ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 1277 by gezelter, Mon Jul 14 12:35:58 2008 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53 < #include "SimInfo.hpp"
54 < #define __C
55 < #include "fSimulation.h"
56 < #include "simError.h"
53 > #include "brains/SimInfo.hpp"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/fCutoffPolicy.h"
58 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 > #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 > #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 > #include "UseTheForce/doForces_interface.h"
62 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
65 > #include "utils/MemoryUtils.hpp"
66 > #include "utils/simError.h"
67 > #include "selection/SelectionManager.hpp"
68 > #include "io/ForceFieldOptions.hpp"
69 > #include "UseTheForce/ForceField.hpp"
70  
13 #include "fortranWrappers.hpp"
71  
15 #include "MatVec3.h"
16
72   #ifdef IS_MPI
73 < #include "mpiSimulation.hpp"
74 < #endif
73 > #include "UseTheForce/mpiComponentPlan.h"
74 > #include "UseTheForce/DarkSide/simParallel_interface.h"
75 > #endif
76  
77 < inline double roundMe( double x ){
78 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
79 < }
80 <          
81 < inline double min( double a, double b ){
82 <  return (a < b ) ? a : b;
83 < }
77 > namespace oopse {
78 >  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 >    std::map<int, std::set<int> >::iterator i = container.find(index);
80 >    std::set<int> result;
81 >    if (i != container.end()) {
82 >        result = i->second;
83 >    }
84  
85 < SimInfo* currentInfo;
86 <
31 < SimInfo::SimInfo(){
32 <
33 <  n_constraints = 0;
34 <  nZconstraints = 0;
35 <  n_oriented = 0;
36 <  n_dipoles = 0;
37 <  ndf = 0;
38 <  ndfRaw = 0;
39 <  nZconstraints = 0;
40 <  the_integrator = NULL;
41 <  setTemp = 0;
42 <  thermalTime = 0.0;
43 <  currentTime = 0.0;
44 <  rCut = 0.0;
45 <  rSw = 0.0;
46 <
47 <  haveRcut = 0;
48 <  haveRsw = 0;
49 <  boxIsInit = 0;
85 >    return result;
86 >  }
87    
88 <  resetTime = 1e99;
88 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 >    forceField_(ff), simParams_(simParams),
90 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
94 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
95 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
96 >    calcBoxDipole_(false), useAtomicVirial_(true) {
97  
53  orthoRhombic = 0;
54  orthoTolerance = 1E-6;
55  useInitXSstate = true;
98  
99 <  usePBC = 0;
100 <  useLJ = 0;
101 <  useSticky = 0;
102 <  useCharges = 0;
103 <  useDipoles = 0;
104 <  useReactionField = 0;
105 <  useGB = 0;
64 <  useEAM = 0;
65 <  useSolidThermInt = 0;
66 <  useLiquidThermInt = 0;
99 >      MoleculeStamp* molStamp;
100 >      int nMolWithSameStamp;
101 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
102 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
103 >      CutoffGroupStamp* cgStamp;    
104 >      RigidBodyStamp* rbStamp;
105 >      int nRigidAtoms = 0;
106  
107 <  haveCutoffGroups = false;
107 >      std::vector<Component*> components = simParams->getComponents();
108 >      
109 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
110 >        molStamp = (*i)->getMoleculeStamp();
111 >        nMolWithSameStamp = (*i)->getNMol();
112 >        
113 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
114  
115 <  excludes = Exclude::Instance();
115 >        //calculate atoms in molecules
116 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
117  
118 <  myConfiguration = new SimState();
118 >        //calculate atoms in cutoff groups
119 >        int nAtomsInGroups = 0;
120 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
121 >        
122 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
123 >          cgStamp = molStamp->getCutoffGroupStamp(j);
124 >          nAtomsInGroups += cgStamp->getNMembers();
125 >        }
126  
127 <  has_minimizer = false;
75 <  the_minimizer =NULL;
127 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128  
129 <  ngroup = 0;
129 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
130  
131 <  wrapMeSimInfo( this );
132 < }
131 >        //calculate atoms in rigid bodies
132 >        int nAtomsInRigidBodies = 0;
133 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134 >        
135 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
136 >          rbStamp = molStamp->getRigidBodyStamp(j);
137 >          nAtomsInRigidBodies += rbStamp->getNMembers();
138 >        }
139  
140 +        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141 +        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
142 +        
143 +      }
144  
145 < SimInfo::~SimInfo(){
145 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
146 >      //group therefore the total number of cutoff groups in the system is
147 >      //equal to the total number of atoms minus number of atoms belong to
148 >      //cutoff group defined in meta-data file plus the number of cutoff
149 >      //groups defined in meta-data file
150 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
151  
152 <  delete myConfiguration;
153 <
154 <  map<string, GenericData*>::iterator i;
152 >      //every free atom (atom does not belong to rigid bodies) is an
153 >      //integrable object therefore the total number of integrable objects
154 >      //in the system is equal to the total number of atoms minus number of
155 >      //atoms belong to rigid body defined in meta-data file plus the number
156 >      //of rigid bodies defined in meta-data file
157 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
158 >                                                + nGlobalRigidBodies_;
159    
160 <  for(i = properties.begin(); i != properties.end(); i++)
161 <    delete (*i).second;
160 >      nGlobalMols_ = molStampIds_.size();
161 >      molToProcMap_.resize(nGlobalMols_);
162 >    }
163  
164 < }
164 >  SimInfo::~SimInfo() {
165 >    std::map<int, Molecule*>::iterator i;
166 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
167 >      delete i->second;
168 >    }
169 >    molecules_.clear();
170 >      
171 >    delete sman_;
172 >    delete simParams_;
173 >    delete forceField_;
174 >  }
175  
176 < void SimInfo::setBox(double newBox[3]) {
177 <  
178 <  int i, j;
179 <  double tempMat[3][3];
176 >  int SimInfo::getNGlobalConstraints() {
177 >    int nGlobalConstraints;
178 > #ifdef IS_MPI
179 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180 >                  MPI_COMM_WORLD);    
181 > #else
182 >    nGlobalConstraints =  nConstraints_;
183 > #endif
184 >    return nGlobalConstraints;
185 >  }
186  
187 <  for(i=0; i<3; i++)
188 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
187 >  bool SimInfo::addMolecule(Molecule* mol) {
188 >    MoleculeIterator i;
189  
190 <  tempMat[0][0] = newBox[0];
191 <  tempMat[1][1] = newBox[1];
104 <  tempMat[2][2] = newBox[2];
190 >    i = molecules_.find(mol->getGlobalIndex());
191 >    if (i == molecules_.end() ) {
192  
193 <  setBoxM( tempMat );
193 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
194 >        
195 >      nAtoms_ += mol->getNAtoms();
196 >      nBonds_ += mol->getNBonds();
197 >      nBends_ += mol->getNBends();
198 >      nTorsions_ += mol->getNTorsions();
199 >      nInversions_ += mol->getNInversions();
200 >      nRigidBodies_ += mol->getNRigidBodies();
201 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
202 >      nCutoffGroups_ += mol->getNCutoffGroups();
203 >      nConstraints_ += mol->getNConstraintPairs();
204  
205 < }
205 >      addExcludePairs(mol);
206 >        
207 >      return true;
208 >    } else {
209 >      return false;
210 >    }
211 >  }
212  
213 < void SimInfo::setBoxM( double theBox[3][3] ){
214 <  
215 <  int i, j;
113 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
114 <                         // ordering in the array is as follows:
115 <                         // [ 0 3 6 ]
116 <                         // [ 1 4 7 ]
117 <                         // [ 2 5 8 ]
118 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
213 >  bool SimInfo::removeMolecule(Molecule* mol) {
214 >    MoleculeIterator i;
215 >    i = molecules_.find(mol->getGlobalIndex());
216  
217 <  if( !boxIsInit ) boxIsInit = 1;
217 >    if (i != molecules_.end() ) {
218  
219 <  for(i=0; i < 3; i++)
220 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
221 <  
222 <  calcBoxL();
223 <  calcHmatInv();
224 <
225 <  for(i=0; i < 3; i++) {
226 <    for (j=0; j < 3; j++) {
227 <      FortranHmat[3*j + i] = Hmat[i][j];
228 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
229 <    }
133 <  }
219 >      assert(mol == i->second);
220 >        
221 >      nAtoms_ -= mol->getNAtoms();
222 >      nBonds_ -= mol->getNBonds();
223 >      nBends_ -= mol->getNBends();
224 >      nTorsions_ -= mol->getNTorsions();
225 >      nInversions_ -= mol->getNInversions();
226 >      nRigidBodies_ -= mol->getNRigidBodies();
227 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
228 >      nCutoffGroups_ -= mol->getNCutoffGroups();
229 >      nConstraints_ -= mol->getNConstraintPairs();
230  
231 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
232 <
137 < }
138 <
231 >      removeExcludePairs(mol);
232 >      molecules_.erase(mol->getGlobalIndex());
233  
234 < void SimInfo::getBoxM (double theBox[3][3]) {
234 >      delete mol;
235 >        
236 >      return true;
237 >    } else {
238 >      return false;
239 >    }
240  
142  int i, j;
143  for(i=0; i<3; i++)
144    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
145 }
241  
242 +  }    
243  
244 < void SimInfo::scaleBox(double scale) {
245 <  double theBox[3][3];
246 <  int i, j;
244 >        
245 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
246 >    i = molecules_.begin();
247 >    return i == molecules_.end() ? NULL : i->second;
248 >  }    
249  
250 <  // cerr << "Scaling box by " << scale << "\n";
250 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
251 >    ++i;
252 >    return i == molecules_.end() ? NULL : i->second;    
253 >  }
254  
154  for(i=0; i<3; i++)
155    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
255  
256 <  setBoxM(theBox);
256 >  void SimInfo::calcNdf() {
257 >    int ndf_local;
258 >    MoleculeIterator i;
259 >    std::vector<StuntDouble*>::iterator j;
260 >    Molecule* mol;
261 >    StuntDouble* integrableObject;
262  
263 < }
263 >    ndf_local = 0;
264 >    
265 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267 >           integrableObject = mol->nextIntegrableObject(j)) {
268  
269 < void SimInfo::calcHmatInv( void ) {
162 <  
163 <  int oldOrtho;
164 <  int i,j;
165 <  double smallDiag;
166 <  double tol;
167 <  double sanity[3][3];
269 >        ndf_local += 3;
270  
271 <  invertMat3( Hmat, HmatInv );
272 <
273 <  // check to see if Hmat is orthorhombic
274 <  
275 <  oldOrtho = orthoRhombic;
276 <
277 <  smallDiag = fabs(Hmat[0][0]);
278 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
179 <
180 <  orthoRhombic = 1;
181 <  
182 <  for (i = 0; i < 3; i++ ) {
183 <    for (j = 0 ; j < 3; j++) {
184 <      if (i != j) {
185 <        if (orthoRhombic) {
186 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
187 <        }        
271 >        if (integrableObject->isDirectional()) {
272 >          if (integrableObject->isLinear()) {
273 >            ndf_local += 2;
274 >          } else {
275 >            ndf_local += 3;
276 >          }
277 >        }
278 >            
279        }
280      }
190  }
191
192  if( oldOrtho != orthoRhombic ){
281      
282 <    if( orthoRhombic ) {
283 <      sprintf( painCave.errMsg,
196 <               "OOPSE is switching from the default Non-Orthorhombic\n"
197 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
198 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
217 <  }
218 < }
282 >    // n_constraints is local, so subtract them on each processor
283 >    ndf_local -= nConstraints_;
284  
285 < void SimInfo::calcBoxL( void ){
285 > #ifdef IS_MPI
286 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287 > #else
288 >    ndf_ = ndf_local;
289 > #endif
290  
291 <  double dx, dy, dz, dsq;
291 >    // nZconstraints_ is global, as are the 3 COM translations for the
292 >    // entire system:
293 >    ndf_ = ndf_ - 3 - nZconstraint_;
294  
295 <  // boxVol = Determinant of Hmat
295 >  }
296  
297 <  boxVol = matDet3( Hmat );
298 <
299 <  // boxLx
300 <  
301 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
302 <  dsq = dx*dx + dy*dy + dz*dz;
303 <  boxL[0] = sqrt( dsq );
304 <  //maxCutoff = 0.5 * boxL[0];
234 <
235 <  // boxLy
236 <  
237 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
238 <  dsq = dx*dx + dy*dy + dz*dz;
239 <  boxL[1] = sqrt( dsq );
240 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
241 <
242 <
243 <  // boxLz
244 <  
245 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
246 <  dsq = dx*dx + dy*dy + dz*dz;
247 <  boxL[2] = sqrt( dsq );
248 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
249 <
250 <  //calculate the max cutoff
251 <  maxCutoff =  calcMaxCutOff();
252 <  
253 <  checkCutOffs();
254 <
255 < }
256 <
257 <
258 < double SimInfo::calcMaxCutOff(){
259 <
260 <  double ri[3], rj[3], rk[3];
261 <  double rij[3], rjk[3], rki[3];
262 <  double minDist;
263 <
264 <  ri[0] = Hmat[0][0];
265 <  ri[1] = Hmat[1][0];
266 <  ri[2] = Hmat[2][0];
267 <
268 <  rj[0] = Hmat[0][1];
269 <  rj[1] = Hmat[1][1];
270 <  rj[2] = Hmat[2][1];
271 <
272 <  rk[0] = Hmat[0][2];
273 <  rk[1] = Hmat[1][2];
274 <  rk[2] = Hmat[2][2];
297 >  int SimInfo::getFdf() {
298 > #ifdef IS_MPI
299 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
300 > #else
301 >    fdf_ = fdf_local;
302 > #endif
303 >    return fdf_;
304 >  }
305      
306 <  crossProduct3(ri, rj, rij);
307 <  distXY = dotProduct3(rk,rij) / norm3(rij);
306 >  void SimInfo::calcNdfRaw() {
307 >    int ndfRaw_local;
308  
309 <  crossProduct3(rj,rk, rjk);
310 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
309 >    MoleculeIterator i;
310 >    std::vector<StuntDouble*>::iterator j;
311 >    Molecule* mol;
312 >    StuntDouble* integrableObject;
313  
314 <  crossProduct3(rk,ri, rki);
315 <  distZX = dotProduct3(rj,rki) / norm3(rki);
284 <
285 <  minDist = min(min(distXY, distYZ), distZX);
286 <  return minDist/2;
287 <  
288 < }
289 <
290 < void SimInfo::wrapVector( double thePos[3] ){
291 <
292 <  int i;
293 <  double scaled[3];
294 <
295 <  if( !orthoRhombic ){
296 <    // calc the scaled coordinates.
297 <  
298 <
299 <    matVecMul3(HmatInv, thePos, scaled);
314 >    // Raw degrees of freedom that we have to set
315 >    ndfRaw_local = 0;
316      
317 <    for(i=0; i<3; i++)
318 <      scaled[i] -= roundMe(scaled[i]);
319 <    
304 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
305 <    
306 <    matVecMul3(Hmat, scaled, thePos);
317 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319 >           integrableObject = mol->nextIntegrableObject(j)) {
320  
321 <  }
309 <  else{
310 <    // calc the scaled coordinates.
311 <    
312 <    for(i=0; i<3; i++)
313 <      scaled[i] = thePos[i]*HmatInv[i][i];
314 <    
315 <    // wrap the scaled coordinates
316 <    
317 <    for(i=0; i<3; i++)
318 <      scaled[i] -= roundMe(scaled[i]);
319 <    
320 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
321 <    
322 <    for(i=0; i<3; i++)
323 <      thePos[i] = scaled[i]*Hmat[i][i];
324 <  }
325 <    
326 < }
321 >        ndfRaw_local += 3;
322  
323 <
324 < int SimInfo::getNDF(){
325 <  int ndf_local;
326 <
327 <  ndf_local = 0;
328 <  
329 <  for(int i = 0; i < integrableObjects.size(); i++){
330 <    ndf_local += 3;
331 <    if (integrableObjects[i]->isDirectional()) {
337 <      if (integrableObjects[i]->isLinear())
338 <        ndf_local += 2;
339 <      else
340 <        ndf_local += 3;
323 >        if (integrableObject->isDirectional()) {
324 >          if (integrableObject->isLinear()) {
325 >            ndfRaw_local += 2;
326 >          } else {
327 >            ndfRaw_local += 3;
328 >          }
329 >        }
330 >            
331 >      }
332      }
333 +    
334 + #ifdef IS_MPI
335 +    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
336 + #else
337 +    ndfRaw_ = ndfRaw_local;
338 + #endif
339    }
340  
341 <  // n_constraints is local, so subtract them on each processor:
341 >  void SimInfo::calcNdfTrans() {
342 >    int ndfTrans_local;
343  
344 <  ndf_local -= n_constraints;
344 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
345  
346 +
347   #ifdef IS_MPI
348 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
348 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
349   #else
350 <  ndf = ndf_local;
350 >    ndfTrans_ = ndfTrans_local;
351   #endif
352  
353 <  // nZconstraints is global, as are the 3 COM translations for the
354 <  // entire system:
353 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
354 >
355 >  }
356  
357 <  ndf = ndf - 3 - nZconstraints;
357 >  void SimInfo::addExcludePairs(Molecule* mol) {
358 >    std::vector<Bond*>::iterator bondIter;
359 >    std::vector<Bend*>::iterator bendIter;
360 >    std::vector<Torsion*>::iterator torsionIter;
361 >    std::vector<Inversion*>::iterator inversionIter;
362 >    Bond* bond;
363 >    Bend* bend;
364 >    Torsion* torsion;
365 >    Inversion* inversion;
366 >    int a;
367 >    int b;
368 >    int c;
369 >    int d;
370  
371 <  return ndf;
360 < }
371 >    std::map<int, std::set<int> > atomGroups;
372  
373 < int SimInfo::getNDFraw() {
374 <  int ndfRaw_local;
373 >    Molecule::RigidBodyIterator rbIter;
374 >    RigidBody* rb;
375 >    Molecule::IntegrableObjectIterator ii;
376 >    StuntDouble* integrableObject;
377 >    
378 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
379 >           integrableObject = mol->nextIntegrableObject(ii)) {
380  
381 <  // Raw degrees of freedom that we have to set
382 <  ndfRaw_local = 0;
381 >      if (integrableObject->isRigidBody()) {
382 >          rb = static_cast<RigidBody*>(integrableObject);
383 >          std::vector<Atom*> atoms = rb->getAtoms();
384 >          std::set<int> rigidAtoms;
385 >          for (int i = 0; i < atoms.size(); ++i) {
386 >            rigidAtoms.insert(atoms[i]->getGlobalIndex());
387 >          }
388 >          for (int i = 0; i < atoms.size(); ++i) {
389 >            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
390 >          }      
391 >      } else {
392 >        std::set<int> oneAtomSet;
393 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
394 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
395 >      }
396 >    }  
397  
368  for(int i = 0; i < integrableObjects.size(); i++){
369    ndfRaw_local += 3;
370    if (integrableObjects[i]->isDirectional()) {
371       if (integrableObjects[i]->isLinear())
372        ndfRaw_local += 2;
373      else
374        ndfRaw_local += 3;
375    }
376  }
398      
399 < #ifdef IS_MPI
400 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
401 < #else
402 <  ndfRaw = ndfRaw_local;
403 < #endif
399 >    
400 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
401 >      a = bond->getAtomA()->getGlobalIndex();
402 >      b = bond->getAtomB()->getGlobalIndex();        
403 >      exclude_.addPair(a, b);
404 >    }
405  
406 <  return ndfRaw;
407 < }
406 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
407 >      a = bend->getAtomA()->getGlobalIndex();
408 >      b = bend->getAtomB()->getGlobalIndex();        
409 >      c = bend->getAtomC()->getGlobalIndex();
410 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
411 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
412 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
413  
414 < int SimInfo::getNDFtranslational() {
415 <  int ndfTrans_local;
414 >      exclude_.addPairs(rigidSetA, rigidSetB);
415 >      exclude_.addPairs(rigidSetA, rigidSetC);
416 >      exclude_.addPairs(rigidSetB, rigidSetC);
417 >      
418 >      //exclude_.addPair(a, b);
419 >      //exclude_.addPair(a, c);
420 >      //exclude_.addPair(b, c);        
421 >    }
422  
423 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
423 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
424 >      a = torsion->getAtomA()->getGlobalIndex();
425 >      b = torsion->getAtomB()->getGlobalIndex();        
426 >      c = torsion->getAtomC()->getGlobalIndex();        
427 >      d = torsion->getAtomD()->getGlobalIndex();        
428 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
429 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
430 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
431 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
432  
433 +      exclude_.addPairs(rigidSetA, rigidSetB);
434 +      exclude_.addPairs(rigidSetA, rigidSetC);
435 +      exclude_.addPairs(rigidSetA, rigidSetD);
436 +      exclude_.addPairs(rigidSetB, rigidSetC);
437 +      exclude_.addPairs(rigidSetB, rigidSetD);
438 +      exclude_.addPairs(rigidSetC, rigidSetD);
439  
440 < #ifdef IS_MPI
441 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
442 < #else
443 <  ndfTrans = ndfTrans_local;
444 < #endif
440 >      /*
441 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
442 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
443 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
444 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
445 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
446 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
447 >        
448 >      
449 >      exclude_.addPair(a, b);
450 >      exclude_.addPair(a, c);
451 >      exclude_.addPair(a, d);
452 >      exclude_.addPair(b, c);
453 >      exclude_.addPair(b, d);
454 >      exclude_.addPair(c, d);        
455 >      */
456 >    }
457  
458 <  ndfTrans = ndfTrans - 3 - nZconstraints;
458 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
459 >         inversion = mol->nextInversion(inversionIter)) {
460 >      a = inversion->getAtomA()->getGlobalIndex();
461 >      b = inversion->getAtomB()->getGlobalIndex();        
462 >      c = inversion->getAtomC()->getGlobalIndex();        
463 >      d = inversion->getAtomD()->getGlobalIndex();        
464 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
465 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
466 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
467 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
468  
469 <  return ndfTrans;
470 < }
469 >      exclude_.addPairs(rigidSetA, rigidSetB);
470 >      exclude_.addPairs(rigidSetA, rigidSetC);
471 >      exclude_.addPairs(rigidSetA, rigidSetD);
472 >      exclude_.addPairs(rigidSetB, rigidSetC);
473 >      exclude_.addPairs(rigidSetB, rigidSetD);
474 >      exclude_.addPairs(rigidSetC, rigidSetD);
475  
476 < int SimInfo::getTotIntegrableObjects() {
477 <  int nObjs_local;
478 <  int nObjs;
476 >      /*
477 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
478 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
479 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
480 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
481 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
482 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
483 >        
484 >      
485 >      exclude_.addPair(a, b);
486 >      exclude_.addPair(a, c);
487 >      exclude_.addPair(a, d);
488 >      exclude_.addPair(b, c);
489 >      exclude_.addPair(b, d);
490 >      exclude_.addPair(c, d);        
491 >      */
492 >    }
493  
494 <  nObjs_local =  integrableObjects.size();
494 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
495 >      std::vector<Atom*> atoms = rb->getAtoms();
496 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
497 >        for (int j = i + 1; j < atoms.size(); ++j) {
498 >          a = atoms[i]->getGlobalIndex();
499 >          b = atoms[j]->getGlobalIndex();
500 >          exclude_.addPair(a, b);
501 >        }
502 >      }
503 >    }        
504  
505 +  }
506  
507 < #ifdef IS_MPI
508 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
509 < #else
510 <  nObjs = nObjs_local;
511 < #endif
507 >  void SimInfo::removeExcludePairs(Molecule* mol) {
508 >    std::vector<Bond*>::iterator bondIter;
509 >    std::vector<Bend*>::iterator bendIter;
510 >    std::vector<Torsion*>::iterator torsionIter;
511 >    std::vector<Inversion*>::iterator inversionIter;
512 >    Bond* bond;
513 >    Bend* bend;
514 >    Torsion* torsion;
515 >    Inversion* inversion;
516 >    int a;
517 >    int b;
518 >    int c;
519 >    int d;
520  
521 +    std::map<int, std::set<int> > atomGroups;
522  
523 <  return nObjs;
524 < }
523 >    Molecule::RigidBodyIterator rbIter;
524 >    RigidBody* rb;
525 >    Molecule::IntegrableObjectIterator ii;
526 >    StuntDouble* integrableObject;
527 >    
528 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
529 >           integrableObject = mol->nextIntegrableObject(ii)) {
530  
531 < void SimInfo::refreshSim(){
532 <
533 <  simtype fInfo;
534 <  int isError;
535 <  int n_global;
536 <  int* excl;
537 <
538 <  fInfo.dielect = 0.0;
531 >      if (integrableObject->isRigidBody()) {
532 >          rb = static_cast<RigidBody*>(integrableObject);
533 >          std::vector<Atom*> atoms = rb->getAtoms();
534 >          std::set<int> rigidAtoms;
535 >          for (int i = 0; i < atoms.size(); ++i) {
536 >            rigidAtoms.insert(atoms[i]->getGlobalIndex());
537 >          }
538 >          for (int i = 0; i < atoms.size(); ++i) {
539 >            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
540 >          }      
541 >      } else {
542 >        std::set<int> oneAtomSet;
543 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
544 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
545 >      }
546 >    }  
547  
548 <  if( useDipoles ){
549 <    if( useReactionField )fInfo.dielect = dielectric;
548 >    
549 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
550 >      a = bond->getAtomA()->getGlobalIndex();
551 >      b = bond->getAtomB()->getGlobalIndex();        
552 >      exclude_.removePair(a, b);
553 >    }
554 >
555 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
556 >      a = bend->getAtomA()->getGlobalIndex();
557 >      b = bend->getAtomB()->getGlobalIndex();        
558 >      c = bend->getAtomC()->getGlobalIndex();
559 >
560 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
561 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
562 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
563 >
564 >      exclude_.removePairs(rigidSetA, rigidSetB);
565 >      exclude_.removePairs(rigidSetA, rigidSetC);
566 >      exclude_.removePairs(rigidSetB, rigidSetC);
567 >      
568 >      //exclude_.removePair(a, b);
569 >      //exclude_.removePair(a, c);
570 >      //exclude_.removePair(b, c);        
571 >    }
572 >
573 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
574 >      a = torsion->getAtomA()->getGlobalIndex();
575 >      b = torsion->getAtomB()->getGlobalIndex();        
576 >      c = torsion->getAtomC()->getGlobalIndex();        
577 >      d = torsion->getAtomD()->getGlobalIndex();        
578 >
579 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
580 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
581 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
582 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
583 >
584 >      exclude_.removePairs(rigidSetA, rigidSetB);
585 >      exclude_.removePairs(rigidSetA, rigidSetC);
586 >      exclude_.removePairs(rigidSetA, rigidSetD);
587 >      exclude_.removePairs(rigidSetB, rigidSetC);
588 >      exclude_.removePairs(rigidSetB, rigidSetD);
589 >      exclude_.removePairs(rigidSetC, rigidSetD);
590 >
591 >      /*
592 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
593 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
594 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
595 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
596 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
597 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
598 >
599 >      
600 >      exclude_.removePair(a, b);
601 >      exclude_.removePair(a, c);
602 >      exclude_.removePair(a, d);
603 >      exclude_.removePair(b, c);
604 >      exclude_.removePair(b, d);
605 >      exclude_.removePair(c, d);        
606 >      */
607 >    }
608 >
609 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL; inversion = mol->nextInversion(inversionIter)) {
610 >      a = inversion->getAtomA()->getGlobalIndex();
611 >      b = inversion->getAtomB()->getGlobalIndex();        
612 >      c = inversion->getAtomC()->getGlobalIndex();        
613 >      d = inversion->getAtomD()->getGlobalIndex();        
614 >
615 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
616 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
617 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
618 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
619 >
620 >      exclude_.removePairs(rigidSetA, rigidSetB);
621 >      exclude_.removePairs(rigidSetA, rigidSetC);
622 >      exclude_.removePairs(rigidSetA, rigidSetD);
623 >      exclude_.removePairs(rigidSetB, rigidSetC);
624 >      exclude_.removePairs(rigidSetB, rigidSetD);
625 >      exclude_.removePairs(rigidSetC, rigidSetD);
626 >
627 >      /*
628 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
629 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
630 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
631 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
632 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
633 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
634 >
635 >      
636 >      exclude_.removePair(a, b);
637 >      exclude_.removePair(a, c);
638 >      exclude_.removePair(a, d);
639 >      exclude_.removePair(b, c);
640 >      exclude_.removePair(b, d);
641 >      exclude_.removePair(c, d);        
642 >      */
643 >    }
644 >
645 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
646 >      std::vector<Atom*> atoms = rb->getAtoms();
647 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
648 >        for (int j = i + 1; j < atoms.size(); ++j) {
649 >          a = atoms[i]->getGlobalIndex();
650 >          b = atoms[j]->getGlobalIndex();
651 >          exclude_.removePair(a, b);
652 >        }
653 >      }
654 >    }        
655 >
656    }
657  
434  fInfo.SIM_uses_PBC = usePBC;
435  //fInfo.SIM_uses_LJ = 0;
436  fInfo.SIM_uses_LJ = useLJ;
437  fInfo.SIM_uses_sticky = useSticky;
438  //fInfo.SIM_uses_sticky = 0;
439  fInfo.SIM_uses_charges = useCharges;
440  fInfo.SIM_uses_dipoles = useDipoles;
441  //fInfo.SIM_uses_dipoles = 0;
442  fInfo.SIM_uses_RF = useReactionField;
443  //fInfo.SIM_uses_RF = 0;
444  fInfo.SIM_uses_GB = useGB;
445  fInfo.SIM_uses_EAM = useEAM;
658  
659 <  n_exclude = excludes->getSize();
660 <  excl = excludes->getFortranArray();
661 <  
659 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
660 >    int curStampId;
661 >
662 >    //index from 0
663 >    curStampId = moleculeStamps_.size();
664 >
665 >    moleculeStamps_.push_back(molStamp);
666 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
667 >  }
668 >
669 >  void SimInfo::update() {
670 >
671 >    setupSimType();
672 >
673   #ifdef IS_MPI
674 <  n_global = mpiSim->getNAtomsGlobal();
452 < #else
453 <  n_global = n_atoms;
674 >    setupFortranParallel();
675   #endif
455  
456  isError = 0;
457  
458  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
459  //it may not be a good idea to pass the address of first element in vector
460  //since c++ standard does not require vector to be stored continuously in meomory
461  //Most of the compilers will organize the memory of vector continuously
462  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
676  
677 <  if( isError ){
677 >    setupFortranSim();
678 >
679 >    //setup fortran force field
680 >    /** @deprecate */    
681 >    int isError = 0;
682      
683 <    sprintf( painCave.errMsg,
684 <             "There was an error setting the simulation information in fortran.\n" );
685 <    painCave.isFatal = 1;
686 <    painCave.severity = OOPSE_ERROR;
687 <    simError();
683 >    setupCutoff();
684 >    
685 >    setupElectrostaticSummationMethod( isError );
686 >    setupSwitchingFunction();
687 >    setupAccumulateBoxDipole();
688 >
689 >    if(isError){
690 >      sprintf( painCave.errMsg,
691 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
692 >      painCave.isFatal = 1;
693 >      simError();
694 >    }
695 >
696 >    calcNdf();
697 >    calcNdfRaw();
698 >    calcNdfTrans();
699 >
700 >    fortranInitialized_ = true;
701    }
474  
475 #ifdef IS_MPI
476  sprintf( checkPointMsg,
477           "succesfully sent the simulation information to fortran.\n");
478  MPIcheckPoint();
479 #endif // is_mpi
480  
481  this->ndf = this->getNDF();
482  this->ndfRaw = this->getNDFraw();
483  this->ndfTrans = this->getNDFtranslational();
484 }
702  
703 < void SimInfo::setDefaultRcut( double theRcut ){
704 <  
705 <  haveRcut = 1;
706 <  rCut = theRcut;
707 <  rList = rCut + 1.0;
708 <  
492 <  notifyFortranCutOffs( &rCut, &rSw, &rList );
493 < }
703 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
704 >    SimInfo::MoleculeIterator mi;
705 >    Molecule* mol;
706 >    Molecule::AtomIterator ai;
707 >    Atom* atom;
708 >    std::set<AtomType*> atomTypes;
709  
710 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
710 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
711  
712 <  rSw = theRsw;
713 <  setDefaultRcut( theRcut );
714 < }
712 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
713 >        atomTypes.insert(atom->getAtomType());
714 >      }
715 >        
716 >    }
717 >
718 >    return atomTypes;        
719 >  }
720 >
721 >  void SimInfo::setupSimType() {
722 >    std::set<AtomType*>::iterator i;
723 >    std::set<AtomType*> atomTypes;
724 >    atomTypes = getUniqueAtomTypes();
725 >    
726 >    int useLennardJones = 0;
727 >    int useElectrostatic = 0;
728 >    int useEAM = 0;
729 >    int useSC = 0;
730 >    int useCharge = 0;
731 >    int useDirectional = 0;
732 >    int useDipole = 0;
733 >    int useGayBerne = 0;
734 >    int useSticky = 0;
735 >    int useStickyPower = 0;
736 >    int useShape = 0;
737 >    int useFLARB = 0; //it is not in AtomType yet
738 >    int useDirectionalAtom = 0;    
739 >    int useElectrostatics = 0;
740 >    //usePBC and useRF are from simParams
741 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
742 >    int useRF;
743 >    int useSF;
744 >    int useSP;
745 >    int useBoxDipole;
746  
747 +    std::string myMethod;
748  
749 < void SimInfo::checkCutOffs( void ){
750 <  
751 <  if( boxIsInit ){
749 >    // set the useRF logical
750 >    useRF = 0;
751 >    useSF = 0;
752 >    useSP = 0;
753 >
754 >
755 >    if (simParams_->haveElectrostaticSummationMethod()) {
756 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
757 >      toUpper(myMethod);
758 >      if (myMethod == "REACTION_FIELD"){
759 >        useRF = 1;
760 >      } else if (myMethod == "SHIFTED_FORCE"){
761 >        useSF = 1;
762 >      } else if (myMethod == "SHIFTED_POTENTIAL"){
763 >        useSP = 1;
764 >      }
765 >    }
766      
767 <    //we need to check cutOffs against the box
768 <    
769 <    if( rCut > maxCutoff ){
509 <      sprintf( painCave.errMsg,
510 <               "cutoffRadius is too large for the current periodic box.\n"
511 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 <               "\tThis is larger than half of at least one of the\n"
513 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 <               "\n"
515 <               "\t[ %G %G %G ]\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n",
518 <               rCut, currentTime,
519 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 <      painCave.severity = OOPSE_ERROR;
523 <      painCave.isFatal = 1;
524 <      simError();
525 <    }    
526 <  } else {
527 <    // initialize this stuff before using it, OK?
528 <    sprintf( painCave.errMsg,
529 <             "Trying to check cutoffs without a box.\n"
530 <             "\tOOPSE should have better programmers than that.\n" );
531 <    painCave.severity = OOPSE_ERROR;
532 <    painCave.isFatal = 1;
533 <    simError();      
534 <  }
535 <  
536 < }
767 >    if (simParams_->haveAccumulateBoxDipole())
768 >      if (simParams_->getAccumulateBoxDipole())
769 >        useBoxDipole = 1;
770  
771 < void SimInfo::addProperty(GenericData* prop){
771 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
772  
773 <  map<string, GenericData*>::iterator result;
774 <  result = properties.find(prop->getID());
775 <  
776 <  //we can't simply use  properties[prop->getID()] = prop,
777 <  //it will cause memory leak if we already contain a propery which has the same name of prop
778 <  
779 <  if(result != properties.end()){
773 >    //loop over all of the atom types
774 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
775 >      useLennardJones |= (*i)->isLennardJones();
776 >      useElectrostatic |= (*i)->isElectrostatic();
777 >      useEAM |= (*i)->isEAM();
778 >      useSC |= (*i)->isSC();
779 >      useCharge |= (*i)->isCharge();
780 >      useDirectional |= (*i)->isDirectional();
781 >      useDipole |= (*i)->isDipole();
782 >      useGayBerne |= (*i)->isGayBerne();
783 >      useSticky |= (*i)->isSticky();
784 >      useStickyPower |= (*i)->isStickyPower();
785 >      useShape |= (*i)->isShape();
786 >    }
787 >
788 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
789 >      useDirectionalAtom = 1;
790 >    }
791 >
792 >    if (useCharge || useDipole) {
793 >      useElectrostatics = 1;
794 >    }
795 >
796 > #ifdef IS_MPI    
797 >    int temp;
798 >
799 >    temp = usePBC;
800 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
801 >
802 >    temp = useDirectionalAtom;
803 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
804 >
805 >    temp = useLennardJones;
806 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
807 >
808 >    temp = useElectrostatics;
809 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810 >
811 >    temp = useCharge;
812 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813 >
814 >    temp = useDipole;
815 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
816 >
817 >    temp = useSticky;
818 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
819 >
820 >    temp = useStickyPower;
821 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
822      
823 <    delete (*result).second;
824 <    (*result).second = prop;
550 <      
551 <  }
552 <  else{
823 >    temp = useGayBerne;
824 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
825  
826 <    properties[prop->getID()] = prop;
826 >    temp = useEAM;
827 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
828  
829 <  }
829 >    temp = useSC;
830 >    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
831      
832 < }
832 >    temp = useShape;
833 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
834  
835 < GenericData* SimInfo::getProperty(const string& propName){
836 <
562 <  map<string, GenericData*>::iterator result;
563 <  
564 <  //string lowerCaseName = ();
565 <  
566 <  result = properties.find(propName);
567 <  
568 <  if(result != properties.end())
569 <    return (*result).second;  
570 <  else  
571 <    return NULL;  
572 < }
835 >    temp = useFLARB;
836 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
837  
838 +    temp = useRF;
839 +    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
840  
841 < void SimInfo::getFortranGroupArrays(SimInfo* info,
842 <                                    vector<int>& FglobalGroupMembership,
577 <                                    vector<double>& mfact){
578 <  
579 <  Molecule* myMols;
580 <  Atom** myAtoms;
581 <  int numAtom;
582 <  double mtot;
583 <  int numMol;
584 <  int numCutoffGroups;
585 <  CutoffGroup* myCutoffGroup;
586 <  vector<CutoffGroup*>::iterator iterCutoff;
587 <  Atom* cutoffAtom;
588 <  vector<Atom*>::iterator iterAtom;
589 <  int atomIndex;
590 <  double totalMass;
591 <  
592 <  mfact.clear();
593 <  FglobalGroupMembership.clear();
594 <  
841 >    temp = useSF;
842 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
843  
844 <  // Fix the silly fortran indexing problem
845 < #ifdef IS_MPI
846 <  numAtom = mpiSim->getNAtomsGlobal();
847 < #else
848 <  numAtom = n_atoms;
844 >    temp = useSP;
845 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
846 >
847 >    temp = useBoxDipole;
848 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
849 >
850 >    temp = useAtomicVirial_;
851 >    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
852 >
853   #endif
602  for (int i = 0; i < numAtom; i++)
603    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604  
854  
855 <  myMols = info->molecules;
856 <  numMol = info->n_mol;
857 <  for(int i  = 0; i < numMol; i++){
858 <    numCutoffGroups = myMols[i].getNCutoffGroups();
859 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
860 <        myCutoffGroup != NULL;
861 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
855 >    fInfo_.SIM_uses_PBC = usePBC;    
856 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
857 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
858 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
859 >    fInfo_.SIM_uses_Charges = useCharge;
860 >    fInfo_.SIM_uses_Dipoles = useDipole;
861 >    fInfo_.SIM_uses_Sticky = useSticky;
862 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
863 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
864 >    fInfo_.SIM_uses_EAM = useEAM;
865 >    fInfo_.SIM_uses_SC = useSC;
866 >    fInfo_.SIM_uses_Shapes = useShape;
867 >    fInfo_.SIM_uses_FLARB = useFLARB;
868 >    fInfo_.SIM_uses_RF = useRF;
869 >    fInfo_.SIM_uses_SF = useSF;
870 >    fInfo_.SIM_uses_SP = useSP;
871 >    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
872 >    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
873 >  }
874  
875 <      totalMass = myCutoffGroup->getMass();
875 >  void SimInfo::setupFortranSim() {
876 >    int isError;
877 >    int nExclude;
878 >    std::vector<int> fortranGlobalGroupMembership;
879 >    
880 >    nExclude = exclude_.getSize();
881 >    isError = 0;
882 >
883 >    //globalGroupMembership_ is filled by SimCreator    
884 >    for (int i = 0; i < nGlobalAtoms_; i++) {
885 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
886 >    }
887 >
888 >    //calculate mass ratio of cutoff group
889 >    std::vector<RealType> mfact;
890 >    SimInfo::MoleculeIterator mi;
891 >    Molecule* mol;
892 >    Molecule::CutoffGroupIterator ci;
893 >    CutoffGroup* cg;
894 >    Molecule::AtomIterator ai;
895 >    Atom* atom;
896 >    RealType totalMass;
897 >
898 >    //to avoid memory reallocation, reserve enough space for mfact
899 >    mfact.reserve(getNCutoffGroups());
900 >    
901 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
902 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
903 >
904 >        totalMass = cg->getMass();
905 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
906 >          // Check for massless groups - set mfact to 1 if true
907 >          if (totalMass != 0)
908 >            mfact.push_back(atom->getMass()/totalMass);
909 >          else
910 >            mfact.push_back( 1.0 );
911 >        }
912 >
913 >      }      
914 >    }
915 >
916 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
917 >    std::vector<int> identArray;
918 >
919 >    //to avoid memory reallocation, reserve enough space identArray
920 >    identArray.reserve(getNAtoms());
921 >    
922 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
923 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
924 >        identArray.push_back(atom->getIdent());
925 >      }
926 >    }    
927 >
928 >    //fill molMembershipArray
929 >    //molMembershipArray is filled by SimCreator    
930 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
931 >    for (int i = 0; i < nGlobalAtoms_; i++) {
932 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
933 >    }
934 >    
935 >    //setup fortran simulation
936 >    int nGlobalExcludes = 0;
937 >    int* globalExcludes = NULL;
938 >    int* excludeList = exclude_.getExcludeList();
939 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
940 >                   &nExclude, excludeList , &nGlobalExcludes, globalExcludes,
941 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
942 >                   &fortranGlobalGroupMembership[0], &isError);
943 >    
944 >    if( isError ){
945        
946 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
947 <          cutoffAtom != NULL;
948 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
949 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
950 <      }  
946 >      sprintf( painCave.errMsg,
947 >               "There was an error setting the simulation information in fortran.\n" );
948 >      painCave.isFatal = 1;
949 >      painCave.severity = OOPSE_ERROR;
950 >      simError();
951 >    }
952 >    
953 >    
954 >    sprintf( checkPointMsg,
955 >             "succesfully sent the simulation information to fortran.\n");
956 >    
957 >    errorCheckPoint();
958 >    
959 >    // Setup number of neighbors in neighbor list if present
960 >    if (simParams_->haveNeighborListNeighbors()) {
961 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
962 >      setNeighbors(&nlistNeighbors);
963 >    }
964 >  
965 >
966 >  }
967 >
968 >
969 >  void SimInfo::setupFortranParallel() {
970 > #ifdef IS_MPI    
971 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
972 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
973 >    std::vector<int> localToGlobalCutoffGroupIndex;
974 >    SimInfo::MoleculeIterator mi;
975 >    Molecule::AtomIterator ai;
976 >    Molecule::CutoffGroupIterator ci;
977 >    Molecule* mol;
978 >    Atom* atom;
979 >    CutoffGroup* cg;
980 >    mpiSimData parallelData;
981 >    int isError;
982 >
983 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
984 >
985 >      //local index(index in DataStorge) of atom is important
986 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
987 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
988 >      }
989 >
990 >      //local index of cutoff group is trivial, it only depends on the order of travesing
991 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
992 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
993 >      }        
994 >        
995 >    }
996 >
997 >    //fill up mpiSimData struct
998 >    parallelData.nMolGlobal = getNGlobalMolecules();
999 >    parallelData.nMolLocal = getNMolecules();
1000 >    parallelData.nAtomsGlobal = getNGlobalAtoms();
1001 >    parallelData.nAtomsLocal = getNAtoms();
1002 >    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1003 >    parallelData.nGroupsLocal = getNCutoffGroups();
1004 >    parallelData.myNode = worldRank;
1005 >    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1006 >
1007 >    //pass mpiSimData struct and index arrays to fortran
1008 >    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1009 >                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
1010 >                    &localToGlobalCutoffGroupIndex[0], &isError);
1011 >
1012 >    if (isError) {
1013 >      sprintf(painCave.errMsg,
1014 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1015 >      painCave.isFatal = 1;
1016 >      simError();
1017 >    }
1018 >
1019 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
1020 >    errorCheckPoint();
1021 >
1022 > #endif
1023 >  }
1024 >
1025 >  void SimInfo::setupCutoff() {          
1026 >    
1027 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1028 >
1029 >    // Check the cutoff policy
1030 >    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1031 >
1032 >    // Set LJ shifting bools to false
1033 >    ljsp_ = false;
1034 >    ljsf_ = false;
1035 >
1036 >    std::string myPolicy;
1037 >    if (forceFieldOptions_.haveCutoffPolicy()){
1038 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
1039 >    }else if (simParams_->haveCutoffPolicy()) {
1040 >      myPolicy = simParams_->getCutoffPolicy();
1041 >    }
1042 >
1043 >    if (!myPolicy.empty()){
1044 >      toUpper(myPolicy);
1045 >      if (myPolicy == "MIX") {
1046 >        cp = MIX_CUTOFF_POLICY;
1047 >      } else {
1048 >        if (myPolicy == "MAX") {
1049 >          cp = MAX_CUTOFF_POLICY;
1050 >        } else {
1051 >          if (myPolicy == "TRADITIONAL") {            
1052 >            cp = TRADITIONAL_CUTOFF_POLICY;
1053 >          } else {
1054 >            // throw error        
1055 >            sprintf( painCave.errMsg,
1056 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1057 >            painCave.isFatal = 1;
1058 >            simError();
1059 >          }    
1060 >        }          
1061 >      }
1062 >    }          
1063 >    notifyFortranCutoffPolicy(&cp);
1064 >
1065 >    // Check the Skin Thickness for neighborlists
1066 >    RealType skin;
1067 >    if (simParams_->haveSkinThickness()) {
1068 >      skin = simParams_->getSkinThickness();
1069 >      notifyFortranSkinThickness(&skin);
1070 >    }            
1071 >        
1072 >    // Check if the cutoff was set explicitly:
1073 >    if (simParams_->haveCutoffRadius()) {
1074 >      rcut_ = simParams_->getCutoffRadius();
1075 >      if (simParams_->haveSwitchingRadius()) {
1076 >        rsw_  = simParams_->getSwitchingRadius();
1077 >      } else {
1078 >        if (fInfo_.SIM_uses_Charges |
1079 >            fInfo_.SIM_uses_Dipoles |
1080 >            fInfo_.SIM_uses_RF) {
1081 >          
1082 >          rsw_ = 0.85 * rcut_;
1083 >          sprintf(painCave.errMsg,
1084 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1085 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1086 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1087 >        painCave.isFatal = 0;
1088 >        simError();
1089 >        } else {
1090 >          rsw_ = rcut_;
1091 >          sprintf(painCave.errMsg,
1092 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1093 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1094 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1095 >          painCave.isFatal = 0;
1096 >          simError();
1097 >        }
1098 >      }
1099 >
1100 >      if (simParams_->haveElectrostaticSummationMethod()) {
1101 >        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1102 >        toUpper(myMethod);
1103 >        
1104 >        if (myMethod == "SHIFTED_POTENTIAL") {
1105 >          ljsp_ = true;
1106 >        } else if (myMethod == "SHIFTED_FORCE") {
1107 >          ljsf_ = true;
1108 >        }
1109 >      }
1110 >      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1111 >      
1112 >    } else {
1113 >      
1114 >      // For electrostatic atoms, we'll assume a large safe value:
1115 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1116 >        sprintf(painCave.errMsg,
1117 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1118 >                "\tOOPSE will use a default value of 15.0 angstroms"
1119 >                "\tfor the cutoffRadius.\n");
1120 >        painCave.isFatal = 0;
1121 >        simError();
1122 >        rcut_ = 15.0;
1123 >      
1124 >        if (simParams_->haveElectrostaticSummationMethod()) {
1125 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1126 >          toUpper(myMethod);
1127 >      
1128 >      // For the time being, we're tethering the LJ shifted behavior to the
1129 >      // electrostaticSummationMethod keyword options
1130 >          if (myMethod == "SHIFTED_POTENTIAL") {
1131 >            ljsp_ = true;
1132 >          } else if (myMethod == "SHIFTED_FORCE") {
1133 >            ljsf_ = true;
1134 >          }
1135 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1136 >            if (simParams_->haveSwitchingRadius()){
1137 >              sprintf(painCave.errMsg,
1138 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1139 >                      "\teven though the electrostaticSummationMethod was\n"
1140 >                      "\tset to %s\n", myMethod.c_str());
1141 >              painCave.isFatal = 1;
1142 >              simError();            
1143 >            }
1144 >          }
1145 >        }
1146 >      
1147 >        if (simParams_->haveSwitchingRadius()){
1148 >          rsw_ = simParams_->getSwitchingRadius();
1149 >        } else {        
1150 >          sprintf(painCave.errMsg,
1151 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1152 >                  "\tOOPSE will use a default value of\n"
1153 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1154 >          painCave.isFatal = 0;
1155 >          simError();
1156 >          rsw_ = 0.85 * rcut_;
1157 >        }
1158 >
1159 >        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1160 >
1161 >      } else {
1162 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1163 >        // We'll punt and let fortran figure out the cutoffs later.
1164 >        
1165 >        notifyFortranYouAreOnYourOwn();
1166 >
1167 >      }
1168      }
1169    }
1170  
1171 < }
1171 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1172 >    
1173 >    int errorOut;
1174 >    int esm =  NONE;
1175 >    int sm = UNDAMPED;
1176 >    RealType alphaVal;
1177 >    RealType dielectric;
1178 >    
1179 >    errorOut = isError;
1180 >
1181 >    if (simParams_->haveElectrostaticSummationMethod()) {
1182 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1183 >      toUpper(myMethod);
1184 >      if (myMethod == "NONE") {
1185 >        esm = NONE;
1186 >      } else {
1187 >        if (myMethod == "SWITCHING_FUNCTION") {
1188 >          esm = SWITCHING_FUNCTION;
1189 >        } else {
1190 >          if (myMethod == "SHIFTED_POTENTIAL") {
1191 >            esm = SHIFTED_POTENTIAL;
1192 >          } else {
1193 >            if (myMethod == "SHIFTED_FORCE") {            
1194 >              esm = SHIFTED_FORCE;
1195 >            } else {
1196 >              if (myMethod == "REACTION_FIELD") {
1197 >                esm = REACTION_FIELD;
1198 >                dielectric = simParams_->getDielectric();
1199 >                if (!simParams_->haveDielectric()) {
1200 >                  // throw warning
1201 >                  sprintf( painCave.errMsg,
1202 >                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1203 >                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1204 >                  painCave.isFatal = 0;
1205 >                  simError();
1206 >                }
1207 >              } else {
1208 >                // throw error        
1209 >                sprintf( painCave.errMsg,
1210 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1211 >                         "\t(Input file specified %s .)\n"
1212 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1213 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1214 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1215 >                painCave.isFatal = 1;
1216 >                simError();
1217 >              }    
1218 >            }          
1219 >          }
1220 >        }
1221 >      }
1222 >    }
1223 >    
1224 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1225 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1226 >      toUpper(myScreen);
1227 >      if (myScreen == "UNDAMPED") {
1228 >        sm = UNDAMPED;
1229 >      } else {
1230 >        if (myScreen == "DAMPED") {
1231 >          sm = DAMPED;
1232 >          if (!simParams_->haveDampingAlpha()) {
1233 >            // first set a cutoff dependent alpha value
1234 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1235 >            alphaVal = 0.5125 - rcut_* 0.025;
1236 >            // for values rcut > 20.5, alpha is zero
1237 >            if (alphaVal < 0) alphaVal = 0;
1238 >
1239 >            // throw warning
1240 >            sprintf( painCave.errMsg,
1241 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1242 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1243 >            painCave.isFatal = 0;
1244 >            simError();
1245 >          } else {
1246 >            alphaVal = simParams_->getDampingAlpha();
1247 >          }
1248 >          
1249 >        } else {
1250 >          // throw error        
1251 >          sprintf( painCave.errMsg,
1252 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1253 >                   "\t(Input file specified %s .)\n"
1254 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1255 >                   "or \"damped\".\n", myScreen.c_str() );
1256 >          painCave.isFatal = 1;
1257 >          simError();
1258 >        }
1259 >      }
1260 >    }
1261 >    
1262 >    // let's pass some summation method variables to fortran
1263 >    setElectrostaticSummationMethod( &esm );
1264 >    setFortranElectrostaticMethod( &esm );
1265 >    setScreeningMethod( &sm );
1266 >    setDampingAlpha( &alphaVal );
1267 >    setReactionFieldDielectric( &dielectric );
1268 >    initFortranFF( &errorOut );
1269 >  }
1270 >
1271 >  void SimInfo::setupSwitchingFunction() {    
1272 >    int ft = CUBIC;
1273 >
1274 >    if (simParams_->haveSwitchingFunctionType()) {
1275 >      std::string funcType = simParams_->getSwitchingFunctionType();
1276 >      toUpper(funcType);
1277 >      if (funcType == "CUBIC") {
1278 >        ft = CUBIC;
1279 >      } else {
1280 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1281 >          ft = FIFTH_ORDER_POLY;
1282 >        } else {
1283 >          // throw error        
1284 >          sprintf( painCave.errMsg,
1285 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1286 >          painCave.isFatal = 1;
1287 >          simError();
1288 >        }          
1289 >      }
1290 >    }
1291 >
1292 >    // send switching function notification to switcheroo
1293 >    setFunctionType(&ft);
1294 >
1295 >  }
1296 >
1297 >  void SimInfo::setupAccumulateBoxDipole() {    
1298 >
1299 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1300 >    if ( simParams_->haveAccumulateBoxDipole() )
1301 >      if ( simParams_->getAccumulateBoxDipole() ) {
1302 >        setAccumulateBoxDipole();
1303 >        calcBoxDipole_ = true;
1304 >      }
1305 >
1306 >  }
1307 >
1308 >  void SimInfo::addProperty(GenericData* genData) {
1309 >    properties_.addProperty(genData);  
1310 >  }
1311 >
1312 >  void SimInfo::removeProperty(const std::string& propName) {
1313 >    properties_.removeProperty(propName);  
1314 >  }
1315 >
1316 >  void SimInfo::clearProperties() {
1317 >    properties_.clearProperties();
1318 >  }
1319 >
1320 >  std::vector<std::string> SimInfo::getPropertyNames() {
1321 >    return properties_.getPropertyNames();  
1322 >  }
1323 >      
1324 >  std::vector<GenericData*> SimInfo::getProperties() {
1325 >    return properties_.getProperties();
1326 >  }
1327 >
1328 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1329 >    return properties_.getPropertyByName(propName);
1330 >  }
1331 >
1332 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1333 >    if (sman_ == sman) {
1334 >      return;
1335 >    }    
1336 >    delete sman_;
1337 >    sman_ = sman;
1338 >
1339 >    Molecule* mol;
1340 >    RigidBody* rb;
1341 >    Atom* atom;
1342 >    SimInfo::MoleculeIterator mi;
1343 >    Molecule::RigidBodyIterator rbIter;
1344 >    Molecule::AtomIterator atomIter;;
1345 >
1346 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1347 >        
1348 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1349 >        atom->setSnapshotManager(sman_);
1350 >      }
1351 >        
1352 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1353 >        rb->setSnapshotManager(sman_);
1354 >      }
1355 >    }    
1356 >    
1357 >  }
1358 >
1359 >  Vector3d SimInfo::getComVel(){
1360 >    SimInfo::MoleculeIterator i;
1361 >    Molecule* mol;
1362 >
1363 >    Vector3d comVel(0.0);
1364 >    RealType totalMass = 0.0;
1365 >    
1366 >
1367 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1368 >      RealType mass = mol->getMass();
1369 >      totalMass += mass;
1370 >      comVel += mass * mol->getComVel();
1371 >    }  
1372 >
1373 > #ifdef IS_MPI
1374 >    RealType tmpMass = totalMass;
1375 >    Vector3d tmpComVel(comVel);    
1376 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1377 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1378 > #endif
1379 >
1380 >    comVel /= totalMass;
1381 >
1382 >    return comVel;
1383 >  }
1384 >
1385 >  Vector3d SimInfo::getCom(){
1386 >    SimInfo::MoleculeIterator i;
1387 >    Molecule* mol;
1388 >
1389 >    Vector3d com(0.0);
1390 >    RealType totalMass = 0.0;
1391 >    
1392 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1393 >      RealType mass = mol->getMass();
1394 >      totalMass += mass;
1395 >      com += mass * mol->getCom();
1396 >    }  
1397 >
1398 > #ifdef IS_MPI
1399 >    RealType tmpMass = totalMass;
1400 >    Vector3d tmpCom(com);    
1401 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1402 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1403 > #endif
1404 >
1405 >    com /= totalMass;
1406 >
1407 >    return com;
1408 >
1409 >  }        
1410 >
1411 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1412 >
1413 >    return o;
1414 >  }
1415 >  
1416 >  
1417 >   /*
1418 >   Returns center of mass and center of mass velocity in one function call.
1419 >   */
1420 >  
1421 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1422 >      SimInfo::MoleculeIterator i;
1423 >      Molecule* mol;
1424 >      
1425 >    
1426 >      RealType totalMass = 0.0;
1427 >    
1428 >
1429 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1430 >         RealType mass = mol->getMass();
1431 >         totalMass += mass;
1432 >         com += mass * mol->getCom();
1433 >         comVel += mass * mol->getComVel();          
1434 >      }  
1435 >      
1436 > #ifdef IS_MPI
1437 >      RealType tmpMass = totalMass;
1438 >      Vector3d tmpCom(com);  
1439 >      Vector3d tmpComVel(comVel);
1440 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1441 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1442 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1443 > #endif
1444 >      
1445 >      com /= totalMass;
1446 >      comVel /= totalMass;
1447 >   }        
1448 >  
1449 >   /*
1450 >   Return intertia tensor for entire system and angular momentum Vector.
1451 >
1452 >
1453 >       [  Ixx -Ixy  -Ixz ]
1454 >  J =| -Iyx  Iyy  -Iyz |
1455 >       [ -Izx -Iyz   Izz ]
1456 >    */
1457 >
1458 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1459 >      
1460 >
1461 >      RealType xx = 0.0;
1462 >      RealType yy = 0.0;
1463 >      RealType zz = 0.0;
1464 >      RealType xy = 0.0;
1465 >      RealType xz = 0.0;
1466 >      RealType yz = 0.0;
1467 >      Vector3d com(0.0);
1468 >      Vector3d comVel(0.0);
1469 >      
1470 >      getComAll(com, comVel);
1471 >      
1472 >      SimInfo::MoleculeIterator i;
1473 >      Molecule* mol;
1474 >      
1475 >      Vector3d thisq(0.0);
1476 >      Vector3d thisv(0.0);
1477 >
1478 >      RealType thisMass = 0.0;
1479 >    
1480 >      
1481 >      
1482 >  
1483 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1484 >        
1485 >         thisq = mol->getCom()-com;
1486 >         thisv = mol->getComVel()-comVel;
1487 >         thisMass = mol->getMass();
1488 >         // Compute moment of intertia coefficients.
1489 >         xx += thisq[0]*thisq[0]*thisMass;
1490 >         yy += thisq[1]*thisq[1]*thisMass;
1491 >         zz += thisq[2]*thisq[2]*thisMass;
1492 >        
1493 >         // compute products of intertia
1494 >         xy += thisq[0]*thisq[1]*thisMass;
1495 >         xz += thisq[0]*thisq[2]*thisMass;
1496 >         yz += thisq[1]*thisq[2]*thisMass;
1497 >            
1498 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1499 >            
1500 >      }  
1501 >      
1502 >      
1503 >      inertiaTensor(0,0) = yy + zz;
1504 >      inertiaTensor(0,1) = -xy;
1505 >      inertiaTensor(0,2) = -xz;
1506 >      inertiaTensor(1,0) = -xy;
1507 >      inertiaTensor(1,1) = xx + zz;
1508 >      inertiaTensor(1,2) = -yz;
1509 >      inertiaTensor(2,0) = -xz;
1510 >      inertiaTensor(2,1) = -yz;
1511 >      inertiaTensor(2,2) = xx + yy;
1512 >      
1513 > #ifdef IS_MPI
1514 >      Mat3x3d tmpI(inertiaTensor);
1515 >      Vector3d tmpAngMom;
1516 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1517 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1518 > #endif
1519 >              
1520 >      return;
1521 >   }
1522 >
1523 >   //Returns the angular momentum of the system
1524 >   Vector3d SimInfo::getAngularMomentum(){
1525 >      
1526 >      Vector3d com(0.0);
1527 >      Vector3d comVel(0.0);
1528 >      Vector3d angularMomentum(0.0);
1529 >      
1530 >      getComAll(com,comVel);
1531 >      
1532 >      SimInfo::MoleculeIterator i;
1533 >      Molecule* mol;
1534 >      
1535 >      Vector3d thisr(0.0);
1536 >      Vector3d thisp(0.0);
1537 >      
1538 >      RealType thisMass;
1539 >      
1540 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1541 >        thisMass = mol->getMass();
1542 >        thisr = mol->getCom()-com;
1543 >        thisp = (mol->getComVel()-comVel)*thisMass;
1544 >        
1545 >        angularMomentum += cross( thisr, thisp );
1546 >        
1547 >      }  
1548 >      
1549 > #ifdef IS_MPI
1550 >      Vector3d tmpAngMom;
1551 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1552 > #endif
1553 >      
1554 >      return angularMomentum;
1555 >   }
1556 >  
1557 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1558 >    return IOIndexToIntegrableObject.at(index);
1559 >  }
1560 >  
1561 >  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1562 >    IOIndexToIntegrableObject= v;
1563 >  }
1564 >
1565 >  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1566 >     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1567 >     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1568 >     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1569 >  */
1570 >  void SimInfo::getGyrationalVolume(RealType &volume){
1571 >    Mat3x3d intTensor;
1572 >    RealType det;
1573 >    Vector3d dummyAngMom;
1574 >    RealType sysconstants;
1575 >    RealType geomCnst;
1576 >
1577 >    geomCnst = 3.0/2.0;
1578 >    /* Get the inertial tensor and angular momentum for free*/
1579 >    getInertiaTensor(intTensor,dummyAngMom);
1580 >    
1581 >    det = intTensor.determinant();
1582 >    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1583 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1584 >    return;
1585 >  }
1586 >
1587 >  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1588 >    Mat3x3d intTensor;
1589 >    Vector3d dummyAngMom;
1590 >    RealType sysconstants;
1591 >    RealType geomCnst;
1592 >
1593 >    geomCnst = 3.0/2.0;
1594 >    /* Get the inertial tensor and angular momentum for free*/
1595 >    getInertiaTensor(intTensor,dummyAngMom);
1596 >    
1597 >    detI = intTensor.determinant();
1598 >    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1599 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1600 >    return;
1601 >  }
1602 > /*
1603 >   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1604 >      assert( v.size() == nAtoms_ + nRigidBodies_);
1605 >      sdByGlobalIndex_ = v;
1606 >    }
1607 >
1608 >    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1609 >      //assert(index < nAtoms_ + nRigidBodies_);
1610 >      return sdByGlobalIndex_.at(index);
1611 >    }  
1612 > */  
1613 > }//end namespace oopse
1614 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines