ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 143 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
Revision 1290 by cli2, Wed Sep 10 19:51:45 2008 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53   #include "brains/SimInfo.hpp"
54 < #define __C
55 < #include "brains/fSimulation.h"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/fCutoffPolicy.h"
58 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 > #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 > #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 > #include "UseTheForce/doForces_interface.h"
62 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
65 > #include "utils/MemoryUtils.hpp"
66   #include "utils/simError.h"
67 < #include "UseTheForce/DarkSide/simulation_interface.h"
68 < #include "UseTheForce/notifyCutoffs_interface.h"
67 > #include "selection/SelectionManager.hpp"
68 > #include "io/ForceFieldOptions.hpp"
69 > #include "UseTheForce/ForceField.hpp"
70  
15 //#include "UseTheForce/fortranWrappers.hpp"
71  
17 #include "math/MatVec3.h"
18
72   #ifdef IS_MPI
73 < #include "brains/mpiSimulation.hpp"
74 < #endif
73 > #include "UseTheForce/mpiComponentPlan.h"
74 > #include "UseTheForce/DarkSide/simParallel_interface.h"
75 > #endif
76  
77 < inline double roundMe( double x ){
78 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
79 < }
80 <          
81 < inline double min( double a, double b ){
82 <  return (a < b ) ? a : b;
83 < }
77 > namespace oopse {
78 >  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 >    std::map<int, std::set<int> >::iterator i = container.find(index);
80 >    std::set<int> result;
81 >    if (i != container.end()) {
82 >        result = i->second;
83 >    }
84  
85 < SimInfo* currentInfo;
86 <
33 < SimInfo::SimInfo(){
34 <
35 <  n_constraints = 0;
36 <  nZconstraints = 0;
37 <  n_oriented = 0;
38 <  n_dipoles = 0;
39 <  ndf = 0;
40 <  ndfRaw = 0;
41 <  nZconstraints = 0;
42 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
48 <
49 <  haveRcut = 0;
50 <  haveRsw = 0;
51 <  boxIsInit = 0;
85 >    return result;
86 >  }
87    
88 <  resetTime = 1e99;
88 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 >    forceField_(ff), simParams_(simParams),
90 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
94 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
95 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
96 >    calcBoxDipole_(false), useAtomicVirial_(true) {
97  
55  orthoRhombic = 0;
56  orthoTolerance = 1E-6;
57  useInitXSstate = true;
98  
99 <  usePBC = 0;
100 <  useDirectionalAtoms = 0;
101 <  useLennardJones = 0;
102 <  useElectrostatics = 0;
103 <  useCharges = 0;
104 <  useDipoles = 0;
105 <  useSticky = 0;
66 <  useGayBerne = 0;
67 <  useEAM = 0;
68 <  useShapes = 0;
69 <  useFLARB = 0;
99 >      MoleculeStamp* molStamp;
100 >      int nMolWithSameStamp;
101 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
102 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
103 >      CutoffGroupStamp* cgStamp;    
104 >      RigidBodyStamp* rbStamp;
105 >      int nRigidAtoms = 0;
106  
107 <  useSolidThermInt = 0;
108 <  useLiquidThermInt = 0;
107 >      std::vector<Component*> components = simParams->getComponents();
108 >      
109 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
110 >        molStamp = (*i)->getMoleculeStamp();
111 >        nMolWithSameStamp = (*i)->getNMol();
112 >        
113 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
114  
115 <  haveCutoffGroups = false;
115 >        //calculate atoms in molecules
116 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
117  
118 <  excludes = Exclude::Instance();
118 >        //calculate atoms in cutoff groups
119 >        int nAtomsInGroups = 0;
120 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
121 >        
122 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
123 >          cgStamp = molStamp->getCutoffGroupStamp(j);
124 >          nAtomsInGroups += cgStamp->getNMembers();
125 >        }
126  
127 <  myConfiguration = new SimState();
127 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128  
129 <  has_minimizer = false;
81 <  the_minimizer =NULL;
129 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
130  
131 <  ngroup = 0;
131 >        //calculate atoms in rigid bodies
132 >        int nAtomsInRigidBodies = 0;
133 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134 >        
135 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
136 >          rbStamp = molStamp->getRigidBodyStamp(j);
137 >          nAtomsInRigidBodies += rbStamp->getNMembers();
138 >        }
139  
140 < }
140 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
142 >        
143 >      }
144  
145 +      //every free atom (atom does not belong to cutoff groups) is a cutoff
146 +      //group therefore the total number of cutoff groups in the system is
147 +      //equal to the total number of atoms minus number of atoms belong to
148 +      //cutoff group defined in meta-data file plus the number of cutoff
149 +      //groups defined in meta-data file
150 +      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
151  
152 < SimInfo::~SimInfo(){
153 <
154 <  delete myConfiguration;
155 <
156 <  map<string, GenericData*>::iterator i;
152 >      //every free atom (atom does not belong to rigid bodies) is an
153 >      //integrable object therefore the total number of integrable objects
154 >      //in the system is equal to the total number of atoms minus number of
155 >      //atoms belong to rigid body defined in meta-data file plus the number
156 >      //of rigid bodies defined in meta-data file
157 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
158 >                                                + nGlobalRigidBodies_;
159    
160 <  for(i = properties.begin(); i != properties.end(); i++)
161 <    delete (*i).second;
160 >      nGlobalMols_ = molStampIds_.size();
161 >      molToProcMap_.resize(nGlobalMols_);
162 >    }
163  
164 < }
164 >  SimInfo::~SimInfo() {
165 >    std::map<int, Molecule*>::iterator i;
166 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
167 >      delete i->second;
168 >    }
169 >    molecules_.clear();
170 >      
171 >    delete sman_;
172 >    delete simParams_;
173 >    delete forceField_;
174 >  }
175  
176 < void SimInfo::setBox(double newBox[3]) {
177 <  
178 <  int i, j;
179 <  double tempMat[3][3];
176 >  int SimInfo::getNGlobalConstraints() {
177 >    int nGlobalConstraints;
178 > #ifdef IS_MPI
179 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180 >                  MPI_COMM_WORLD);    
181 > #else
182 >    nGlobalConstraints =  nConstraints_;
183 > #endif
184 >    return nGlobalConstraints;
185 >  }
186  
187 <  for(i=0; i<3; i++)
188 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
187 >  bool SimInfo::addMolecule(Molecule* mol) {
188 >    MoleculeIterator i;
189  
190 <  tempMat[0][0] = newBox[0];
191 <  tempMat[1][1] = newBox[1];
109 <  tempMat[2][2] = newBox[2];
190 >    i = molecules_.find(mol->getGlobalIndex());
191 >    if (i == molecules_.end() ) {
192  
193 <  setBoxM( tempMat );
193 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
194 >        
195 >      nAtoms_ += mol->getNAtoms();
196 >      nBonds_ += mol->getNBonds();
197 >      nBends_ += mol->getNBends();
198 >      nTorsions_ += mol->getNTorsions();
199 >      nInversions_ += mol->getNInversions();
200 >      nRigidBodies_ += mol->getNRigidBodies();
201 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
202 >      nCutoffGroups_ += mol->getNCutoffGroups();
203 >      nConstraints_ += mol->getNConstraintPairs();
204  
205 < }
114 <
115 < void SimInfo::setBoxM( double theBox[3][3] ){
205 >      addInteractionPairs(mol);
206    
207 <  int i, j;
208 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
209 <                         // ordering in the array is as follows:
210 <                         // [ 0 3 6 ]
211 <                         // [ 1 4 7 ]
122 <                         // [ 2 5 8 ]
123 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
207 >      return true;
208 >    } else {
209 >      return false;
210 >    }
211 >  }
212  
213 <  if( !boxIsInit ) boxIsInit = 1;
213 >  bool SimInfo::removeMolecule(Molecule* mol) {
214 >    MoleculeIterator i;
215 >    i = molecules_.find(mol->getGlobalIndex());
216  
217 <  for(i=0; i < 3; i++)
128 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
129 <  
130 <  calcBoxL();
131 <  calcHmatInv();
217 >    if (i != molecules_.end() ) {
218  
219 <  for(i=0; i < 3; i++) {
220 <    for (j=0; j < 3; j++) {
221 <      FortranHmat[3*j + i] = Hmat[i][j];
222 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
223 <    }
224 <  }
219 >      assert(mol == i->second);
220 >        
221 >      nAtoms_ -= mol->getNAtoms();
222 >      nBonds_ -= mol->getNBonds();
223 >      nBends_ -= mol->getNBends();
224 >      nTorsions_ -= mol->getNTorsions();
225 >      nInversions_ -= mol->getNInversions();
226 >      nRigidBodies_ -= mol->getNRigidBodies();
227 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
228 >      nCutoffGroups_ -= mol->getNCutoffGroups();
229 >      nConstraints_ -= mol->getNConstraintPairs();
230  
231 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
232 <
142 < }
143 <
231 >      removeInteractionPairs(mol);
232 >      molecules_.erase(mol->getGlobalIndex());
233  
234 < void SimInfo::getBoxM (double theBox[3][3]) {
234 >      delete mol;
235 >        
236 >      return true;
237 >    } else {
238 >      return false;
239 >    }
240  
147  int i, j;
148  for(i=0; i<3; i++)
149    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
150 }
241  
242 +  }    
243  
244 < void SimInfo::scaleBox(double scale) {
245 <  double theBox[3][3];
246 <  int i, j;
244 >        
245 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
246 >    i = molecules_.begin();
247 >    return i == molecules_.end() ? NULL : i->second;
248 >  }    
249  
250 <  // cerr << "Scaling box by " << scale << "\n";
250 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
251 >    ++i;
252 >    return i == molecules_.end() ? NULL : i->second;    
253 >  }
254  
159  for(i=0; i<3; i++)
160    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
255  
256 <  setBoxM(theBox);
256 >  void SimInfo::calcNdf() {
257 >    int ndf_local;
258 >    MoleculeIterator i;
259 >    std::vector<StuntDouble*>::iterator j;
260 >    Molecule* mol;
261 >    StuntDouble* integrableObject;
262  
263 < }
263 >    ndf_local = 0;
264 >    
265 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267 >           integrableObject = mol->nextIntegrableObject(j)) {
268  
269 < void SimInfo::calcHmatInv( void ) {
167 <  
168 <  int oldOrtho;
169 <  int i,j;
170 <  double smallDiag;
171 <  double tol;
172 <  double sanity[3][3];
269 >        ndf_local += 3;
270  
271 <  invertMat3( Hmat, HmatInv );
272 <
273 <  // check to see if Hmat is orthorhombic
274 <  
275 <  oldOrtho = orthoRhombic;
276 <
277 <  smallDiag = fabs(Hmat[0][0]);
278 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
182 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
183 <  tol = smallDiag * orthoTolerance;
184 <
185 <  orthoRhombic = 1;
186 <  
187 <  for (i = 0; i < 3; i++ ) {
188 <    for (j = 0 ; j < 3; j++) {
189 <      if (i != j) {
190 <        if (orthoRhombic) {
191 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
192 <        }        
271 >        if (integrableObject->isDirectional()) {
272 >          if (integrableObject->isLinear()) {
273 >            ndf_local += 2;
274 >          } else {
275 >            ndf_local += 3;
276 >          }
277 >        }
278 >            
279        }
280      }
195  }
196
197  if( oldOrtho != orthoRhombic ){
281      
282 <    if( orthoRhombic ) {
283 <      sprintf( painCave.errMsg,
201 <               "OOPSE is switching from the default Non-Orthorhombic\n"
202 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
203 <               "\tThis is usually a good thing, but if you wan't the\n"
204 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
205 <               "\tvariable ( currently set to %G ) smaller.\n",
206 <               orthoTolerance);
207 <      painCave.severity = OOPSE_INFO;
208 <      simError();
209 <    }
210 <    else {
211 <      sprintf( painCave.errMsg,
212 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
213 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
214 <               "\tThis is usually because the box has deformed under\n"
215 <               "\tNPTf integration. If you wan't to live on the edge with\n"
216 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
217 <               "\tvariable ( currently set to %G ) larger.\n",
218 <               orthoTolerance);
219 <      painCave.severity = OOPSE_WARNING;
220 <      simError();
221 <    }
222 <  }
223 < }
282 >    // n_constraints is local, so subtract them on each processor
283 >    ndf_local -= nConstraints_;
284  
285 < void SimInfo::calcBoxL( void ){
285 > #ifdef IS_MPI
286 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287 > #else
288 >    ndf_ = ndf_local;
289 > #endif
290  
291 <  double dx, dy, dz, dsq;
291 >    // nZconstraints_ is global, as are the 3 COM translations for the
292 >    // entire system:
293 >    ndf_ = ndf_ - 3 - nZconstraint_;
294  
229  // boxVol = Determinant of Hmat
230
231  boxVol = matDet3( Hmat );
232
233  // boxLx
234  
235  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
236  dsq = dx*dx + dy*dy + dz*dz;
237  boxL[0] = sqrt( dsq );
238  //maxCutoff = 0.5 * boxL[0];
239
240  // boxLy
241  
242  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
243  dsq = dx*dx + dy*dy + dz*dz;
244  boxL[1] = sqrt( dsq );
245  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
246
247
248  // boxLz
249  
250  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
251  dsq = dx*dx + dy*dy + dz*dz;
252  boxL[2] = sqrt( dsq );
253  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
254
255  //calculate the max cutoff
256  maxCutoff =  calcMaxCutOff();
257  
258  checkCutOffs();
259
260 }
261
262
263 double SimInfo::calcMaxCutOff(){
264
265  double ri[3], rj[3], rk[3];
266  double rij[3], rjk[3], rki[3];
267  double minDist;
268
269  ri[0] = Hmat[0][0];
270  ri[1] = Hmat[1][0];
271  ri[2] = Hmat[2][0];
272
273  rj[0] = Hmat[0][1];
274  rj[1] = Hmat[1][1];
275  rj[2] = Hmat[2][1];
276
277  rk[0] = Hmat[0][2];
278  rk[1] = Hmat[1][2];
279  rk[2] = Hmat[2][2];
280    
281  crossProduct3(ri, rj, rij);
282  distXY = dotProduct3(rk,rij) / norm3(rij);
283
284  crossProduct3(rj,rk, rjk);
285  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
286
287  crossProduct3(rk,ri, rki);
288  distZX = dotProduct3(rj,rki) / norm3(rki);
289
290  minDist = min(min(distXY, distYZ), distZX);
291  return minDist/2;
292  
293 }
294
295 void SimInfo::wrapVector( double thePos[3] ){
296
297  int i;
298  double scaled[3];
299
300  if( !orthoRhombic ){
301    // calc the scaled coordinates.
302  
303
304    matVecMul3(HmatInv, thePos, scaled);
305    
306    for(i=0; i<3; i++)
307      scaled[i] -= roundMe(scaled[i]);
308    
309    // calc the wrapped real coordinates from the wrapped scaled coordinates
310    
311    matVecMul3(Hmat, scaled, thePos);
312
295    }
314  else{
315    // calc the scaled coordinates.
316    
317    for(i=0; i<3; i++)
318      scaled[i] = thePos[i]*HmatInv[i][i];
319    
320    // wrap the scaled coordinates
321    
322    for(i=0; i<3; i++)
323      scaled[i] -= roundMe(scaled[i]);
324    
325    // calc the wrapped real coordinates from the wrapped scaled coordinates
326    
327    for(i=0; i<3; i++)
328      thePos[i] = scaled[i]*Hmat[i][i];
329  }
330    
331 }
296  
297 <
334 < int SimInfo::getNDF(){
335 <  int ndf_local;
336 <
337 <  ndf_local = 0;
338 <  
339 <  for(int i = 0; i < integrableObjects.size(); i++){
340 <    ndf_local += 3;
341 <    if (integrableObjects[i]->isDirectional()) {
342 <      if (integrableObjects[i]->isLinear())
343 <        ndf_local += 2;
344 <      else
345 <        ndf_local += 3;
346 <    }
347 <  }
348 <
349 <  // n_constraints is local, so subtract them on each processor:
350 <
351 <  ndf_local -= n_constraints;
352 <
297 >  int SimInfo::getFdf() {
298   #ifdef IS_MPI
299 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
299 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
300   #else
301 <  ndf = ndf_local;
301 >    fdf_ = fdf_local;
302   #endif
303 +    return fdf_;
304 +  }
305 +    
306 +  void SimInfo::calcNdfRaw() {
307 +    int ndfRaw_local;
308  
309 <  // nZconstraints is global, as are the 3 COM translations for the
310 <  // entire system:
309 >    MoleculeIterator i;
310 >    std::vector<StuntDouble*>::iterator j;
311 >    Molecule* mol;
312 >    StuntDouble* integrableObject;
313  
314 <  ndf = ndf - 3 - nZconstraints;
314 >    // Raw degrees of freedom that we have to set
315 >    ndfRaw_local = 0;
316 >    
317 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319 >           integrableObject = mol->nextIntegrableObject(j)) {
320  
321 <  return ndf;
365 < }
321 >        ndfRaw_local += 3;
322  
323 < int SimInfo::getNDFraw() {
324 <  int ndfRaw_local;
325 <
326 <  // Raw degrees of freedom that we have to set
327 <  ndfRaw_local = 0;
328 <
329 <  for(int i = 0; i < integrableObjects.size(); i++){
330 <    ndfRaw_local += 3;
331 <    if (integrableObjects[i]->isDirectional()) {
376 <       if (integrableObjects[i]->isLinear())
377 <        ndfRaw_local += 2;
378 <      else
379 <        ndfRaw_local += 3;
323 >        if (integrableObject->isDirectional()) {
324 >          if (integrableObject->isLinear()) {
325 >            ndfRaw_local += 2;
326 >          } else {
327 >            ndfRaw_local += 3;
328 >          }
329 >        }
330 >            
331 >      }
332      }
381  }
333      
334   #ifdef IS_MPI
335 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
335 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
336   #else
337 <  ndfRaw = ndfRaw_local;
337 >    ndfRaw_ = ndfRaw_local;
338   #endif
339 +  }
340  
341 <  return ndfRaw;
342 < }
341 >  void SimInfo::calcNdfTrans() {
342 >    int ndfTrans_local;
343  
344 < int SimInfo::getNDFtranslational() {
393 <  int ndfTrans_local;
344 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
345  
395  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
346  
397
347   #ifdef IS_MPI
348 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
348 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
349   #else
350 <  ndfTrans = ndfTrans_local;
350 >    ndfTrans_ = ndfTrans_local;
351   #endif
352  
353 <  ndfTrans = ndfTrans - 3 - nZconstraints;
353 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
354 >
355 >  }
356  
357 <  return ndfTrans;
358 < }
357 >  void SimInfo::addInteractionPairs(Molecule* mol) {
358 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
359 >    std::vector<Bond*>::iterator bondIter;
360 >    std::vector<Bend*>::iterator bendIter;
361 >    std::vector<Torsion*>::iterator torsionIter;
362 >    std::vector<Inversion*>::iterator inversionIter;
363 >    Bond* bond;
364 >    Bend* bend;
365 >    Torsion* torsion;
366 >    Inversion* inversion;
367 >    int a;
368 >    int b;
369 >    int c;
370 >    int d;
371  
372 < int SimInfo::getTotIntegrableObjects() {
373 <  int nObjs_local;
374 <  int nObjs;
372 >    // atomGroups can be used to add special interaction maps between
373 >    // groups of atoms that are in two separate rigid bodies.
374 >    // However, most site-site interactions between two rigid bodies
375 >    // are probably not special, just the ones between the physically
376 >    // bonded atoms.  Interactions *within* a single rigid body should
377 >    // always be excluded.  These are done at the bottom of this
378 >    // function.
379  
380 <  nObjs_local =  integrableObjects.size();
380 >    std::map<int, std::set<int> > atomGroups;
381 >    Molecule::RigidBodyIterator rbIter;
382 >    RigidBody* rb;
383 >    Molecule::IntegrableObjectIterator ii;
384 >    StuntDouble* integrableObject;
385 >    
386 >    for (integrableObject = mol->beginIntegrableObject(ii);
387 >         integrableObject != NULL;
388 >         integrableObject = mol->nextIntegrableObject(ii)) {
389 >      
390 >      if (integrableObject->isRigidBody()) {
391 >        rb = static_cast<RigidBody*>(integrableObject);
392 >        std::vector<Atom*> atoms = rb->getAtoms();
393 >        std::set<int> rigidAtoms;
394 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
395 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
396 >        }
397 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
398 >          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
399 >        }      
400 >      } else {
401 >        std::set<int> oneAtomSet;
402 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
403 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
404 >      }
405 >    }  
406 >          
407 >    for (bond= mol->beginBond(bondIter); bond != NULL;
408 >         bond = mol->nextBond(bondIter)) {
409  
410 +      a = bond->getAtomA()->getGlobalIndex();
411 +      b = bond->getAtomB()->getGlobalIndex();  
412 +    
413 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
414 +        oneTwoInteractions_.addPair(a, b);
415 +      } else {
416 +        excludedInteractions_.addPair(a, b);
417 +      }
418 +    }
419  
420 < #ifdef IS_MPI
421 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
418 < #else
419 <  nObjs = nObjs_local;
420 < #endif
420 >    for (bend= mol->beginBend(bendIter); bend != NULL;
421 >         bend = mol->nextBend(bendIter)) {
422  
423 +      a = bend->getAtomA()->getGlobalIndex();
424 +      b = bend->getAtomB()->getGlobalIndex();        
425 +      c = bend->getAtomC()->getGlobalIndex();
426 +      
427 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
428 +        oneTwoInteractions_.addPair(a, b);      
429 +        oneTwoInteractions_.addPair(b, c);
430 +      } else {
431 +        excludedInteractions_.addPair(a, b);
432 +        excludedInteractions_.addPair(b, c);
433 +      }
434  
435 <  return nObjs;
436 < }
435 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
436 >        oneThreeInteractions_.addPair(a, c);      
437 >      } else {
438 >        excludedInteractions_.addPair(a, c);
439 >      }
440 >    }
441  
442 < void SimInfo::refreshSim(){
442 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
443 >         torsion = mol->nextTorsion(torsionIter)) {
444  
445 <  simtype fInfo;
446 <  int isError;
447 <  int n_global;
448 <  int* excl;
445 >      a = torsion->getAtomA()->getGlobalIndex();
446 >      b = torsion->getAtomB()->getGlobalIndex();        
447 >      c = torsion->getAtomC()->getGlobalIndex();        
448 >      d = torsion->getAtomD()->getGlobalIndex();      
449  
450 <  fInfo.dielect = 0.0;
450 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
451 >        oneTwoInteractions_.addPair(a, b);      
452 >        oneTwoInteractions_.addPair(b, c);
453 >        oneTwoInteractions_.addPair(c, d);
454 >      } else {
455 >        excludedInteractions_.addPair(a, b);
456 >        excludedInteractions_.addPair(b, c);
457 >        excludedInteractions_.addPair(c, d);
458 >      }
459  
460 <  if( useDipoles ){
461 <    if( useReactionField )fInfo.dielect = dielectric;
462 <  }
460 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
461 >        oneThreeInteractions_.addPair(a, c);      
462 >        oneThreeInteractions_.addPair(b, d);      
463 >      } else {
464 >        excludedInteractions_.addPair(a, c);
465 >        excludedInteractions_.addPair(b, d);
466 >      }
467  
468 <  fInfo.SIM_uses_PBC = usePBC;
468 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
469 >        oneFourInteractions_.addPair(a, d);      
470 >      } else {
471 >        excludedInteractions_.addPair(a, d);
472 >      }
473 >    }
474  
475 <  if (useSticky || useDipoles || useGayBerne || useShapes) {
476 <    useDirectionalAtoms = 1;
443 <    fInfo.SIM_uses_DirectionalAtoms = useDirectionalAtoms;
444 <  }
475 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
476 >         inversion = mol->nextInversion(inversionIter)) {
477  
478 <  fInfo.SIM_uses_LennardJones = useLennardJones;
478 >      a = inversion->getAtomA()->getGlobalIndex();
479 >      b = inversion->getAtomB()->getGlobalIndex();        
480 >      c = inversion->getAtomC()->getGlobalIndex();        
481 >      d = inversion->getAtomD()->getGlobalIndex();        
482  
483 <  if (useCharges || useDipoles) {
484 <    useElectrostatics = 1;
485 <    fInfo.SIM_uses_Electrostatics = useElectrostatics;
486 <  }
483 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
484 >        oneTwoInteractions_.addPair(a, b);      
485 >        oneTwoInteractions_.addPair(a, c);
486 >        oneTwoInteractions_.addPair(a, d);
487 >      } else {
488 >        excludedInteractions_.addPair(a, b);
489 >        excludedInteractions_.addPair(a, c);
490 >        excludedInteractions_.addPair(a, d);
491 >      }
492  
493 <  fInfo.SIM_uses_Charges = useCharges;
494 <  fInfo.SIM_uses_Dipoles = useDipoles;
495 <  fInfo.SIM_uses_Sticky = useSticky;
496 <  fInfo.SIM_uses_GayBerne = useGayBerne;
497 <  fInfo.SIM_uses_EAM = useEAM;
498 <  fInfo.SIM_uses_Shapes = useShapes;
499 <  fInfo.SIM_uses_FLARB = useFLARB;
500 <  fInfo.SIM_uses_RF = useReactionField;
493 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
494 >        oneThreeInteractions_.addPair(b, c);    
495 >        oneThreeInteractions_.addPair(b, d);    
496 >        oneThreeInteractions_.addPair(c, d);      
497 >      } else {
498 >        excludedInteractions_.addPair(b, c);
499 >        excludedInteractions_.addPair(b, d);
500 >        excludedInteractions_.addPair(c, d);
501 >      }
502 >    }
503  
504 <  n_exclude = excludes->getSize();
505 <  excl = excludes->getFortranArray();
504 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
505 >         rb = mol->nextRigidBody(rbIter)) {
506 >      std::vector<Atom*> atoms = rb->getAtoms();
507 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
508 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
509 >          a = atoms[i]->getGlobalIndex();
510 >          b = atoms[j]->getGlobalIndex();
511 >          excludedInteractions_.addPair(a, b);
512 >        }
513 >      }
514 >    }        
515 >
516 >  }
517 >
518 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
519 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
520 >    std::vector<Bond*>::iterator bondIter;
521 >    std::vector<Bend*>::iterator bendIter;
522 >    std::vector<Torsion*>::iterator torsionIter;
523 >    std::vector<Inversion*>::iterator inversionIter;
524 >    Bond* bond;
525 >    Bend* bend;
526 >    Torsion* torsion;
527 >    Inversion* inversion;
528 >    int a;
529 >    int b;
530 >    int c;
531 >    int d;
532 >
533 >    std::map<int, std::set<int> > atomGroups;
534 >    Molecule::RigidBodyIterator rbIter;
535 >    RigidBody* rb;
536 >    Molecule::IntegrableObjectIterator ii;
537 >    StuntDouble* integrableObject;
538 >    
539 >    for (integrableObject = mol->beginIntegrableObject(ii);
540 >         integrableObject != NULL;
541 >         integrableObject = mol->nextIntegrableObject(ii)) {
542 >      
543 >      if (integrableObject->isRigidBody()) {
544 >        rb = static_cast<RigidBody*>(integrableObject);
545 >        std::vector<Atom*> atoms = rb->getAtoms();
546 >        std::set<int> rigidAtoms;
547 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
548 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
549 >        }
550 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
551 >          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
552 >        }      
553 >      } else {
554 >        std::set<int> oneAtomSet;
555 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
556 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
557 >      }
558 >    }  
559 >
560 >    for (bond= mol->beginBond(bondIter); bond != NULL;
561 >         bond = mol->nextBond(bondIter)) {
562 >      
563 >      a = bond->getAtomA()->getGlobalIndex();
564 >      b = bond->getAtomB()->getGlobalIndex();  
565 >    
566 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
567 >        oneTwoInteractions_.removePair(a, b);
568 >      } else {
569 >        excludedInteractions_.removePair(a, b);
570 >      }
571 >    }
572 >
573 >    for (bend= mol->beginBend(bendIter); bend != NULL;
574 >         bend = mol->nextBend(bendIter)) {
575 >
576 >      a = bend->getAtomA()->getGlobalIndex();
577 >      b = bend->getAtomB()->getGlobalIndex();        
578 >      c = bend->getAtomC()->getGlobalIndex();
579 >      
580 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581 >        oneTwoInteractions_.removePair(a, b);      
582 >        oneTwoInteractions_.removePair(b, c);
583 >      } else {
584 >        excludedInteractions_.removePair(a, b);
585 >        excludedInteractions_.removePair(b, c);
586 >      }
587 >
588 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
589 >        oneThreeInteractions_.removePair(a, c);      
590 >      } else {
591 >        excludedInteractions_.removePair(a, c);
592 >      }
593 >    }
594 >
595 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
596 >         torsion = mol->nextTorsion(torsionIter)) {
597 >
598 >      a = torsion->getAtomA()->getGlobalIndex();
599 >      b = torsion->getAtomB()->getGlobalIndex();        
600 >      c = torsion->getAtomC()->getGlobalIndex();        
601 >      d = torsion->getAtomD()->getGlobalIndex();      
602    
603 < #ifdef IS_MPI
604 <  n_global = mpiSim->getNAtomsGlobal();
605 < #else
606 <  n_global = n_atoms;
607 < #endif
608 <  
609 <  isError = 0;
610 <  
611 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
612 <  //it may not be a good idea to pass the address of first element in vector
613 <  //since c++ standard does not require vector to be stored continuously in meomory
614 <  //Most of the compilers will organize the memory of vector continuously
615 <  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
616 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
617 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
603 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
604 >        oneTwoInteractions_.removePair(a, b);      
605 >        oneTwoInteractions_.removePair(b, c);
606 >        oneTwoInteractions_.removePair(c, d);
607 >      } else {
608 >        excludedInteractions_.removePair(a, b);
609 >        excludedInteractions_.removePair(b, c);
610 >        excludedInteractions_.removePair(c, d);
611 >      }
612 >
613 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
614 >        oneThreeInteractions_.removePair(a, c);      
615 >        oneThreeInteractions_.removePair(b, d);      
616 >      } else {
617 >        excludedInteractions_.removePair(a, c);
618 >        excludedInteractions_.removePair(b, d);
619 >      }
620 >
621 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
622 >        oneFourInteractions_.removePair(a, d);      
623 >      } else {
624 >        excludedInteractions_.removePair(a, d);
625 >      }
626 >    }
627 >
628 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
629 >         inversion = mol->nextInversion(inversionIter)) {
630 >
631 >      a = inversion->getAtomA()->getGlobalIndex();
632 >      b = inversion->getAtomB()->getGlobalIndex();        
633 >      c = inversion->getAtomC()->getGlobalIndex();        
634 >      d = inversion->getAtomD()->getGlobalIndex();        
635 >
636 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
637 >        oneTwoInteractions_.removePair(a, b);      
638 >        oneTwoInteractions_.removePair(a, c);
639 >        oneTwoInteractions_.removePair(a, d);
640 >      } else {
641 >        excludedInteractions_.removePair(a, b);
642 >        excludedInteractions_.removePair(a, c);
643 >        excludedInteractions_.removePair(a, d);
644 >      }
645 >
646 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
647 >        oneThreeInteractions_.removePair(b, c);    
648 >        oneThreeInteractions_.removePair(b, d);    
649 >        oneThreeInteractions_.removePair(c, d);      
650 >      } else {
651 >        excludedInteractions_.removePair(b, c);
652 >        excludedInteractions_.removePair(b, d);
653 >        excludedInteractions_.removePair(c, d);
654 >      }
655 >    }
656 >
657 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
658 >         rb = mol->nextRigidBody(rbIter)) {
659 >      std::vector<Atom*> atoms = rb->getAtoms();
660 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
661 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
662 >          a = atoms[i]->getGlobalIndex();
663 >          b = atoms[j]->getGlobalIndex();
664 >          excludedInteractions_.removePair(a, b);
665 >        }
666 >      }
667 >    }        
668 >    
669 >  }
670 >  
671 >  
672 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
673 >    int curStampId;
674 >    
675 >    //index from 0
676 >    curStampId = moleculeStamps_.size();
677 >
678 >    moleculeStamps_.push_back(molStamp);
679 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
680 >  }
681 >
682 >  void SimInfo::update() {
683 >
684 >    setupSimType();
685 >
686 > #ifdef IS_MPI
687 >    setupFortranParallel();
688 > #endif
689 >
690 >    setupFortranSim();
691 >
692 >    //setup fortran force field
693 >    /** @deprecate */    
694 >    int isError = 0;
695 >    
696 >    setupCutoff();
697 >    
698 >    setupElectrostaticSummationMethod( isError );
699 >    setupSwitchingFunction();
700 >    setupAccumulateBoxDipole();
701 >
702 >    if(isError){
703 >      sprintf( painCave.errMsg,
704 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
705 >      painCave.isFatal = 1;
706 >      simError();
707 >    }
708 >
709 >    calcNdf();
710 >    calcNdfRaw();
711 >    calcNdfTrans();
712 >
713 >    fortranInitialized_ = true;
714 >  }
715 >
716 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
717 >    SimInfo::MoleculeIterator mi;
718 >    Molecule* mol;
719 >    Molecule::AtomIterator ai;
720 >    Atom* atom;
721 >    std::set<AtomType*> atomTypes;
722 >
723 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
724 >
725 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
726 >        atomTypes.insert(atom->getAtomType());
727 >      }
728 >        
729 >    }
730 >
731 >    return atomTypes;        
732 >  }
733 >
734 >  void SimInfo::setupSimType() {
735 >    std::set<AtomType*>::iterator i;
736 >    std::set<AtomType*> atomTypes;
737 >    atomTypes = getUniqueAtomTypes();
738 >    
739 >    int useLennardJones = 0;
740 >    int useElectrostatic = 0;
741 >    int useEAM = 0;
742 >    int useSC = 0;
743 >    int useCharge = 0;
744 >    int useDirectional = 0;
745 >    int useDipole = 0;
746 >    int useGayBerne = 0;
747 >    int useSticky = 0;
748 >    int useStickyPower = 0;
749 >    int useShape = 0;
750 >    int useFLARB = 0; //it is not in AtomType yet
751 >    int useDirectionalAtom = 0;    
752 >    int useElectrostatics = 0;
753 >    //usePBC and useRF are from simParams
754 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
755 >    int useRF;
756 >    int useSF;
757 >    int useSP;
758 >    int useBoxDipole;
759 >
760 >    std::string myMethod;
761 >
762 >    // set the useRF logical
763 >    useRF = 0;
764 >    useSF = 0;
765 >    useSP = 0;
766 >
767 >
768 >    if (simParams_->haveElectrostaticSummationMethod()) {
769 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
770 >      toUpper(myMethod);
771 >      if (myMethod == "REACTION_FIELD"){
772 >        useRF = 1;
773 >      } else if (myMethod == "SHIFTED_FORCE"){
774 >        useSF = 1;
775 >      } else if (myMethod == "SHIFTED_POTENTIAL"){
776 >        useSP = 1;
777 >      }
778 >    }
779 >    
780 >    if (simParams_->haveAccumulateBoxDipole())
781 >      if (simParams_->getAccumulateBoxDipole())
782 >        useBoxDipole = 1;
783 >
784 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
785 >
786 >    //loop over all of the atom types
787 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
788 >      useLennardJones |= (*i)->isLennardJones();
789 >      useElectrostatic |= (*i)->isElectrostatic();
790 >      useEAM |= (*i)->isEAM();
791 >      useSC |= (*i)->isSC();
792 >      useCharge |= (*i)->isCharge();
793 >      useDirectional |= (*i)->isDirectional();
794 >      useDipole |= (*i)->isDipole();
795 >      useGayBerne |= (*i)->isGayBerne();
796 >      useSticky |= (*i)->isSticky();
797 >      useStickyPower |= (*i)->isStickyPower();
798 >      useShape |= (*i)->isShape();
799 >    }
800  
801 <  if( isError ){
802 <    
803 <    sprintf( painCave.errMsg,
484 <             "There was an error setting the simulation information in fortran.\n" );
485 <    painCave.isFatal = 1;
486 <    painCave.severity = OOPSE_ERROR;
487 <    simError();
488 <  }
489 <  
490 < #ifdef IS_MPI
491 <  sprintf( checkPointMsg,
492 <           "succesfully sent the simulation information to fortran.\n");
493 <  MPIcheckPoint();
494 < #endif // is_mpi
495 <  
496 <  this->ndf = this->getNDF();
497 <  this->ndfRaw = this->getNDFraw();
498 <  this->ndfTrans = this->getNDFtranslational();
499 < }
801 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
802 >      useDirectionalAtom = 1;
803 >    }
804  
805 < void SimInfo::setDefaultRcut( double theRcut ){
806 <  
807 <  haveRcut = 1;
504 <  rCut = theRcut;
505 <  rList = rCut + 1.0;
506 <  
507 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
508 < }
805 >    if (useCharge || useDipole) {
806 >      useElectrostatics = 1;
807 >    }
808  
809 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
809 > #ifdef IS_MPI    
810 >    int temp;
811  
812 <  rSw = theRsw;
813 <  setDefaultRcut( theRcut );
514 < }
812 >    temp = usePBC;
813 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
814  
815 +    temp = useDirectionalAtom;
816 +    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
817  
818 < void SimInfo::checkCutOffs( void ){
819 <  
519 <  if( boxIsInit ){
520 <    
521 <    //we need to check cutOffs against the box
522 <    
523 <    if( rCut > maxCutoff ){
524 <      sprintf( painCave.errMsg,
525 <               "cutoffRadius is too large for the current periodic box.\n"
526 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
527 <               "\tThis is larger than half of at least one of the\n"
528 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
529 <               "\n"
530 <               "\t[ %G %G %G ]\n"
531 <               "\t[ %G %G %G ]\n"
532 <               "\t[ %G %G %G ]\n",
533 <               rCut, currentTime,
534 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
535 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
536 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
537 <      painCave.severity = OOPSE_ERROR;
538 <      painCave.isFatal = 1;
539 <      simError();
540 <    }    
541 <  } else {
542 <    // initialize this stuff before using it, OK?
543 <    sprintf( painCave.errMsg,
544 <             "Trying to check cutoffs without a box.\n"
545 <             "\tOOPSE should have better programmers than that.\n" );
546 <    painCave.severity = OOPSE_ERROR;
547 <    painCave.isFatal = 1;
548 <    simError();      
549 <  }
550 <  
551 < }
818 >    temp = useLennardJones;
819 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
820  
821 < void SimInfo::addProperty(GenericData* prop){
821 >    temp = useElectrostatics;
822 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
823  
824 <  map<string, GenericData*>::iterator result;
825 <  result = properties.find(prop->getID());
826 <  
827 <  //we can't simply use  properties[prop->getID()] = prop,
828 <  //it will cause memory leak if we already contain a propery which has the same name of prop
829 <  
830 <  if(result != properties.end()){
824 >    temp = useCharge;
825 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
826 >
827 >    temp = useDipole;
828 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
829 >
830 >    temp = useSticky;
831 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
832 >
833 >    temp = useStickyPower;
834 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
835      
836 <    delete (*result).second;
837 <    (*result).second = prop;
565 <      
566 <  }
567 <  else{
836 >    temp = useGayBerne;
837 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
838  
839 <    properties[prop->getID()] = prop;
839 >    temp = useEAM;
840 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
841  
842 <  }
842 >    temp = useSC;
843 >    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
844      
845 < }
845 >    temp = useShape;
846 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
847  
848 < GenericData* SimInfo::getProperty(const string& propName){
849 <
577 <  map<string, GenericData*>::iterator result;
578 <  
579 <  //string lowerCaseName = ();
580 <  
581 <  result = properties.find(propName);
582 <  
583 <  if(result != properties.end())
584 <    return (*result).second;  
585 <  else  
586 <    return NULL;  
587 < }
848 >    temp = useFLARB;
849 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
850  
851 +    temp = useRF;
852 +    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
853  
854 < void SimInfo::getFortranGroupArrays(SimInfo* info,
855 <                                    vector<int>& FglobalGroupMembership,
592 <                                    vector<double>& mfact){
593 <  
594 <  Molecule* myMols;
595 <  Atom** myAtoms;
596 <  int numAtom;
597 <  double mtot;
598 <  int numMol;
599 <  int numCutoffGroups;
600 <  CutoffGroup* myCutoffGroup;
601 <  vector<CutoffGroup*>::iterator iterCutoff;
602 <  Atom* cutoffAtom;
603 <  vector<Atom*>::iterator iterAtom;
604 <  int atomIndex;
605 <  double totalMass;
606 <  
607 <  mfact.clear();
608 <  FglobalGroupMembership.clear();
609 <  
854 >    temp = useSF;
855 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
856  
857 <  // Fix the silly fortran indexing problem
858 < #ifdef IS_MPI
859 <  numAtom = mpiSim->getNAtomsGlobal();
860 < #else
861 <  numAtom = n_atoms;
857 >    temp = useSP;
858 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
859 >
860 >    temp = useBoxDipole;
861 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
862 >
863 >    temp = useAtomicVirial_;
864 >    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
865 >
866   #endif
617  for (int i = 0; i < numAtom; i++)
618    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
619  
867  
868 <  myMols = info->molecules;
869 <  numMol = info->n_mol;
870 <  for(int i  = 0; i < numMol; i++){
871 <    numCutoffGroups = myMols[i].getNCutoffGroups();
872 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
873 <        myCutoffGroup != NULL;
874 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
868 >    fInfo_.SIM_uses_PBC = usePBC;    
869 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
870 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
871 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
872 >    fInfo_.SIM_uses_Charges = useCharge;
873 >    fInfo_.SIM_uses_Dipoles = useDipole;
874 >    fInfo_.SIM_uses_Sticky = useSticky;
875 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
876 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
877 >    fInfo_.SIM_uses_EAM = useEAM;
878 >    fInfo_.SIM_uses_SC = useSC;
879 >    fInfo_.SIM_uses_Shapes = useShape;
880 >    fInfo_.SIM_uses_FLARB = useFLARB;
881 >    fInfo_.SIM_uses_RF = useRF;
882 >    fInfo_.SIM_uses_SF = useSF;
883 >    fInfo_.SIM_uses_SP = useSP;
884 >    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
885 >    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
886 >  }
887  
888 <      totalMass = myCutoffGroup->getMass();
888 >  void SimInfo::setupFortranSim() {
889 >    int isError;
890 >    int nExclude, nOneTwo, nOneThree, nOneFour;
891 >    std::vector<int> fortranGlobalGroupMembership;
892 >    
893 >    isError = 0;
894 >
895 >    //globalGroupMembership_ is filled by SimCreator    
896 >    for (int i = 0; i < nGlobalAtoms_; i++) {
897 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
898 >    }
899 >
900 >    //calculate mass ratio of cutoff group
901 >    std::vector<RealType> mfact;
902 >    SimInfo::MoleculeIterator mi;
903 >    Molecule* mol;
904 >    Molecule::CutoffGroupIterator ci;
905 >    CutoffGroup* cg;
906 >    Molecule::AtomIterator ai;
907 >    Atom* atom;
908 >    RealType totalMass;
909 >
910 >    //to avoid memory reallocation, reserve enough space for mfact
911 >    mfact.reserve(getNCutoffGroups());
912 >    
913 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
914 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
915 >
916 >        totalMass = cg->getMass();
917 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
918 >          // Check for massless groups - set mfact to 1 if true
919 >          if (totalMass != 0)
920 >            mfact.push_back(atom->getMass()/totalMass);
921 >          else
922 >            mfact.push_back( 1.0 );
923 >        }
924 >      }      
925 >    }
926 >
927 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
928 >    std::vector<int> identArray;
929 >
930 >    //to avoid memory reallocation, reserve enough space identArray
931 >    identArray.reserve(getNAtoms());
932 >    
933 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
934 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
935 >        identArray.push_back(atom->getIdent());
936 >      }
937 >    }    
938 >
939 >    //fill molMembershipArray
940 >    //molMembershipArray is filled by SimCreator    
941 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
942 >    for (int i = 0; i < nGlobalAtoms_; i++) {
943 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
944 >    }
945 >    
946 >    //setup fortran simulation
947 >
948 >    nExclude = excludedInteractions_.getSize();
949 >    nOneTwo = oneTwoInteractions_.getSize();
950 >    nOneThree = oneThreeInteractions_.getSize();
951 >    nOneFour = oneFourInteractions_.getSize();
952 >
953 >    std::cerr << "excludedInteractions contains: " << excludedInteractions_.getSize() << " pairs \n";
954 >    std::cerr << "oneTwoInteractions contains: " << oneTwoInteractions_.getSize() << " pairs \n";
955 >    std::cerr << "oneThreeInteractions contains: " << oneThreeInteractions_.getSize() << " pairs \n";
956 >    std::cerr << "oneFourInteractions contains: " << oneFourInteractions_.getSize() << " pairs \n";
957 >
958 >    int* excludeList = excludedInteractions_.getPairList();
959 >    int* oneTwoList = oneTwoInteractions_.getPairList();
960 >    int* oneThreeList = oneThreeInteractions_.getPairList();
961 >    int* oneFourList = oneFourInteractions_.getPairList();
962 >
963 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
964 >                   &nExclude, excludeList,
965 >                   &nOneTwo, oneTwoList,
966 >                   &nOneThree, oneThreeList,
967 >                   &nOneFour, oneFourList,
968 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
969 >                   &fortranGlobalGroupMembership[0], &isError);
970 >    
971 >    if( isError ){
972        
973 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
974 <          cutoffAtom != NULL;
975 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
976 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
977 <      }  
973 >      sprintf( painCave.errMsg,
974 >               "There was an error setting the simulation information in fortran.\n" );
975 >      painCave.isFatal = 1;
976 >      painCave.severity = OOPSE_ERROR;
977 >      simError();
978 >    }
979 >    
980 >    
981 >    sprintf( checkPointMsg,
982 >             "succesfully sent the simulation information to fortran.\n");
983 >    
984 >    errorCheckPoint();
985 >    
986 >    // Setup number of neighbors in neighbor list if present
987 >    if (simParams_->haveNeighborListNeighbors()) {
988 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
989 >      setNeighbors(&nlistNeighbors);
990 >    }
991 >  
992 >
993 >  }
994 >
995 >
996 >  void SimInfo::setupFortranParallel() {
997 > #ifdef IS_MPI    
998 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
999 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1000 >    std::vector<int> localToGlobalCutoffGroupIndex;
1001 >    SimInfo::MoleculeIterator mi;
1002 >    Molecule::AtomIterator ai;
1003 >    Molecule::CutoffGroupIterator ci;
1004 >    Molecule* mol;
1005 >    Atom* atom;
1006 >    CutoffGroup* cg;
1007 >    mpiSimData parallelData;
1008 >    int isError;
1009 >
1010 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
1011 >
1012 >      //local index(index in DataStorge) of atom is important
1013 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1014 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1015 >      }
1016 >
1017 >      //local index of cutoff group is trivial, it only depends on the order of travesing
1018 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1019 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1020 >      }        
1021 >        
1022 >    }
1023 >
1024 >    //fill up mpiSimData struct
1025 >    parallelData.nMolGlobal = getNGlobalMolecules();
1026 >    parallelData.nMolLocal = getNMolecules();
1027 >    parallelData.nAtomsGlobal = getNGlobalAtoms();
1028 >    parallelData.nAtomsLocal = getNAtoms();
1029 >    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1030 >    parallelData.nGroupsLocal = getNCutoffGroups();
1031 >    parallelData.myNode = worldRank;
1032 >    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1033 >
1034 >    //pass mpiSimData struct and index arrays to fortran
1035 >    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1036 >                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
1037 >                    &localToGlobalCutoffGroupIndex[0], &isError);
1038 >
1039 >    if (isError) {
1040 >      sprintf(painCave.errMsg,
1041 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1042 >      painCave.isFatal = 1;
1043 >      simError();
1044 >    }
1045 >
1046 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
1047 >    errorCheckPoint();
1048 >
1049 > #endif
1050 >  }
1051 >
1052 >  void SimInfo::setupCutoff() {          
1053 >    
1054 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1055 >
1056 >    // Check the cutoff policy
1057 >    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1058 >
1059 >    // Set LJ shifting bools to false
1060 >    ljsp_ = false;
1061 >    ljsf_ = false;
1062 >
1063 >    std::string myPolicy;
1064 >    if (forceFieldOptions_.haveCutoffPolicy()){
1065 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
1066 >    }else if (simParams_->haveCutoffPolicy()) {
1067 >      myPolicy = simParams_->getCutoffPolicy();
1068 >    }
1069 >
1070 >    if (!myPolicy.empty()){
1071 >      toUpper(myPolicy);
1072 >      if (myPolicy == "MIX") {
1073 >        cp = MIX_CUTOFF_POLICY;
1074 >      } else {
1075 >        if (myPolicy == "MAX") {
1076 >          cp = MAX_CUTOFF_POLICY;
1077 >        } else {
1078 >          if (myPolicy == "TRADITIONAL") {            
1079 >            cp = TRADITIONAL_CUTOFF_POLICY;
1080 >          } else {
1081 >            // throw error        
1082 >            sprintf( painCave.errMsg,
1083 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1084 >            painCave.isFatal = 1;
1085 >            simError();
1086 >          }    
1087 >        }          
1088 >      }
1089 >    }          
1090 >    notifyFortranCutoffPolicy(&cp);
1091 >
1092 >    // Check the Skin Thickness for neighborlists
1093 >    RealType skin;
1094 >    if (simParams_->haveSkinThickness()) {
1095 >      skin = simParams_->getSkinThickness();
1096 >      notifyFortranSkinThickness(&skin);
1097 >    }            
1098 >        
1099 >    // Check if the cutoff was set explicitly:
1100 >    if (simParams_->haveCutoffRadius()) {
1101 >      rcut_ = simParams_->getCutoffRadius();
1102 >      if (simParams_->haveSwitchingRadius()) {
1103 >        rsw_  = simParams_->getSwitchingRadius();
1104 >      } else {
1105 >        if (fInfo_.SIM_uses_Charges |
1106 >            fInfo_.SIM_uses_Dipoles |
1107 >            fInfo_.SIM_uses_RF) {
1108 >          
1109 >          rsw_ = 0.85 * rcut_;
1110 >          sprintf(painCave.errMsg,
1111 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1112 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1113 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1114 >        painCave.isFatal = 0;
1115 >        simError();
1116 >        } else {
1117 >          rsw_ = rcut_;
1118 >          sprintf(painCave.errMsg,
1119 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1120 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1121 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1122 >          painCave.isFatal = 0;
1123 >          simError();
1124 >        }
1125 >      }
1126 >
1127 >      if (simParams_->haveElectrostaticSummationMethod()) {
1128 >        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1129 >        toUpper(myMethod);
1130 >        
1131 >        if (myMethod == "SHIFTED_POTENTIAL") {
1132 >          ljsp_ = true;
1133 >        } else if (myMethod == "SHIFTED_FORCE") {
1134 >          ljsf_ = true;
1135 >        }
1136 >      }
1137 >      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1138 >      
1139 >    } else {
1140 >      
1141 >      // For electrostatic atoms, we'll assume a large safe value:
1142 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1143 >        sprintf(painCave.errMsg,
1144 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1145 >                "\tOOPSE will use a default value of 15.0 angstroms"
1146 >                "\tfor the cutoffRadius.\n");
1147 >        painCave.isFatal = 0;
1148 >        simError();
1149 >        rcut_ = 15.0;
1150 >      
1151 >        if (simParams_->haveElectrostaticSummationMethod()) {
1152 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1153 >          toUpper(myMethod);
1154 >      
1155 >      // For the time being, we're tethering the LJ shifted behavior to the
1156 >      // electrostaticSummationMethod keyword options
1157 >          if (myMethod == "SHIFTED_POTENTIAL") {
1158 >            ljsp_ = true;
1159 >          } else if (myMethod == "SHIFTED_FORCE") {
1160 >            ljsf_ = true;
1161 >          }
1162 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1163 >            if (simParams_->haveSwitchingRadius()){
1164 >              sprintf(painCave.errMsg,
1165 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1166 >                      "\teven though the electrostaticSummationMethod was\n"
1167 >                      "\tset to %s\n", myMethod.c_str());
1168 >              painCave.isFatal = 1;
1169 >              simError();            
1170 >            }
1171 >          }
1172 >        }
1173 >      
1174 >        if (simParams_->haveSwitchingRadius()){
1175 >          rsw_ = simParams_->getSwitchingRadius();
1176 >        } else {        
1177 >          sprintf(painCave.errMsg,
1178 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1179 >                  "\tOOPSE will use a default value of\n"
1180 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1181 >          painCave.isFatal = 0;
1182 >          simError();
1183 >          rsw_ = 0.85 * rcut_;
1184 >        }
1185 >
1186 >        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1187 >
1188 >      } else {
1189 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1190 >        // We'll punt and let fortran figure out the cutoffs later.
1191 >        
1192 >        notifyFortranYouAreOnYourOwn();
1193 >
1194 >      }
1195      }
1196    }
1197  
1198 < }
1198 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1199 >    
1200 >    int errorOut;
1201 >    int esm =  NONE;
1202 >    int sm = UNDAMPED;
1203 >    RealType alphaVal;
1204 >    RealType dielectric;
1205 >    
1206 >    errorOut = isError;
1207 >
1208 >    if (simParams_->haveElectrostaticSummationMethod()) {
1209 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1210 >      toUpper(myMethod);
1211 >      if (myMethod == "NONE") {
1212 >        esm = NONE;
1213 >      } else {
1214 >        if (myMethod == "SWITCHING_FUNCTION") {
1215 >          esm = SWITCHING_FUNCTION;
1216 >        } else {
1217 >          if (myMethod == "SHIFTED_POTENTIAL") {
1218 >            esm = SHIFTED_POTENTIAL;
1219 >          } else {
1220 >            if (myMethod == "SHIFTED_FORCE") {            
1221 >              esm = SHIFTED_FORCE;
1222 >            } else {
1223 >              if (myMethod == "REACTION_FIELD") {
1224 >                esm = REACTION_FIELD;
1225 >                dielectric = simParams_->getDielectric();
1226 >                if (!simParams_->haveDielectric()) {
1227 >                  // throw warning
1228 >                  sprintf( painCave.errMsg,
1229 >                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1230 >                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1231 >                  painCave.isFatal = 0;
1232 >                  simError();
1233 >                }
1234 >              } else {
1235 >                // throw error        
1236 >                sprintf( painCave.errMsg,
1237 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1238 >                         "\t(Input file specified %s .)\n"
1239 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1240 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1241 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1242 >                painCave.isFatal = 1;
1243 >                simError();
1244 >              }    
1245 >            }          
1246 >          }
1247 >        }
1248 >      }
1249 >    }
1250 >    
1251 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1252 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1253 >      toUpper(myScreen);
1254 >      if (myScreen == "UNDAMPED") {
1255 >        sm = UNDAMPED;
1256 >      } else {
1257 >        if (myScreen == "DAMPED") {
1258 >          sm = DAMPED;
1259 >          if (!simParams_->haveDampingAlpha()) {
1260 >            // first set a cutoff dependent alpha value
1261 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1262 >            alphaVal = 0.5125 - rcut_* 0.025;
1263 >            // for values rcut > 20.5, alpha is zero
1264 >            if (alphaVal < 0) alphaVal = 0;
1265 >
1266 >            // throw warning
1267 >            sprintf( painCave.errMsg,
1268 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1269 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1270 >            painCave.isFatal = 0;
1271 >            simError();
1272 >          } else {
1273 >            alphaVal = simParams_->getDampingAlpha();
1274 >          }
1275 >          
1276 >        } else {
1277 >          // throw error        
1278 >          sprintf( painCave.errMsg,
1279 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1280 >                   "\t(Input file specified %s .)\n"
1281 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1282 >                   "or \"damped\".\n", myScreen.c_str() );
1283 >          painCave.isFatal = 1;
1284 >          simError();
1285 >        }
1286 >      }
1287 >    }
1288 >    
1289 >    // let's pass some summation method variables to fortran
1290 >    setElectrostaticSummationMethod( &esm );
1291 >    setFortranElectrostaticMethod( &esm );
1292 >    setScreeningMethod( &sm );
1293 >    setDampingAlpha( &alphaVal );
1294 >    setReactionFieldDielectric( &dielectric );
1295 >    initFortranFF( &errorOut );
1296 >  }
1297 >
1298 >  void SimInfo::setupSwitchingFunction() {    
1299 >    int ft = CUBIC;
1300 >
1301 >    if (simParams_->haveSwitchingFunctionType()) {
1302 >      std::string funcType = simParams_->getSwitchingFunctionType();
1303 >      toUpper(funcType);
1304 >      if (funcType == "CUBIC") {
1305 >        ft = CUBIC;
1306 >      } else {
1307 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1308 >          ft = FIFTH_ORDER_POLY;
1309 >        } else {
1310 >          // throw error        
1311 >          sprintf( painCave.errMsg,
1312 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1313 >          painCave.isFatal = 1;
1314 >          simError();
1315 >        }          
1316 >      }
1317 >    }
1318 >
1319 >    // send switching function notification to switcheroo
1320 >    setFunctionType(&ft);
1321 >
1322 >  }
1323 >
1324 >  void SimInfo::setupAccumulateBoxDipole() {    
1325 >
1326 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1327 >    if ( simParams_->haveAccumulateBoxDipole() )
1328 >      if ( simParams_->getAccumulateBoxDipole() ) {
1329 >        setAccumulateBoxDipole();
1330 >        calcBoxDipole_ = true;
1331 >      }
1332 >
1333 >  }
1334 >
1335 >  void SimInfo::addProperty(GenericData* genData) {
1336 >    properties_.addProperty(genData);  
1337 >  }
1338 >
1339 >  void SimInfo::removeProperty(const std::string& propName) {
1340 >    properties_.removeProperty(propName);  
1341 >  }
1342 >
1343 >  void SimInfo::clearProperties() {
1344 >    properties_.clearProperties();
1345 >  }
1346 >
1347 >  std::vector<std::string> SimInfo::getPropertyNames() {
1348 >    return properties_.getPropertyNames();  
1349 >  }
1350 >      
1351 >  std::vector<GenericData*> SimInfo::getProperties() {
1352 >    return properties_.getProperties();
1353 >  }
1354 >
1355 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1356 >    return properties_.getPropertyByName(propName);
1357 >  }
1358 >
1359 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1360 >    if (sman_ == sman) {
1361 >      return;
1362 >    }    
1363 >    delete sman_;
1364 >    sman_ = sman;
1365 >
1366 >    Molecule* mol;
1367 >    RigidBody* rb;
1368 >    Atom* atom;
1369 >    SimInfo::MoleculeIterator mi;
1370 >    Molecule::RigidBodyIterator rbIter;
1371 >    Molecule::AtomIterator atomIter;;
1372 >
1373 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1374 >        
1375 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1376 >        atom->setSnapshotManager(sman_);
1377 >      }
1378 >        
1379 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1380 >        rb->setSnapshotManager(sman_);
1381 >      }
1382 >    }    
1383 >    
1384 >  }
1385 >
1386 >  Vector3d SimInfo::getComVel(){
1387 >    SimInfo::MoleculeIterator i;
1388 >    Molecule* mol;
1389 >
1390 >    Vector3d comVel(0.0);
1391 >    RealType totalMass = 0.0;
1392 >    
1393 >
1394 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1395 >      RealType mass = mol->getMass();
1396 >      totalMass += mass;
1397 >      comVel += mass * mol->getComVel();
1398 >    }  
1399 >
1400 > #ifdef IS_MPI
1401 >    RealType tmpMass = totalMass;
1402 >    Vector3d tmpComVel(comVel);    
1403 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1404 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1405 > #endif
1406 >
1407 >    comVel /= totalMass;
1408 >
1409 >    return comVel;
1410 >  }
1411 >
1412 >  Vector3d SimInfo::getCom(){
1413 >    SimInfo::MoleculeIterator i;
1414 >    Molecule* mol;
1415 >
1416 >    Vector3d com(0.0);
1417 >    RealType totalMass = 0.0;
1418 >    
1419 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1420 >      RealType mass = mol->getMass();
1421 >      totalMass += mass;
1422 >      com += mass * mol->getCom();
1423 >    }  
1424 >
1425 > #ifdef IS_MPI
1426 >    RealType tmpMass = totalMass;
1427 >    Vector3d tmpCom(com);    
1428 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1429 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1430 > #endif
1431 >
1432 >    com /= totalMass;
1433 >
1434 >    return com;
1435 >
1436 >  }        
1437 >
1438 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1439 >
1440 >    return o;
1441 >  }
1442 >  
1443 >  
1444 >   /*
1445 >   Returns center of mass and center of mass velocity in one function call.
1446 >   */
1447 >  
1448 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1449 >      SimInfo::MoleculeIterator i;
1450 >      Molecule* mol;
1451 >      
1452 >    
1453 >      RealType totalMass = 0.0;
1454 >    
1455 >
1456 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1457 >         RealType mass = mol->getMass();
1458 >         totalMass += mass;
1459 >         com += mass * mol->getCom();
1460 >         comVel += mass * mol->getComVel();          
1461 >      }  
1462 >      
1463 > #ifdef IS_MPI
1464 >      RealType tmpMass = totalMass;
1465 >      Vector3d tmpCom(com);  
1466 >      Vector3d tmpComVel(comVel);
1467 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1468 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1469 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1470 > #endif
1471 >      
1472 >      com /= totalMass;
1473 >      comVel /= totalMass;
1474 >   }        
1475 >  
1476 >   /*
1477 >   Return intertia tensor for entire system and angular momentum Vector.
1478 >
1479 >
1480 >       [  Ixx -Ixy  -Ixz ]
1481 >  J =| -Iyx  Iyy  -Iyz |
1482 >       [ -Izx -Iyz   Izz ]
1483 >    */
1484 >
1485 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1486 >      
1487 >
1488 >      RealType xx = 0.0;
1489 >      RealType yy = 0.0;
1490 >      RealType zz = 0.0;
1491 >      RealType xy = 0.0;
1492 >      RealType xz = 0.0;
1493 >      RealType yz = 0.0;
1494 >      Vector3d com(0.0);
1495 >      Vector3d comVel(0.0);
1496 >      
1497 >      getComAll(com, comVel);
1498 >      
1499 >      SimInfo::MoleculeIterator i;
1500 >      Molecule* mol;
1501 >      
1502 >      Vector3d thisq(0.0);
1503 >      Vector3d thisv(0.0);
1504 >
1505 >      RealType thisMass = 0.0;
1506 >    
1507 >      
1508 >      
1509 >  
1510 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1511 >        
1512 >         thisq = mol->getCom()-com;
1513 >         thisv = mol->getComVel()-comVel;
1514 >         thisMass = mol->getMass();
1515 >         // Compute moment of intertia coefficients.
1516 >         xx += thisq[0]*thisq[0]*thisMass;
1517 >         yy += thisq[1]*thisq[1]*thisMass;
1518 >         zz += thisq[2]*thisq[2]*thisMass;
1519 >        
1520 >         // compute products of intertia
1521 >         xy += thisq[0]*thisq[1]*thisMass;
1522 >         xz += thisq[0]*thisq[2]*thisMass;
1523 >         yz += thisq[1]*thisq[2]*thisMass;
1524 >            
1525 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1526 >            
1527 >      }  
1528 >      
1529 >      
1530 >      inertiaTensor(0,0) = yy + zz;
1531 >      inertiaTensor(0,1) = -xy;
1532 >      inertiaTensor(0,2) = -xz;
1533 >      inertiaTensor(1,0) = -xy;
1534 >      inertiaTensor(1,1) = xx + zz;
1535 >      inertiaTensor(1,2) = -yz;
1536 >      inertiaTensor(2,0) = -xz;
1537 >      inertiaTensor(2,1) = -yz;
1538 >      inertiaTensor(2,2) = xx + yy;
1539 >      
1540 > #ifdef IS_MPI
1541 >      Mat3x3d tmpI(inertiaTensor);
1542 >      Vector3d tmpAngMom;
1543 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1544 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1545 > #endif
1546 >              
1547 >      return;
1548 >   }
1549 >
1550 >   //Returns the angular momentum of the system
1551 >   Vector3d SimInfo::getAngularMomentum(){
1552 >      
1553 >      Vector3d com(0.0);
1554 >      Vector3d comVel(0.0);
1555 >      Vector3d angularMomentum(0.0);
1556 >      
1557 >      getComAll(com,comVel);
1558 >      
1559 >      SimInfo::MoleculeIterator i;
1560 >      Molecule* mol;
1561 >      
1562 >      Vector3d thisr(0.0);
1563 >      Vector3d thisp(0.0);
1564 >      
1565 >      RealType thisMass;
1566 >      
1567 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1568 >        thisMass = mol->getMass();
1569 >        thisr = mol->getCom()-com;
1570 >        thisp = (mol->getComVel()-comVel)*thisMass;
1571 >        
1572 >        angularMomentum += cross( thisr, thisp );
1573 >        
1574 >      }  
1575 >      
1576 > #ifdef IS_MPI
1577 >      Vector3d tmpAngMom;
1578 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1579 > #endif
1580 >      
1581 >      return angularMomentum;
1582 >   }
1583 >  
1584 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1585 >    return IOIndexToIntegrableObject.at(index);
1586 >  }
1587 >  
1588 >  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1589 >    IOIndexToIntegrableObject= v;
1590 >  }
1591 >
1592 >  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1593 >     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1594 >     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1595 >     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1596 >  */
1597 >  void SimInfo::getGyrationalVolume(RealType &volume){
1598 >    Mat3x3d intTensor;
1599 >    RealType det;
1600 >    Vector3d dummyAngMom;
1601 >    RealType sysconstants;
1602 >    RealType geomCnst;
1603 >
1604 >    geomCnst = 3.0/2.0;
1605 >    /* Get the inertial tensor and angular momentum for free*/
1606 >    getInertiaTensor(intTensor,dummyAngMom);
1607 >    
1608 >    det = intTensor.determinant();
1609 >    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1610 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1611 >    return;
1612 >  }
1613 >
1614 >  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1615 >    Mat3x3d intTensor;
1616 >    Vector3d dummyAngMom;
1617 >    RealType sysconstants;
1618 >    RealType geomCnst;
1619 >
1620 >    geomCnst = 3.0/2.0;
1621 >    /* Get the inertial tensor and angular momentum for free*/
1622 >    getInertiaTensor(intTensor,dummyAngMom);
1623 >    
1624 >    detI = intTensor.determinant();
1625 >    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1626 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1627 >    return;
1628 >  }
1629 > /*
1630 >   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1631 >      assert( v.size() == nAtoms_ + nRigidBodies_);
1632 >      sdByGlobalIndex_ = v;
1633 >    }
1634 >
1635 >    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1636 >      //assert(index < nAtoms_ + nRigidBodies_);
1637 >      return sdByGlobalIndex_.at(index);
1638 >    }  
1639 > */  
1640 > }//end namespace oopse
1641 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines