ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
Revision: 1241
Committed: Fri Apr 25 15:14:47 2008 UTC (17 years ago) by gezelter
File size: 48737 byte(s)
Log Message:
A bunch of minor changes to make MPI compilation faster than
the double compilation we do now...

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51 #include <map>
52
53 #include "brains/SimInfo.hpp"
54 #include "math/Vector3.hpp"
55 #include "primitives/Molecule.hpp"
56 #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
65 #include "utils/MemoryUtils.hpp"
66 #include "utils/simError.h"
67 #include "selection/SelectionManager.hpp"
68 #include "io/ForceFieldOptions.hpp"
69 #include "UseTheForce/ForceField.hpp"
70
71
72 #ifdef IS_MPI
73 #include "UseTheForce/mpiComponentPlan.h"
74 #include "UseTheForce/DarkSide/simParallel_interface.h"
75 #endif
76
77 namespace oopse {
78 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 std::map<int, std::set<int> >::iterator i = container.find(index);
80 std::set<int> result;
81 if (i != container.end()) {
82 result = i->second;
83 }
84
85 return result;
86 }
87
88 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 forceField_(ff), simParams_(simParams),
90 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
94 nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
95 sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false),
96 useAtomicVirial_(true) {
97
98 MoleculeStamp* molStamp;
99 int nMolWithSameStamp;
100 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
101 int nGroups = 0; //total cutoff groups defined in meta-data file
102 CutoffGroupStamp* cgStamp;
103 RigidBodyStamp* rbStamp;
104 int nRigidAtoms = 0;
105 std::vector<Component*> components = simParams->getComponents();
106
107 for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
108 molStamp = (*i)->getMoleculeStamp();
109 nMolWithSameStamp = (*i)->getNMol();
110
111 addMoleculeStamp(molStamp, nMolWithSameStamp);
112
113 //calculate atoms in molecules
114 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
115
116 //calculate atoms in cutoff groups
117 int nAtomsInGroups = 0;
118 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119
120 for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 cgStamp = molStamp->getCutoffGroupStamp(j);
122 nAtomsInGroups += cgStamp->getNMembers();
123 }
124
125 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
126
127 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
128
129 //calculate atoms in rigid bodies
130 int nAtomsInRigidBodies = 0;
131 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
132
133 for (int j=0; j < nRigidBodiesInStamp; j++) {
134 rbStamp = molStamp->getRigidBodyStamp(j);
135 nAtomsInRigidBodies += rbStamp->getNMembers();
136 }
137
138 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
139 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
140
141 }
142
143 //every free atom (atom does not belong to cutoff groups) is a cutoff
144 //group therefore the total number of cutoff groups in the system is
145 //equal to the total number of atoms minus number of atoms belong to
146 //cutoff group defined in meta-data file plus the number of cutoff
147 //groups defined in meta-data file
148 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
149
150 //every free atom (atom does not belong to rigid bodies) is an
151 //integrable object therefore the total number of integrable objects
152 //in the system is equal to the total number of atoms minus number of
153 //atoms belong to rigid body defined in meta-data file plus the number
154 //of rigid bodies defined in meta-data file
155 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
156 + nGlobalRigidBodies_;
157
158 nGlobalMols_ = molStampIds_.size();
159 molToProcMap_.resize(nGlobalMols_);
160 }
161
162 SimInfo::~SimInfo() {
163 std::map<int, Molecule*>::iterator i;
164 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
165 delete i->second;
166 }
167 molecules_.clear();
168
169 delete sman_;
170 delete simParams_;
171 delete forceField_;
172 }
173
174 int SimInfo::getNGlobalConstraints() {
175 int nGlobalConstraints;
176 #ifdef IS_MPI
177 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178 MPI_COMM_WORLD);
179 #else
180 nGlobalConstraints = nConstraints_;
181 #endif
182 return nGlobalConstraints;
183 }
184
185 bool SimInfo::addMolecule(Molecule* mol) {
186 MoleculeIterator i;
187
188 i = molecules_.find(mol->getGlobalIndex());
189 if (i == molecules_.end() ) {
190
191 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
192
193 nAtoms_ += mol->getNAtoms();
194 nBonds_ += mol->getNBonds();
195 nBends_ += mol->getNBends();
196 nTorsions_ += mol->getNTorsions();
197 nRigidBodies_ += mol->getNRigidBodies();
198 nIntegrableObjects_ += mol->getNIntegrableObjects();
199 nCutoffGroups_ += mol->getNCutoffGroups();
200 nConstraints_ += mol->getNConstraintPairs();
201
202 addExcludePairs(mol);
203
204 return true;
205 } else {
206 return false;
207 }
208 }
209
210 bool SimInfo::removeMolecule(Molecule* mol) {
211 MoleculeIterator i;
212 i = molecules_.find(mol->getGlobalIndex());
213
214 if (i != molecules_.end() ) {
215
216 assert(mol == i->second);
217
218 nAtoms_ -= mol->getNAtoms();
219 nBonds_ -= mol->getNBonds();
220 nBends_ -= mol->getNBends();
221 nTorsions_ -= mol->getNTorsions();
222 nRigidBodies_ -= mol->getNRigidBodies();
223 nIntegrableObjects_ -= mol->getNIntegrableObjects();
224 nCutoffGroups_ -= mol->getNCutoffGroups();
225 nConstraints_ -= mol->getNConstraintPairs();
226
227 removeExcludePairs(mol);
228 molecules_.erase(mol->getGlobalIndex());
229
230 delete mol;
231
232 return true;
233 } else {
234 return false;
235 }
236
237
238 }
239
240
241 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
242 i = molecules_.begin();
243 return i == molecules_.end() ? NULL : i->second;
244 }
245
246 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
247 ++i;
248 return i == molecules_.end() ? NULL : i->second;
249 }
250
251
252 void SimInfo::calcNdf() {
253 int ndf_local;
254 MoleculeIterator i;
255 std::vector<StuntDouble*>::iterator j;
256 Molecule* mol;
257 StuntDouble* integrableObject;
258
259 ndf_local = 0;
260
261 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
262 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263 integrableObject = mol->nextIntegrableObject(j)) {
264
265 ndf_local += 3;
266
267 if (integrableObject->isDirectional()) {
268 if (integrableObject->isLinear()) {
269 ndf_local += 2;
270 } else {
271 ndf_local += 3;
272 }
273 }
274
275 }
276 }
277
278 // n_constraints is local, so subtract them on each processor
279 ndf_local -= nConstraints_;
280
281 #ifdef IS_MPI
282 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
283 #else
284 ndf_ = ndf_local;
285 #endif
286
287 // nZconstraints_ is global, as are the 3 COM translations for the
288 // entire system:
289 ndf_ = ndf_ - 3 - nZconstraint_;
290
291 }
292
293 int SimInfo::getFdf() {
294 #ifdef IS_MPI
295 MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
296 #else
297 fdf_ = fdf_local;
298 #endif
299 return fdf_;
300 }
301
302 void SimInfo::calcNdfRaw() {
303 int ndfRaw_local;
304
305 MoleculeIterator i;
306 std::vector<StuntDouble*>::iterator j;
307 Molecule* mol;
308 StuntDouble* integrableObject;
309
310 // Raw degrees of freedom that we have to set
311 ndfRaw_local = 0;
312
313 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
314 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
315 integrableObject = mol->nextIntegrableObject(j)) {
316
317 ndfRaw_local += 3;
318
319 if (integrableObject->isDirectional()) {
320 if (integrableObject->isLinear()) {
321 ndfRaw_local += 2;
322 } else {
323 ndfRaw_local += 3;
324 }
325 }
326
327 }
328 }
329
330 #ifdef IS_MPI
331 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
332 #else
333 ndfRaw_ = ndfRaw_local;
334 #endif
335 }
336
337 void SimInfo::calcNdfTrans() {
338 int ndfTrans_local;
339
340 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
341
342
343 #ifdef IS_MPI
344 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
345 #else
346 ndfTrans_ = ndfTrans_local;
347 #endif
348
349 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
350
351 }
352
353 void SimInfo::addExcludePairs(Molecule* mol) {
354 std::vector<Bond*>::iterator bondIter;
355 std::vector<Bend*>::iterator bendIter;
356 std::vector<Torsion*>::iterator torsionIter;
357 Bond* bond;
358 Bend* bend;
359 Torsion* torsion;
360 int a;
361 int b;
362 int c;
363 int d;
364
365 std::map<int, std::set<int> > atomGroups;
366
367 Molecule::RigidBodyIterator rbIter;
368 RigidBody* rb;
369 Molecule::IntegrableObjectIterator ii;
370 StuntDouble* integrableObject;
371
372 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
373 integrableObject = mol->nextIntegrableObject(ii)) {
374
375 if (integrableObject->isRigidBody()) {
376 rb = static_cast<RigidBody*>(integrableObject);
377 std::vector<Atom*> atoms = rb->getAtoms();
378 std::set<int> rigidAtoms;
379 for (int i = 0; i < atoms.size(); ++i) {
380 rigidAtoms.insert(atoms[i]->getGlobalIndex());
381 }
382 for (int i = 0; i < atoms.size(); ++i) {
383 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
384 }
385 } else {
386 std::set<int> oneAtomSet;
387 oneAtomSet.insert(integrableObject->getGlobalIndex());
388 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
389 }
390 }
391
392
393
394 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
395 a = bond->getAtomA()->getGlobalIndex();
396 b = bond->getAtomB()->getGlobalIndex();
397 exclude_.addPair(a, b);
398 }
399
400 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
401 a = bend->getAtomA()->getGlobalIndex();
402 b = bend->getAtomB()->getGlobalIndex();
403 c = bend->getAtomC()->getGlobalIndex();
404 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
405 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
406 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
407
408 exclude_.addPairs(rigidSetA, rigidSetB);
409 exclude_.addPairs(rigidSetA, rigidSetC);
410 exclude_.addPairs(rigidSetB, rigidSetC);
411
412 //exclude_.addPair(a, b);
413 //exclude_.addPair(a, c);
414 //exclude_.addPair(b, c);
415 }
416
417 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
418 a = torsion->getAtomA()->getGlobalIndex();
419 b = torsion->getAtomB()->getGlobalIndex();
420 c = torsion->getAtomC()->getGlobalIndex();
421 d = torsion->getAtomD()->getGlobalIndex();
422 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
423 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
424 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
425 std::set<int> rigidSetD = getRigidSet(d, atomGroups);
426
427 exclude_.addPairs(rigidSetA, rigidSetB);
428 exclude_.addPairs(rigidSetA, rigidSetC);
429 exclude_.addPairs(rigidSetA, rigidSetD);
430 exclude_.addPairs(rigidSetB, rigidSetC);
431 exclude_.addPairs(rigidSetB, rigidSetD);
432 exclude_.addPairs(rigidSetC, rigidSetD);
433
434 /*
435 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
436 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
437 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
438 exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
439 exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
440 exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
441
442
443 exclude_.addPair(a, b);
444 exclude_.addPair(a, c);
445 exclude_.addPair(a, d);
446 exclude_.addPair(b, c);
447 exclude_.addPair(b, d);
448 exclude_.addPair(c, d);
449 */
450 }
451
452 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
453 std::vector<Atom*> atoms = rb->getAtoms();
454 for (int i = 0; i < atoms.size() -1 ; ++i) {
455 for (int j = i + 1; j < atoms.size(); ++j) {
456 a = atoms[i]->getGlobalIndex();
457 b = atoms[j]->getGlobalIndex();
458 exclude_.addPair(a, b);
459 }
460 }
461 }
462
463 }
464
465 void SimInfo::removeExcludePairs(Molecule* mol) {
466 std::vector<Bond*>::iterator bondIter;
467 std::vector<Bend*>::iterator bendIter;
468 std::vector<Torsion*>::iterator torsionIter;
469 Bond* bond;
470 Bend* bend;
471 Torsion* torsion;
472 int a;
473 int b;
474 int c;
475 int d;
476
477 std::map<int, std::set<int> > atomGroups;
478
479 Molecule::RigidBodyIterator rbIter;
480 RigidBody* rb;
481 Molecule::IntegrableObjectIterator ii;
482 StuntDouble* integrableObject;
483
484 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
485 integrableObject = mol->nextIntegrableObject(ii)) {
486
487 if (integrableObject->isRigidBody()) {
488 rb = static_cast<RigidBody*>(integrableObject);
489 std::vector<Atom*> atoms = rb->getAtoms();
490 std::set<int> rigidAtoms;
491 for (int i = 0; i < atoms.size(); ++i) {
492 rigidAtoms.insert(atoms[i]->getGlobalIndex());
493 }
494 for (int i = 0; i < atoms.size(); ++i) {
495 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
496 }
497 } else {
498 std::set<int> oneAtomSet;
499 oneAtomSet.insert(integrableObject->getGlobalIndex());
500 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
501 }
502 }
503
504
505 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
506 a = bond->getAtomA()->getGlobalIndex();
507 b = bond->getAtomB()->getGlobalIndex();
508 exclude_.removePair(a, b);
509 }
510
511 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
512 a = bend->getAtomA()->getGlobalIndex();
513 b = bend->getAtomB()->getGlobalIndex();
514 c = bend->getAtomC()->getGlobalIndex();
515
516 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
517 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
518 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
519
520 exclude_.removePairs(rigidSetA, rigidSetB);
521 exclude_.removePairs(rigidSetA, rigidSetC);
522 exclude_.removePairs(rigidSetB, rigidSetC);
523
524 //exclude_.removePair(a, b);
525 //exclude_.removePair(a, c);
526 //exclude_.removePair(b, c);
527 }
528
529 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
530 a = torsion->getAtomA()->getGlobalIndex();
531 b = torsion->getAtomB()->getGlobalIndex();
532 c = torsion->getAtomC()->getGlobalIndex();
533 d = torsion->getAtomD()->getGlobalIndex();
534
535 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
536 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
537 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
538 std::set<int> rigidSetD = getRigidSet(d, atomGroups);
539
540 exclude_.removePairs(rigidSetA, rigidSetB);
541 exclude_.removePairs(rigidSetA, rigidSetC);
542 exclude_.removePairs(rigidSetA, rigidSetD);
543 exclude_.removePairs(rigidSetB, rigidSetC);
544 exclude_.removePairs(rigidSetB, rigidSetD);
545 exclude_.removePairs(rigidSetC, rigidSetD);
546
547 /*
548 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
549 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
550 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
551 exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
552 exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
553 exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
554
555
556 exclude_.removePair(a, b);
557 exclude_.removePair(a, c);
558 exclude_.removePair(a, d);
559 exclude_.removePair(b, c);
560 exclude_.removePair(b, d);
561 exclude_.removePair(c, d);
562 */
563 }
564
565 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
566 std::vector<Atom*> atoms = rb->getAtoms();
567 for (int i = 0; i < atoms.size() -1 ; ++i) {
568 for (int j = i + 1; j < atoms.size(); ++j) {
569 a = atoms[i]->getGlobalIndex();
570 b = atoms[j]->getGlobalIndex();
571 exclude_.removePair(a, b);
572 }
573 }
574 }
575
576 }
577
578
579 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
580 int curStampId;
581
582 //index from 0
583 curStampId = moleculeStamps_.size();
584
585 moleculeStamps_.push_back(molStamp);
586 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
587 }
588
589 void SimInfo::update() {
590
591 setupSimType();
592
593 #ifdef IS_MPI
594 setupFortranParallel();
595 #endif
596
597 setupFortranSim();
598
599 //setup fortran force field
600 /** @deprecate */
601 int isError = 0;
602
603 setupCutoff();
604
605 setupElectrostaticSummationMethod( isError );
606 setupSwitchingFunction();
607 setupAccumulateBoxDipole();
608
609 if(isError){
610 sprintf( painCave.errMsg,
611 "ForceField error: There was an error initializing the forceField in fortran.\n" );
612 painCave.isFatal = 1;
613 simError();
614 }
615
616 calcNdf();
617 calcNdfRaw();
618 calcNdfTrans();
619
620 fortranInitialized_ = true;
621 }
622
623 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
624 SimInfo::MoleculeIterator mi;
625 Molecule* mol;
626 Molecule::AtomIterator ai;
627 Atom* atom;
628 std::set<AtomType*> atomTypes;
629
630 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
631
632 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
633 atomTypes.insert(atom->getAtomType());
634 }
635
636 }
637
638 return atomTypes;
639 }
640
641 void SimInfo::setupSimType() {
642 std::set<AtomType*>::iterator i;
643 std::set<AtomType*> atomTypes;
644 atomTypes = getUniqueAtomTypes();
645
646 int useLennardJones = 0;
647 int useElectrostatic = 0;
648 int useEAM = 0;
649 int useSC = 0;
650 int useCharge = 0;
651 int useDirectional = 0;
652 int useDipole = 0;
653 int useGayBerne = 0;
654 int useSticky = 0;
655 int useStickyPower = 0;
656 int useShape = 0;
657 int useFLARB = 0; //it is not in AtomType yet
658 int useDirectionalAtom = 0;
659 int useElectrostatics = 0;
660 //usePBC and useRF are from simParams
661 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
662 int useRF;
663 int useSF;
664 int useSP;
665 int useBoxDipole;
666
667 std::string myMethod;
668
669 // set the useRF logical
670 useRF = 0;
671 useSF = 0;
672 useSP = 0;
673
674
675 if (simParams_->haveElectrostaticSummationMethod()) {
676 std::string myMethod = simParams_->getElectrostaticSummationMethod();
677 toUpper(myMethod);
678 if (myMethod == "REACTION_FIELD"){
679 useRF = 1;
680 } else if (myMethod == "SHIFTED_FORCE"){
681 useSF = 1;
682 } else if (myMethod == "SHIFTED_POTENTIAL"){
683 useSP = 1;
684 }
685 }
686
687 if (simParams_->haveAccumulateBoxDipole())
688 if (simParams_->getAccumulateBoxDipole())
689 useBoxDipole = 1;
690
691 useAtomicVirial_ = simParams_->getUseAtomicVirial();
692
693 //loop over all of the atom types
694 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
695 useLennardJones |= (*i)->isLennardJones();
696 useElectrostatic |= (*i)->isElectrostatic();
697 useEAM |= (*i)->isEAM();
698 useSC |= (*i)->isSC();
699 useCharge |= (*i)->isCharge();
700 useDirectional |= (*i)->isDirectional();
701 useDipole |= (*i)->isDipole();
702 useGayBerne |= (*i)->isGayBerne();
703 useSticky |= (*i)->isSticky();
704 useStickyPower |= (*i)->isStickyPower();
705 useShape |= (*i)->isShape();
706 }
707
708 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
709 useDirectionalAtom = 1;
710 }
711
712 if (useCharge || useDipole) {
713 useElectrostatics = 1;
714 }
715
716 #ifdef IS_MPI
717 int temp;
718
719 temp = usePBC;
720 MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
721
722 temp = useDirectionalAtom;
723 MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
724
725 temp = useLennardJones;
726 MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
727
728 temp = useElectrostatics;
729 MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
730
731 temp = useCharge;
732 MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
733
734 temp = useDipole;
735 MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
736
737 temp = useSticky;
738 MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
739
740 temp = useStickyPower;
741 MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
742
743 temp = useGayBerne;
744 MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
745
746 temp = useEAM;
747 MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
748
749 temp = useSC;
750 MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
751
752 temp = useShape;
753 MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
754
755 temp = useFLARB;
756 MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
757
758 temp = useRF;
759 MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
760
761 temp = useSF;
762 MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
763
764 temp = useSP;
765 MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766
767 temp = useBoxDipole;
768 MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
769
770 temp = useAtomicVirial_;
771 MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
772
773 #endif
774
775 fInfo_.SIM_uses_PBC = usePBC;
776 fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
777 fInfo_.SIM_uses_LennardJones = useLennardJones;
778 fInfo_.SIM_uses_Electrostatics = useElectrostatics;
779 fInfo_.SIM_uses_Charges = useCharge;
780 fInfo_.SIM_uses_Dipoles = useDipole;
781 fInfo_.SIM_uses_Sticky = useSticky;
782 fInfo_.SIM_uses_StickyPower = useStickyPower;
783 fInfo_.SIM_uses_GayBerne = useGayBerne;
784 fInfo_.SIM_uses_EAM = useEAM;
785 fInfo_.SIM_uses_SC = useSC;
786 fInfo_.SIM_uses_Shapes = useShape;
787 fInfo_.SIM_uses_FLARB = useFLARB;
788 fInfo_.SIM_uses_RF = useRF;
789 fInfo_.SIM_uses_SF = useSF;
790 fInfo_.SIM_uses_SP = useSP;
791 fInfo_.SIM_uses_BoxDipole = useBoxDipole;
792 fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
793 }
794
795 void SimInfo::setupFortranSim() {
796 int isError;
797 int nExclude;
798 std::vector<int> fortranGlobalGroupMembership;
799
800 nExclude = exclude_.getSize();
801 isError = 0;
802
803 //globalGroupMembership_ is filled by SimCreator
804 for (int i = 0; i < nGlobalAtoms_; i++) {
805 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
806 }
807
808 //calculate mass ratio of cutoff group
809 std::vector<RealType> mfact;
810 SimInfo::MoleculeIterator mi;
811 Molecule* mol;
812 Molecule::CutoffGroupIterator ci;
813 CutoffGroup* cg;
814 Molecule::AtomIterator ai;
815 Atom* atom;
816 RealType totalMass;
817
818 //to avoid memory reallocation, reserve enough space for mfact
819 mfact.reserve(getNCutoffGroups());
820
821 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
822 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
823
824 totalMass = cg->getMass();
825 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
826 // Check for massless groups - set mfact to 1 if true
827 if (totalMass != 0)
828 mfact.push_back(atom->getMass()/totalMass);
829 else
830 mfact.push_back( 1.0 );
831 }
832
833 }
834 }
835
836 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
837 std::vector<int> identArray;
838
839 //to avoid memory reallocation, reserve enough space identArray
840 identArray.reserve(getNAtoms());
841
842 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
843 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
844 identArray.push_back(atom->getIdent());
845 }
846 }
847
848 //fill molMembershipArray
849 //molMembershipArray is filled by SimCreator
850 std::vector<int> molMembershipArray(nGlobalAtoms_);
851 for (int i = 0; i < nGlobalAtoms_; i++) {
852 molMembershipArray[i] = globalMolMembership_[i] + 1;
853 }
854
855 //setup fortran simulation
856 int nGlobalExcludes = 0;
857 int* globalExcludes = NULL;
858 int* excludeList = exclude_.getExcludeList();
859 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
860 &nExclude, excludeList , &nGlobalExcludes, globalExcludes,
861 &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
862 &fortranGlobalGroupMembership[0], &isError);
863
864 if( isError ){
865
866 sprintf( painCave.errMsg,
867 "There was an error setting the simulation information in fortran.\n" );
868 painCave.isFatal = 1;
869 painCave.severity = OOPSE_ERROR;
870 simError();
871 }
872
873
874 sprintf( checkPointMsg,
875 "succesfully sent the simulation information to fortran.\n");
876
877 errorCheckPoint();
878
879 // Setup number of neighbors in neighbor list if present
880 if (simParams_->haveNeighborListNeighbors()) {
881 int nlistNeighbors = simParams_->getNeighborListNeighbors();
882 setNeighbors(&nlistNeighbors);
883 }
884
885
886 }
887
888
889 void SimInfo::setupFortranParallel() {
890 #ifdef IS_MPI
891 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
892 std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
893 std::vector<int> localToGlobalCutoffGroupIndex;
894 SimInfo::MoleculeIterator mi;
895 Molecule::AtomIterator ai;
896 Molecule::CutoffGroupIterator ci;
897 Molecule* mol;
898 Atom* atom;
899 CutoffGroup* cg;
900 mpiSimData parallelData;
901 int isError;
902
903 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
904
905 //local index(index in DataStorge) of atom is important
906 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
907 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
908 }
909
910 //local index of cutoff group is trivial, it only depends on the order of travesing
911 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
912 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
913 }
914
915 }
916
917 //fill up mpiSimData struct
918 parallelData.nMolGlobal = getNGlobalMolecules();
919 parallelData.nMolLocal = getNMolecules();
920 parallelData.nAtomsGlobal = getNGlobalAtoms();
921 parallelData.nAtomsLocal = getNAtoms();
922 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
923 parallelData.nGroupsLocal = getNCutoffGroups();
924 parallelData.myNode = worldRank;
925 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
926
927 //pass mpiSimData struct and index arrays to fortran
928 setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
929 &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
930 &localToGlobalCutoffGroupIndex[0], &isError);
931
932 if (isError) {
933 sprintf(painCave.errMsg,
934 "mpiRefresh errror: fortran didn't like something we gave it.\n");
935 painCave.isFatal = 1;
936 simError();
937 }
938
939 sprintf(checkPointMsg, " mpiRefresh successful.\n");
940 errorCheckPoint();
941
942 #endif
943 }
944
945 void SimInfo::setupCutoff() {
946
947 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
948
949 // Check the cutoff policy
950 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
951
952 // Set LJ shifting bools to false
953 ljsp_ = false;
954 ljsf_ = false;
955
956 std::string myPolicy;
957 if (forceFieldOptions_.haveCutoffPolicy()){
958 myPolicy = forceFieldOptions_.getCutoffPolicy();
959 }else if (simParams_->haveCutoffPolicy()) {
960 myPolicy = simParams_->getCutoffPolicy();
961 }
962
963 if (!myPolicy.empty()){
964 toUpper(myPolicy);
965 if (myPolicy == "MIX") {
966 cp = MIX_CUTOFF_POLICY;
967 } else {
968 if (myPolicy == "MAX") {
969 cp = MAX_CUTOFF_POLICY;
970 } else {
971 if (myPolicy == "TRADITIONAL") {
972 cp = TRADITIONAL_CUTOFF_POLICY;
973 } else {
974 // throw error
975 sprintf( painCave.errMsg,
976 "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
977 painCave.isFatal = 1;
978 simError();
979 }
980 }
981 }
982 }
983 notifyFortranCutoffPolicy(&cp);
984
985 // Check the Skin Thickness for neighborlists
986 RealType skin;
987 if (simParams_->haveSkinThickness()) {
988 skin = simParams_->getSkinThickness();
989 notifyFortranSkinThickness(&skin);
990 }
991
992 // Check if the cutoff was set explicitly:
993 if (simParams_->haveCutoffRadius()) {
994 rcut_ = simParams_->getCutoffRadius();
995 if (simParams_->haveSwitchingRadius()) {
996 rsw_ = simParams_->getSwitchingRadius();
997 } else {
998 if (fInfo_.SIM_uses_Charges |
999 fInfo_.SIM_uses_Dipoles |
1000 fInfo_.SIM_uses_RF) {
1001
1002 rsw_ = 0.85 * rcut_;
1003 sprintf(painCave.errMsg,
1004 "SimCreator Warning: No value was set for the switchingRadius.\n"
1005 "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1006 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1007 painCave.isFatal = 0;
1008 simError();
1009 } else {
1010 rsw_ = rcut_;
1011 sprintf(painCave.errMsg,
1012 "SimCreator Warning: No value was set for the switchingRadius.\n"
1013 "\tOOPSE will use the same value as the cutoffRadius.\n"
1014 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1015 painCave.isFatal = 0;
1016 simError();
1017 }
1018 }
1019
1020 if (simParams_->haveElectrostaticSummationMethod()) {
1021 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1022 toUpper(myMethod);
1023
1024 if (myMethod == "SHIFTED_POTENTIAL") {
1025 ljsp_ = true;
1026 } else if (myMethod == "SHIFTED_FORCE") {
1027 ljsf_ = true;
1028 }
1029 }
1030 notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1031
1032 } else {
1033
1034 // For electrostatic atoms, we'll assume a large safe value:
1035 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1036 sprintf(painCave.errMsg,
1037 "SimCreator Warning: No value was set for the cutoffRadius.\n"
1038 "\tOOPSE will use a default value of 15.0 angstroms"
1039 "\tfor the cutoffRadius.\n");
1040 painCave.isFatal = 0;
1041 simError();
1042 rcut_ = 15.0;
1043
1044 if (simParams_->haveElectrostaticSummationMethod()) {
1045 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1046 toUpper(myMethod);
1047
1048 // For the time being, we're tethering the LJ shifted behavior to the
1049 // electrostaticSummationMethod keyword options
1050 if (myMethod == "SHIFTED_POTENTIAL") {
1051 ljsp_ = true;
1052 } else if (myMethod == "SHIFTED_FORCE") {
1053 ljsf_ = true;
1054 }
1055 if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1056 if (simParams_->haveSwitchingRadius()){
1057 sprintf(painCave.errMsg,
1058 "SimInfo Warning: A value was set for the switchingRadius\n"
1059 "\teven though the electrostaticSummationMethod was\n"
1060 "\tset to %s\n", myMethod.c_str());
1061 painCave.isFatal = 1;
1062 simError();
1063 }
1064 }
1065 }
1066
1067 if (simParams_->haveSwitchingRadius()){
1068 rsw_ = simParams_->getSwitchingRadius();
1069 } else {
1070 sprintf(painCave.errMsg,
1071 "SimCreator Warning: No value was set for switchingRadius.\n"
1072 "\tOOPSE will use a default value of\n"
1073 "\t0.85 * cutoffRadius for the switchingRadius\n");
1074 painCave.isFatal = 0;
1075 simError();
1076 rsw_ = 0.85 * rcut_;
1077 }
1078
1079 notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1080
1081 } else {
1082 // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1083 // We'll punt and let fortran figure out the cutoffs later.
1084
1085 notifyFortranYouAreOnYourOwn();
1086
1087 }
1088 }
1089 }
1090
1091 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1092
1093 int errorOut;
1094 int esm = NONE;
1095 int sm = UNDAMPED;
1096 RealType alphaVal;
1097 RealType dielectric;
1098
1099 errorOut = isError;
1100
1101 if (simParams_->haveElectrostaticSummationMethod()) {
1102 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1103 toUpper(myMethod);
1104 if (myMethod == "NONE") {
1105 esm = NONE;
1106 } else {
1107 if (myMethod == "SWITCHING_FUNCTION") {
1108 esm = SWITCHING_FUNCTION;
1109 } else {
1110 if (myMethod == "SHIFTED_POTENTIAL") {
1111 esm = SHIFTED_POTENTIAL;
1112 } else {
1113 if (myMethod == "SHIFTED_FORCE") {
1114 esm = SHIFTED_FORCE;
1115 } else {
1116 if (myMethod == "REACTION_FIELD") {
1117 esm = REACTION_FIELD;
1118 dielectric = simParams_->getDielectric();
1119 if (!simParams_->haveDielectric()) {
1120 // throw warning
1121 sprintf( painCave.errMsg,
1122 "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1123 "\tA default value of %f will be used for the dielectric.\n", dielectric);
1124 painCave.isFatal = 0;
1125 simError();
1126 }
1127 } else {
1128 // throw error
1129 sprintf( painCave.errMsg,
1130 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1131 "\t(Input file specified %s .)\n"
1132 "\telectrostaticSummationMethod must be one of: \"none\",\n"
1133 "\t\"shifted_potential\", \"shifted_force\", or \n"
1134 "\t\"reaction_field\".\n", myMethod.c_str() );
1135 painCave.isFatal = 1;
1136 simError();
1137 }
1138 }
1139 }
1140 }
1141 }
1142 }
1143
1144 if (simParams_->haveElectrostaticScreeningMethod()) {
1145 std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1146 toUpper(myScreen);
1147 if (myScreen == "UNDAMPED") {
1148 sm = UNDAMPED;
1149 } else {
1150 if (myScreen == "DAMPED") {
1151 sm = DAMPED;
1152 if (!simParams_->haveDampingAlpha()) {
1153 // first set a cutoff dependent alpha value
1154 // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1155 alphaVal = 0.5125 - rcut_* 0.025;
1156 // for values rcut > 20.5, alpha is zero
1157 if (alphaVal < 0) alphaVal = 0;
1158
1159 // throw warning
1160 sprintf( painCave.errMsg,
1161 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1162 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1163 painCave.isFatal = 0;
1164 simError();
1165 } else {
1166 alphaVal = simParams_->getDampingAlpha();
1167 }
1168
1169 } else {
1170 // throw error
1171 sprintf( painCave.errMsg,
1172 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1173 "\t(Input file specified %s .)\n"
1174 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1175 "or \"damped\".\n", myScreen.c_str() );
1176 painCave.isFatal = 1;
1177 simError();
1178 }
1179 }
1180 }
1181
1182 // let's pass some summation method variables to fortran
1183 setElectrostaticSummationMethod( &esm );
1184 setFortranElectrostaticMethod( &esm );
1185 setScreeningMethod( &sm );
1186 setDampingAlpha( &alphaVal );
1187 setReactionFieldDielectric( &dielectric );
1188 initFortranFF( &errorOut );
1189 }
1190
1191 void SimInfo::setupSwitchingFunction() {
1192 int ft = CUBIC;
1193
1194 if (simParams_->haveSwitchingFunctionType()) {
1195 std::string funcType = simParams_->getSwitchingFunctionType();
1196 toUpper(funcType);
1197 if (funcType == "CUBIC") {
1198 ft = CUBIC;
1199 } else {
1200 if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1201 ft = FIFTH_ORDER_POLY;
1202 } else {
1203 // throw error
1204 sprintf( painCave.errMsg,
1205 "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1206 painCave.isFatal = 1;
1207 simError();
1208 }
1209 }
1210 }
1211
1212 // send switching function notification to switcheroo
1213 setFunctionType(&ft);
1214
1215 }
1216
1217 void SimInfo::setupAccumulateBoxDipole() {
1218
1219 // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1220 if ( simParams_->haveAccumulateBoxDipole() )
1221 if ( simParams_->getAccumulateBoxDipole() ) {
1222 setAccumulateBoxDipole();
1223 calcBoxDipole_ = true;
1224 }
1225
1226 }
1227
1228 void SimInfo::addProperty(GenericData* genData) {
1229 properties_.addProperty(genData);
1230 }
1231
1232 void SimInfo::removeProperty(const std::string& propName) {
1233 properties_.removeProperty(propName);
1234 }
1235
1236 void SimInfo::clearProperties() {
1237 properties_.clearProperties();
1238 }
1239
1240 std::vector<std::string> SimInfo::getPropertyNames() {
1241 return properties_.getPropertyNames();
1242 }
1243
1244 std::vector<GenericData*> SimInfo::getProperties() {
1245 return properties_.getProperties();
1246 }
1247
1248 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1249 return properties_.getPropertyByName(propName);
1250 }
1251
1252 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1253 if (sman_ == sman) {
1254 return;
1255 }
1256 delete sman_;
1257 sman_ = sman;
1258
1259 Molecule* mol;
1260 RigidBody* rb;
1261 Atom* atom;
1262 SimInfo::MoleculeIterator mi;
1263 Molecule::RigidBodyIterator rbIter;
1264 Molecule::AtomIterator atomIter;;
1265
1266 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1267
1268 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1269 atom->setSnapshotManager(sman_);
1270 }
1271
1272 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1273 rb->setSnapshotManager(sman_);
1274 }
1275 }
1276
1277 }
1278
1279 Vector3d SimInfo::getComVel(){
1280 SimInfo::MoleculeIterator i;
1281 Molecule* mol;
1282
1283 Vector3d comVel(0.0);
1284 RealType totalMass = 0.0;
1285
1286
1287 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1288 RealType mass = mol->getMass();
1289 totalMass += mass;
1290 comVel += mass * mol->getComVel();
1291 }
1292
1293 #ifdef IS_MPI
1294 RealType tmpMass = totalMass;
1295 Vector3d tmpComVel(comVel);
1296 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1297 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1298 #endif
1299
1300 comVel /= totalMass;
1301
1302 return comVel;
1303 }
1304
1305 Vector3d SimInfo::getCom(){
1306 SimInfo::MoleculeIterator i;
1307 Molecule* mol;
1308
1309 Vector3d com(0.0);
1310 RealType totalMass = 0.0;
1311
1312 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1313 RealType mass = mol->getMass();
1314 totalMass += mass;
1315 com += mass * mol->getCom();
1316 }
1317
1318 #ifdef IS_MPI
1319 RealType tmpMass = totalMass;
1320 Vector3d tmpCom(com);
1321 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1322 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1323 #endif
1324
1325 com /= totalMass;
1326
1327 return com;
1328
1329 }
1330
1331 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1332
1333 return o;
1334 }
1335
1336
1337 /*
1338 Returns center of mass and center of mass velocity in one function call.
1339 */
1340
1341 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1342 SimInfo::MoleculeIterator i;
1343 Molecule* mol;
1344
1345
1346 RealType totalMass = 0.0;
1347
1348
1349 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1350 RealType mass = mol->getMass();
1351 totalMass += mass;
1352 com += mass * mol->getCom();
1353 comVel += mass * mol->getComVel();
1354 }
1355
1356 #ifdef IS_MPI
1357 RealType tmpMass = totalMass;
1358 Vector3d tmpCom(com);
1359 Vector3d tmpComVel(comVel);
1360 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1361 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1362 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1363 #endif
1364
1365 com /= totalMass;
1366 comVel /= totalMass;
1367 }
1368
1369 /*
1370 Return intertia tensor for entire system and angular momentum Vector.
1371
1372
1373 [ Ixx -Ixy -Ixz ]
1374 J =| -Iyx Iyy -Iyz |
1375 [ -Izx -Iyz Izz ]
1376 */
1377
1378 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1379
1380
1381 RealType xx = 0.0;
1382 RealType yy = 0.0;
1383 RealType zz = 0.0;
1384 RealType xy = 0.0;
1385 RealType xz = 0.0;
1386 RealType yz = 0.0;
1387 Vector3d com(0.0);
1388 Vector3d comVel(0.0);
1389
1390 getComAll(com, comVel);
1391
1392 SimInfo::MoleculeIterator i;
1393 Molecule* mol;
1394
1395 Vector3d thisq(0.0);
1396 Vector3d thisv(0.0);
1397
1398 RealType thisMass = 0.0;
1399
1400
1401
1402
1403 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1404
1405 thisq = mol->getCom()-com;
1406 thisv = mol->getComVel()-comVel;
1407 thisMass = mol->getMass();
1408 // Compute moment of intertia coefficients.
1409 xx += thisq[0]*thisq[0]*thisMass;
1410 yy += thisq[1]*thisq[1]*thisMass;
1411 zz += thisq[2]*thisq[2]*thisMass;
1412
1413 // compute products of intertia
1414 xy += thisq[0]*thisq[1]*thisMass;
1415 xz += thisq[0]*thisq[2]*thisMass;
1416 yz += thisq[1]*thisq[2]*thisMass;
1417
1418 angularMomentum += cross( thisq, thisv ) * thisMass;
1419
1420 }
1421
1422
1423 inertiaTensor(0,0) = yy + zz;
1424 inertiaTensor(0,1) = -xy;
1425 inertiaTensor(0,2) = -xz;
1426 inertiaTensor(1,0) = -xy;
1427 inertiaTensor(1,1) = xx + zz;
1428 inertiaTensor(1,2) = -yz;
1429 inertiaTensor(2,0) = -xz;
1430 inertiaTensor(2,1) = -yz;
1431 inertiaTensor(2,2) = xx + yy;
1432
1433 #ifdef IS_MPI
1434 Mat3x3d tmpI(inertiaTensor);
1435 Vector3d tmpAngMom;
1436 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1437 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1438 #endif
1439
1440 return;
1441 }
1442
1443 //Returns the angular momentum of the system
1444 Vector3d SimInfo::getAngularMomentum(){
1445
1446 Vector3d com(0.0);
1447 Vector3d comVel(0.0);
1448 Vector3d angularMomentum(0.0);
1449
1450 getComAll(com,comVel);
1451
1452 SimInfo::MoleculeIterator i;
1453 Molecule* mol;
1454
1455 Vector3d thisr(0.0);
1456 Vector3d thisp(0.0);
1457
1458 RealType thisMass;
1459
1460 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1461 thisMass = mol->getMass();
1462 thisr = mol->getCom()-com;
1463 thisp = (mol->getComVel()-comVel)*thisMass;
1464
1465 angularMomentum += cross( thisr, thisp );
1466
1467 }
1468
1469 #ifdef IS_MPI
1470 Vector3d tmpAngMom;
1471 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1472 #endif
1473
1474 return angularMomentum;
1475 }
1476
1477 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1478 return IOIndexToIntegrableObject.at(index);
1479 }
1480
1481 void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1482 IOIndexToIntegrableObject= v;
1483 }
1484
1485 /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1486 based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1487 where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1488 V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1489 */
1490 void SimInfo::getGyrationalVolume(RealType &volume){
1491 Mat3x3d intTensor;
1492 RealType det;
1493 Vector3d dummyAngMom;
1494 RealType sysconstants;
1495 RealType geomCnst;
1496
1497 geomCnst = 3.0/2.0;
1498 /* Get the inertial tensor and angular momentum for free*/
1499 getInertiaTensor(intTensor,dummyAngMom);
1500
1501 det = intTensor.determinant();
1502 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1503 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1504 return;
1505 }
1506
1507 void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1508 Mat3x3d intTensor;
1509 Vector3d dummyAngMom;
1510 RealType sysconstants;
1511 RealType geomCnst;
1512
1513 geomCnst = 3.0/2.0;
1514 /* Get the inertial tensor and angular momentum for free*/
1515 getInertiaTensor(intTensor,dummyAngMom);
1516
1517 detI = intTensor.determinant();
1518 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1519 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1520 return;
1521 }
1522 /*
1523 void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1524 assert( v.size() == nAtoms_ + nRigidBodies_);
1525 sdByGlobalIndex_ = v;
1526 }
1527
1528 StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1529 //assert(index < nAtoms_ + nRigidBodies_);
1530 return sdByGlobalIndex_.at(index);
1531 }
1532 */
1533 }//end namespace oopse
1534