ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
Revision: 1558
Committed: Wed May 11 16:32:48 2011 UTC (13 years, 11 months ago) by gezelter
File size: 52090 byte(s)
Log Message:
Updated antlr, some minor formatting changes

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51 #include <map>
52
53 #include "brains/SimInfo.hpp"
54 #include "math/Vector3.hpp"
55 #include "primitives/Molecule.hpp"
56 #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
65 #include "utils/MemoryUtils.hpp"
66 #include "utils/simError.h"
67 #include "selection/SelectionManager.hpp"
68 #include "io/ForceFieldOptions.hpp"
69 #include "UseTheForce/ForceField.hpp"
70
71
72 #ifdef IS_MPI
73 #include "UseTheForce/mpiComponentPlan.h"
74 #include "UseTheForce/DarkSide/simParallel_interface.h"
75 #endif
76
77 namespace OpenMD {
78 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 std::map<int, std::set<int> >::iterator i = container.find(index);
80 std::set<int> result;
81 if (i != container.end()) {
82 result = i->second;
83 }
84
85 return result;
86 }
87
88 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 forceField_(ff), simParams_(simParams),
90 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
94 nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
95 nConstraints_(0), sman_(NULL), fortranInitialized_(false),
96 calcBoxDipole_(false), useAtomicVirial_(true) {
97
98
99 MoleculeStamp* molStamp;
100 int nMolWithSameStamp;
101 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
102 int nGroups = 0; //total cutoff groups defined in meta-data file
103 CutoffGroupStamp* cgStamp;
104 RigidBodyStamp* rbStamp;
105 int nRigidAtoms = 0;
106
107 std::vector<Component*> components = simParams->getComponents();
108
109 for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
110 molStamp = (*i)->getMoleculeStamp();
111 nMolWithSameStamp = (*i)->getNMol();
112
113 addMoleculeStamp(molStamp, nMolWithSameStamp);
114
115 //calculate atoms in molecules
116 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
117
118 //calculate atoms in cutoff groups
119 int nAtomsInGroups = 0;
120 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
121
122 for (int j=0; j < nCutoffGroupsInStamp; j++) {
123 cgStamp = molStamp->getCutoffGroupStamp(j);
124 nAtomsInGroups += cgStamp->getNMembers();
125 }
126
127 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128
129 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
130
131 //calculate atoms in rigid bodies
132 int nAtomsInRigidBodies = 0;
133 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134
135 for (int j=0; j < nRigidBodiesInStamp; j++) {
136 rbStamp = molStamp->getRigidBodyStamp(j);
137 nAtomsInRigidBodies += rbStamp->getNMembers();
138 }
139
140 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
142
143 }
144
145 //every free atom (atom does not belong to cutoff groups) is a cutoff
146 //group therefore the total number of cutoff groups in the system is
147 //equal to the total number of atoms minus number of atoms belong to
148 //cutoff group defined in meta-data file plus the number of cutoff
149 //groups defined in meta-data file
150 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
151
152 //every free atom (atom does not belong to rigid bodies) is an
153 //integrable object therefore the total number of integrable objects
154 //in the system is equal to the total number of atoms minus number of
155 //atoms belong to rigid body defined in meta-data file plus the number
156 //of rigid bodies defined in meta-data file
157 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
158 + nGlobalRigidBodies_;
159
160 nGlobalMols_ = molStampIds_.size();
161 molToProcMap_.resize(nGlobalMols_);
162 }
163
164 SimInfo::~SimInfo() {
165 std::map<int, Molecule*>::iterator i;
166 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
167 delete i->second;
168 }
169 molecules_.clear();
170
171 delete sman_;
172 delete simParams_;
173 delete forceField_;
174 }
175
176 int SimInfo::getNGlobalConstraints() {
177 int nGlobalConstraints;
178 #ifdef IS_MPI
179 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180 MPI_COMM_WORLD);
181 #else
182 nGlobalConstraints = nConstraints_;
183 #endif
184 return nGlobalConstraints;
185 }
186
187 bool SimInfo::addMolecule(Molecule* mol) {
188 MoleculeIterator i;
189
190 i = molecules_.find(mol->getGlobalIndex());
191 if (i == molecules_.end() ) {
192
193 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
194
195 nAtoms_ += mol->getNAtoms();
196 nBonds_ += mol->getNBonds();
197 nBends_ += mol->getNBends();
198 nTorsions_ += mol->getNTorsions();
199 nInversions_ += mol->getNInversions();
200 nRigidBodies_ += mol->getNRigidBodies();
201 nIntegrableObjects_ += mol->getNIntegrableObjects();
202 nCutoffGroups_ += mol->getNCutoffGroups();
203 nConstraints_ += mol->getNConstraintPairs();
204
205 addInteractionPairs(mol);
206
207 return true;
208 } else {
209 return false;
210 }
211 }
212
213 bool SimInfo::removeMolecule(Molecule* mol) {
214 MoleculeIterator i;
215 i = molecules_.find(mol->getGlobalIndex());
216
217 if (i != molecules_.end() ) {
218
219 assert(mol == i->second);
220
221 nAtoms_ -= mol->getNAtoms();
222 nBonds_ -= mol->getNBonds();
223 nBends_ -= mol->getNBends();
224 nTorsions_ -= mol->getNTorsions();
225 nInversions_ -= mol->getNInversions();
226 nRigidBodies_ -= mol->getNRigidBodies();
227 nIntegrableObjects_ -= mol->getNIntegrableObjects();
228 nCutoffGroups_ -= mol->getNCutoffGroups();
229 nConstraints_ -= mol->getNConstraintPairs();
230
231 removeInteractionPairs(mol);
232 molecules_.erase(mol->getGlobalIndex());
233
234 delete mol;
235
236 return true;
237 } else {
238 return false;
239 }
240
241
242 }
243
244
245 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
246 i = molecules_.begin();
247 return i == molecules_.end() ? NULL : i->second;
248 }
249
250 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
251 ++i;
252 return i == molecules_.end() ? NULL : i->second;
253 }
254
255
256 void SimInfo::calcNdf() {
257 int ndf_local;
258 MoleculeIterator i;
259 std::vector<StuntDouble*>::iterator j;
260 Molecule* mol;
261 StuntDouble* integrableObject;
262
263 ndf_local = 0;
264
265 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267 integrableObject = mol->nextIntegrableObject(j)) {
268
269 ndf_local += 3;
270
271 if (integrableObject->isDirectional()) {
272 if (integrableObject->isLinear()) {
273 ndf_local += 2;
274 } else {
275 ndf_local += 3;
276 }
277 }
278
279 }
280 }
281
282 // n_constraints is local, so subtract them on each processor
283 ndf_local -= nConstraints_;
284
285 #ifdef IS_MPI
286 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287 #else
288 ndf_ = ndf_local;
289 #endif
290
291 // nZconstraints_ is global, as are the 3 COM translations for the
292 // entire system:
293 ndf_ = ndf_ - 3 - nZconstraint_;
294
295 }
296
297 int SimInfo::getFdf() {
298 #ifdef IS_MPI
299 MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
300 #else
301 fdf_ = fdf_local;
302 #endif
303 return fdf_;
304 }
305
306 void SimInfo::calcNdfRaw() {
307 int ndfRaw_local;
308
309 MoleculeIterator i;
310 std::vector<StuntDouble*>::iterator j;
311 Molecule* mol;
312 StuntDouble* integrableObject;
313
314 // Raw degrees of freedom that we have to set
315 ndfRaw_local = 0;
316
317 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319 integrableObject = mol->nextIntegrableObject(j)) {
320
321 ndfRaw_local += 3;
322
323 if (integrableObject->isDirectional()) {
324 if (integrableObject->isLinear()) {
325 ndfRaw_local += 2;
326 } else {
327 ndfRaw_local += 3;
328 }
329 }
330
331 }
332 }
333
334 #ifdef IS_MPI
335 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
336 #else
337 ndfRaw_ = ndfRaw_local;
338 #endif
339 }
340
341 void SimInfo::calcNdfTrans() {
342 int ndfTrans_local;
343
344 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
345
346
347 #ifdef IS_MPI
348 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
349 #else
350 ndfTrans_ = ndfTrans_local;
351 #endif
352
353 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
354
355 }
356
357 void SimInfo::addInteractionPairs(Molecule* mol) {
358 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
359 std::vector<Bond*>::iterator bondIter;
360 std::vector<Bend*>::iterator bendIter;
361 std::vector<Torsion*>::iterator torsionIter;
362 std::vector<Inversion*>::iterator inversionIter;
363 Bond* bond;
364 Bend* bend;
365 Torsion* torsion;
366 Inversion* inversion;
367 int a;
368 int b;
369 int c;
370 int d;
371
372 // atomGroups can be used to add special interaction maps between
373 // groups of atoms that are in two separate rigid bodies.
374 // However, most site-site interactions between two rigid bodies
375 // are probably not special, just the ones between the physically
376 // bonded atoms. Interactions *within* a single rigid body should
377 // always be excluded. These are done at the bottom of this
378 // function.
379
380 std::map<int, std::set<int> > atomGroups;
381 Molecule::RigidBodyIterator rbIter;
382 RigidBody* rb;
383 Molecule::IntegrableObjectIterator ii;
384 StuntDouble* integrableObject;
385
386 for (integrableObject = mol->beginIntegrableObject(ii);
387 integrableObject != NULL;
388 integrableObject = mol->nextIntegrableObject(ii)) {
389
390 if (integrableObject->isRigidBody()) {
391 rb = static_cast<RigidBody*>(integrableObject);
392 std::vector<Atom*> atoms = rb->getAtoms();
393 std::set<int> rigidAtoms;
394 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
395 rigidAtoms.insert(atoms[i]->getGlobalIndex());
396 }
397 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
398 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
399 }
400 } else {
401 std::set<int> oneAtomSet;
402 oneAtomSet.insert(integrableObject->getGlobalIndex());
403 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
404 }
405 }
406
407 for (bond= mol->beginBond(bondIter); bond != NULL;
408 bond = mol->nextBond(bondIter)) {
409
410 a = bond->getAtomA()->getGlobalIndex();
411 b = bond->getAtomB()->getGlobalIndex();
412
413 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
414 oneTwoInteractions_.addPair(a, b);
415 } else {
416 excludedInteractions_.addPair(a, b);
417 }
418 }
419
420 for (bend= mol->beginBend(bendIter); bend != NULL;
421 bend = mol->nextBend(bendIter)) {
422
423 a = bend->getAtomA()->getGlobalIndex();
424 b = bend->getAtomB()->getGlobalIndex();
425 c = bend->getAtomC()->getGlobalIndex();
426
427 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
428 oneTwoInteractions_.addPair(a, b);
429 oneTwoInteractions_.addPair(b, c);
430 } else {
431 excludedInteractions_.addPair(a, b);
432 excludedInteractions_.addPair(b, c);
433 }
434
435 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
436 oneThreeInteractions_.addPair(a, c);
437 } else {
438 excludedInteractions_.addPair(a, c);
439 }
440 }
441
442 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
443 torsion = mol->nextTorsion(torsionIter)) {
444
445 a = torsion->getAtomA()->getGlobalIndex();
446 b = torsion->getAtomB()->getGlobalIndex();
447 c = torsion->getAtomC()->getGlobalIndex();
448 d = torsion->getAtomD()->getGlobalIndex();
449
450 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
451 oneTwoInteractions_.addPair(a, b);
452 oneTwoInteractions_.addPair(b, c);
453 oneTwoInteractions_.addPair(c, d);
454 } else {
455 excludedInteractions_.addPair(a, b);
456 excludedInteractions_.addPair(b, c);
457 excludedInteractions_.addPair(c, d);
458 }
459
460 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
461 oneThreeInteractions_.addPair(a, c);
462 oneThreeInteractions_.addPair(b, d);
463 } else {
464 excludedInteractions_.addPair(a, c);
465 excludedInteractions_.addPair(b, d);
466 }
467
468 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
469 oneFourInteractions_.addPair(a, d);
470 } else {
471 excludedInteractions_.addPair(a, d);
472 }
473 }
474
475 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
476 inversion = mol->nextInversion(inversionIter)) {
477
478 a = inversion->getAtomA()->getGlobalIndex();
479 b = inversion->getAtomB()->getGlobalIndex();
480 c = inversion->getAtomC()->getGlobalIndex();
481 d = inversion->getAtomD()->getGlobalIndex();
482
483 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
484 oneTwoInteractions_.addPair(a, b);
485 oneTwoInteractions_.addPair(a, c);
486 oneTwoInteractions_.addPair(a, d);
487 } else {
488 excludedInteractions_.addPair(a, b);
489 excludedInteractions_.addPair(a, c);
490 excludedInteractions_.addPair(a, d);
491 }
492
493 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
494 oneThreeInteractions_.addPair(b, c);
495 oneThreeInteractions_.addPair(b, d);
496 oneThreeInteractions_.addPair(c, d);
497 } else {
498 excludedInteractions_.addPair(b, c);
499 excludedInteractions_.addPair(b, d);
500 excludedInteractions_.addPair(c, d);
501 }
502 }
503
504 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
505 rb = mol->nextRigidBody(rbIter)) {
506 std::vector<Atom*> atoms = rb->getAtoms();
507 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
508 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
509 a = atoms[i]->getGlobalIndex();
510 b = atoms[j]->getGlobalIndex();
511 excludedInteractions_.addPair(a, b);
512 }
513 }
514 }
515
516 }
517
518 void SimInfo::removeInteractionPairs(Molecule* mol) {
519 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
520 std::vector<Bond*>::iterator bondIter;
521 std::vector<Bend*>::iterator bendIter;
522 std::vector<Torsion*>::iterator torsionIter;
523 std::vector<Inversion*>::iterator inversionIter;
524 Bond* bond;
525 Bend* bend;
526 Torsion* torsion;
527 Inversion* inversion;
528 int a;
529 int b;
530 int c;
531 int d;
532
533 std::map<int, std::set<int> > atomGroups;
534 Molecule::RigidBodyIterator rbIter;
535 RigidBody* rb;
536 Molecule::IntegrableObjectIterator ii;
537 StuntDouble* integrableObject;
538
539 for (integrableObject = mol->beginIntegrableObject(ii);
540 integrableObject != NULL;
541 integrableObject = mol->nextIntegrableObject(ii)) {
542
543 if (integrableObject->isRigidBody()) {
544 rb = static_cast<RigidBody*>(integrableObject);
545 std::vector<Atom*> atoms = rb->getAtoms();
546 std::set<int> rigidAtoms;
547 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
548 rigidAtoms.insert(atoms[i]->getGlobalIndex());
549 }
550 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
551 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
552 }
553 } else {
554 std::set<int> oneAtomSet;
555 oneAtomSet.insert(integrableObject->getGlobalIndex());
556 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
557 }
558 }
559
560 for (bond= mol->beginBond(bondIter); bond != NULL;
561 bond = mol->nextBond(bondIter)) {
562
563 a = bond->getAtomA()->getGlobalIndex();
564 b = bond->getAtomB()->getGlobalIndex();
565
566 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
567 oneTwoInteractions_.removePair(a, b);
568 } else {
569 excludedInteractions_.removePair(a, b);
570 }
571 }
572
573 for (bend= mol->beginBend(bendIter); bend != NULL;
574 bend = mol->nextBend(bendIter)) {
575
576 a = bend->getAtomA()->getGlobalIndex();
577 b = bend->getAtomB()->getGlobalIndex();
578 c = bend->getAtomC()->getGlobalIndex();
579
580 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581 oneTwoInteractions_.removePair(a, b);
582 oneTwoInteractions_.removePair(b, c);
583 } else {
584 excludedInteractions_.removePair(a, b);
585 excludedInteractions_.removePair(b, c);
586 }
587
588 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
589 oneThreeInteractions_.removePair(a, c);
590 } else {
591 excludedInteractions_.removePair(a, c);
592 }
593 }
594
595 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
596 torsion = mol->nextTorsion(torsionIter)) {
597
598 a = torsion->getAtomA()->getGlobalIndex();
599 b = torsion->getAtomB()->getGlobalIndex();
600 c = torsion->getAtomC()->getGlobalIndex();
601 d = torsion->getAtomD()->getGlobalIndex();
602
603 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
604 oneTwoInteractions_.removePair(a, b);
605 oneTwoInteractions_.removePair(b, c);
606 oneTwoInteractions_.removePair(c, d);
607 } else {
608 excludedInteractions_.removePair(a, b);
609 excludedInteractions_.removePair(b, c);
610 excludedInteractions_.removePair(c, d);
611 }
612
613 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
614 oneThreeInteractions_.removePair(a, c);
615 oneThreeInteractions_.removePair(b, d);
616 } else {
617 excludedInteractions_.removePair(a, c);
618 excludedInteractions_.removePair(b, d);
619 }
620
621 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
622 oneFourInteractions_.removePair(a, d);
623 } else {
624 excludedInteractions_.removePair(a, d);
625 }
626 }
627
628 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
629 inversion = mol->nextInversion(inversionIter)) {
630
631 a = inversion->getAtomA()->getGlobalIndex();
632 b = inversion->getAtomB()->getGlobalIndex();
633 c = inversion->getAtomC()->getGlobalIndex();
634 d = inversion->getAtomD()->getGlobalIndex();
635
636 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
637 oneTwoInteractions_.removePair(a, b);
638 oneTwoInteractions_.removePair(a, c);
639 oneTwoInteractions_.removePair(a, d);
640 } else {
641 excludedInteractions_.removePair(a, b);
642 excludedInteractions_.removePair(a, c);
643 excludedInteractions_.removePair(a, d);
644 }
645
646 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
647 oneThreeInteractions_.removePair(b, c);
648 oneThreeInteractions_.removePair(b, d);
649 oneThreeInteractions_.removePair(c, d);
650 } else {
651 excludedInteractions_.removePair(b, c);
652 excludedInteractions_.removePair(b, d);
653 excludedInteractions_.removePair(c, d);
654 }
655 }
656
657 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
658 rb = mol->nextRigidBody(rbIter)) {
659 std::vector<Atom*> atoms = rb->getAtoms();
660 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
661 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
662 a = atoms[i]->getGlobalIndex();
663 b = atoms[j]->getGlobalIndex();
664 excludedInteractions_.removePair(a, b);
665 }
666 }
667 }
668
669 }
670
671
672 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
673 int curStampId;
674
675 //index from 0
676 curStampId = moleculeStamps_.size();
677
678 moleculeStamps_.push_back(molStamp);
679 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
680 }
681
682 void SimInfo::update() {
683
684 setupSimType();
685
686 #ifdef IS_MPI
687 setupFortranParallel();
688 #endif
689
690 setupFortranSim();
691
692 //setup fortran force field
693 /** @deprecate */
694 int isError = 0;
695
696 setupCutoff();
697
698 setupElectrostaticSummationMethod( isError );
699 setupSwitchingFunction();
700 setupAccumulateBoxDipole();
701
702 if(isError){
703 sprintf( painCave.errMsg,
704 "ForceField error: There was an error initializing the forceField in fortran.\n" );
705 painCave.isFatal = 1;
706 simError();
707 }
708
709 calcNdf();
710 calcNdfRaw();
711 calcNdfTrans();
712
713 fortranInitialized_ = true;
714 }
715
716 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
717 SimInfo::MoleculeIterator mi;
718 Molecule* mol;
719 Molecule::AtomIterator ai;
720 Atom* atom;
721 std::set<AtomType*> atomTypes;
722
723 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
724
725 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
726 atomTypes.insert(atom->getAtomType());
727 }
728
729 }
730
731 return atomTypes;
732 }
733
734 void SimInfo::setupSimType() {
735 std::set<AtomType*>::iterator i;
736 std::set<AtomType*> atomTypes;
737 atomTypes = getUniqueAtomTypes();
738
739 int useLennardJones = 0;
740 int useElectrostatic = 0;
741 int useEAM = 0;
742 int useSC = 0;
743 int useCharge = 0;
744 int useDirectional = 0;
745 int useDipole = 0;
746 int useGayBerne = 0;
747 int useSticky = 0;
748 int useStickyPower = 0;
749 int useShape = 0;
750 int useFLARB = 0; //it is not in AtomType yet
751 int useDirectionalAtom = 0;
752 int useElectrostatics = 0;
753 //usePBC and useRF are from simParams
754 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
755 int useRF;
756 int useSF;
757 int useSP;
758 int useBoxDipole;
759
760 std::string myMethod;
761
762 // set the useRF logical
763 useRF = 0;
764 useSF = 0;
765 useSP = 0;
766 useBoxDipole = 0;
767
768
769 if (simParams_->haveElectrostaticSummationMethod()) {
770 std::string myMethod = simParams_->getElectrostaticSummationMethod();
771 toUpper(myMethod);
772 if (myMethod == "REACTION_FIELD"){
773 useRF = 1;
774 } else if (myMethod == "SHIFTED_FORCE"){
775 useSF = 1;
776 } else if (myMethod == "SHIFTED_POTENTIAL"){
777 useSP = 1;
778 }
779 }
780
781 if (simParams_->haveAccumulateBoxDipole())
782 if (simParams_->getAccumulateBoxDipole())
783 useBoxDipole = 1;
784
785 useAtomicVirial_ = simParams_->getUseAtomicVirial();
786
787 //loop over all of the atom types
788 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
789 useLennardJones |= (*i)->isLennardJones();
790 useElectrostatic |= (*i)->isElectrostatic();
791 useEAM |= (*i)->isEAM();
792 useSC |= (*i)->isSC();
793 useCharge |= (*i)->isCharge();
794 useDirectional |= (*i)->isDirectional();
795 useDipole |= (*i)->isDipole();
796 useGayBerne |= (*i)->isGayBerne();
797 useSticky |= (*i)->isSticky();
798 useStickyPower |= (*i)->isStickyPower();
799 useShape |= (*i)->isShape();
800 }
801
802 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
803 useDirectionalAtom = 1;
804 }
805
806 if (useCharge || useDipole) {
807 useElectrostatics = 1;
808 }
809
810 #ifdef IS_MPI
811 int temp;
812
813 temp = usePBC;
814 MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
815
816 temp = useDirectionalAtom;
817 MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
818
819 temp = useLennardJones;
820 MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
821
822 temp = useElectrostatics;
823 MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
824
825 temp = useCharge;
826 MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
827
828 temp = useDipole;
829 MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
830
831 temp = useSticky;
832 MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
833
834 temp = useStickyPower;
835 MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
836
837 temp = useGayBerne;
838 MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
839
840 temp = useEAM;
841 MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
842
843 temp = useSC;
844 MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
845
846 temp = useShape;
847 MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
848
849 temp = useFLARB;
850 MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
851
852 temp = useRF;
853 MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
854
855 temp = useSF;
856 MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
857
858 temp = useSP;
859 MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
860
861 temp = useBoxDipole;
862 MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
863
864 temp = useAtomicVirial_;
865 MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
866
867 #endif
868
869 fInfo_.SIM_uses_PBC = usePBC;
870 fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
871 fInfo_.SIM_uses_LennardJones = useLennardJones;
872 fInfo_.SIM_uses_Electrostatics = useElectrostatics;
873 fInfo_.SIM_uses_Charges = useCharge;
874 fInfo_.SIM_uses_Dipoles = useDipole;
875 fInfo_.SIM_uses_Sticky = useSticky;
876 fInfo_.SIM_uses_StickyPower = useStickyPower;
877 fInfo_.SIM_uses_GayBerne = useGayBerne;
878 fInfo_.SIM_uses_EAM = useEAM;
879 fInfo_.SIM_uses_SC = useSC;
880 fInfo_.SIM_uses_Shapes = useShape;
881 fInfo_.SIM_uses_FLARB = useFLARB;
882 fInfo_.SIM_uses_RF = useRF;
883 fInfo_.SIM_uses_SF = useSF;
884 fInfo_.SIM_uses_SP = useSP;
885 fInfo_.SIM_uses_BoxDipole = useBoxDipole;
886 fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
887 }
888
889 void SimInfo::setupFortranSim() {
890 int isError;
891 int nExclude, nOneTwo, nOneThree, nOneFour;
892 std::vector<int> fortranGlobalGroupMembership;
893
894 isError = 0;
895
896 //globalGroupMembership_ is filled by SimCreator
897 for (int i = 0; i < nGlobalAtoms_; i++) {
898 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
899 }
900
901 //calculate mass ratio of cutoff group
902 std::vector<RealType> mfact;
903 SimInfo::MoleculeIterator mi;
904 Molecule* mol;
905 Molecule::CutoffGroupIterator ci;
906 CutoffGroup* cg;
907 Molecule::AtomIterator ai;
908 Atom* atom;
909 RealType totalMass;
910
911 //to avoid memory reallocation, reserve enough space for mfact
912 mfact.reserve(getNCutoffGroups());
913
914 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
915 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
916
917 totalMass = cg->getMass();
918 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
919 // Check for massless groups - set mfact to 1 if true
920 if (totalMass != 0)
921 mfact.push_back(atom->getMass()/totalMass);
922 else
923 mfact.push_back( 1.0 );
924 }
925 }
926 }
927
928 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
929 std::vector<int> identArray;
930
931 //to avoid memory reallocation, reserve enough space identArray
932 identArray.reserve(getNAtoms());
933
934 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
935 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
936 identArray.push_back(atom->getIdent());
937 }
938 }
939
940 //fill molMembershipArray
941 //molMembershipArray is filled by SimCreator
942 std::vector<int> molMembershipArray(nGlobalAtoms_);
943 for (int i = 0; i < nGlobalAtoms_; i++) {
944 molMembershipArray[i] = globalMolMembership_[i] + 1;
945 }
946
947 //setup fortran simulation
948
949 nExclude = excludedInteractions_.getSize();
950 nOneTwo = oneTwoInteractions_.getSize();
951 nOneThree = oneThreeInteractions_.getSize();
952 nOneFour = oneFourInteractions_.getSize();
953
954 int* excludeList = excludedInteractions_.getPairList();
955 int* oneTwoList = oneTwoInteractions_.getPairList();
956 int* oneThreeList = oneThreeInteractions_.getPairList();
957 int* oneFourList = oneFourInteractions_.getPairList();
958
959 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
960 &nExclude, excludeList,
961 &nOneTwo, oneTwoList,
962 &nOneThree, oneThreeList,
963 &nOneFour, oneFourList,
964 &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
965 &fortranGlobalGroupMembership[0], &isError);
966
967 if( isError ){
968
969 sprintf( painCave.errMsg,
970 "There was an error setting the simulation information in fortran.\n" );
971 painCave.isFatal = 1;
972 painCave.severity = OPENMD_ERROR;
973 simError();
974 }
975
976
977 sprintf( checkPointMsg,
978 "succesfully sent the simulation information to fortran.\n");
979
980 errorCheckPoint();
981
982 // Setup number of neighbors in neighbor list if present
983 if (simParams_->haveNeighborListNeighbors()) {
984 int nlistNeighbors = simParams_->getNeighborListNeighbors();
985 setNeighbors(&nlistNeighbors);
986 }
987
988
989 }
990
991
992 void SimInfo::setupFortranParallel() {
993 #ifdef IS_MPI
994 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
995 std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
996 std::vector<int> localToGlobalCutoffGroupIndex;
997 SimInfo::MoleculeIterator mi;
998 Molecule::AtomIterator ai;
999 Molecule::CutoffGroupIterator ci;
1000 Molecule* mol;
1001 Atom* atom;
1002 CutoffGroup* cg;
1003 mpiSimData parallelData;
1004 int isError;
1005
1006 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1007
1008 //local index(index in DataStorge) of atom is important
1009 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1010 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1011 }
1012
1013 //local index of cutoff group is trivial, it only depends on the order of travesing
1014 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1015 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1016 }
1017
1018 }
1019
1020 //fill up mpiSimData struct
1021 parallelData.nMolGlobal = getNGlobalMolecules();
1022 parallelData.nMolLocal = getNMolecules();
1023 parallelData.nAtomsGlobal = getNGlobalAtoms();
1024 parallelData.nAtomsLocal = getNAtoms();
1025 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1026 parallelData.nGroupsLocal = getNCutoffGroups();
1027 parallelData.myNode = worldRank;
1028 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1029
1030 //pass mpiSimData struct and index arrays to fortran
1031 setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1032 &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
1033 &localToGlobalCutoffGroupIndex[0], &isError);
1034
1035 if (isError) {
1036 sprintf(painCave.errMsg,
1037 "mpiRefresh errror: fortran didn't like something we gave it.\n");
1038 painCave.isFatal = 1;
1039 simError();
1040 }
1041
1042 sprintf(checkPointMsg, " mpiRefresh successful.\n");
1043 errorCheckPoint();
1044
1045 #endif
1046 }
1047
1048 void SimInfo::setupCutoff() {
1049
1050 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1051
1052 // Check the cutoff policy
1053 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1054
1055 // Set LJ shifting bools to false
1056 ljsp_ = 0;
1057 ljsf_ = 0;
1058
1059 std::string myPolicy;
1060 if (forceFieldOptions_.haveCutoffPolicy()){
1061 myPolicy = forceFieldOptions_.getCutoffPolicy();
1062 }else if (simParams_->haveCutoffPolicy()) {
1063 myPolicy = simParams_->getCutoffPolicy();
1064 }
1065
1066 if (!myPolicy.empty()){
1067 toUpper(myPolicy);
1068 if (myPolicy == "MIX") {
1069 cp = MIX_CUTOFF_POLICY;
1070 } else {
1071 if (myPolicy == "MAX") {
1072 cp = MAX_CUTOFF_POLICY;
1073 } else {
1074 if (myPolicy == "TRADITIONAL") {
1075 cp = TRADITIONAL_CUTOFF_POLICY;
1076 } else {
1077 // throw error
1078 sprintf( painCave.errMsg,
1079 "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1080 painCave.isFatal = 1;
1081 simError();
1082 }
1083 }
1084 }
1085 }
1086 notifyFortranCutoffPolicy(&cp);
1087
1088 // Check the Skin Thickness for neighborlists
1089 RealType skin;
1090 if (simParams_->haveSkinThickness()) {
1091 skin = simParams_->getSkinThickness();
1092 notifyFortranSkinThickness(&skin);
1093 }
1094
1095 // Check if the cutoff was set explicitly:
1096 if (simParams_->haveCutoffRadius()) {
1097 rcut_ = simParams_->getCutoffRadius();
1098 if (simParams_->haveSwitchingRadius()) {
1099 rsw_ = simParams_->getSwitchingRadius();
1100 } else {
1101 if (fInfo_.SIM_uses_Charges |
1102 fInfo_.SIM_uses_Dipoles |
1103 fInfo_.SIM_uses_RF) {
1104
1105 rsw_ = 0.85 * rcut_;
1106 sprintf(painCave.errMsg,
1107 "SimCreator Warning: No value was set for the switchingRadius.\n"
1108 "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
1109 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1110 painCave.isFatal = 0;
1111 simError();
1112 } else {
1113 rsw_ = rcut_;
1114 sprintf(painCave.errMsg,
1115 "SimCreator Warning: No value was set for the switchingRadius.\n"
1116 "\tOpenMD will use the same value as the cutoffRadius.\n"
1117 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1118 painCave.isFatal = 0;
1119 simError();
1120 }
1121 }
1122
1123 if (simParams_->haveElectrostaticSummationMethod()) {
1124 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1125 toUpper(myMethod);
1126
1127 if (myMethod == "SHIFTED_POTENTIAL") {
1128 ljsp_ = 1;
1129 } else if (myMethod == "SHIFTED_FORCE") {
1130 ljsf_ = 1;
1131 }
1132 }
1133
1134 notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1135
1136 } else {
1137
1138 // For electrostatic atoms, we'll assume a large safe value:
1139 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1140 sprintf(painCave.errMsg,
1141 "SimCreator Warning: No value was set for the cutoffRadius.\n"
1142 "\tOpenMD will use a default value of 15.0 angstroms"
1143 "\tfor the cutoffRadius.\n");
1144 painCave.isFatal = 0;
1145 simError();
1146 rcut_ = 15.0;
1147
1148 if (simParams_->haveElectrostaticSummationMethod()) {
1149 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1150 toUpper(myMethod);
1151
1152 // For the time being, we're tethering the LJ shifted behavior to the
1153 // electrostaticSummationMethod keyword options
1154 if (myMethod == "SHIFTED_POTENTIAL") {
1155 ljsp_ = 1;
1156 } else if (myMethod == "SHIFTED_FORCE") {
1157 ljsf_ = 1;
1158 }
1159 if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1160 if (simParams_->haveSwitchingRadius()){
1161 sprintf(painCave.errMsg,
1162 "SimInfo Warning: A value was set for the switchingRadius\n"
1163 "\teven though the electrostaticSummationMethod was\n"
1164 "\tset to %s\n", myMethod.c_str());
1165 painCave.isFatal = 1;
1166 simError();
1167 }
1168 }
1169 }
1170
1171 if (simParams_->haveSwitchingRadius()){
1172 rsw_ = simParams_->getSwitchingRadius();
1173 } else {
1174 sprintf(painCave.errMsg,
1175 "SimCreator Warning: No value was set for switchingRadius.\n"
1176 "\tOpenMD will use a default value of\n"
1177 "\t0.85 * cutoffRadius for the switchingRadius\n");
1178 painCave.isFatal = 0;
1179 simError();
1180 rsw_ = 0.85 * rcut_;
1181 }
1182
1183 notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1184
1185 } else {
1186 // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1187 // We'll punt and let fortran figure out the cutoffs later.
1188
1189 notifyFortranYouAreOnYourOwn();
1190
1191 }
1192 }
1193 }
1194
1195 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1196
1197 int errorOut;
1198 int esm = NONE;
1199 int sm = UNDAMPED;
1200 RealType alphaVal;
1201 RealType dielectric;
1202
1203 errorOut = isError;
1204
1205 if (simParams_->haveElectrostaticSummationMethod()) {
1206 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1207 toUpper(myMethod);
1208 if (myMethod == "NONE") {
1209 esm = NONE;
1210 } else {
1211 if (myMethod == "SWITCHING_FUNCTION") {
1212 esm = SWITCHING_FUNCTION;
1213 } else {
1214 if (myMethod == "SHIFTED_POTENTIAL") {
1215 esm = SHIFTED_POTENTIAL;
1216 } else {
1217 if (myMethod == "SHIFTED_FORCE") {
1218 esm = SHIFTED_FORCE;
1219 } else {
1220 if (myMethod == "REACTION_FIELD") {
1221 esm = REACTION_FIELD;
1222 dielectric = simParams_->getDielectric();
1223 if (!simParams_->haveDielectric()) {
1224 // throw warning
1225 sprintf( painCave.errMsg,
1226 "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1227 "\tA default value of %f will be used for the dielectric.\n", dielectric);
1228 painCave.isFatal = 0;
1229 simError();
1230 }
1231 } else {
1232 // throw error
1233 sprintf( painCave.errMsg,
1234 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1235 "\t(Input file specified %s .)\n"
1236 "\telectrostaticSummationMethod must be one of: \"none\",\n"
1237 "\t\"shifted_potential\", \"shifted_force\", or \n"
1238 "\t\"reaction_field\".\n", myMethod.c_str() );
1239 painCave.isFatal = 1;
1240 simError();
1241 }
1242 }
1243 }
1244 }
1245 }
1246 }
1247
1248 if (simParams_->haveElectrostaticScreeningMethod()) {
1249 std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1250 toUpper(myScreen);
1251 if (myScreen == "UNDAMPED") {
1252 sm = UNDAMPED;
1253 } else {
1254 if (myScreen == "DAMPED") {
1255 sm = DAMPED;
1256 if (!simParams_->haveDampingAlpha()) {
1257 // first set a cutoff dependent alpha value
1258 // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1259 alphaVal = 0.5125 - rcut_* 0.025;
1260 // for values rcut > 20.5, alpha is zero
1261 if (alphaVal < 0) alphaVal = 0;
1262
1263 // throw warning
1264 sprintf( painCave.errMsg,
1265 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1266 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1267 painCave.isFatal = 0;
1268 simError();
1269 } else {
1270 alphaVal = simParams_->getDampingAlpha();
1271 }
1272
1273 } else {
1274 // throw error
1275 sprintf( painCave.errMsg,
1276 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1277 "\t(Input file specified %s .)\n"
1278 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1279 "or \"damped\".\n", myScreen.c_str() );
1280 painCave.isFatal = 1;
1281 simError();
1282 }
1283 }
1284 }
1285
1286 // let's pass some summation method variables to fortran
1287 setElectrostaticSummationMethod( &esm );
1288 setFortranElectrostaticMethod( &esm );
1289 setScreeningMethod( &sm );
1290 setDampingAlpha( &alphaVal );
1291 setReactionFieldDielectric( &dielectric );
1292 initFortranFF( &errorOut );
1293 }
1294
1295 void SimInfo::setupSwitchingFunction() {
1296 int ft = CUBIC;
1297
1298 if (simParams_->haveSwitchingFunctionType()) {
1299 std::string funcType = simParams_->getSwitchingFunctionType();
1300 toUpper(funcType);
1301 if (funcType == "CUBIC") {
1302 ft = CUBIC;
1303 } else {
1304 if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1305 ft = FIFTH_ORDER_POLY;
1306 } else {
1307 // throw error
1308 sprintf( painCave.errMsg,
1309 "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1310 painCave.isFatal = 1;
1311 simError();
1312 }
1313 }
1314 }
1315
1316 // send switching function notification to switcheroo
1317 setFunctionType(&ft);
1318
1319 }
1320
1321 void SimInfo::setupAccumulateBoxDipole() {
1322
1323 // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1324 if ( simParams_->haveAccumulateBoxDipole() )
1325 if ( simParams_->getAccumulateBoxDipole() ) {
1326 setAccumulateBoxDipole();
1327 calcBoxDipole_ = true;
1328 }
1329
1330 }
1331
1332 void SimInfo::addProperty(GenericData* genData) {
1333 properties_.addProperty(genData);
1334 }
1335
1336 void SimInfo::removeProperty(const std::string& propName) {
1337 properties_.removeProperty(propName);
1338 }
1339
1340 void SimInfo::clearProperties() {
1341 properties_.clearProperties();
1342 }
1343
1344 std::vector<std::string> SimInfo::getPropertyNames() {
1345 return properties_.getPropertyNames();
1346 }
1347
1348 std::vector<GenericData*> SimInfo::getProperties() {
1349 return properties_.getProperties();
1350 }
1351
1352 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1353 return properties_.getPropertyByName(propName);
1354 }
1355
1356 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1357 if (sman_ == sman) {
1358 return;
1359 }
1360 delete sman_;
1361 sman_ = sman;
1362
1363 Molecule* mol;
1364 RigidBody* rb;
1365 Atom* atom;
1366 SimInfo::MoleculeIterator mi;
1367 Molecule::RigidBodyIterator rbIter;
1368 Molecule::AtomIterator atomIter;;
1369
1370 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1371
1372 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1373 atom->setSnapshotManager(sman_);
1374 }
1375
1376 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1377 rb->setSnapshotManager(sman_);
1378 }
1379 }
1380
1381 }
1382
1383 Vector3d SimInfo::getComVel(){
1384 SimInfo::MoleculeIterator i;
1385 Molecule* mol;
1386
1387 Vector3d comVel(0.0);
1388 RealType totalMass = 0.0;
1389
1390
1391 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1392 RealType mass = mol->getMass();
1393 totalMass += mass;
1394 comVel += mass * mol->getComVel();
1395 }
1396
1397 #ifdef IS_MPI
1398 RealType tmpMass = totalMass;
1399 Vector3d tmpComVel(comVel);
1400 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1401 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1402 #endif
1403
1404 comVel /= totalMass;
1405
1406 return comVel;
1407 }
1408
1409 Vector3d SimInfo::getCom(){
1410 SimInfo::MoleculeIterator i;
1411 Molecule* mol;
1412
1413 Vector3d com(0.0);
1414 RealType totalMass = 0.0;
1415
1416 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1417 RealType mass = mol->getMass();
1418 totalMass += mass;
1419 com += mass * mol->getCom();
1420 }
1421
1422 #ifdef IS_MPI
1423 RealType tmpMass = totalMass;
1424 Vector3d tmpCom(com);
1425 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1426 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1427 #endif
1428
1429 com /= totalMass;
1430
1431 return com;
1432
1433 }
1434
1435 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1436
1437 return o;
1438 }
1439
1440
1441 /*
1442 Returns center of mass and center of mass velocity in one function call.
1443 */
1444
1445 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1446 SimInfo::MoleculeIterator i;
1447 Molecule* mol;
1448
1449
1450 RealType totalMass = 0.0;
1451
1452
1453 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1454 RealType mass = mol->getMass();
1455 totalMass += mass;
1456 com += mass * mol->getCom();
1457 comVel += mass * mol->getComVel();
1458 }
1459
1460 #ifdef IS_MPI
1461 RealType tmpMass = totalMass;
1462 Vector3d tmpCom(com);
1463 Vector3d tmpComVel(comVel);
1464 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1465 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1466 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1467 #endif
1468
1469 com /= totalMass;
1470 comVel /= totalMass;
1471 }
1472
1473 /*
1474 Return intertia tensor for entire system and angular momentum Vector.
1475
1476
1477 [ Ixx -Ixy -Ixz ]
1478 J =| -Iyx Iyy -Iyz |
1479 [ -Izx -Iyz Izz ]
1480 */
1481
1482 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1483
1484
1485 RealType xx = 0.0;
1486 RealType yy = 0.0;
1487 RealType zz = 0.0;
1488 RealType xy = 0.0;
1489 RealType xz = 0.0;
1490 RealType yz = 0.0;
1491 Vector3d com(0.0);
1492 Vector3d comVel(0.0);
1493
1494 getComAll(com, comVel);
1495
1496 SimInfo::MoleculeIterator i;
1497 Molecule* mol;
1498
1499 Vector3d thisq(0.0);
1500 Vector3d thisv(0.0);
1501
1502 RealType thisMass = 0.0;
1503
1504
1505
1506
1507 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1508
1509 thisq = mol->getCom()-com;
1510 thisv = mol->getComVel()-comVel;
1511 thisMass = mol->getMass();
1512 // Compute moment of intertia coefficients.
1513 xx += thisq[0]*thisq[0]*thisMass;
1514 yy += thisq[1]*thisq[1]*thisMass;
1515 zz += thisq[2]*thisq[2]*thisMass;
1516
1517 // compute products of intertia
1518 xy += thisq[0]*thisq[1]*thisMass;
1519 xz += thisq[0]*thisq[2]*thisMass;
1520 yz += thisq[1]*thisq[2]*thisMass;
1521
1522 angularMomentum += cross( thisq, thisv ) * thisMass;
1523
1524 }
1525
1526
1527 inertiaTensor(0,0) = yy + zz;
1528 inertiaTensor(0,1) = -xy;
1529 inertiaTensor(0,2) = -xz;
1530 inertiaTensor(1,0) = -xy;
1531 inertiaTensor(1,1) = xx + zz;
1532 inertiaTensor(1,2) = -yz;
1533 inertiaTensor(2,0) = -xz;
1534 inertiaTensor(2,1) = -yz;
1535 inertiaTensor(2,2) = xx + yy;
1536
1537 #ifdef IS_MPI
1538 Mat3x3d tmpI(inertiaTensor);
1539 Vector3d tmpAngMom;
1540 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1541 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1542 #endif
1543
1544 return;
1545 }
1546
1547 //Returns the angular momentum of the system
1548 Vector3d SimInfo::getAngularMomentum(){
1549
1550 Vector3d com(0.0);
1551 Vector3d comVel(0.0);
1552 Vector3d angularMomentum(0.0);
1553
1554 getComAll(com,comVel);
1555
1556 SimInfo::MoleculeIterator i;
1557 Molecule* mol;
1558
1559 Vector3d thisr(0.0);
1560 Vector3d thisp(0.0);
1561
1562 RealType thisMass;
1563
1564 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1565 thisMass = mol->getMass();
1566 thisr = mol->getCom()-com;
1567 thisp = (mol->getComVel()-comVel)*thisMass;
1568
1569 angularMomentum += cross( thisr, thisp );
1570
1571 }
1572
1573 #ifdef IS_MPI
1574 Vector3d tmpAngMom;
1575 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1576 #endif
1577
1578 return angularMomentum;
1579 }
1580
1581 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1582 return IOIndexToIntegrableObject.at(index);
1583 }
1584
1585 void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1586 IOIndexToIntegrableObject= v;
1587 }
1588
1589 /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1590 based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1591 where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1592 V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1593 */
1594 void SimInfo::getGyrationalVolume(RealType &volume){
1595 Mat3x3d intTensor;
1596 RealType det;
1597 Vector3d dummyAngMom;
1598 RealType sysconstants;
1599 RealType geomCnst;
1600
1601 geomCnst = 3.0/2.0;
1602 /* Get the inertial tensor and angular momentum for free*/
1603 getInertiaTensor(intTensor,dummyAngMom);
1604
1605 det = intTensor.determinant();
1606 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1607 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1608 return;
1609 }
1610
1611 void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1612 Mat3x3d intTensor;
1613 Vector3d dummyAngMom;
1614 RealType sysconstants;
1615 RealType geomCnst;
1616
1617 geomCnst = 3.0/2.0;
1618 /* Get the inertial tensor and angular momentum for free*/
1619 getInertiaTensor(intTensor,dummyAngMom);
1620
1621 detI = intTensor.determinant();
1622 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1623 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1624 return;
1625 }
1626 /*
1627 void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1628 assert( v.size() == nAtoms_ + nRigidBodies_);
1629 sdByGlobalIndex_ = v;
1630 }
1631
1632 StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1633 //assert(index < nAtoms_ + nRigidBodies_);
1634 return sdByGlobalIndex_.at(index);
1635 }
1636 */
1637 }//end namespace OpenMD
1638

Properties

Name Value
svn:keywords Author Id Revision Date