ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
Revision: 1024
Committed: Wed Aug 30 18:42:29 2006 UTC (18 years, 8 months ago) by tim
File size: 45909 byte(s)
Log Message:
Massive changes preparing for release of OOPSE-4: The main difference
is that the new MD file format (.md, .dump, .eor) now contains meta-data
information along with the configuration information.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51 #include <map>
52
53 #include "brains/SimInfo.hpp"
54 #include "math/Vector3.hpp"
55 #include "primitives/Molecule.hpp"
56 #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/electrostatic_interface.h"
63 #include "UseTheForce/DarkSide/switcheroo_interface.h"
64 #include "utils/MemoryUtils.hpp"
65 #include "utils/simError.h"
66 #include "selection/SelectionManager.hpp"
67 #include "io/ForceFieldOptions.hpp"
68 #include "UseTheForce/ForceField.hpp"
69
70 #ifdef IS_MPI
71 #include "UseTheForce/mpiComponentPlan.h"
72 #include "UseTheForce/DarkSide/simParallel_interface.h"
73 #endif
74
75 namespace oopse {
76 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
77 std::map<int, std::set<int> >::iterator i = container.find(index);
78 std::set<int> result;
79 if (i != container.end()) {
80 result = i->second;
81 }
82
83 return result;
84 }
85
86 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
87 forceField_(ff), simParams_(simParams),
88 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
89 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
90 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
91 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
92 nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
93 sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
94
95 MoleculeStamp* molStamp;
96 int nMolWithSameStamp;
97 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
98 int nGroups = 0; //total cutoff groups defined in meta-data file
99 CutoffGroupStamp* cgStamp;
100 RigidBodyStamp* rbStamp;
101 int nRigidAtoms = 0;
102 std::vector<Component*> components = simParams->getComponents();
103
104 for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
105 molStamp = (*i)->getMoleculeStamp();
106 nMolWithSameStamp = (*i)->getNMol();
107
108 addMoleculeStamp(molStamp, nMolWithSameStamp);
109
110 //calculate atoms in molecules
111 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
112
113 //calculate atoms in cutoff groups
114 int nAtomsInGroups = 0;
115 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
116
117 for (int j=0; j < nCutoffGroupsInStamp; j++) {
118 cgStamp = molStamp->getCutoffGroupStamp(j);
119 nAtomsInGroups += cgStamp->getNMembers();
120 }
121
122 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
123
124 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
125
126 //calculate atoms in rigid bodies
127 int nAtomsInRigidBodies = 0;
128 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
129
130 for (int j=0; j < nRigidBodiesInStamp; j++) {
131 rbStamp = molStamp->getRigidBodyStamp(j);
132 nAtomsInRigidBodies += rbStamp->getNMembers();
133 }
134
135 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
136 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
137
138 }
139
140 //every free atom (atom does not belong to cutoff groups) is a cutoff
141 //group therefore the total number of cutoff groups in the system is
142 //equal to the total number of atoms minus number of atoms belong to
143 //cutoff group defined in meta-data file plus the number of cutoff
144 //groups defined in meta-data file
145 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
146
147 //every free atom (atom does not belong to rigid bodies) is an
148 //integrable object therefore the total number of integrable objects
149 //in the system is equal to the total number of atoms minus number of
150 //atoms belong to rigid body defined in meta-data file plus the number
151 //of rigid bodies defined in meta-data file
152 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
153 + nGlobalRigidBodies_;
154
155 nGlobalMols_ = molStampIds_.size();
156
157 #ifdef IS_MPI
158 molToProcMap_.resize(nGlobalMols_);
159 #endif
160
161 }
162
163 SimInfo::~SimInfo() {
164 std::map<int, Molecule*>::iterator i;
165 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
166 delete i->second;
167 }
168 molecules_.clear();
169
170 delete sman_;
171 delete simParams_;
172 delete forceField_;
173 }
174
175 int SimInfo::getNGlobalConstraints() {
176 int nGlobalConstraints;
177 #ifdef IS_MPI
178 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
179 MPI_COMM_WORLD);
180 #else
181 nGlobalConstraints = nConstraints_;
182 #endif
183 return nGlobalConstraints;
184 }
185
186 bool SimInfo::addMolecule(Molecule* mol) {
187 MoleculeIterator i;
188
189 i = molecules_.find(mol->getGlobalIndex());
190 if (i == molecules_.end() ) {
191
192 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
193
194 nAtoms_ += mol->getNAtoms();
195 nBonds_ += mol->getNBonds();
196 nBends_ += mol->getNBends();
197 nTorsions_ += mol->getNTorsions();
198 nRigidBodies_ += mol->getNRigidBodies();
199 nIntegrableObjects_ += mol->getNIntegrableObjects();
200 nCutoffGroups_ += mol->getNCutoffGroups();
201 nConstraints_ += mol->getNConstraintPairs();
202
203 addExcludePairs(mol);
204
205 return true;
206 } else {
207 return false;
208 }
209 }
210
211 bool SimInfo::removeMolecule(Molecule* mol) {
212 MoleculeIterator i;
213 i = molecules_.find(mol->getGlobalIndex());
214
215 if (i != molecules_.end() ) {
216
217 assert(mol == i->second);
218
219 nAtoms_ -= mol->getNAtoms();
220 nBonds_ -= mol->getNBonds();
221 nBends_ -= mol->getNBends();
222 nTorsions_ -= mol->getNTorsions();
223 nRigidBodies_ -= mol->getNRigidBodies();
224 nIntegrableObjects_ -= mol->getNIntegrableObjects();
225 nCutoffGroups_ -= mol->getNCutoffGroups();
226 nConstraints_ -= mol->getNConstraintPairs();
227
228 removeExcludePairs(mol);
229 molecules_.erase(mol->getGlobalIndex());
230
231 delete mol;
232
233 return true;
234 } else {
235 return false;
236 }
237
238
239 }
240
241
242 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
243 i = molecules_.begin();
244 return i == molecules_.end() ? NULL : i->second;
245 }
246
247 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
248 ++i;
249 return i == molecules_.end() ? NULL : i->second;
250 }
251
252
253 void SimInfo::calcNdf() {
254 int ndf_local;
255 MoleculeIterator i;
256 std::vector<StuntDouble*>::iterator j;
257 Molecule* mol;
258 StuntDouble* integrableObject;
259
260 ndf_local = 0;
261
262 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
263 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
264 integrableObject = mol->nextIntegrableObject(j)) {
265
266 ndf_local += 3;
267
268 if (integrableObject->isDirectional()) {
269 if (integrableObject->isLinear()) {
270 ndf_local += 2;
271 } else {
272 ndf_local += 3;
273 }
274 }
275
276 }
277 }
278
279 // n_constraints is local, so subtract them on each processor
280 ndf_local -= nConstraints_;
281
282 #ifdef IS_MPI
283 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
284 #else
285 ndf_ = ndf_local;
286 #endif
287
288 // nZconstraints_ is global, as are the 3 COM translations for the
289 // entire system:
290 ndf_ = ndf_ - 3 - nZconstraint_;
291
292 }
293
294 int SimInfo::getFdf() {
295 #ifdef IS_MPI
296 MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
297 #else
298 fdf_ = fdf_local;
299 #endif
300 return fdf_;
301 }
302
303 void SimInfo::calcNdfRaw() {
304 int ndfRaw_local;
305
306 MoleculeIterator i;
307 std::vector<StuntDouble*>::iterator j;
308 Molecule* mol;
309 StuntDouble* integrableObject;
310
311 // Raw degrees of freedom that we have to set
312 ndfRaw_local = 0;
313
314 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
315 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
316 integrableObject = mol->nextIntegrableObject(j)) {
317
318 ndfRaw_local += 3;
319
320 if (integrableObject->isDirectional()) {
321 if (integrableObject->isLinear()) {
322 ndfRaw_local += 2;
323 } else {
324 ndfRaw_local += 3;
325 }
326 }
327
328 }
329 }
330
331 #ifdef IS_MPI
332 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
333 #else
334 ndfRaw_ = ndfRaw_local;
335 #endif
336 }
337
338 void SimInfo::calcNdfTrans() {
339 int ndfTrans_local;
340
341 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
342
343
344 #ifdef IS_MPI
345 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
346 #else
347 ndfTrans_ = ndfTrans_local;
348 #endif
349
350 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
351
352 }
353
354 void SimInfo::addExcludePairs(Molecule* mol) {
355 std::vector<Bond*>::iterator bondIter;
356 std::vector<Bend*>::iterator bendIter;
357 std::vector<Torsion*>::iterator torsionIter;
358 Bond* bond;
359 Bend* bend;
360 Torsion* torsion;
361 int a;
362 int b;
363 int c;
364 int d;
365
366 std::map<int, std::set<int> > atomGroups;
367
368 Molecule::RigidBodyIterator rbIter;
369 RigidBody* rb;
370 Molecule::IntegrableObjectIterator ii;
371 StuntDouble* integrableObject;
372
373 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
374 integrableObject = mol->nextIntegrableObject(ii)) {
375
376 if (integrableObject->isRigidBody()) {
377 rb = static_cast<RigidBody*>(integrableObject);
378 std::vector<Atom*> atoms = rb->getAtoms();
379 std::set<int> rigidAtoms;
380 for (int i = 0; i < atoms.size(); ++i) {
381 rigidAtoms.insert(atoms[i]->getGlobalIndex());
382 }
383 for (int i = 0; i < atoms.size(); ++i) {
384 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
385 }
386 } else {
387 std::set<int> oneAtomSet;
388 oneAtomSet.insert(integrableObject->getGlobalIndex());
389 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
390 }
391 }
392
393
394
395 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
396 a = bond->getAtomA()->getGlobalIndex();
397 b = bond->getAtomB()->getGlobalIndex();
398 exclude_.addPair(a, b);
399 }
400
401 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
402 a = bend->getAtomA()->getGlobalIndex();
403 b = bend->getAtomB()->getGlobalIndex();
404 c = bend->getAtomC()->getGlobalIndex();
405 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
406 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
407 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
408
409 exclude_.addPairs(rigidSetA, rigidSetB);
410 exclude_.addPairs(rigidSetA, rigidSetC);
411 exclude_.addPairs(rigidSetB, rigidSetC);
412
413 //exclude_.addPair(a, b);
414 //exclude_.addPair(a, c);
415 //exclude_.addPair(b, c);
416 }
417
418 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
419 a = torsion->getAtomA()->getGlobalIndex();
420 b = torsion->getAtomB()->getGlobalIndex();
421 c = torsion->getAtomC()->getGlobalIndex();
422 d = torsion->getAtomD()->getGlobalIndex();
423 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
424 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
425 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
426 std::set<int> rigidSetD = getRigidSet(d, atomGroups);
427
428 exclude_.addPairs(rigidSetA, rigidSetB);
429 exclude_.addPairs(rigidSetA, rigidSetC);
430 exclude_.addPairs(rigidSetA, rigidSetD);
431 exclude_.addPairs(rigidSetB, rigidSetC);
432 exclude_.addPairs(rigidSetB, rigidSetD);
433 exclude_.addPairs(rigidSetC, rigidSetD);
434
435 /*
436 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
437 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
438 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
439 exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
440 exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
441 exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
442
443
444 exclude_.addPair(a, b);
445 exclude_.addPair(a, c);
446 exclude_.addPair(a, d);
447 exclude_.addPair(b, c);
448 exclude_.addPair(b, d);
449 exclude_.addPair(c, d);
450 */
451 }
452
453 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
454 std::vector<Atom*> atoms = rb->getAtoms();
455 for (int i = 0; i < atoms.size() -1 ; ++i) {
456 for (int j = i + 1; j < atoms.size(); ++j) {
457 a = atoms[i]->getGlobalIndex();
458 b = atoms[j]->getGlobalIndex();
459 exclude_.addPair(a, b);
460 }
461 }
462 }
463
464 }
465
466 void SimInfo::removeExcludePairs(Molecule* mol) {
467 std::vector<Bond*>::iterator bondIter;
468 std::vector<Bend*>::iterator bendIter;
469 std::vector<Torsion*>::iterator torsionIter;
470 Bond* bond;
471 Bend* bend;
472 Torsion* torsion;
473 int a;
474 int b;
475 int c;
476 int d;
477
478 std::map<int, std::set<int> > atomGroups;
479
480 Molecule::RigidBodyIterator rbIter;
481 RigidBody* rb;
482 Molecule::IntegrableObjectIterator ii;
483 StuntDouble* integrableObject;
484
485 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
486 integrableObject = mol->nextIntegrableObject(ii)) {
487
488 if (integrableObject->isRigidBody()) {
489 rb = static_cast<RigidBody*>(integrableObject);
490 std::vector<Atom*> atoms = rb->getAtoms();
491 std::set<int> rigidAtoms;
492 for (int i = 0; i < atoms.size(); ++i) {
493 rigidAtoms.insert(atoms[i]->getGlobalIndex());
494 }
495 for (int i = 0; i < atoms.size(); ++i) {
496 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
497 }
498 } else {
499 std::set<int> oneAtomSet;
500 oneAtomSet.insert(integrableObject->getGlobalIndex());
501 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
502 }
503 }
504
505
506 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
507 a = bond->getAtomA()->getGlobalIndex();
508 b = bond->getAtomB()->getGlobalIndex();
509 exclude_.removePair(a, b);
510 }
511
512 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
513 a = bend->getAtomA()->getGlobalIndex();
514 b = bend->getAtomB()->getGlobalIndex();
515 c = bend->getAtomC()->getGlobalIndex();
516
517 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
518 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
519 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
520
521 exclude_.removePairs(rigidSetA, rigidSetB);
522 exclude_.removePairs(rigidSetA, rigidSetC);
523 exclude_.removePairs(rigidSetB, rigidSetC);
524
525 //exclude_.removePair(a, b);
526 //exclude_.removePair(a, c);
527 //exclude_.removePair(b, c);
528 }
529
530 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
531 a = torsion->getAtomA()->getGlobalIndex();
532 b = torsion->getAtomB()->getGlobalIndex();
533 c = torsion->getAtomC()->getGlobalIndex();
534 d = torsion->getAtomD()->getGlobalIndex();
535
536 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
537 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
538 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
539 std::set<int> rigidSetD = getRigidSet(d, atomGroups);
540
541 exclude_.removePairs(rigidSetA, rigidSetB);
542 exclude_.removePairs(rigidSetA, rigidSetC);
543 exclude_.removePairs(rigidSetA, rigidSetD);
544 exclude_.removePairs(rigidSetB, rigidSetC);
545 exclude_.removePairs(rigidSetB, rigidSetD);
546 exclude_.removePairs(rigidSetC, rigidSetD);
547
548 /*
549 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
550 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
551 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
552 exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
553 exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
554 exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
555
556
557 exclude_.removePair(a, b);
558 exclude_.removePair(a, c);
559 exclude_.removePair(a, d);
560 exclude_.removePair(b, c);
561 exclude_.removePair(b, d);
562 exclude_.removePair(c, d);
563 */
564 }
565
566 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
567 std::vector<Atom*> atoms = rb->getAtoms();
568 for (int i = 0; i < atoms.size() -1 ; ++i) {
569 for (int j = i + 1; j < atoms.size(); ++j) {
570 a = atoms[i]->getGlobalIndex();
571 b = atoms[j]->getGlobalIndex();
572 exclude_.removePair(a, b);
573 }
574 }
575 }
576
577 }
578
579
580 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
581 int curStampId;
582
583 //index from 0
584 curStampId = moleculeStamps_.size();
585
586 moleculeStamps_.push_back(molStamp);
587 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
588 }
589
590 void SimInfo::update() {
591
592 setupSimType();
593
594 #ifdef IS_MPI
595 setupFortranParallel();
596 #endif
597
598 setupFortranSim();
599
600 //setup fortran force field
601 /** @deprecate */
602 int isError = 0;
603
604 setupElectrostaticSummationMethod( isError );
605 setupSwitchingFunction();
606 setupAccumulateBoxDipole();
607
608 if(isError){
609 sprintf( painCave.errMsg,
610 "ForceField error: There was an error initializing the forceField in fortran.\n" );
611 painCave.isFatal = 1;
612 simError();
613 }
614
615
616 setupCutoff();
617
618 calcNdf();
619 calcNdfRaw();
620 calcNdfTrans();
621
622 fortranInitialized_ = true;
623 }
624
625 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
626 SimInfo::MoleculeIterator mi;
627 Molecule* mol;
628 Molecule::AtomIterator ai;
629 Atom* atom;
630 std::set<AtomType*> atomTypes;
631
632 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
633
634 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
635 atomTypes.insert(atom->getAtomType());
636 }
637
638 }
639
640 return atomTypes;
641 }
642
643 void SimInfo::setupSimType() {
644 std::set<AtomType*>::iterator i;
645 std::set<AtomType*> atomTypes;
646 atomTypes = getUniqueAtomTypes();
647
648 int useLennardJones = 0;
649 int useElectrostatic = 0;
650 int useEAM = 0;
651 int useSC = 0;
652 int useCharge = 0;
653 int useDirectional = 0;
654 int useDipole = 0;
655 int useGayBerne = 0;
656 int useSticky = 0;
657 int useStickyPower = 0;
658 int useShape = 0;
659 int useFLARB = 0; //it is not in AtomType yet
660 int useDirectionalAtom = 0;
661 int useElectrostatics = 0;
662 //usePBC and useRF are from simParams
663 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
664 int useRF;
665 int useSF;
666 int useSP;
667 int useBoxDipole;
668 std::string myMethod;
669
670 // set the useRF logical
671 useRF = 0;
672 useSF = 0;
673
674
675 if (simParams_->haveElectrostaticSummationMethod()) {
676 std::string myMethod = simParams_->getElectrostaticSummationMethod();
677 toUpper(myMethod);
678 if (myMethod == "REACTION_FIELD"){
679 useRF=1;
680 } else if (myMethod == "SHIFTED_FORCE"){
681 useSF = 1;
682 } else if (myMethod == "SHIFTED_POTENTIAL"){
683 useSP = 1;
684 }
685 }
686
687 if (simParams_->haveAccumulateBoxDipole())
688 if (simParams_->getAccumulateBoxDipole())
689 useBoxDipole = 1;
690
691 //loop over all of the atom types
692 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
693 useLennardJones |= (*i)->isLennardJones();
694 useElectrostatic |= (*i)->isElectrostatic();
695 useEAM |= (*i)->isEAM();
696 useSC |= (*i)->isSC();
697 useCharge |= (*i)->isCharge();
698 useDirectional |= (*i)->isDirectional();
699 useDipole |= (*i)->isDipole();
700 useGayBerne |= (*i)->isGayBerne();
701 useSticky |= (*i)->isSticky();
702 useStickyPower |= (*i)->isStickyPower();
703 useShape |= (*i)->isShape();
704 }
705
706 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
707 useDirectionalAtom = 1;
708 }
709
710 if (useCharge || useDipole) {
711 useElectrostatics = 1;
712 }
713
714 #ifdef IS_MPI
715 int temp;
716
717 temp = usePBC;
718 MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
719
720 temp = useDirectionalAtom;
721 MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
722
723 temp = useLennardJones;
724 MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
725
726 temp = useElectrostatics;
727 MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
728
729 temp = useCharge;
730 MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
731
732 temp = useDipole;
733 MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
734
735 temp = useSticky;
736 MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
737
738 temp = useStickyPower;
739 MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
740
741 temp = useGayBerne;
742 MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
743
744 temp = useEAM;
745 MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
746
747 temp = useSC;
748 MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
749
750 temp = useShape;
751 MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
752
753 temp = useFLARB;
754 MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
755
756 temp = useRF;
757 MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
758
759 temp = useSF;
760 MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
761
762 temp = useSP;
763 MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
764
765 temp = useBoxDipole;
766 MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
767
768 #endif
769
770 fInfo_.SIM_uses_PBC = usePBC;
771 fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
772 fInfo_.SIM_uses_LennardJones = useLennardJones;
773 fInfo_.SIM_uses_Electrostatics = useElectrostatics;
774 fInfo_.SIM_uses_Charges = useCharge;
775 fInfo_.SIM_uses_Dipoles = useDipole;
776 fInfo_.SIM_uses_Sticky = useSticky;
777 fInfo_.SIM_uses_StickyPower = useStickyPower;
778 fInfo_.SIM_uses_GayBerne = useGayBerne;
779 fInfo_.SIM_uses_EAM = useEAM;
780 fInfo_.SIM_uses_SC = useSC;
781 fInfo_.SIM_uses_Shapes = useShape;
782 fInfo_.SIM_uses_FLARB = useFLARB;
783 fInfo_.SIM_uses_RF = useRF;
784 fInfo_.SIM_uses_SF = useSF;
785 fInfo_.SIM_uses_SP = useSP;
786 fInfo_.SIM_uses_BoxDipole = useBoxDipole;
787
788 if( myMethod == "REACTION_FIELD") {
789
790 if (simParams_->haveDielectric()) {
791 fInfo_.dielect = simParams_->getDielectric();
792 } else {
793 sprintf(painCave.errMsg,
794 "SimSetup Error: No Dielectric constant was set.\n"
795 "\tYou are trying to use Reaction Field without"
796 "\tsetting a dielectric constant!\n");
797 painCave.isFatal = 1;
798 simError();
799 }
800 }
801
802 }
803
804 void SimInfo::setupFortranSim() {
805 int isError;
806 int nExclude;
807 std::vector<int> fortranGlobalGroupMembership;
808
809 nExclude = exclude_.getSize();
810 isError = 0;
811
812 //globalGroupMembership_ is filled by SimCreator
813 for (int i = 0; i < nGlobalAtoms_; i++) {
814 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
815 }
816
817 //calculate mass ratio of cutoff group
818 std::vector<RealType> mfact;
819 SimInfo::MoleculeIterator mi;
820 Molecule* mol;
821 Molecule::CutoffGroupIterator ci;
822 CutoffGroup* cg;
823 Molecule::AtomIterator ai;
824 Atom* atom;
825 RealType totalMass;
826
827 //to avoid memory reallocation, reserve enough space for mfact
828 mfact.reserve(getNCutoffGroups());
829
830 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
831 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
832
833 totalMass = cg->getMass();
834 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
835 // Check for massless groups - set mfact to 1 if true
836 if (totalMass != 0)
837 mfact.push_back(atom->getMass()/totalMass);
838 else
839 mfact.push_back( 1.0 );
840 }
841
842 }
843 }
844
845 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
846 std::vector<int> identArray;
847
848 //to avoid memory reallocation, reserve enough space identArray
849 identArray.reserve(getNAtoms());
850
851 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
852 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
853 identArray.push_back(atom->getIdent());
854 }
855 }
856
857 //fill molMembershipArray
858 //molMembershipArray is filled by SimCreator
859 std::vector<int> molMembershipArray(nGlobalAtoms_);
860 for (int i = 0; i < nGlobalAtoms_; i++) {
861 molMembershipArray[i] = globalMolMembership_[i] + 1;
862 }
863
864 //setup fortran simulation
865 int nGlobalExcludes = 0;
866 int* globalExcludes = NULL;
867 int* excludeList = exclude_.getExcludeList();
868 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
869 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
870 &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
871
872 if( isError ){
873
874 sprintf( painCave.errMsg,
875 "There was an error setting the simulation information in fortran.\n" );
876 painCave.isFatal = 1;
877 painCave.severity = OOPSE_ERROR;
878 simError();
879 }
880
881 #ifdef IS_MPI
882 sprintf( checkPointMsg,
883 "succesfully sent the simulation information to fortran.\n");
884 MPIcheckPoint();
885 #endif // is_mpi
886 }
887
888
889 #ifdef IS_MPI
890 void SimInfo::setupFortranParallel() {
891
892 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
893 std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
894 std::vector<int> localToGlobalCutoffGroupIndex;
895 SimInfo::MoleculeIterator mi;
896 Molecule::AtomIterator ai;
897 Molecule::CutoffGroupIterator ci;
898 Molecule* mol;
899 Atom* atom;
900 CutoffGroup* cg;
901 mpiSimData parallelData;
902 int isError;
903
904 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
905
906 //local index(index in DataStorge) of atom is important
907 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
908 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
909 }
910
911 //local index of cutoff group is trivial, it only depends on the order of travesing
912 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
913 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
914 }
915
916 }
917
918 //fill up mpiSimData struct
919 parallelData.nMolGlobal = getNGlobalMolecules();
920 parallelData.nMolLocal = getNMolecules();
921 parallelData.nAtomsGlobal = getNGlobalAtoms();
922 parallelData.nAtomsLocal = getNAtoms();
923 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
924 parallelData.nGroupsLocal = getNCutoffGroups();
925 parallelData.myNode = worldRank;
926 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
927
928 //pass mpiSimData struct and index arrays to fortran
929 setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
930 &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
931 &localToGlobalCutoffGroupIndex[0], &isError);
932
933 if (isError) {
934 sprintf(painCave.errMsg,
935 "mpiRefresh errror: fortran didn't like something we gave it.\n");
936 painCave.isFatal = 1;
937 simError();
938 }
939
940 sprintf(checkPointMsg, " mpiRefresh successful.\n");
941 MPIcheckPoint();
942
943
944 }
945
946 #endif
947
948 void SimInfo::setupCutoff() {
949
950 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
951
952 // Check the cutoff policy
953 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
954
955 std::string myPolicy;
956 if (forceFieldOptions_.haveCutoffPolicy()){
957 myPolicy = forceFieldOptions_.getCutoffPolicy();
958 }else if (simParams_->haveCutoffPolicy()) {
959 myPolicy = simParams_->getCutoffPolicy();
960 }
961
962 if (!myPolicy.empty()){
963 toUpper(myPolicy);
964 if (myPolicy == "MIX") {
965 cp = MIX_CUTOFF_POLICY;
966 } else {
967 if (myPolicy == "MAX") {
968 cp = MAX_CUTOFF_POLICY;
969 } else {
970 if (myPolicy == "TRADITIONAL") {
971 cp = TRADITIONAL_CUTOFF_POLICY;
972 } else {
973 // throw error
974 sprintf( painCave.errMsg,
975 "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
976 painCave.isFatal = 1;
977 simError();
978 }
979 }
980 }
981 }
982 notifyFortranCutoffPolicy(&cp);
983
984 // Check the Skin Thickness for neighborlists
985 RealType skin;
986 if (simParams_->haveSkinThickness()) {
987 skin = simParams_->getSkinThickness();
988 notifyFortranSkinThickness(&skin);
989 }
990
991 // Check if the cutoff was set explicitly:
992 if (simParams_->haveCutoffRadius()) {
993 rcut_ = simParams_->getCutoffRadius();
994 if (simParams_->haveSwitchingRadius()) {
995 rsw_ = simParams_->getSwitchingRadius();
996 } else {
997 if (fInfo_.SIM_uses_Charges |
998 fInfo_.SIM_uses_Dipoles |
999 fInfo_.SIM_uses_RF) {
1000
1001 rsw_ = 0.85 * rcut_;
1002 sprintf(painCave.errMsg,
1003 "SimCreator Warning: No value was set for the switchingRadius.\n"
1004 "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1005 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1006 painCave.isFatal = 0;
1007 simError();
1008 } else {
1009 rsw_ = rcut_;
1010 sprintf(painCave.errMsg,
1011 "SimCreator Warning: No value was set for the switchingRadius.\n"
1012 "\tOOPSE will use the same value as the cutoffRadius.\n"
1013 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1014 painCave.isFatal = 0;
1015 simError();
1016 }
1017 }
1018
1019 notifyFortranCutoffs(&rcut_, &rsw_);
1020
1021 } else {
1022
1023 // For electrostatic atoms, we'll assume a large safe value:
1024 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1025 sprintf(painCave.errMsg,
1026 "SimCreator Warning: No value was set for the cutoffRadius.\n"
1027 "\tOOPSE will use a default value of 15.0 angstroms"
1028 "\tfor the cutoffRadius.\n");
1029 painCave.isFatal = 0;
1030 simError();
1031 rcut_ = 15.0;
1032
1033 if (simParams_->haveElectrostaticSummationMethod()) {
1034 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1035 toUpper(myMethod);
1036 if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1037 if (simParams_->haveSwitchingRadius()){
1038 sprintf(painCave.errMsg,
1039 "SimInfo Warning: A value was set for the switchingRadius\n"
1040 "\teven though the electrostaticSummationMethod was\n"
1041 "\tset to %s\n", myMethod.c_str());
1042 painCave.isFatal = 1;
1043 simError();
1044 }
1045 }
1046 }
1047
1048 if (simParams_->haveSwitchingRadius()){
1049 rsw_ = simParams_->getSwitchingRadius();
1050 } else {
1051 sprintf(painCave.errMsg,
1052 "SimCreator Warning: No value was set for switchingRadius.\n"
1053 "\tOOPSE will use a default value of\n"
1054 "\t0.85 * cutoffRadius for the switchingRadius\n");
1055 painCave.isFatal = 0;
1056 simError();
1057 rsw_ = 0.85 * rcut_;
1058 }
1059 notifyFortranCutoffs(&rcut_, &rsw_);
1060 } else {
1061 // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1062 // We'll punt and let fortran figure out the cutoffs later.
1063
1064 notifyFortranYouAreOnYourOwn();
1065
1066 }
1067 }
1068 }
1069
1070 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1071
1072 int errorOut;
1073 int esm = NONE;
1074 int sm = UNDAMPED;
1075 RealType alphaVal;
1076 RealType dielectric;
1077
1078 errorOut = isError;
1079 alphaVal = simParams_->getDampingAlpha();
1080 dielectric = simParams_->getDielectric();
1081
1082 if (simParams_->haveElectrostaticSummationMethod()) {
1083 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1084 toUpper(myMethod);
1085 if (myMethod == "NONE") {
1086 esm = NONE;
1087 } else {
1088 if (myMethod == "SWITCHING_FUNCTION") {
1089 esm = SWITCHING_FUNCTION;
1090 } else {
1091 if (myMethod == "SHIFTED_POTENTIAL") {
1092 esm = SHIFTED_POTENTIAL;
1093 } else {
1094 if (myMethod == "SHIFTED_FORCE") {
1095 esm = SHIFTED_FORCE;
1096 } else {
1097 if (myMethod == "REACTION_FIELD") {
1098 esm = REACTION_FIELD;
1099 } else {
1100 // throw error
1101 sprintf( painCave.errMsg,
1102 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1103 "\t(Input file specified %s .)\n"
1104 "\telectrostaticSummationMethod must be one of: \"none\",\n"
1105 "\t\"shifted_potential\", \"shifted_force\", or \n"
1106 "\t\"reaction_field\".\n", myMethod.c_str() );
1107 painCave.isFatal = 1;
1108 simError();
1109 }
1110 }
1111 }
1112 }
1113 }
1114 }
1115
1116 if (simParams_->haveElectrostaticScreeningMethod()) {
1117 std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1118 toUpper(myScreen);
1119 if (myScreen == "UNDAMPED") {
1120 sm = UNDAMPED;
1121 } else {
1122 if (myScreen == "DAMPED") {
1123 sm = DAMPED;
1124 if (!simParams_->haveDampingAlpha()) {
1125 //throw error
1126 sprintf( painCave.errMsg,
1127 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1128 "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1129 painCave.isFatal = 0;
1130 simError();
1131 }
1132 } else {
1133 // throw error
1134 sprintf( painCave.errMsg,
1135 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1136 "\t(Input file specified %s .)\n"
1137 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1138 "or \"damped\".\n", myScreen.c_str() );
1139 painCave.isFatal = 1;
1140 simError();
1141 }
1142 }
1143 }
1144
1145 // let's pass some summation method variables to fortran
1146 setElectrostaticSummationMethod( &esm );
1147 setFortranElectrostaticMethod( &esm );
1148 setScreeningMethod( &sm );
1149 setDampingAlpha( &alphaVal );
1150 setReactionFieldDielectric( &dielectric );
1151 initFortranFF( &errorOut );
1152 }
1153
1154 void SimInfo::setupSwitchingFunction() {
1155 int ft = CUBIC;
1156
1157 if (simParams_->haveSwitchingFunctionType()) {
1158 std::string funcType = simParams_->getSwitchingFunctionType();
1159 toUpper(funcType);
1160 if (funcType == "CUBIC") {
1161 ft = CUBIC;
1162 } else {
1163 if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1164 ft = FIFTH_ORDER_POLY;
1165 } else {
1166 // throw error
1167 sprintf( painCave.errMsg,
1168 "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1169 painCave.isFatal = 1;
1170 simError();
1171 }
1172 }
1173 }
1174
1175 // send switching function notification to switcheroo
1176 setFunctionType(&ft);
1177
1178 }
1179
1180 void SimInfo::setupAccumulateBoxDipole() {
1181
1182 // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1183 if ( simParams_->haveAccumulateBoxDipole() )
1184 if ( simParams_->getAccumulateBoxDipole() ) {
1185 setAccumulateBoxDipole();
1186 calcBoxDipole_ = true;
1187 }
1188
1189 }
1190
1191 void SimInfo::addProperty(GenericData* genData) {
1192 properties_.addProperty(genData);
1193 }
1194
1195 void SimInfo::removeProperty(const std::string& propName) {
1196 properties_.removeProperty(propName);
1197 }
1198
1199 void SimInfo::clearProperties() {
1200 properties_.clearProperties();
1201 }
1202
1203 std::vector<std::string> SimInfo::getPropertyNames() {
1204 return properties_.getPropertyNames();
1205 }
1206
1207 std::vector<GenericData*> SimInfo::getProperties() {
1208 return properties_.getProperties();
1209 }
1210
1211 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1212 return properties_.getPropertyByName(propName);
1213 }
1214
1215 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1216 if (sman_ == sman) {
1217 return;
1218 }
1219 delete sman_;
1220 sman_ = sman;
1221
1222 Molecule* mol;
1223 RigidBody* rb;
1224 Atom* atom;
1225 SimInfo::MoleculeIterator mi;
1226 Molecule::RigidBodyIterator rbIter;
1227 Molecule::AtomIterator atomIter;;
1228
1229 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1230
1231 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1232 atom->setSnapshotManager(sman_);
1233 }
1234
1235 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1236 rb->setSnapshotManager(sman_);
1237 }
1238 }
1239
1240 }
1241
1242 Vector3d SimInfo::getComVel(){
1243 SimInfo::MoleculeIterator i;
1244 Molecule* mol;
1245
1246 Vector3d comVel(0.0);
1247 RealType totalMass = 0.0;
1248
1249
1250 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1251 RealType mass = mol->getMass();
1252 totalMass += mass;
1253 comVel += mass * mol->getComVel();
1254 }
1255
1256 #ifdef IS_MPI
1257 RealType tmpMass = totalMass;
1258 Vector3d tmpComVel(comVel);
1259 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1260 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1261 #endif
1262
1263 comVel /= totalMass;
1264
1265 return comVel;
1266 }
1267
1268 Vector3d SimInfo::getCom(){
1269 SimInfo::MoleculeIterator i;
1270 Molecule* mol;
1271
1272 Vector3d com(0.0);
1273 RealType totalMass = 0.0;
1274
1275 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1276 RealType mass = mol->getMass();
1277 totalMass += mass;
1278 com += mass * mol->getCom();
1279 }
1280
1281 #ifdef IS_MPI
1282 RealType tmpMass = totalMass;
1283 Vector3d tmpCom(com);
1284 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1285 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1286 #endif
1287
1288 com /= totalMass;
1289
1290 return com;
1291
1292 }
1293
1294 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1295
1296 return o;
1297 }
1298
1299
1300 /*
1301 Returns center of mass and center of mass velocity in one function call.
1302 */
1303
1304 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1305 SimInfo::MoleculeIterator i;
1306 Molecule* mol;
1307
1308
1309 RealType totalMass = 0.0;
1310
1311
1312 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1313 RealType mass = mol->getMass();
1314 totalMass += mass;
1315 com += mass * mol->getCom();
1316 comVel += mass * mol->getComVel();
1317 }
1318
1319 #ifdef IS_MPI
1320 RealType tmpMass = totalMass;
1321 Vector3d tmpCom(com);
1322 Vector3d tmpComVel(comVel);
1323 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1324 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1325 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1326 #endif
1327
1328 com /= totalMass;
1329 comVel /= totalMass;
1330 }
1331
1332 /*
1333 Return intertia tensor for entire system and angular momentum Vector.
1334
1335
1336 [ Ixx -Ixy -Ixz ]
1337 J =| -Iyx Iyy -Iyz |
1338 [ -Izx -Iyz Izz ]
1339 */
1340
1341 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1342
1343
1344 RealType xx = 0.0;
1345 RealType yy = 0.0;
1346 RealType zz = 0.0;
1347 RealType xy = 0.0;
1348 RealType xz = 0.0;
1349 RealType yz = 0.0;
1350 Vector3d com(0.0);
1351 Vector3d comVel(0.0);
1352
1353 getComAll(com, comVel);
1354
1355 SimInfo::MoleculeIterator i;
1356 Molecule* mol;
1357
1358 Vector3d thisq(0.0);
1359 Vector3d thisv(0.0);
1360
1361 RealType thisMass = 0.0;
1362
1363
1364
1365
1366 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1367
1368 thisq = mol->getCom()-com;
1369 thisv = mol->getComVel()-comVel;
1370 thisMass = mol->getMass();
1371 // Compute moment of intertia coefficients.
1372 xx += thisq[0]*thisq[0]*thisMass;
1373 yy += thisq[1]*thisq[1]*thisMass;
1374 zz += thisq[2]*thisq[2]*thisMass;
1375
1376 // compute products of intertia
1377 xy += thisq[0]*thisq[1]*thisMass;
1378 xz += thisq[0]*thisq[2]*thisMass;
1379 yz += thisq[1]*thisq[2]*thisMass;
1380
1381 angularMomentum += cross( thisq, thisv ) * thisMass;
1382
1383 }
1384
1385
1386 inertiaTensor(0,0) = yy + zz;
1387 inertiaTensor(0,1) = -xy;
1388 inertiaTensor(0,2) = -xz;
1389 inertiaTensor(1,0) = -xy;
1390 inertiaTensor(1,1) = xx + zz;
1391 inertiaTensor(1,2) = -yz;
1392 inertiaTensor(2,0) = -xz;
1393 inertiaTensor(2,1) = -yz;
1394 inertiaTensor(2,2) = xx + yy;
1395
1396 #ifdef IS_MPI
1397 Mat3x3d tmpI(inertiaTensor);
1398 Vector3d tmpAngMom;
1399 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1400 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1401 #endif
1402
1403 return;
1404 }
1405
1406 //Returns the angular momentum of the system
1407 Vector3d SimInfo::getAngularMomentum(){
1408
1409 Vector3d com(0.0);
1410 Vector3d comVel(0.0);
1411 Vector3d angularMomentum(0.0);
1412
1413 getComAll(com,comVel);
1414
1415 SimInfo::MoleculeIterator i;
1416 Molecule* mol;
1417
1418 Vector3d thisr(0.0);
1419 Vector3d thisp(0.0);
1420
1421 RealType thisMass;
1422
1423 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1424 thisMass = mol->getMass();
1425 thisr = mol->getCom()-com;
1426 thisp = (mol->getComVel()-comVel)*thisMass;
1427
1428 angularMomentum += cross( thisr, thisp );
1429
1430 }
1431
1432 #ifdef IS_MPI
1433 Vector3d tmpAngMom;
1434 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1435 #endif
1436
1437 return angularMomentum;
1438 }
1439
1440 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1441 return IOIndexToIntegrableObject.at(index);
1442 }
1443
1444 void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1445 IOIndexToIntegrableObject= v;
1446 }
1447
1448 /*
1449 void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1450 assert( v.size() == nAtoms_ + nRigidBodies_);
1451 sdByGlobalIndex_ = v;
1452 }
1453
1454 StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1455 //assert(index < nAtoms_ + nRigidBodies_);
1456 return sdByGlobalIndex_.at(index);
1457 }
1458 */
1459 }//end namespace oopse
1460