ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 945 by gezelter, Tue Apr 25 02:09:01 2006 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53 < #include "SimInfo.hpp"
54 < #define __C
55 < #include "fSimulation.h"
56 < #include "simError.h"
53 > #include "brains/SimInfo.hpp"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "UseTheForce/fCutoffPolicy.h"
57 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 > #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 > #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 > #include "UseTheForce/doForces_interface.h"
61 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
63 > #include "utils/MemoryUtils.hpp"
64 > #include "utils/simError.h"
65 > #include "selection/SelectionManager.hpp"
66 > #include "io/ForceFieldOptions.hpp"
67 > #include "UseTheForce/ForceField.hpp"
68  
13 #include "fortranWrappers.hpp"
14
15 #include "MatVec3.h"
16
69   #ifdef IS_MPI
70 < #include "mpiSimulation.hpp"
71 < #endif
70 > #include "UseTheForce/mpiComponentPlan.h"
71 > #include "UseTheForce/DarkSide/simParallel_interface.h"
72 > #endif
73  
74 < inline double roundMe( double x ){
75 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
76 < }
77 <          
78 < inline double min( double a, double b ){
79 <  return (a < b ) ? a : b;
80 < }
74 > namespace oopse {
75 >  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 >    std::map<int, std::set<int> >::iterator i = container.find(index);
77 >    std::set<int> result;
78 >    if (i != container.end()) {
79 >        result = i->second;
80 >    }
81  
82 < SimInfo* currentInfo;
83 <
31 < SimInfo::SimInfo(){
32 <
33 <  n_constraints = 0;
34 <  nZconstraints = 0;
35 <  n_oriented = 0;
36 <  n_dipoles = 0;
37 <  ndf = 0;
38 <  ndfRaw = 0;
39 <  nZconstraints = 0;
40 <  the_integrator = NULL;
41 <  setTemp = 0;
42 <  thermalTime = 0.0;
43 <  currentTime = 0.0;
44 <  rCut = 0.0;
45 <  rSw = 0.0;
46 <
47 <  haveRcut = 0;
48 <  haveRsw = 0;
49 <  boxIsInit = 0;
82 >    return result;
83 >  }
84    
85 <  resetTime = 1e99;
85 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
86 >    forceField_(ff), simParams_(simParams),
87 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
88 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
89 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
90 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
91 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
92 >    sman_(NULL), fortranInitialized_(false) {
93  
94 <  orthoRhombic = 0;
95 <  orthoTolerance = 1E-6;
96 <  useInitXSstate = true;
94 >      MoleculeStamp* molStamp;
95 >      int nMolWithSameStamp;
96 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
97 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
98 >      CutoffGroupStamp* cgStamp;    
99 >      RigidBodyStamp* rbStamp;
100 >      int nRigidAtoms = 0;
101 >      std::vector<Component*> components = simParams->getComponents();
102 >      
103 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
104 >        molStamp = (*i)->getMoleculeStamp();
105 >        nMolWithSameStamp = (*i)->getNMol();
106 >        
107 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
108  
109 <  usePBC = 0;
110 <  useLJ = 0;
59 <  useSticky = 0;
60 <  useCharges = 0;
61 <  useDipoles = 0;
62 <  useReactionField = 0;
63 <  useGB = 0;
64 <  useEAM = 0;
65 <  useSolidThermInt = 0;
66 <  useLiquidThermInt = 0;
109 >        //calculate atoms in molecules
110 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
111  
112 <  haveCutoffGroups = false;
112 >        //calculate atoms in cutoff groups
113 >        int nAtomsInGroups = 0;
114 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
115 >        
116 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
117 >          cgStamp = molStamp->getCutoffGroupStamp(j);
118 >          nAtomsInGroups += cgStamp->getNMembers();
119 >        }
120  
121 <  excludes = Exclude::Instance();
121 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
122  
123 <  myConfiguration = new SimState();
123 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
124  
125 <  has_minimizer = false;
126 <  the_minimizer =NULL;
125 >        //calculate atoms in rigid bodies
126 >        int nAtomsInRigidBodies = 0;
127 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
128 >        
129 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
130 >          rbStamp = molStamp->getRigidBodyStamp(j);
131 >          nAtomsInRigidBodies += rbStamp->getNMembers();
132 >        }
133  
134 <  ngroup = 0;
134 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
135 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
136 >        
137 >      }
138  
139 <  wrapMeSimInfo( this );
140 < }
139 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
140 >      //group therefore the total number of cutoff groups in the system is
141 >      //equal to the total number of atoms minus number of atoms belong to
142 >      //cutoff group defined in meta-data file plus the number of cutoff
143 >      //groups defined in meta-data file
144 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
145  
146 <
147 < SimInfo::~SimInfo(){
148 <
149 <  delete myConfiguration;
150 <
151 <  map<string, GenericData*>::iterator i;
146 >      //every free atom (atom does not belong to rigid bodies) is an
147 >      //integrable object therefore the total number of integrable objects
148 >      //in the system is equal to the total number of atoms minus number of
149 >      //atoms belong to rigid body defined in meta-data file plus the number
150 >      //of rigid bodies defined in meta-data file
151 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
152 >                                                + nGlobalRigidBodies_;
153    
154 <  for(i = properties.begin(); i != properties.end(); i++)
90 <    delete (*i).second;
154 >      nGlobalMols_ = molStampIds_.size();
155  
156 < }
156 > #ifdef IS_MPI    
157 >      molToProcMap_.resize(nGlobalMols_);
158 > #endif
159  
160 < void SimInfo::setBox(double newBox[3]) {
95 <  
96 <  int i, j;
97 <  double tempMat[3][3];
160 >    }
161  
162 <  for(i=0; i<3; i++)
163 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
162 >  SimInfo::~SimInfo() {
163 >    std::map<int, Molecule*>::iterator i;
164 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
165 >      delete i->second;
166 >    }
167 >    molecules_.clear();
168 >      
169 >    delete sman_;
170 >    delete simParams_;
171 >    delete forceField_;
172 >  }
173  
174 <  tempMat[0][0] = newBox[0];
175 <  tempMat[1][1] = newBox[1];
176 <  tempMat[2][2] = newBox[2];
174 >  int SimInfo::getNGlobalConstraints() {
175 >    int nGlobalConstraints;
176 > #ifdef IS_MPI
177 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178 >                  MPI_COMM_WORLD);    
179 > #else
180 >    nGlobalConstraints =  nConstraints_;
181 > #endif
182 >    return nGlobalConstraints;
183 >  }
184  
185 <  setBoxM( tempMat );
185 >  bool SimInfo::addMolecule(Molecule* mol) {
186 >    MoleculeIterator i;
187  
188 < }
188 >    i = molecules_.find(mol->getGlobalIndex());
189 >    if (i == molecules_.end() ) {
190  
191 < void SimInfo::setBoxM( double theBox[3][3] ){
192 <  
193 <  int i, j;
194 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
195 <                         // ordering in the array is as follows:
196 <                         // [ 0 3 6 ]
197 <                         // [ 1 4 7 ]
198 <                         // [ 2 5 8 ]
199 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
200 <
120 <  if( !boxIsInit ) boxIsInit = 1;
191 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
192 >        
193 >      nAtoms_ += mol->getNAtoms();
194 >      nBonds_ += mol->getNBonds();
195 >      nBends_ += mol->getNBends();
196 >      nTorsions_ += mol->getNTorsions();
197 >      nRigidBodies_ += mol->getNRigidBodies();
198 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
199 >      nCutoffGroups_ += mol->getNCutoffGroups();
200 >      nConstraints_ += mol->getNConstraintPairs();
201  
202 <  for(i=0; i < 3; i++)
203 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
204 <  
205 <  calcBoxL();
206 <  calcHmatInv();
127 <
128 <  for(i=0; i < 3; i++) {
129 <    for (j=0; j < 3; j++) {
130 <      FortranHmat[3*j + i] = Hmat[i][j];
131 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
202 >      addExcludePairs(mol);
203 >        
204 >      return true;
205 >    } else {
206 >      return false;
207      }
208    }
209  
210 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
211 <
212 < }
138 <
210 >  bool SimInfo::removeMolecule(Molecule* mol) {
211 >    MoleculeIterator i;
212 >    i = molecules_.find(mol->getGlobalIndex());
213  
214 < void SimInfo::getBoxM (double theBox[3][3]) {
214 >    if (i != molecules_.end() ) {
215  
216 <  int i, j;
217 <  for(i=0; i<3; i++)
218 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
219 < }
216 >      assert(mol == i->second);
217 >        
218 >      nAtoms_ -= mol->getNAtoms();
219 >      nBonds_ -= mol->getNBonds();
220 >      nBends_ -= mol->getNBends();
221 >      nTorsions_ -= mol->getNTorsions();
222 >      nRigidBodies_ -= mol->getNRigidBodies();
223 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
224 >      nCutoffGroups_ -= mol->getNCutoffGroups();
225 >      nConstraints_ -= mol->getNConstraintPairs();
226  
227 +      removeExcludePairs(mol);
228 +      molecules_.erase(mol->getGlobalIndex());
229  
230 < void SimInfo::scaleBox(double scale) {
231 <  double theBox[3][3];
232 <  int i, j;
230 >      delete mol;
231 >        
232 >      return true;
233 >    } else {
234 >      return false;
235 >    }
236  
152  // cerr << "Scaling box by " << scale << "\n";
237  
238 <  for(i=0; i<3; i++)
155 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
238 >  }    
239  
240 <  setBoxM(theBox);
240 >        
241 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
242 >    i = molecules_.begin();
243 >    return i == molecules_.end() ? NULL : i->second;
244 >  }    
245  
246 < }
246 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
247 >    ++i;
248 >    return i == molecules_.end() ? NULL : i->second;    
249 >  }
250  
161 void SimInfo::calcHmatInv( void ) {
162  
163  int oldOrtho;
164  int i,j;
165  double smallDiag;
166  double tol;
167  double sanity[3][3];
251  
252 <  invertMat3( Hmat, HmatInv );
252 >  void SimInfo::calcNdf() {
253 >    int ndf_local;
254 >    MoleculeIterator i;
255 >    std::vector<StuntDouble*>::iterator j;
256 >    Molecule* mol;
257 >    StuntDouble* integrableObject;
258  
259 <  // check to see if Hmat is orthorhombic
260 <  
261 <  oldOrtho = orthoRhombic;
259 >    ndf_local = 0;
260 >    
261 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
262 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263 >           integrableObject = mol->nextIntegrableObject(j)) {
264  
265 <  smallDiag = fabs(Hmat[0][0]);
176 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
265 >        ndf_local += 3;
266  
267 <  orthoRhombic = 1;
268 <  
269 <  for (i = 0; i < 3; i++ ) {
270 <    for (j = 0 ; j < 3; j++) {
271 <      if (i != j) {
272 <        if (orthoRhombic) {
273 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
274 <        }        
267 >        if (integrableObject->isDirectional()) {
268 >          if (integrableObject->isLinear()) {
269 >            ndf_local += 2;
270 >          } else {
271 >            ndf_local += 3;
272 >          }
273 >        }
274 >            
275        }
276      }
190  }
191
192  if( oldOrtho != orthoRhombic ){
277      
278 <    if( orthoRhombic ) {
279 <      sprintf( painCave.errMsg,
196 <               "OOPSE is switching from the default Non-Orthorhombic\n"
197 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
198 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
217 <  }
218 < }
278 >    // n_constraints is local, so subtract them on each processor
279 >    ndf_local -= nConstraints_;
280  
281 < void SimInfo::calcBoxL( void ){
282 <
283 <  double dx, dy, dz, dsq;
284 <
285 <  // boxVol = Determinant of Hmat
225 <
226 <  boxVol = matDet3( Hmat );
227 <
228 <  // boxLx
229 <  
230 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
231 <  dsq = dx*dx + dy*dy + dz*dz;
232 <  boxL[0] = sqrt( dsq );
233 <  //maxCutoff = 0.5 * boxL[0];
234 <
235 <  // boxLy
236 <  
237 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
238 <  dsq = dx*dx + dy*dy + dz*dz;
239 <  boxL[1] = sqrt( dsq );
240 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
241 <
242 <
243 <  // boxLz
244 <  
245 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
246 <  dsq = dx*dx + dy*dy + dz*dz;
247 <  boxL[2] = sqrt( dsq );
248 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
249 <
250 <  //calculate the max cutoff
251 <  maxCutoff =  calcMaxCutOff();
252 <  
253 <  checkCutOffs();
254 <
255 < }
256 <
257 <
258 < double SimInfo::calcMaxCutOff(){
259 <
260 <  double ri[3], rj[3], rk[3];
261 <  double rij[3], rjk[3], rki[3];
262 <  double minDist;
263 <
264 <  ri[0] = Hmat[0][0];
265 <  ri[1] = Hmat[1][0];
266 <  ri[2] = Hmat[2][0];
267 <
268 <  rj[0] = Hmat[0][1];
269 <  rj[1] = Hmat[1][1];
270 <  rj[2] = Hmat[2][1];
271 <
272 <  rk[0] = Hmat[0][2];
273 <  rk[1] = Hmat[1][2];
274 <  rk[2] = Hmat[2][2];
275 <    
276 <  crossProduct3(ri, rj, rij);
277 <  distXY = dotProduct3(rk,rij) / norm3(rij);
278 <
279 <  crossProduct3(rj,rk, rjk);
280 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
281 <
282 <  crossProduct3(rk,ri, rki);
283 <  distZX = dotProduct3(rj,rki) / norm3(rki);
284 <
285 <  minDist = min(min(distXY, distYZ), distZX);
286 <  return minDist/2;
287 <  
288 < }
289 <
290 < void SimInfo::wrapVector( double thePos[3] ){
291 <
292 <  int i;
293 <  double scaled[3];
294 <
295 <  if( !orthoRhombic ){
296 <    // calc the scaled coordinates.
297 <  
281 > #ifdef IS_MPI
282 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
283 > #else
284 >    ndf_ = ndf_local;
285 > #endif
286  
287 <    matVecMul3(HmatInv, thePos, scaled);
288 <    
289 <    for(i=0; i<3; i++)
302 <      scaled[i] -= roundMe(scaled[i]);
303 <    
304 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
305 <    
306 <    matVecMul3(Hmat, scaled, thePos);
287 >    // nZconstraints_ is global, as are the 3 COM translations for the
288 >    // entire system:
289 >    ndf_ = ndf_ - 3 - nZconstraint_;
290  
291    }
309  else{
310    // calc the scaled coordinates.
311    
312    for(i=0; i<3; i++)
313      scaled[i] = thePos[i]*HmatInv[i][i];
314    
315    // wrap the scaled coordinates
316    
317    for(i=0; i<3; i++)
318      scaled[i] -= roundMe(scaled[i]);
319    
320    // calc the wrapped real coordinates from the wrapped scaled coordinates
321    
322    for(i=0; i<3; i++)
323      thePos[i] = scaled[i]*Hmat[i][i];
324  }
325    
326 }
292  
293 <
329 < int SimInfo::getNDF(){
330 <  int ndf_local;
331 <
332 <  ndf_local = 0;
333 <  
334 <  for(int i = 0; i < integrableObjects.size(); i++){
335 <    ndf_local += 3;
336 <    if (integrableObjects[i]->isDirectional()) {
337 <      if (integrableObjects[i]->isLinear())
338 <        ndf_local += 2;
339 <      else
340 <        ndf_local += 3;
341 <    }
342 <  }
343 <
344 <  // n_constraints is local, so subtract them on each processor:
345 <
346 <  ndf_local -= n_constraints;
347 <
293 >  int SimInfo::getFdf() {
294   #ifdef IS_MPI
295 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
295 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
296   #else
297 <  ndf = ndf_local;
297 >    fdf_ = fdf_local;
298   #endif
299 +    return fdf_;
300 +  }
301 +    
302 +  void SimInfo::calcNdfRaw() {
303 +    int ndfRaw_local;
304  
305 <  // nZconstraints is global, as are the 3 COM translations for the
306 <  // entire system:
305 >    MoleculeIterator i;
306 >    std::vector<StuntDouble*>::iterator j;
307 >    Molecule* mol;
308 >    StuntDouble* integrableObject;
309  
310 <  ndf = ndf - 3 - nZconstraints;
310 >    // Raw degrees of freedom that we have to set
311 >    ndfRaw_local = 0;
312 >    
313 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
314 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
315 >           integrableObject = mol->nextIntegrableObject(j)) {
316  
317 <  return ndf;
360 < }
317 >        ndfRaw_local += 3;
318  
319 < int SimInfo::getNDFraw() {
320 <  int ndfRaw_local;
321 <
322 <  // Raw degrees of freedom that we have to set
323 <  ndfRaw_local = 0;
324 <
325 <  for(int i = 0; i < integrableObjects.size(); i++){
326 <    ndfRaw_local += 3;
327 <    if (integrableObjects[i]->isDirectional()) {
371 <       if (integrableObjects[i]->isLinear())
372 <        ndfRaw_local += 2;
373 <      else
374 <        ndfRaw_local += 3;
319 >        if (integrableObject->isDirectional()) {
320 >          if (integrableObject->isLinear()) {
321 >            ndfRaw_local += 2;
322 >          } else {
323 >            ndfRaw_local += 3;
324 >          }
325 >        }
326 >            
327 >      }
328      }
376  }
329      
330   #ifdef IS_MPI
331 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
331 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
332   #else
333 <  ndfRaw = ndfRaw_local;
333 >    ndfRaw_ = ndfRaw_local;
334   #endif
335 +  }
336  
337 <  return ndfRaw;
338 < }
337 >  void SimInfo::calcNdfTrans() {
338 >    int ndfTrans_local;
339  
340 < int SimInfo::getNDFtranslational() {
388 <  int ndfTrans_local;
340 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
341  
390  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
342  
392
343   #ifdef IS_MPI
344 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
344 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
345   #else
346 <  ndfTrans = ndfTrans_local;
346 >    ndfTrans_ = ndfTrans_local;
347   #endif
348  
349 <  ndfTrans = ndfTrans - 3 - nZconstraints;
349 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
350 >
351 >  }
352  
353 <  return ndfTrans;
354 < }
353 >  void SimInfo::addExcludePairs(Molecule* mol) {
354 >    std::vector<Bond*>::iterator bondIter;
355 >    std::vector<Bend*>::iterator bendIter;
356 >    std::vector<Torsion*>::iterator torsionIter;
357 >    Bond* bond;
358 >    Bend* bend;
359 >    Torsion* torsion;
360 >    int a;
361 >    int b;
362 >    int c;
363 >    int d;
364  
365 < int SimInfo::getTotIntegrableObjects() {
405 <  int nObjs_local;
406 <  int nObjs;
365 >    std::map<int, std::set<int> > atomGroups;
366  
367 <  nObjs_local =  integrableObjects.size();
367 >    Molecule::RigidBodyIterator rbIter;
368 >    RigidBody* rb;
369 >    Molecule::IntegrableObjectIterator ii;
370 >    StuntDouble* integrableObject;
371 >    
372 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
373 >           integrableObject = mol->nextIntegrableObject(ii)) {
374  
375 +      if (integrableObject->isRigidBody()) {
376 +          rb = static_cast<RigidBody*>(integrableObject);
377 +          std::vector<Atom*> atoms = rb->getAtoms();
378 +          std::set<int> rigidAtoms;
379 +          for (int i = 0; i < atoms.size(); ++i) {
380 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
381 +          }
382 +          for (int i = 0; i < atoms.size(); ++i) {
383 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
384 +          }      
385 +      } else {
386 +        std::set<int> oneAtomSet;
387 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
388 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
389 +      }
390 +    }  
391  
392 < #ifdef IS_MPI
393 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
394 < #else
395 <  nObjs = nObjs_local;
396 < #endif
392 >    
393 >    
394 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
395 >      a = bond->getAtomA()->getGlobalIndex();
396 >      b = bond->getAtomB()->getGlobalIndex();        
397 >      exclude_.addPair(a, b);
398 >    }
399  
400 +    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
401 +      a = bend->getAtomA()->getGlobalIndex();
402 +      b = bend->getAtomB()->getGlobalIndex();        
403 +      c = bend->getAtomC()->getGlobalIndex();
404 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
405 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
406 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
407  
408 <  return nObjs;
409 < }
408 >      exclude_.addPairs(rigidSetA, rigidSetB);
409 >      exclude_.addPairs(rigidSetA, rigidSetC);
410 >      exclude_.addPairs(rigidSetB, rigidSetC);
411 >      
412 >      //exclude_.addPair(a, b);
413 >      //exclude_.addPair(a, c);
414 >      //exclude_.addPair(b, c);        
415 >    }
416  
417 < void SimInfo::refreshSim(){
417 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
418 >      a = torsion->getAtomA()->getGlobalIndex();
419 >      b = torsion->getAtomB()->getGlobalIndex();        
420 >      c = torsion->getAtomC()->getGlobalIndex();        
421 >      d = torsion->getAtomD()->getGlobalIndex();        
422 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
423 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
424 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
425 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
426  
427 <  simtype fInfo;
428 <  int isError;
429 <  int n_global;
430 <  int* excl;
427 >      exclude_.addPairs(rigidSetA, rigidSetB);
428 >      exclude_.addPairs(rigidSetA, rigidSetC);
429 >      exclude_.addPairs(rigidSetA, rigidSetD);
430 >      exclude_.addPairs(rigidSetB, rigidSetC);
431 >      exclude_.addPairs(rigidSetB, rigidSetD);
432 >      exclude_.addPairs(rigidSetC, rigidSetD);
433  
434 <  fInfo.dielect = 0.0;
434 >      /*
435 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
436 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
437 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
438 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
439 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
440 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
441 >        
442 >      
443 >      exclude_.addPair(a, b);
444 >      exclude_.addPair(a, c);
445 >      exclude_.addPair(a, d);
446 >      exclude_.addPair(b, c);
447 >      exclude_.addPair(b, d);
448 >      exclude_.addPair(c, d);        
449 >      */
450 >    }
451  
452 <  if( useDipoles ){
453 <    if( useReactionField )fInfo.dielect = dielectric;
452 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
453 >      std::vector<Atom*> atoms = rb->getAtoms();
454 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
455 >        for (int j = i + 1; j < atoms.size(); ++j) {
456 >          a = atoms[i]->getGlobalIndex();
457 >          b = atoms[j]->getGlobalIndex();
458 >          exclude_.addPair(a, b);
459 >        }
460 >      }
461 >    }        
462 >
463    }
464  
465 <  fInfo.SIM_uses_PBC = usePBC;
466 <  //fInfo.SIM_uses_LJ = 0;
467 <  fInfo.SIM_uses_LJ = useLJ;
468 <  fInfo.SIM_uses_sticky = useSticky;
469 <  //fInfo.SIM_uses_sticky = 0;
470 <  fInfo.SIM_uses_charges = useCharges;
471 <  fInfo.SIM_uses_dipoles = useDipoles;
472 <  //fInfo.SIM_uses_dipoles = 0;
473 <  fInfo.SIM_uses_RF = useReactionField;
474 <  //fInfo.SIM_uses_RF = 0;
475 <  fInfo.SIM_uses_GB = useGB;
445 <  fInfo.SIM_uses_EAM = useEAM;
465 >  void SimInfo::removeExcludePairs(Molecule* mol) {
466 >    std::vector<Bond*>::iterator bondIter;
467 >    std::vector<Bend*>::iterator bendIter;
468 >    std::vector<Torsion*>::iterator torsionIter;
469 >    Bond* bond;
470 >    Bend* bend;
471 >    Torsion* torsion;
472 >    int a;
473 >    int b;
474 >    int c;
475 >    int d;
476  
477 <  n_exclude = excludes->getSize();
448 <  excl = excludes->getFortranArray();
449 <  
450 < #ifdef IS_MPI
451 <  n_global = mpiSim->getNAtomsGlobal();
452 < #else
453 <  n_global = n_atoms;
454 < #endif
455 <  
456 <  isError = 0;
457 <  
458 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
459 <  //it may not be a good idea to pass the address of first element in vector
460 <  //since c++ standard does not require vector to be stored continuously in meomory
461 <  //Most of the compilers will organize the memory of vector continuously
462 <  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
477 >    std::map<int, std::set<int> > atomGroups;
478  
479 <  if( isError ){
479 >    Molecule::RigidBodyIterator rbIter;
480 >    RigidBody* rb;
481 >    Molecule::IntegrableObjectIterator ii;
482 >    StuntDouble* integrableObject;
483      
484 <    sprintf( painCave.errMsg,
485 <             "There was an error setting the simulation information in fortran.\n" );
486 <    painCave.isFatal = 1;
487 <    painCave.severity = OOPSE_ERROR;
488 <    simError();
484 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
485 >           integrableObject = mol->nextIntegrableObject(ii)) {
486 >
487 >      if (integrableObject->isRigidBody()) {
488 >          rb = static_cast<RigidBody*>(integrableObject);
489 >          std::vector<Atom*> atoms = rb->getAtoms();
490 >          std::set<int> rigidAtoms;
491 >          for (int i = 0; i < atoms.size(); ++i) {
492 >            rigidAtoms.insert(atoms[i]->getGlobalIndex());
493 >          }
494 >          for (int i = 0; i < atoms.size(); ++i) {
495 >            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
496 >          }      
497 >      } else {
498 >        std::set<int> oneAtomSet;
499 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
500 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
501 >      }
502 >    }  
503 >
504 >    
505 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
506 >      a = bond->getAtomA()->getGlobalIndex();
507 >      b = bond->getAtomB()->getGlobalIndex();        
508 >      exclude_.removePair(a, b);
509 >    }
510 >
511 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
512 >      a = bend->getAtomA()->getGlobalIndex();
513 >      b = bend->getAtomB()->getGlobalIndex();        
514 >      c = bend->getAtomC()->getGlobalIndex();
515 >
516 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
517 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
518 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
519 >
520 >      exclude_.removePairs(rigidSetA, rigidSetB);
521 >      exclude_.removePairs(rigidSetA, rigidSetC);
522 >      exclude_.removePairs(rigidSetB, rigidSetC);
523 >      
524 >      //exclude_.removePair(a, b);
525 >      //exclude_.removePair(a, c);
526 >      //exclude_.removePair(b, c);        
527 >    }
528 >
529 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
530 >      a = torsion->getAtomA()->getGlobalIndex();
531 >      b = torsion->getAtomB()->getGlobalIndex();        
532 >      c = torsion->getAtomC()->getGlobalIndex();        
533 >      d = torsion->getAtomD()->getGlobalIndex();        
534 >
535 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
536 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
537 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
538 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
539 >
540 >      exclude_.removePairs(rigidSetA, rigidSetB);
541 >      exclude_.removePairs(rigidSetA, rigidSetC);
542 >      exclude_.removePairs(rigidSetA, rigidSetD);
543 >      exclude_.removePairs(rigidSetB, rigidSetC);
544 >      exclude_.removePairs(rigidSetB, rigidSetD);
545 >      exclude_.removePairs(rigidSetC, rigidSetD);
546 >
547 >      /*
548 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
549 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
550 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
551 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
552 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
553 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
554 >
555 >      
556 >      exclude_.removePair(a, b);
557 >      exclude_.removePair(a, c);
558 >      exclude_.removePair(a, d);
559 >      exclude_.removePair(b, c);
560 >      exclude_.removePair(b, d);
561 >      exclude_.removePair(c, d);        
562 >      */
563 >    }
564 >
565 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
566 >      std::vector<Atom*> atoms = rb->getAtoms();
567 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
568 >        for (int j = i + 1; j < atoms.size(); ++j) {
569 >          a = atoms[i]->getGlobalIndex();
570 >          b = atoms[j]->getGlobalIndex();
571 >          exclude_.removePair(a, b);
572 >        }
573 >      }
574 >    }        
575 >
576    }
577 <  
577 >
578 >
579 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
580 >    int curStampId;
581 >
582 >    //index from 0
583 >    curStampId = moleculeStamps_.size();
584 >
585 >    moleculeStamps_.push_back(molStamp);
586 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
587 >  }
588 >
589 >  void SimInfo::update() {
590 >
591 >    setupSimType();
592 >
593   #ifdef IS_MPI
594 <  sprintf( checkPointMsg,
595 <           "succesfully sent the simulation information to fortran.\n");
478 <  MPIcheckPoint();
479 < #endif // is_mpi
480 <  
481 <  this->ndf = this->getNDF();
482 <  this->ndfRaw = this->getNDFraw();
483 <  this->ndfTrans = this->getNDFtranslational();
484 < }
594 >    setupFortranParallel();
595 > #endif
596  
597 < void SimInfo::setDefaultRcut( double theRcut ){
597 >    setupFortranSim();
598 >
599 >    //setup fortran force field
600 >    /** @deprecate */    
601 >    int isError = 0;
602 >    
603 >    setupElectrostaticSummationMethod( isError );
604 >    setupSwitchingFunction();
605 >
606 >    if(isError){
607 >      sprintf( painCave.errMsg,
608 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
609 >      painCave.isFatal = 1;
610 >      simError();
611 >    }
612    
613 <  haveRcut = 1;
614 <  rCut = theRcut;
490 <  rList = rCut + 1.0;
491 <  
492 <  notifyFortranCutOffs( &rCut, &rSw, &rList );
493 < }
613 >    
614 >    setupCutoff();
615  
616 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
616 >    calcNdf();
617 >    calcNdfRaw();
618 >    calcNdfTrans();
619  
620 <  rSw = theRsw;
621 <  setDefaultRcut( theRcut );
499 < }
620 >    fortranInitialized_ = true;
621 >  }
622  
623 +  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
624 +    SimInfo::MoleculeIterator mi;
625 +    Molecule* mol;
626 +    Molecule::AtomIterator ai;
627 +    Atom* atom;
628 +    std::set<AtomType*> atomTypes;
629  
630 < void SimInfo::checkCutOffs( void ){
631 <  
632 <  if( boxIsInit ){
630 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
631 >
632 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
633 >        atomTypes.insert(atom->getAtomType());
634 >      }
635 >        
636 >    }
637 >
638 >    return atomTypes;        
639 >  }
640 >
641 >  void SimInfo::setupSimType() {
642 >    std::set<AtomType*>::iterator i;
643 >    std::set<AtomType*> atomTypes;
644 >    atomTypes = getUniqueAtomTypes();
645      
646 <    //we need to check cutOffs against the box
646 >    int useLennardJones = 0;
647 >    int useElectrostatic = 0;
648 >    int useEAM = 0;
649 >    int useSC = 0;
650 >    int useCharge = 0;
651 >    int useDirectional = 0;
652 >    int useDipole = 0;
653 >    int useGayBerne = 0;
654 >    int useSticky = 0;
655 >    int useStickyPower = 0;
656 >    int useShape = 0;
657 >    int useFLARB = 0; //it is not in AtomType yet
658 >    int useDirectionalAtom = 0;    
659 >    int useElectrostatics = 0;
660 >    //usePBC and useRF are from simParams
661 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
662 >    int useRF;
663 >    int useSF;
664 >    std::string myMethod;
665 >
666 >    // set the useRF logical
667 >    useRF = 0;
668 >    useSF = 0;
669 >
670 >
671 >    if (simParams_->haveElectrostaticSummationMethod()) {
672 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
673 >      toUpper(myMethod);
674 >      if (myMethod == "REACTION_FIELD") {
675 >        useRF=1;
676 >      } else {
677 >        if (myMethod == "SHIFTED_FORCE") {
678 >          useSF = 1;
679 >        }
680 >      }
681 >    }
682 >
683 >    //loop over all of the atom types
684 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
685 >      useLennardJones |= (*i)->isLennardJones();
686 >      useElectrostatic |= (*i)->isElectrostatic();
687 >      useEAM |= (*i)->isEAM();
688 >      useSC |= (*i)->isSC();
689 >      useCharge |= (*i)->isCharge();
690 >      useDirectional |= (*i)->isDirectional();
691 >      useDipole |= (*i)->isDipole();
692 >      useGayBerne |= (*i)->isGayBerne();
693 >      useSticky |= (*i)->isSticky();
694 >      useStickyPower |= (*i)->isStickyPower();
695 >      useShape |= (*i)->isShape();
696 >    }
697 >
698 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
699 >      useDirectionalAtom = 1;
700 >    }
701 >
702 >    if (useCharge || useDipole) {
703 >      useElectrostatics = 1;
704 >    }
705 >
706 > #ifdef IS_MPI    
707 >    int temp;
708 >
709 >    temp = usePBC;
710 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
711 >
712 >    temp = useDirectionalAtom;
713 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
714 >
715 >    temp = useLennardJones;
716 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
717 >
718 >    temp = useElectrostatics;
719 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
720 >
721 >    temp = useCharge;
722 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
723 >
724 >    temp = useDipole;
725 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
726 >
727 >    temp = useSticky;
728 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
729 >
730 >    temp = useStickyPower;
731 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
732      
733 <    if( rCut > maxCutoff ){
734 <      sprintf( painCave.errMsg,
510 <               "cutoffRadius is too large for the current periodic box.\n"
511 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 <               "\tThis is larger than half of at least one of the\n"
513 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 <               "\n"
515 <               "\t[ %G %G %G ]\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n",
518 <               rCut, currentTime,
519 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 <      painCave.severity = OOPSE_ERROR;
523 <      painCave.isFatal = 1;
524 <      simError();
525 <    }    
526 <  } else {
527 <    // initialize this stuff before using it, OK?
528 <    sprintf( painCave.errMsg,
529 <             "Trying to check cutoffs without a box.\n"
530 <             "\tOOPSE should have better programmers than that.\n" );
531 <    painCave.severity = OOPSE_ERROR;
532 <    painCave.isFatal = 1;
533 <    simError();      
534 <  }
535 <  
536 < }
733 >    temp = useGayBerne;
734 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
735  
736 < void SimInfo::addProperty(GenericData* prop){
736 >    temp = useEAM;
737 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
738  
739 <  map<string, GenericData*>::iterator result;
740 <  result = properties.find(prop->getID());
542 <  
543 <  //we can't simply use  properties[prop->getID()] = prop,
544 <  //it will cause memory leak if we already contain a propery which has the same name of prop
545 <  
546 <  if(result != properties.end()){
739 >    temp = useSC;
740 >    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
741      
742 <    delete (*result).second;
743 <    (*result).second = prop;
742 >    temp = useShape;
743 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
744 >
745 >    temp = useFLARB;
746 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
747 >
748 >    temp = useRF;
749 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
750 >
751 >    temp = useSF;
752 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
753 >
754 > #endif
755 >
756 >    fInfo_.SIM_uses_PBC = usePBC;    
757 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
758 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
759 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
760 >    fInfo_.SIM_uses_Charges = useCharge;
761 >    fInfo_.SIM_uses_Dipoles = useDipole;
762 >    fInfo_.SIM_uses_Sticky = useSticky;
763 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
764 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
765 >    fInfo_.SIM_uses_EAM = useEAM;
766 >    fInfo_.SIM_uses_SC = useSC;
767 >    fInfo_.SIM_uses_Shapes = useShape;
768 >    fInfo_.SIM_uses_FLARB = useFLARB;
769 >    fInfo_.SIM_uses_RF = useRF;
770 >    fInfo_.SIM_uses_SF = useSF;
771 >
772 >    if( myMethod == "REACTION_FIELD") {
773        
774 +      if (simParams_->haveDielectric()) {
775 +        fInfo_.dielect = simParams_->getDielectric();
776 +      } else {
777 +        sprintf(painCave.errMsg,
778 +                "SimSetup Error: No Dielectric constant was set.\n"
779 +                "\tYou are trying to use Reaction Field without"
780 +                "\tsetting a dielectric constant!\n");
781 +        painCave.isFatal = 1;
782 +        simError();
783 +      }      
784 +    }
785 +
786    }
552  else{
787  
788 <    properties[prop->getID()] = prop;
788 >  void SimInfo::setupFortranSim() {
789 >    int isError;
790 >    int nExclude;
791 >    std::vector<int> fortranGlobalGroupMembership;
792 >    
793 >    nExclude = exclude_.getSize();
794 >    isError = 0;
795  
796 <  }
796 >    //globalGroupMembership_ is filled by SimCreator    
797 >    for (int i = 0; i < nGlobalAtoms_; i++) {
798 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
799 >    }
800 >
801 >    //calculate mass ratio of cutoff group
802 >    std::vector<double> mfact;
803 >    SimInfo::MoleculeIterator mi;
804 >    Molecule* mol;
805 >    Molecule::CutoffGroupIterator ci;
806 >    CutoffGroup* cg;
807 >    Molecule::AtomIterator ai;
808 >    Atom* atom;
809 >    double totalMass;
810 >
811 >    //to avoid memory reallocation, reserve enough space for mfact
812 >    mfact.reserve(getNCutoffGroups());
813      
814 < }
814 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
815 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
816  
817 < GenericData* SimInfo::getProperty(const string& propName){
818 <
819 <  map<string, GenericData*>::iterator result;
820 <  
821 <  //string lowerCaseName = ();
822 <  
823 <  result = properties.find(propName);
824 <  
568 <  if(result != properties.end())
569 <    return (*result).second;  
570 <  else  
571 <    return NULL;  
572 < }
817 >        totalMass = cg->getMass();
818 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
819 >          // Check for massless groups - set mfact to 1 if true
820 >          if (totalMass != 0)
821 >            mfact.push_back(atom->getMass()/totalMass);
822 >          else
823 >            mfact.push_back( 1.0 );
824 >        }
825  
826 +      }      
827 +    }
828  
829 < void SimInfo::getFortranGroupArrays(SimInfo* info,
830 <                                    vector<int>& FglobalGroupMembership,
577 <                                    vector<double>& mfact){
578 <  
579 <  Molecule* myMols;
580 <  Atom** myAtoms;
581 <  int numAtom;
582 <  double mtot;
583 <  int numMol;
584 <  int numCutoffGroups;
585 <  CutoffGroup* myCutoffGroup;
586 <  vector<CutoffGroup*>::iterator iterCutoff;
587 <  Atom* cutoffAtom;
588 <  vector<Atom*>::iterator iterAtom;
589 <  int atomIndex;
590 <  double totalMass;
591 <  
592 <  mfact.clear();
593 <  FglobalGroupMembership.clear();
594 <  
829 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
830 >    std::vector<int> identArray;
831  
832 <  // Fix the silly fortran indexing problem
832 >    //to avoid memory reallocation, reserve enough space identArray
833 >    identArray.reserve(getNAtoms());
834 >    
835 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
836 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
837 >        identArray.push_back(atom->getIdent());
838 >      }
839 >    }    
840 >
841 >    //fill molMembershipArray
842 >    //molMembershipArray is filled by SimCreator    
843 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
844 >    for (int i = 0; i < nGlobalAtoms_; i++) {
845 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
846 >    }
847 >    
848 >    //setup fortran simulation
849 >    int nGlobalExcludes = 0;
850 >    int* globalExcludes = NULL;
851 >    int* excludeList = exclude_.getExcludeList();
852 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
853 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
854 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
855 >
856 >    if( isError ){
857 >
858 >      sprintf( painCave.errMsg,
859 >               "There was an error setting the simulation information in fortran.\n" );
860 >      painCave.isFatal = 1;
861 >      painCave.severity = OOPSE_ERROR;
862 >      simError();
863 >    }
864 >
865   #ifdef IS_MPI
866 <  numAtom = mpiSim->getNAtomsGlobal();
867 < #else
868 <  numAtom = n_atoms;
866 >    sprintf( checkPointMsg,
867 >             "succesfully sent the simulation information to fortran.\n");
868 >    MPIcheckPoint();
869 > #endif // is_mpi
870 >  }
871 >
872 >
873 > #ifdef IS_MPI
874 >  void SimInfo::setupFortranParallel() {
875 >    
876 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
877 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
878 >    std::vector<int> localToGlobalCutoffGroupIndex;
879 >    SimInfo::MoleculeIterator mi;
880 >    Molecule::AtomIterator ai;
881 >    Molecule::CutoffGroupIterator ci;
882 >    Molecule* mol;
883 >    Atom* atom;
884 >    CutoffGroup* cg;
885 >    mpiSimData parallelData;
886 >    int isError;
887 >
888 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
889 >
890 >      //local index(index in DataStorge) of atom is important
891 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
892 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
893 >      }
894 >
895 >      //local index of cutoff group is trivial, it only depends on the order of travesing
896 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
897 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
898 >      }        
899 >        
900 >    }
901 >
902 >    //fill up mpiSimData struct
903 >    parallelData.nMolGlobal = getNGlobalMolecules();
904 >    parallelData.nMolLocal = getNMolecules();
905 >    parallelData.nAtomsGlobal = getNGlobalAtoms();
906 >    parallelData.nAtomsLocal = getNAtoms();
907 >    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
908 >    parallelData.nGroupsLocal = getNCutoffGroups();
909 >    parallelData.myNode = worldRank;
910 >    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
911 >
912 >    //pass mpiSimData struct and index arrays to fortran
913 >    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
914 >                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
915 >                    &localToGlobalCutoffGroupIndex[0], &isError);
916 >
917 >    if (isError) {
918 >      sprintf(painCave.errMsg,
919 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
920 >      painCave.isFatal = 1;
921 >      simError();
922 >    }
923 >
924 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
925 >    MPIcheckPoint();
926 >
927 >
928 >  }
929 >
930   #endif
602  for (int i = 0; i < numAtom; i++)
603    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604  
931  
932 <  myMols = info->molecules;
933 <  numMol = info->n_mol;
934 <  for(int i  = 0; i < numMol; i++){
609 <    numCutoffGroups = myMols[i].getNCutoffGroups();
610 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611 <        myCutoffGroup != NULL;
612 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
932 >  void SimInfo::setupCutoff() {          
933 >    
934 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
935  
936 <      totalMass = myCutoffGroup->getMass();
937 <      
938 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
939 <          cutoffAtom != NULL;
940 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
941 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
942 <      }  
936 >    // Check the cutoff policy
937 >    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
938 >
939 >    std::string myPolicy;
940 >    if (forceFieldOptions_.haveCutoffPolicy()){
941 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
942 >    }else if (simParams_->haveCutoffPolicy()) {
943 >      myPolicy = simParams_->getCutoffPolicy();
944      }
945 +
946 +    if (!myPolicy.empty()){
947 +      toUpper(myPolicy);
948 +      if (myPolicy == "MIX") {
949 +        cp = MIX_CUTOFF_POLICY;
950 +      } else {
951 +        if (myPolicy == "MAX") {
952 +          cp = MAX_CUTOFF_POLICY;
953 +        } else {
954 +          if (myPolicy == "TRADITIONAL") {            
955 +            cp = TRADITIONAL_CUTOFF_POLICY;
956 +          } else {
957 +            // throw error        
958 +            sprintf( painCave.errMsg,
959 +                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
960 +            painCave.isFatal = 1;
961 +            simError();
962 +          }    
963 +        }          
964 +      }
965 +    }          
966 +    notifyFortranCutoffPolicy(&cp);
967 +
968 +    // Check the Skin Thickness for neighborlists
969 +    double skin;
970 +    if (simParams_->haveSkinThickness()) {
971 +      skin = simParams_->getSkinThickness();
972 +      notifyFortranSkinThickness(&skin);
973 +    }            
974 +        
975 +    // Check if the cutoff was set explicitly:
976 +    if (simParams_->haveCutoffRadius()) {
977 +      rcut_ = simParams_->getCutoffRadius();
978 +      if (simParams_->haveSwitchingRadius()) {
979 +        rsw_  = simParams_->getSwitchingRadius();
980 +      } else {
981 +        if (fInfo_.SIM_uses_Charges |
982 +            fInfo_.SIM_uses_Dipoles |
983 +            fInfo_.SIM_uses_RF) {
984 +          
985 +          rsw_ = 0.85 * rcut_;
986 +          sprintf(painCave.errMsg,
987 +                  "SimCreator Warning: No value was set for the switchingRadius.\n"
988 +                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
989 +                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
990 +        painCave.isFatal = 0;
991 +        simError();
992 +        } else {
993 +          rsw_ = rcut_;
994 +          sprintf(painCave.errMsg,
995 +                  "SimCreator Warning: No value was set for the switchingRadius.\n"
996 +                  "\tOOPSE will use the same value as the cutoffRadius.\n"
997 +                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
998 +          painCave.isFatal = 0;
999 +          simError();
1000 +        }
1001 +      }
1002 +      
1003 +      notifyFortranCutoffs(&rcut_, &rsw_);
1004 +      
1005 +    } else {
1006 +      
1007 +      // For electrostatic atoms, we'll assume a large safe value:
1008 +      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1009 +        sprintf(painCave.errMsg,
1010 +                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1011 +                "\tOOPSE will use a default value of 15.0 angstroms"
1012 +                "\tfor the cutoffRadius.\n");
1013 +        painCave.isFatal = 0;
1014 +        simError();
1015 +        rcut_ = 15.0;
1016 +      
1017 +        if (simParams_->haveElectrostaticSummationMethod()) {
1018 +          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1019 +          toUpper(myMethod);
1020 +          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1021 +            if (simParams_->haveSwitchingRadius()){
1022 +              sprintf(painCave.errMsg,
1023 +                      "SimInfo Warning: A value was set for the switchingRadius\n"
1024 +                      "\teven though the electrostaticSummationMethod was\n"
1025 +                      "\tset to %s\n", myMethod.c_str());
1026 +              painCave.isFatal = 1;
1027 +              simError();            
1028 +            }
1029 +          }
1030 +        }
1031 +      
1032 +        if (simParams_->haveSwitchingRadius()){
1033 +          rsw_ = simParams_->getSwitchingRadius();
1034 +        } else {        
1035 +          sprintf(painCave.errMsg,
1036 +                  "SimCreator Warning: No value was set for switchingRadius.\n"
1037 +                  "\tOOPSE will use a default value of\n"
1038 +                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1039 +          painCave.isFatal = 0;
1040 +          simError();
1041 +          rsw_ = 0.85 * rcut_;
1042 +        }
1043 +        notifyFortranCutoffs(&rcut_, &rsw_);
1044 +      } else {
1045 +        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1046 +        // We'll punt and let fortran figure out the cutoffs later.
1047 +        
1048 +        notifyFortranYouAreOnYourOwn();
1049 +
1050 +      }
1051 +    }
1052    }
1053  
1054 < }
1054 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1055 >    
1056 >    int errorOut;
1057 >    int esm =  NONE;
1058 >    int sm = UNDAMPED;
1059 >    double alphaVal;
1060 >    double dielectric;
1061 >
1062 >    errorOut = isError;
1063 >    alphaVal = simParams_->getDampingAlpha();
1064 >    dielectric = simParams_->getDielectric();
1065 >
1066 >    if (simParams_->haveElectrostaticSummationMethod()) {
1067 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1068 >      toUpper(myMethod);
1069 >      if (myMethod == "NONE") {
1070 >        esm = NONE;
1071 >      } else {
1072 >        if (myMethod == "SWITCHING_FUNCTION") {
1073 >          esm = SWITCHING_FUNCTION;
1074 >        } else {
1075 >          if (myMethod == "SHIFTED_POTENTIAL") {
1076 >            esm = SHIFTED_POTENTIAL;
1077 >          } else {
1078 >            if (myMethod == "SHIFTED_FORCE") {            
1079 >              esm = SHIFTED_FORCE;
1080 >            } else {
1081 >              if (myMethod == "REACTION_FIELD") {            
1082 >                esm = REACTION_FIELD;
1083 >              } else {
1084 >                // throw error        
1085 >                sprintf( painCave.errMsg,
1086 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1087 >                         "\t(Input file specified %s .)\n"
1088 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1089 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1090 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1091 >                painCave.isFatal = 1;
1092 >                simError();
1093 >              }    
1094 >            }          
1095 >          }
1096 >        }
1097 >      }
1098 >    }
1099 >    
1100 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1101 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1102 >      toUpper(myScreen);
1103 >      if (myScreen == "UNDAMPED") {
1104 >        sm = UNDAMPED;
1105 >      } else {
1106 >        if (myScreen == "DAMPED") {
1107 >          sm = DAMPED;
1108 >          if (!simParams_->haveDampingAlpha()) {
1109 >            //throw error
1110 >            sprintf( painCave.errMsg,
1111 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1112 >                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1113 >            painCave.isFatal = 0;
1114 >            simError();
1115 >          }
1116 >        } else {
1117 >          // throw error        
1118 >          sprintf( painCave.errMsg,
1119 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1120 >                   "\t(Input file specified %s .)\n"
1121 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1122 >                   "or \"damped\".\n", myScreen.c_str() );
1123 >          painCave.isFatal = 1;
1124 >          simError();
1125 >        }
1126 >      }
1127 >    }
1128 >    
1129 >    // let's pass some summation method variables to fortran
1130 >    setElectrostaticSummationMethod( &esm );
1131 >    setFortranElectrostaticMethod( &esm );
1132 >    setScreeningMethod( &sm );
1133 >    setDampingAlpha( &alphaVal );
1134 >    setReactionFieldDielectric( &dielectric );
1135 >    initFortranFF( &errorOut );
1136 >  }
1137 >
1138 >  void SimInfo::setupSwitchingFunction() {    
1139 >    int ft = CUBIC;
1140 >
1141 >    if (simParams_->haveSwitchingFunctionType()) {
1142 >      std::string funcType = simParams_->getSwitchingFunctionType();
1143 >      toUpper(funcType);
1144 >      if (funcType == "CUBIC") {
1145 >        ft = CUBIC;
1146 >      } else {
1147 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1148 >          ft = FIFTH_ORDER_POLY;
1149 >        } else {
1150 >          // throw error        
1151 >          sprintf( painCave.errMsg,
1152 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1153 >          painCave.isFatal = 1;
1154 >          simError();
1155 >        }          
1156 >      }
1157 >    }
1158 >
1159 >    // send switching function notification to switcheroo
1160 >    setFunctionType(&ft);
1161 >
1162 >  }
1163 >
1164 >  void SimInfo::addProperty(GenericData* genData) {
1165 >    properties_.addProperty(genData);  
1166 >  }
1167 >
1168 >  void SimInfo::removeProperty(const std::string& propName) {
1169 >    properties_.removeProperty(propName);  
1170 >  }
1171 >
1172 >  void SimInfo::clearProperties() {
1173 >    properties_.clearProperties();
1174 >  }
1175 >
1176 >  std::vector<std::string> SimInfo::getPropertyNames() {
1177 >    return properties_.getPropertyNames();  
1178 >  }
1179 >      
1180 >  std::vector<GenericData*> SimInfo::getProperties() {
1181 >    return properties_.getProperties();
1182 >  }
1183 >
1184 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1185 >    return properties_.getPropertyByName(propName);
1186 >  }
1187 >
1188 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1189 >    if (sman_ == sman) {
1190 >      return;
1191 >    }    
1192 >    delete sman_;
1193 >    sman_ = sman;
1194 >
1195 >    Molecule* mol;
1196 >    RigidBody* rb;
1197 >    Atom* atom;
1198 >    SimInfo::MoleculeIterator mi;
1199 >    Molecule::RigidBodyIterator rbIter;
1200 >    Molecule::AtomIterator atomIter;;
1201 >
1202 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1203 >        
1204 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1205 >        atom->setSnapshotManager(sman_);
1206 >      }
1207 >        
1208 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1209 >        rb->setSnapshotManager(sman_);
1210 >      }
1211 >    }    
1212 >    
1213 >  }
1214 >
1215 >  Vector3d SimInfo::getComVel(){
1216 >    SimInfo::MoleculeIterator i;
1217 >    Molecule* mol;
1218 >
1219 >    Vector3d comVel(0.0);
1220 >    double totalMass = 0.0;
1221 >    
1222 >
1223 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1224 >      double mass = mol->getMass();
1225 >      totalMass += mass;
1226 >      comVel += mass * mol->getComVel();
1227 >    }  
1228 >
1229 > #ifdef IS_MPI
1230 >    double tmpMass = totalMass;
1231 >    Vector3d tmpComVel(comVel);    
1232 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1233 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1234 > #endif
1235 >
1236 >    comVel /= totalMass;
1237 >
1238 >    return comVel;
1239 >  }
1240 >
1241 >  Vector3d SimInfo::getCom(){
1242 >    SimInfo::MoleculeIterator i;
1243 >    Molecule* mol;
1244 >
1245 >    Vector3d com(0.0);
1246 >    double totalMass = 0.0;
1247 >    
1248 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1249 >      double mass = mol->getMass();
1250 >      totalMass += mass;
1251 >      com += mass * mol->getCom();
1252 >    }  
1253 >
1254 > #ifdef IS_MPI
1255 >    double tmpMass = totalMass;
1256 >    Vector3d tmpCom(com);    
1257 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1258 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1259 > #endif
1260 >
1261 >    com /= totalMass;
1262 >
1263 >    return com;
1264 >
1265 >  }        
1266 >
1267 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1268 >
1269 >    return o;
1270 >  }
1271 >  
1272 >  
1273 >   /*
1274 >   Returns center of mass and center of mass velocity in one function call.
1275 >   */
1276 >  
1277 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1278 >      SimInfo::MoleculeIterator i;
1279 >      Molecule* mol;
1280 >      
1281 >    
1282 >      double totalMass = 0.0;
1283 >    
1284 >
1285 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1286 >         double mass = mol->getMass();
1287 >         totalMass += mass;
1288 >         com += mass * mol->getCom();
1289 >         comVel += mass * mol->getComVel();          
1290 >      }  
1291 >      
1292 > #ifdef IS_MPI
1293 >      double tmpMass = totalMass;
1294 >      Vector3d tmpCom(com);  
1295 >      Vector3d tmpComVel(comVel);
1296 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1297 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1298 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1299 > #endif
1300 >      
1301 >      com /= totalMass;
1302 >      comVel /= totalMass;
1303 >   }        
1304 >  
1305 >   /*
1306 >   Return intertia tensor for entire system and angular momentum Vector.
1307 >
1308 >
1309 >       [  Ixx -Ixy  -Ixz ]
1310 >  J =| -Iyx  Iyy  -Iyz |
1311 >       [ -Izx -Iyz   Izz ]
1312 >    */
1313 >
1314 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1315 >      
1316 >
1317 >      double xx = 0.0;
1318 >      double yy = 0.0;
1319 >      double zz = 0.0;
1320 >      double xy = 0.0;
1321 >      double xz = 0.0;
1322 >      double yz = 0.0;
1323 >      Vector3d com(0.0);
1324 >      Vector3d comVel(0.0);
1325 >      
1326 >      getComAll(com, comVel);
1327 >      
1328 >      SimInfo::MoleculeIterator i;
1329 >      Molecule* mol;
1330 >      
1331 >      Vector3d thisq(0.0);
1332 >      Vector3d thisv(0.0);
1333 >
1334 >      double thisMass = 0.0;
1335 >    
1336 >      
1337 >      
1338 >  
1339 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1340 >        
1341 >         thisq = mol->getCom()-com;
1342 >         thisv = mol->getComVel()-comVel;
1343 >         thisMass = mol->getMass();
1344 >         // Compute moment of intertia coefficients.
1345 >         xx += thisq[0]*thisq[0]*thisMass;
1346 >         yy += thisq[1]*thisq[1]*thisMass;
1347 >         zz += thisq[2]*thisq[2]*thisMass;
1348 >        
1349 >         // compute products of intertia
1350 >         xy += thisq[0]*thisq[1]*thisMass;
1351 >         xz += thisq[0]*thisq[2]*thisMass;
1352 >         yz += thisq[1]*thisq[2]*thisMass;
1353 >            
1354 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1355 >            
1356 >      }  
1357 >      
1358 >      
1359 >      inertiaTensor(0,0) = yy + zz;
1360 >      inertiaTensor(0,1) = -xy;
1361 >      inertiaTensor(0,2) = -xz;
1362 >      inertiaTensor(1,0) = -xy;
1363 >      inertiaTensor(1,1) = xx + zz;
1364 >      inertiaTensor(1,2) = -yz;
1365 >      inertiaTensor(2,0) = -xz;
1366 >      inertiaTensor(2,1) = -yz;
1367 >      inertiaTensor(2,2) = xx + yy;
1368 >      
1369 > #ifdef IS_MPI
1370 >      Mat3x3d tmpI(inertiaTensor);
1371 >      Vector3d tmpAngMom;
1372 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1373 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1374 > #endif
1375 >              
1376 >      return;
1377 >   }
1378 >
1379 >   //Returns the angular momentum of the system
1380 >   Vector3d SimInfo::getAngularMomentum(){
1381 >      
1382 >      Vector3d com(0.0);
1383 >      Vector3d comVel(0.0);
1384 >      Vector3d angularMomentum(0.0);
1385 >      
1386 >      getComAll(com,comVel);
1387 >      
1388 >      SimInfo::MoleculeIterator i;
1389 >      Molecule* mol;
1390 >      
1391 >      Vector3d thisr(0.0);
1392 >      Vector3d thisp(0.0);
1393 >      
1394 >      double thisMass;
1395 >      
1396 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1397 >        thisMass = mol->getMass();
1398 >        thisr = mol->getCom()-com;
1399 >        thisp = (mol->getComVel()-comVel)*thisMass;
1400 >        
1401 >        angularMomentum += cross( thisr, thisp );
1402 >        
1403 >      }  
1404 >      
1405 > #ifdef IS_MPI
1406 >      Vector3d tmpAngMom;
1407 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1408 > #endif
1409 >      
1410 >      return angularMomentum;
1411 >   }
1412 >  
1413 >  
1414 > }//end namespace oopse
1415 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines