
612 <        simError();
613 <      }
614 <        
615 <    } else {
616 <      fInfo_.dielect = 0.0;
617 <    }
618 <
882 >    fInfo_.SIM_uses_RF = useRF;
883 >    fInfo_.SIM_uses_SF = useSF;
884 >    fInfo_.SIM_uses_SP = useSP;
885 >    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
886 >    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
887    }
888  
889    void SimInfo::setupFortranSim() {
890      int isError;
891 <    int nExclude;
891 >    int nExclude, nOneTwo, nOneThree, nOneFour;
892      std::vector<int> fortranGlobalGroupMembership;
893      
626    nExclude = exclude_.getSize();
894      isError = 0;
895  
896      //globalGroupMembership_ is filled by SimCreator    
# Line 632 | Line 899 | namespace oopse {
899      }
900  
901      //calculate mass ratio of cutoff group
902 <    std::vector<double> mfact;
902 >    std::vector<RealType> mfact;
903      SimInfo::MoleculeIterator mi;
904      Molecule* mol;
905      Molecule::CutoffGroupIterator ci;
906      CutoffGroup* cg;
907      Molecule::AtomIterator ai;
908      Atom* atom;
909 <    double totalMass;
909 >    RealType totalMass;
910  
911      //to avoid memory reallocation, reserve enough space for mfact
912      mfact.reserve(getNCutoffGroups());
# Line 649 | Line 916 | namespace oopse {
916  
917          totalMass = cg->getMass();
918          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
919 <          mfact.push_back(atom->getMass()/totalMass);
919 >          // Check for massless groups - set mfact to 1 if true
920 >          if (totalMass != 0)
921 >            mfact.push_back(atom->getMass()/totalMass);
922 >          else
923 >            mfact.push_back( 1.0 );
924          }
654
925        }      
926      }
927  
# Line 675 | Line 945 | namespace oopse {
945      }
946      
947      //setup fortran simulation
678    int nGlobalExcludes = 0;
679    int* globalExcludes = NULL;
680    int* excludeList = exclude_.getExcludeList();
681    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
682                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
683                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
948  
949 <    if( isError ){
949 >    nExclude = excludedInteractions_.getSize();
950 >    nOneTwo = oneTwoInteractions_.getSize();
951 >    nOneThree = oneThreeInteractions_.getSize();
952 >    nOneFour = oneFourInteractions_.getSize();
953  
954 +    int* excludeList = excludedInteractions_.getPairList();
955 +    int* oneTwoList = oneTwoInteractions_.getPairList();
956 +    int* oneThreeList = oneThreeInteractions_.getPairList();
957 +    int* oneFourList = oneFourInteractions_.getPairList();
958 +
959 +    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
960 +                   &nExclude, excludeList,
961 +                   &nOneTwo, oneTwoList,
962 +                   &nOneThree, oneThreeList,
963 +                   &nOneFour, oneFourList,
964 +                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
965 +                   &fortranGlobalGroupMembership[0], &isError);
966 +    
967 +    if( isError ){
968 +      
969        sprintf( painCave.errMsg,
970                 "There was an error setting the simulation information in fortran.\n" );
971        painCave.isFatal = 1;
972        painCave.severity = OOPSE_ERROR;
973        simError();
974      }
975 <
976 < #ifdef IS_MPI
975 >    
976 >    
977      sprintf( checkPointMsg,
978               "succesfully sent the simulation information to fortran.\n");
979 <    MPIcheckPoint();
980 < #endif // is_mpi
979 >    
980 >    errorCheckPoint();
981 >    
982 >    // Setup number of neighbors in neighbor list if present
983 >    if (simParams_->haveNeighborListNeighbors()) {
984 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
985 >      setNeighbors(&nlistNeighbors);
986 >    }
987 >  
988 >
989    }
990  
991  
702 #ifdef IS_MPI
992    void SimInfo::setupFortranParallel() {
993 <    
993 > #ifdef IS_MPI    
994      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
995      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
996      std::vector<int> localToGlobalCutoffGroupIndex;
# Line 751 | Line 1040 | namespace oopse {
1040      }
1041  
1042      sprintf(checkPointMsg, " mpiRefresh successful.\n");
1043 <    MPIcheckPoint();
1043 >    errorCheckPoint();
1044  
756
757  }
758
1045   #endif
760
761  double SimInfo::calcMaxCutoffRadius() {
762
763
764    std::set<AtomType*> atomTypes;
765    std::set<AtomType*>::iterator i;
766    std::vector<double> cutoffRadius;
767
768    //get the unique atom types
769    atomTypes = getUniqueAtomTypes();
770
771    //query the max cutoff radius among these atom types
772    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
773      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
774    }
775
776    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
777 #ifdef IS_MPI
778    //pick the max cutoff radius among the processors
779 #endif
780
781    return maxCutoffRadius;
1046    }
1047  
1048 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
1048 >  void SimInfo::setupCutoff() {          
1049      
1050 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
787 <        
788 <      if (!simParams_->haveRcut()){
789 <        sprintf(painCave.errMsg,
790 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
791 <                "\tOOPSE will use a default value of 15.0 angstroms"
792 <                "\tfor the cutoffRadius.\n");
793 <        painCave.isFatal = 0;
794 <        simError();
795 <        rcut = 15.0;
796 <      } else{
797 <        rcut = simParams_->getRcut();
798 <      }
1050 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1051  
1052 <      if (!simParams_->haveRsw()){
1053 <        sprintf(painCave.errMsg,
802 <                "SimCreator Warning: No value was set for switchingRadius.\n"
803 <                "\tOOPSE will use a default value of\n"
804 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
805 <        painCave.isFatal = 0;
806 <        simError();
807 <        rsw = 0.95 * rcut;
808 <      } else{
809 <        rsw = simParams_->getRsw();
810 <      }
1052 >    // Check the cutoff policy
1053 >    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1054  
1055 <    } else {
1056 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
1057 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
815 <        
816 <      if (simParams_->haveRcut()) {
817 <        rcut = simParams_->getRcut();
818 <      } else {
819 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
820 <        rcut = calcMaxCutoffRadius();
821 <      }
1055 >    // Set LJ shifting bools to false
1056 >    ljsp_ = false;
1057 >    ljsf_ = false;
1058  
1059 <      if (simParams_->haveRsw()) {
1060 <        rsw  = simParams_->getRsw();
1061 <      } else {
1062 <        rsw = rcut;
1063 <      }
828 <    
1059 >    std::string myPolicy;
1060 >    if (forceFieldOptions_.haveCutoffPolicy()){
1061 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
1062 >    }else if (simParams_->haveCutoffPolicy()) {
1063 >      myPolicy = simParams_->getCutoffPolicy();
1064      }
830  }
1065  
1066 <  void SimInfo::setupCutoff() {    
1067 <    getCutoff(rcut_, rsw_);    
834 <    double rnblist = rcut_ + 1; // skin of neighbor list
835 <
836 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
837 <    
838 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
839 <    if (simParams_->haveCutoffPolicy()) {
840 <      std::string myPolicy = simParams_->getCutoffPolicy();
1066 >    if (!myPolicy.empty()){
1067 >      toUpper(myPolicy);
1068        if (myPolicy == "MIX") {
1069          cp = MIX_CUTOFF_POLICY;
1070        } else {
# Line 855 | Line 1082 | namespace oopse {
1082            }    
1083          }          
1084        }
1085 +    }          
1086 +    notifyFortranCutoffPolicy(&cp);
1087 +
1088 +    // Check the Skin Thickness for neighborlists
1089 +    RealType skin;
1090 +    if (simParams_->haveSkinThickness()) {
1091 +      skin = simParams_->getSkinThickness();
1092 +      notifyFortranSkinThickness(&skin);
1093 +    }            
1094 +        
1095 +    // Check if the cutoff was set explicitly:
1096 +    if (simParams_->haveCutoffRadius()) {
1097 +      rcut_ = simParams_->getCutoffRadius();
1098 +      if (simParams_->haveSwitchingRadius()) {
1099 +        rsw_  = simParams_->getSwitchingRadius();
1100 +      } else {
1101 +        if (fInfo_.SIM_uses_Charges |
1102 +            fInfo_.SIM_uses_Dipoles |
1103 +            fInfo_.SIM_uses_RF) {
1104 +          
1105 +          rsw_ = 0.85 * rcut_;
1106 +          sprintf(painCave.errMsg,
1107 +                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1108 +                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1109 +                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1110 +        painCave.isFatal = 0;
1111 +        simError();
1112 +        } else {
1113 +          rsw_ = rcut_;
1114 +          sprintf(painCave.errMsg,
1115 +                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1116 +                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1117 +                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1118 +          painCave.isFatal = 0;
1119 +          simError();
1120 +        }
1121 +      }
1122 +
1123 +      if (simParams_->haveElectrostaticSummationMethod()) {
1124 +        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1125 +        toUpper(myMethod);
1126 +        
1127 +        if (myMethod == "SHIFTED_POTENTIAL") {
1128 +          ljsp_ = true;
1129 +        } else if (myMethod == "SHIFTED_FORCE") {
1130 +          ljsf_ = true;
1131 +        }
1132 +      }
1133 +      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1134 +      
1135 +    } else {
1136 +      
1137 +      // For electrostatic atoms, we'll assume a large safe value:
1138 +      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1139 +        sprintf(painCave.errMsg,
1140 +                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1141 +                "\tOOPSE will use a default value of 15.0 angstroms"
1142 +                "\tfor the cutoffRadius.\n");
1143 +        painCave.isFatal = 0;
1144 +        simError();
1145 +        rcut_ = 15.0;
1146 +      
1147 +        if (simParams_->haveElectrostaticSummationMethod()) {
1148 +          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1149 +          toUpper(myMethod);
1150 +      
1151 +      // For the time being, we're tethering the LJ shifted behavior to the
1152 +      // electrostaticSummationMethod keyword options
1153 +          if (myMethod == "SHIFTED_POTENTIAL") {
1154 +            ljsp_ = true;
1155 +          } else if (myMethod == "SHIFTED_FORCE") {
1156 +            ljsf_ = true;
1157 +          }
1158 +          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1159 +            if (simParams_->haveSwitchingRadius()){
1160 +              sprintf(painCave.errMsg,
1161 +                      "SimInfo Warning: A value was set for the switchingRadius\n"
1162 +                      "\teven though the electrostaticSummationMethod was\n"
1163 +                      "\tset to %s\n", myMethod.c_str());
1164 +              painCave.isFatal = 1;
1165 +              simError();            
1166 +            }
1167 +          }
1168 +        }
1169 +      
1170 +        if (simParams_->haveSwitchingRadius()){
1171 +          rsw_ = simParams_->getSwitchingRadius();
1172 +        } else {        
1173 +          sprintf(painCave.errMsg,
1174 +                  "SimCreator Warning: No value was set for switchingRadius.\n"
1175 +                  "\tOOPSE will use a default value of\n"
1176 +                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1177 +          painCave.isFatal = 0;
1178 +          simError();
1179 +          rsw_ = 0.85 * rcut_;
1180 +        }
1181 +
1182 +        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1183 +
1184 +      } else {
1185 +        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1186 +        // We'll punt and let fortran figure out the cutoffs later.
1187 +        
1188 +        notifyFortranYouAreOnYourOwn();
1189 +
1190 +      }
1191      }
859    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
1192    }
1193  
1194    void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1195      
1196      int errorOut;
1197      int esm =  NONE;
1198 <    double alphaVal;
1199 <
1198 >    int sm = UNDAMPED;
1199 >    RealType alphaVal;
1200 >    RealType dielectric;
1201 >    
1202      errorOut = isError;
1203  
1204      if (simParams_->haveElectrostaticSummationMethod()) {
1205        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1206 +      toUpper(myMethod);
1207        if (myMethod == "NONE") {
1208          esm = NONE;
1209        } else {
1210 <        if (myMethod == "UNDAMPED_WOLF") {
1211 <          esm = UNDAMPED_WOLF;
1210 >        if (myMethod == "SWITCHING_FUNCTION") {
1211 >          esm = SWITCHING_FUNCTION;
1212          } else {
1213 <          if (myMethod == "DAMPED_WOLF") {            
1214 <            esm = DAMPED_WOLF;
1215 <            if (!simParams_->haveDampingAlpha()) {
1216 <              //throw error
1217 <              sprintf( painCave.errMsg,
883 <                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", simParams_->getDampingAlpha());
884 <              painCave.isFatal = 0;
885 <              simError();
886 <            }
887 <            alphaVal = simParams_->getDampingAlpha();
888 <          } else {
889 <            if (myMethod == "REACTION_FIELD") {
890 <              esm = REACTION_FIELD;
1213 >          if (myMethod == "SHIFTED_POTENTIAL") {
1214 >            esm = SHIFTED_POTENTIAL;
1215 >          } else {
1216 >            if (myMethod == "SHIFTED_FORCE") {            
1217 >              esm = SHIFTED_FORCE;
1218              } else {
1219 <              // throw error        
1220 <              sprintf( painCave.errMsg,
1221 <                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
1222 <              painCave.isFatal = 1;
1223 <              simError();
1224 <            }    
1225 <          }          
1219 >              if (myMethod == "REACTION_FIELD") {
1220 >                esm = REACTION_FIELD;
1221 >                dielectric = simParams_->getDielectric();
1222 >                if (!simParams_->haveDielectric()) {
1223 >                  // throw warning
1224 >                  sprintf( painCave.errMsg,
1225 >                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1226 >                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1227 >                  painCave.isFatal = 0;
1228 >                  simError();
1229 >                }
1230 >              } else {
1231 >                // throw error        
1232 >                sprintf( painCave.errMsg,
1233 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1234 >                         "\t(Input file specified %s .)\n"
1235 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1236 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1237 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1238 >                painCave.isFatal = 1;
1239 >                simError();
1240 >              }    
1241 >            }          
1242 >          }
1243          }
1244        }
1245      }
1246 <    initFortranFF( &esm, &alphaVal, &errorOut );
1246 >    
1247 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1248 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1249 >      toUpper(myScreen);
1250 >      if (myScreen == "UNDAMPED") {
1251 >        sm = UNDAMPED;
1252 >      } else {
1253 >        if (myScreen == "DAMPED") {
1254 >          sm = DAMPED;
1255 >          if (!simParams_->haveDampingAlpha()) {
1256 >            // first set a cutoff dependent alpha value
1257 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1258 >            alphaVal = 0.5125 - rcut_* 0.025;
1259 >            // for values rcut > 20.5, alpha is zero
1260 >            if (alphaVal < 0) alphaVal = 0;
1261 >
1262 >            // throw warning
1263 >            sprintf( painCave.errMsg,
1264 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1265 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1266 >            painCave.isFatal = 0;
1267 >            simError();
1268 >          } else {
1269 >            alphaVal = simParams_->getDampingAlpha();
1270 >          }
1271 >          
1272 >        } else {
1273 >          // throw error        
1274 >          sprintf( painCave.errMsg,
1275 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1276 >                   "\t(Input file specified %s .)\n"
1277 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1278 >                   "or \"damped\".\n", myScreen.c_str() );
1279 >          painCave.isFatal = 1;
1280 >          simError();
1281 >        }
1282 >      }
1283 >    }
1284 >    
1285 >    // let's pass some summation method variables to fortran
1286 >    setElectrostaticSummationMethod( &esm );
1287 >    setFortranElectrostaticMethod( &esm );
1288 >    setScreeningMethod( &sm );
1289 >    setDampingAlpha( &alphaVal );
1290 >    setReactionFieldDielectric( &dielectric );
1291 >    initFortranFF( &errorOut );
1292    }
1293  
1294 +  void SimInfo::setupSwitchingFunction() {    
1295 +    int ft = CUBIC;
1296 +
1297 +    if (simParams_->haveSwitchingFunctionType()) {
1298 +      std::string funcType = simParams_->getSwitchingFunctionType();
1299 +      toUpper(funcType);
1300 +      if (funcType == "CUBIC") {
1301 +        ft = CUBIC;
1302 +      } else {
1303 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1304 +          ft = FIFTH_ORDER_POLY;
1305 +        } else {
1306 +          // throw error        
1307 +          sprintf( painCave.errMsg,
1308 +                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1309 +          painCave.isFatal = 1;
1310 +          simError();
1311 +        }          
1312 +      }
1313 +    }
1314 +
1315 +    // send switching function notification to switcheroo
1316 +    setFunctionType(&ft);
1317 +
1318 +  }
1319 +
1320 +  void SimInfo::setupAccumulateBoxDipole() {    
1321 +
1322 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1323 +    if ( simParams_->haveAccumulateBoxDipole() )
1324 +      if ( simParams_->getAccumulateBoxDipole() ) {
1325 +        setAccumulateBoxDipole();
1326 +        calcBoxDipole_ = true;
1327 +      }
1328 +
1329 +  }
1330 +
1331    void SimInfo::addProperty(GenericData* genData) {
1332      properties_.addProperty(genData);  
1333    }
# Line 958 | Line 1384 | namespace oopse {
1384      Molecule* mol;
1385  
1386      Vector3d comVel(0.0);
1387 <    double totalMass = 0.0;
1387 >    RealType totalMass = 0.0;
1388      
1389  
1390      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1391 <      double mass = mol->getMass();
1391 >      RealType mass = mol->getMass();
1392        totalMass += mass;
1393        comVel += mass * mol->getComVel();
1394      }  
1395  
1396   #ifdef IS_MPI
1397 <    double tmpMass = totalMass;
1397 >    RealType tmpMass = totalMass;
1398      Vector3d tmpComVel(comVel);    
1399 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1400 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1399 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1400 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1401   #endif
1402  
1403      comVel /= totalMass;
# Line 984 | Line 1410 | namespace oopse {
1410      Molecule* mol;
1411  
1412      Vector3d com(0.0);
1413 <    double totalMass = 0.0;
1413 >    RealType totalMass = 0.0;
1414      
1415      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1416 <      double mass = mol->getMass();
1416 >      RealType mass = mol->getMass();
1417        totalMass += mass;
1418        com += mass * mol->getCom();
1419      }  
1420  
1421   #ifdef IS_MPI
1422 <    double tmpMass = totalMass;
1422 >    RealType tmpMass = totalMass;
1423      Vector3d tmpCom(com);    
1424 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1425 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1424 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1425 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1426   #endif
1427  
1428      com /= totalMass;
# Line 1020 | Line 1446 | namespace oopse {
1446        Molecule* mol;
1447        
1448      
1449 <      double totalMass = 0.0;
1449 >      RealType totalMass = 0.0;
1450      
1451  
1452        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1453 <         double mass = mol->getMass();
1453 >         RealType mass = mol->getMass();
1454           totalMass += mass;
1455           com += mass * mol->getCom();
1456           comVel += mass * mol->getComVel();          
1457        }  
1458        
1459   #ifdef IS_MPI
1460 <      double tmpMass = totalMass;
1460 >      RealType tmpMass = totalMass;
1461        Vector3d tmpCom(com);  
1462        Vector3d tmpComVel(comVel);
1463 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1464 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1465 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1463 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1464 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1465 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1466   #endif
1467        
1468        com /= totalMass;
# Line 1055 | Line 1481 | namespace oopse {
1481     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1482        
1483  
1484 <      double xx = 0.0;
1485 <      double yy = 0.0;
1486 <      double zz = 0.0;
1487 <      double xy = 0.0;
1488 <      double xz = 0.0;
1489 <      double yz = 0.0;
1484 >      RealType xx = 0.0;
1485 >      RealType yy = 0.0;
1486 >      RealType zz = 0.0;
1487 >      RealType xy = 0.0;
1488 >      RealType xz = 0.0;
1489 >      RealType yz = 0.0;
1490        Vector3d com(0.0);
1491        Vector3d comVel(0.0);
1492        
# Line 1072 | Line 1498 | namespace oopse {
1498        Vector3d thisq(0.0);
1499        Vector3d thisv(0.0);
1500  
1501 <      double thisMass = 0.0;
1501 >      RealType thisMass = 0.0;
1502      
1503        
1504        
# Line 1110 | Line 1536 | namespace oopse {
1536   #ifdef IS_MPI
1537        Mat3x3d tmpI(inertiaTensor);
1538        Vector3d tmpAngMom;
1539 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1540 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1539 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1540 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1541   #endif
1542                
1543        return;
# Line 1132 | Line 1558 | namespace oopse {
1558        Vector3d thisr(0.0);
1559        Vector3d thisp(0.0);
1560        
1561 <      double thisMass;
1561 >      RealType thisMass;
1562        
1563        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1564          thisMass = mol->getMass();
# Line 1145 | Line 1571 | namespace oopse {
1571        
1572   #ifdef IS_MPI
1573        Vector3d tmpAngMom;
1574 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1574 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1575   #endif
1576        
1577        return angularMomentum;
1578     }
1579    
1580 <  
1580 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1581 >    return IOIndexToIntegrableObject.at(index);
1582 >  }
1583 >  
1584 >  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1585 >    IOIndexToIntegrableObject= v;
1586 >  }
1587 >
1588 >  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1589 >     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1590 >     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1591 >     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1592 >  */
1593 >  void SimInfo::getGyrationalVolume(RealType &volume){
1594 >    Mat3x3d intTensor;
1595 >    RealType det;
1596 >    Vector3d dummyAngMom;
1597 >    RealType sysconstants;
1598 >    RealType geomCnst;
1599 >
1600 >    geomCnst = 3.0/2.0;
1601 >    /* Get the inertial tensor and angular momentum for free*/
1602 >    getInertiaTensor(intTensor,dummyAngMom);
1603 >    
1604 >    det = intTensor.determinant();
1605 >    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1606 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1607 >    return;
1608 >  }
1609 >
1610 >  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1611 >    Mat3x3d intTensor;
1612 >    Vector3d dummyAngMom;
1613 >    RealType sysconstants;
1614 >    RealType geomCnst;
1615 >
1616 >    geomCnst = 3.0/2.0;
1617 >    /* Get the inertial tensor and angular momentum for free*/
1618 >    getInertiaTensor(intTensor,dummyAngMom);
1619 >    
1620 >    detI = intTensor.determinant();
1621 >    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1622 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1623 >    return;
1624 >  }
1625 > /*
1626 >   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1627 >      assert( v.size() == nAtoms_ + nRigidBodies_);
1628 >      sdByGlobalIndex_ = v;
1629 >    }
1630 >
1631 >    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1632 >      //assert(index < nAtoms_ + nRigidBodies_);
1633 >      return sdByGlobalIndex_.at(index);
1634 >    }  
1635 > */  
1636   }//end namespace oopse
1637  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines