1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file SimInfo.cpp |
44 |
* @author tlin |
45 |
* @date 11/02/2004 |
46 |
* @version 1.0 |
47 |
*/ |
48 |
|
49 |
#include <algorithm> |
50 |
#include <set> |
51 |
#include <map> |
52 |
|
53 |
#include "brains/SimInfo.hpp" |
54 |
#include "math/Vector3.hpp" |
55 |
#include "primitives/Molecule.hpp" |
56 |
#include "primitives/StuntDouble.hpp" |
57 |
#include "UseTheForce/fCutoffPolicy.h" |
58 |
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
59 |
#include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" |
60 |
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
61 |
#include "UseTheForce/doForces_interface.h" |
62 |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
63 |
#include "UseTheForce/DarkSide/electrostatic_interface.h" |
64 |
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
65 |
#include "utils/MemoryUtils.hpp" |
66 |
#include "utils/simError.h" |
67 |
#include "selection/SelectionManager.hpp" |
68 |
#include "io/ForceFieldOptions.hpp" |
69 |
#include "UseTheForce/ForceField.hpp" |
70 |
|
71 |
|
72 |
#ifdef IS_MPI |
73 |
#include "UseTheForce/mpiComponentPlan.h" |
74 |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
75 |
#endif |
76 |
|
77 |
namespace oopse { |
78 |
std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { |
79 |
std::map<int, std::set<int> >::iterator i = container.find(index); |
80 |
std::set<int> result; |
81 |
if (i != container.end()) { |
82 |
result = i->second; |
83 |
} |
84 |
|
85 |
return result; |
86 |
} |
87 |
|
88 |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
89 |
forceField_(ff), simParams_(simParams), |
90 |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
91 |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
92 |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
93 |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0), |
94 |
nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
95 |
sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false), |
96 |
useAtomicVirial_(true) { |
97 |
|
98 |
MoleculeStamp* molStamp; |
99 |
int nMolWithSameStamp; |
100 |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
101 |
int nGroups = 0; //total cutoff groups defined in meta-data file |
102 |
CutoffGroupStamp* cgStamp; |
103 |
RigidBodyStamp* rbStamp; |
104 |
int nRigidAtoms = 0; |
105 |
std::vector<Component*> components = simParams->getComponents(); |
106 |
|
107 |
for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
108 |
molStamp = (*i)->getMoleculeStamp(); |
109 |
nMolWithSameStamp = (*i)->getNMol(); |
110 |
|
111 |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
112 |
|
113 |
//calculate atoms in molecules |
114 |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
115 |
|
116 |
//calculate atoms in cutoff groups |
117 |
int nAtomsInGroups = 0; |
118 |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
119 |
|
120 |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
121 |
cgStamp = molStamp->getCutoffGroupStamp(j); |
122 |
nAtomsInGroups += cgStamp->getNMembers(); |
123 |
} |
124 |
|
125 |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
126 |
|
127 |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
128 |
|
129 |
//calculate atoms in rigid bodies |
130 |
int nAtomsInRigidBodies = 0; |
131 |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
132 |
|
133 |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
134 |
rbStamp = molStamp->getRigidBodyStamp(j); |
135 |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
136 |
} |
137 |
|
138 |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
139 |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
140 |
|
141 |
} |
142 |
|
143 |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
144 |
//group therefore the total number of cutoff groups in the system is |
145 |
//equal to the total number of atoms minus number of atoms belong to |
146 |
//cutoff group defined in meta-data file plus the number of cutoff |
147 |
//groups defined in meta-data file |
148 |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
149 |
|
150 |
//every free atom (atom does not belong to rigid bodies) is an |
151 |
//integrable object therefore the total number of integrable objects |
152 |
//in the system is equal to the total number of atoms minus number of |
153 |
//atoms belong to rigid body defined in meta-data file plus the number |
154 |
//of rigid bodies defined in meta-data file |
155 |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
156 |
+ nGlobalRigidBodies_; |
157 |
|
158 |
nGlobalMols_ = molStampIds_.size(); |
159 |
|
160 |
#ifdef IS_MPI |
161 |
molToProcMap_.resize(nGlobalMols_); |
162 |
#endif |
163 |
|
164 |
} |
165 |
|
166 |
SimInfo::~SimInfo() { |
167 |
std::map<int, Molecule*>::iterator i; |
168 |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
169 |
delete i->second; |
170 |
} |
171 |
molecules_.clear(); |
172 |
|
173 |
delete sman_; |
174 |
delete simParams_; |
175 |
delete forceField_; |
176 |
} |
177 |
|
178 |
int SimInfo::getNGlobalConstraints() { |
179 |
int nGlobalConstraints; |
180 |
#ifdef IS_MPI |
181 |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
182 |
MPI_COMM_WORLD); |
183 |
#else |
184 |
nGlobalConstraints = nConstraints_; |
185 |
#endif |
186 |
return nGlobalConstraints; |
187 |
} |
188 |
|
189 |
bool SimInfo::addMolecule(Molecule* mol) { |
190 |
MoleculeIterator i; |
191 |
|
192 |
i = molecules_.find(mol->getGlobalIndex()); |
193 |
if (i == molecules_.end() ) { |
194 |
|
195 |
molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
196 |
|
197 |
nAtoms_ += mol->getNAtoms(); |
198 |
nBonds_ += mol->getNBonds(); |
199 |
nBends_ += mol->getNBends(); |
200 |
nTorsions_ += mol->getNTorsions(); |
201 |
nRigidBodies_ += mol->getNRigidBodies(); |
202 |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
203 |
nCutoffGroups_ += mol->getNCutoffGroups(); |
204 |
nConstraints_ += mol->getNConstraintPairs(); |
205 |
|
206 |
addExcludePairs(mol); |
207 |
|
208 |
return true; |
209 |
} else { |
210 |
return false; |
211 |
} |
212 |
} |
213 |
|
214 |
bool SimInfo::removeMolecule(Molecule* mol) { |
215 |
MoleculeIterator i; |
216 |
i = molecules_.find(mol->getGlobalIndex()); |
217 |
|
218 |
if (i != molecules_.end() ) { |
219 |
|
220 |
assert(mol == i->second); |
221 |
|
222 |
nAtoms_ -= mol->getNAtoms(); |
223 |
nBonds_ -= mol->getNBonds(); |
224 |
nBends_ -= mol->getNBends(); |
225 |
nTorsions_ -= mol->getNTorsions(); |
226 |
nRigidBodies_ -= mol->getNRigidBodies(); |
227 |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
228 |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
229 |
nConstraints_ -= mol->getNConstraintPairs(); |
230 |
|
231 |
removeExcludePairs(mol); |
232 |
molecules_.erase(mol->getGlobalIndex()); |
233 |
|
234 |
delete mol; |
235 |
|
236 |
return true; |
237 |
} else { |
238 |
return false; |
239 |
} |
240 |
|
241 |
|
242 |
} |
243 |
|
244 |
|
245 |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
246 |
i = molecules_.begin(); |
247 |
return i == molecules_.end() ? NULL : i->second; |
248 |
} |
249 |
|
250 |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
251 |
++i; |
252 |
return i == molecules_.end() ? NULL : i->second; |
253 |
} |
254 |
|
255 |
|
256 |
void SimInfo::calcNdf() { |
257 |
int ndf_local; |
258 |
MoleculeIterator i; |
259 |
std::vector<StuntDouble*>::iterator j; |
260 |
Molecule* mol; |
261 |
StuntDouble* integrableObject; |
262 |
|
263 |
ndf_local = 0; |
264 |
|
265 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
266 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
267 |
integrableObject = mol->nextIntegrableObject(j)) { |
268 |
|
269 |
ndf_local += 3; |
270 |
|
271 |
if (integrableObject->isDirectional()) { |
272 |
if (integrableObject->isLinear()) { |
273 |
ndf_local += 2; |
274 |
} else { |
275 |
ndf_local += 3; |
276 |
} |
277 |
} |
278 |
|
279 |
} |
280 |
} |
281 |
|
282 |
// n_constraints is local, so subtract them on each processor |
283 |
ndf_local -= nConstraints_; |
284 |
|
285 |
#ifdef IS_MPI |
286 |
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
287 |
#else |
288 |
ndf_ = ndf_local; |
289 |
#endif |
290 |
|
291 |
// nZconstraints_ is global, as are the 3 COM translations for the |
292 |
// entire system: |
293 |
ndf_ = ndf_ - 3 - nZconstraint_; |
294 |
|
295 |
} |
296 |
|
297 |
int SimInfo::getFdf() { |
298 |
#ifdef IS_MPI |
299 |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
300 |
#else |
301 |
fdf_ = fdf_local; |
302 |
#endif |
303 |
return fdf_; |
304 |
} |
305 |
|
306 |
void SimInfo::calcNdfRaw() { |
307 |
int ndfRaw_local; |
308 |
|
309 |
MoleculeIterator i; |
310 |
std::vector<StuntDouble*>::iterator j; |
311 |
Molecule* mol; |
312 |
StuntDouble* integrableObject; |
313 |
|
314 |
// Raw degrees of freedom that we have to set |
315 |
ndfRaw_local = 0; |
316 |
|
317 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
318 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
319 |
integrableObject = mol->nextIntegrableObject(j)) { |
320 |
|
321 |
ndfRaw_local += 3; |
322 |
|
323 |
if (integrableObject->isDirectional()) { |
324 |
if (integrableObject->isLinear()) { |
325 |
ndfRaw_local += 2; |
326 |
} else { |
327 |
ndfRaw_local += 3; |
328 |
} |
329 |
} |
330 |
|
331 |
} |
332 |
} |
333 |
|
334 |
#ifdef IS_MPI |
335 |
MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
336 |
#else |
337 |
ndfRaw_ = ndfRaw_local; |
338 |
#endif |
339 |
} |
340 |
|
341 |
void SimInfo::calcNdfTrans() { |
342 |
int ndfTrans_local; |
343 |
|
344 |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
345 |
|
346 |
|
347 |
#ifdef IS_MPI |
348 |
MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
349 |
#else |
350 |
ndfTrans_ = ndfTrans_local; |
351 |
#endif |
352 |
|
353 |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
354 |
|
355 |
} |
356 |
|
357 |
void SimInfo::addExcludePairs(Molecule* mol) { |
358 |
std::vector<Bond*>::iterator bondIter; |
359 |
std::vector<Bend*>::iterator bendIter; |
360 |
std::vector<Torsion*>::iterator torsionIter; |
361 |
Bond* bond; |
362 |
Bend* bend; |
363 |
Torsion* torsion; |
364 |
int a; |
365 |
int b; |
366 |
int c; |
367 |
int d; |
368 |
|
369 |
std::map<int, std::set<int> > atomGroups; |
370 |
|
371 |
Molecule::RigidBodyIterator rbIter; |
372 |
RigidBody* rb; |
373 |
Molecule::IntegrableObjectIterator ii; |
374 |
StuntDouble* integrableObject; |
375 |
|
376 |
for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
377 |
integrableObject = mol->nextIntegrableObject(ii)) { |
378 |
|
379 |
if (integrableObject->isRigidBody()) { |
380 |
rb = static_cast<RigidBody*>(integrableObject); |
381 |
std::vector<Atom*> atoms = rb->getAtoms(); |
382 |
std::set<int> rigidAtoms; |
383 |
for (int i = 0; i < atoms.size(); ++i) { |
384 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
385 |
} |
386 |
for (int i = 0; i < atoms.size(); ++i) { |
387 |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
388 |
} |
389 |
} else { |
390 |
std::set<int> oneAtomSet; |
391 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
392 |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
393 |
} |
394 |
} |
395 |
|
396 |
|
397 |
|
398 |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
399 |
a = bond->getAtomA()->getGlobalIndex(); |
400 |
b = bond->getAtomB()->getGlobalIndex(); |
401 |
exclude_.addPair(a, b); |
402 |
} |
403 |
|
404 |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
405 |
a = bend->getAtomA()->getGlobalIndex(); |
406 |
b = bend->getAtomB()->getGlobalIndex(); |
407 |
c = bend->getAtomC()->getGlobalIndex(); |
408 |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
409 |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
410 |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
411 |
|
412 |
exclude_.addPairs(rigidSetA, rigidSetB); |
413 |
exclude_.addPairs(rigidSetA, rigidSetC); |
414 |
exclude_.addPairs(rigidSetB, rigidSetC); |
415 |
|
416 |
//exclude_.addPair(a, b); |
417 |
//exclude_.addPair(a, c); |
418 |
//exclude_.addPair(b, c); |
419 |
} |
420 |
|
421 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
422 |
a = torsion->getAtomA()->getGlobalIndex(); |
423 |
b = torsion->getAtomB()->getGlobalIndex(); |
424 |
c = torsion->getAtomC()->getGlobalIndex(); |
425 |
d = torsion->getAtomD()->getGlobalIndex(); |
426 |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
427 |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
428 |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
429 |
std::set<int> rigidSetD = getRigidSet(d, atomGroups); |
430 |
|
431 |
exclude_.addPairs(rigidSetA, rigidSetB); |
432 |
exclude_.addPairs(rigidSetA, rigidSetC); |
433 |
exclude_.addPairs(rigidSetA, rigidSetD); |
434 |
exclude_.addPairs(rigidSetB, rigidSetC); |
435 |
exclude_.addPairs(rigidSetB, rigidSetD); |
436 |
exclude_.addPairs(rigidSetC, rigidSetD); |
437 |
|
438 |
/* |
439 |
exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end()); |
440 |
exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end()); |
441 |
exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end()); |
442 |
exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end()); |
443 |
exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end()); |
444 |
exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end()); |
445 |
|
446 |
|
447 |
exclude_.addPair(a, b); |
448 |
exclude_.addPair(a, c); |
449 |
exclude_.addPair(a, d); |
450 |
exclude_.addPair(b, c); |
451 |
exclude_.addPair(b, d); |
452 |
exclude_.addPair(c, d); |
453 |
*/ |
454 |
} |
455 |
|
456 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
457 |
std::vector<Atom*> atoms = rb->getAtoms(); |
458 |
for (int i = 0; i < atoms.size() -1 ; ++i) { |
459 |
for (int j = i + 1; j < atoms.size(); ++j) { |
460 |
a = atoms[i]->getGlobalIndex(); |
461 |
b = atoms[j]->getGlobalIndex(); |
462 |
exclude_.addPair(a, b); |
463 |
} |
464 |
} |
465 |
} |
466 |
|
467 |
} |
468 |
|
469 |
void SimInfo::removeExcludePairs(Molecule* mol) { |
470 |
std::vector<Bond*>::iterator bondIter; |
471 |
std::vector<Bend*>::iterator bendIter; |
472 |
std::vector<Torsion*>::iterator torsionIter; |
473 |
Bond* bond; |
474 |
Bend* bend; |
475 |
Torsion* torsion; |
476 |
int a; |
477 |
int b; |
478 |
int c; |
479 |
int d; |
480 |
|
481 |
std::map<int, std::set<int> > atomGroups; |
482 |
|
483 |
Molecule::RigidBodyIterator rbIter; |
484 |
RigidBody* rb; |
485 |
Molecule::IntegrableObjectIterator ii; |
486 |
StuntDouble* integrableObject; |
487 |
|
488 |
for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
489 |
integrableObject = mol->nextIntegrableObject(ii)) { |
490 |
|
491 |
if (integrableObject->isRigidBody()) { |
492 |
rb = static_cast<RigidBody*>(integrableObject); |
493 |
std::vector<Atom*> atoms = rb->getAtoms(); |
494 |
std::set<int> rigidAtoms; |
495 |
for (int i = 0; i < atoms.size(); ++i) { |
496 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
497 |
} |
498 |
for (int i = 0; i < atoms.size(); ++i) { |
499 |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
500 |
} |
501 |
} else { |
502 |
std::set<int> oneAtomSet; |
503 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
504 |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
505 |
} |
506 |
} |
507 |
|
508 |
|
509 |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
510 |
a = bond->getAtomA()->getGlobalIndex(); |
511 |
b = bond->getAtomB()->getGlobalIndex(); |
512 |
exclude_.removePair(a, b); |
513 |
} |
514 |
|
515 |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
516 |
a = bend->getAtomA()->getGlobalIndex(); |
517 |
b = bend->getAtomB()->getGlobalIndex(); |
518 |
c = bend->getAtomC()->getGlobalIndex(); |
519 |
|
520 |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
521 |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
522 |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
523 |
|
524 |
exclude_.removePairs(rigidSetA, rigidSetB); |
525 |
exclude_.removePairs(rigidSetA, rigidSetC); |
526 |
exclude_.removePairs(rigidSetB, rigidSetC); |
527 |
|
528 |
//exclude_.removePair(a, b); |
529 |
//exclude_.removePair(a, c); |
530 |
//exclude_.removePair(b, c); |
531 |
} |
532 |
|
533 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
534 |
a = torsion->getAtomA()->getGlobalIndex(); |
535 |
b = torsion->getAtomB()->getGlobalIndex(); |
536 |
c = torsion->getAtomC()->getGlobalIndex(); |
537 |
d = torsion->getAtomD()->getGlobalIndex(); |
538 |
|
539 |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
540 |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
541 |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
542 |
std::set<int> rigidSetD = getRigidSet(d, atomGroups); |
543 |
|
544 |
exclude_.removePairs(rigidSetA, rigidSetB); |
545 |
exclude_.removePairs(rigidSetA, rigidSetC); |
546 |
exclude_.removePairs(rigidSetA, rigidSetD); |
547 |
exclude_.removePairs(rigidSetB, rigidSetC); |
548 |
exclude_.removePairs(rigidSetB, rigidSetD); |
549 |
exclude_.removePairs(rigidSetC, rigidSetD); |
550 |
|
551 |
/* |
552 |
exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end()); |
553 |
exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end()); |
554 |
exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end()); |
555 |
exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end()); |
556 |
exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end()); |
557 |
exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end()); |
558 |
|
559 |
|
560 |
exclude_.removePair(a, b); |
561 |
exclude_.removePair(a, c); |
562 |
exclude_.removePair(a, d); |
563 |
exclude_.removePair(b, c); |
564 |
exclude_.removePair(b, d); |
565 |
exclude_.removePair(c, d); |
566 |
*/ |
567 |
} |
568 |
|
569 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
570 |
std::vector<Atom*> atoms = rb->getAtoms(); |
571 |
for (int i = 0; i < atoms.size() -1 ; ++i) { |
572 |
for (int j = i + 1; j < atoms.size(); ++j) { |
573 |
a = atoms[i]->getGlobalIndex(); |
574 |
b = atoms[j]->getGlobalIndex(); |
575 |
exclude_.removePair(a, b); |
576 |
} |
577 |
} |
578 |
} |
579 |
|
580 |
} |
581 |
|
582 |
|
583 |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
584 |
int curStampId; |
585 |
|
586 |
//index from 0 |
587 |
curStampId = moleculeStamps_.size(); |
588 |
|
589 |
moleculeStamps_.push_back(molStamp); |
590 |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
591 |
} |
592 |
|
593 |
void SimInfo::update() { |
594 |
|
595 |
setupSimType(); |
596 |
|
597 |
#ifdef IS_MPI |
598 |
setupFortranParallel(); |
599 |
#endif |
600 |
|
601 |
setupFortranSim(); |
602 |
|
603 |
//setup fortran force field |
604 |
/** @deprecate */ |
605 |
int isError = 0; |
606 |
|
607 |
setupCutoff(); |
608 |
|
609 |
setupElectrostaticSummationMethod( isError ); |
610 |
setupSwitchingFunction(); |
611 |
setupAccumulateBoxDipole(); |
612 |
|
613 |
if(isError){ |
614 |
sprintf( painCave.errMsg, |
615 |
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
616 |
painCave.isFatal = 1; |
617 |
simError(); |
618 |
} |
619 |
|
620 |
calcNdf(); |
621 |
calcNdfRaw(); |
622 |
calcNdfTrans(); |
623 |
|
624 |
fortranInitialized_ = true; |
625 |
} |
626 |
|
627 |
std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
628 |
SimInfo::MoleculeIterator mi; |
629 |
Molecule* mol; |
630 |
Molecule::AtomIterator ai; |
631 |
Atom* atom; |
632 |
std::set<AtomType*> atomTypes; |
633 |
|
634 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
635 |
|
636 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
637 |
atomTypes.insert(atom->getAtomType()); |
638 |
} |
639 |
|
640 |
} |
641 |
|
642 |
return atomTypes; |
643 |
} |
644 |
|
645 |
void SimInfo::setupSimType() { |
646 |
std::set<AtomType*>::iterator i; |
647 |
std::set<AtomType*> atomTypes; |
648 |
atomTypes = getUniqueAtomTypes(); |
649 |
|
650 |
int useLennardJones = 0; |
651 |
int useElectrostatic = 0; |
652 |
int useEAM = 0; |
653 |
int useSC = 0; |
654 |
int useCharge = 0; |
655 |
int useDirectional = 0; |
656 |
int useDipole = 0; |
657 |
int useGayBerne = 0; |
658 |
int useSticky = 0; |
659 |
int useStickyPower = 0; |
660 |
int useShape = 0; |
661 |
int useFLARB = 0; //it is not in AtomType yet |
662 |
int useDirectionalAtom = 0; |
663 |
int useElectrostatics = 0; |
664 |
//usePBC and useRF are from simParams |
665 |
int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
666 |
int useRF; |
667 |
int useSF; |
668 |
int useSP; |
669 |
int useBoxDipole; |
670 |
|
671 |
std::string myMethod; |
672 |
|
673 |
// set the useRF logical |
674 |
useRF = 0; |
675 |
useSF = 0; |
676 |
useSP = 0; |
677 |
|
678 |
|
679 |
if (simParams_->haveElectrostaticSummationMethod()) { |
680 |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
681 |
toUpper(myMethod); |
682 |
if (myMethod == "REACTION_FIELD"){ |
683 |
useRF = 1; |
684 |
} else if (myMethod == "SHIFTED_FORCE"){ |
685 |
useSF = 1; |
686 |
} else if (myMethod == "SHIFTED_POTENTIAL"){ |
687 |
useSP = 1; |
688 |
} |
689 |
} |
690 |
|
691 |
if (simParams_->haveAccumulateBoxDipole()) |
692 |
if (simParams_->getAccumulateBoxDipole()) |
693 |
useBoxDipole = 1; |
694 |
|
695 |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
696 |
|
697 |
//loop over all of the atom types |
698 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
699 |
useLennardJones |= (*i)->isLennardJones(); |
700 |
useElectrostatic |= (*i)->isElectrostatic(); |
701 |
useEAM |= (*i)->isEAM(); |
702 |
useSC |= (*i)->isSC(); |
703 |
useCharge |= (*i)->isCharge(); |
704 |
useDirectional |= (*i)->isDirectional(); |
705 |
useDipole |= (*i)->isDipole(); |
706 |
useGayBerne |= (*i)->isGayBerne(); |
707 |
useSticky |= (*i)->isSticky(); |
708 |
useStickyPower |= (*i)->isStickyPower(); |
709 |
useShape |= (*i)->isShape(); |
710 |
} |
711 |
|
712 |
if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { |
713 |
useDirectionalAtom = 1; |
714 |
} |
715 |
|
716 |
if (useCharge || useDipole) { |
717 |
useElectrostatics = 1; |
718 |
} |
719 |
|
720 |
#ifdef IS_MPI |
721 |
int temp; |
722 |
|
723 |
temp = usePBC; |
724 |
MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
725 |
|
726 |
temp = useDirectionalAtom; |
727 |
MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
728 |
|
729 |
temp = useLennardJones; |
730 |
MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
731 |
|
732 |
temp = useElectrostatics; |
733 |
MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
734 |
|
735 |
temp = useCharge; |
736 |
MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
737 |
|
738 |
temp = useDipole; |
739 |
MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
740 |
|
741 |
temp = useSticky; |
742 |
MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
743 |
|
744 |
temp = useStickyPower; |
745 |
MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
746 |
|
747 |
temp = useGayBerne; |
748 |
MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
749 |
|
750 |
temp = useEAM; |
751 |
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
752 |
|
753 |
temp = useSC; |
754 |
MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
755 |
|
756 |
temp = useShape; |
757 |
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
758 |
|
759 |
temp = useFLARB; |
760 |
MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
761 |
|
762 |
temp = useRF; |
763 |
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
764 |
|
765 |
temp = useSF; |
766 |
MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
767 |
|
768 |
temp = useSP; |
769 |
MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
770 |
|
771 |
temp = useBoxDipole; |
772 |
MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
773 |
|
774 |
temp = useAtomicVirial_; |
775 |
MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
776 |
|
777 |
#endif |
778 |
|
779 |
fInfo_.SIM_uses_PBC = usePBC; |
780 |
fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
781 |
fInfo_.SIM_uses_LennardJones = useLennardJones; |
782 |
fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
783 |
fInfo_.SIM_uses_Charges = useCharge; |
784 |
fInfo_.SIM_uses_Dipoles = useDipole; |
785 |
fInfo_.SIM_uses_Sticky = useSticky; |
786 |
fInfo_.SIM_uses_StickyPower = useStickyPower; |
787 |
fInfo_.SIM_uses_GayBerne = useGayBerne; |
788 |
fInfo_.SIM_uses_EAM = useEAM; |
789 |
fInfo_.SIM_uses_SC = useSC; |
790 |
fInfo_.SIM_uses_Shapes = useShape; |
791 |
fInfo_.SIM_uses_FLARB = useFLARB; |
792 |
fInfo_.SIM_uses_RF = useRF; |
793 |
fInfo_.SIM_uses_SF = useSF; |
794 |
fInfo_.SIM_uses_SP = useSP; |
795 |
fInfo_.SIM_uses_BoxDipole = useBoxDipole; |
796 |
fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_; |
797 |
} |
798 |
|
799 |
void SimInfo::setupFortranSim() { |
800 |
int isError; |
801 |
int nExclude; |
802 |
std::vector<int> fortranGlobalGroupMembership; |
803 |
|
804 |
nExclude = exclude_.getSize(); |
805 |
isError = 0; |
806 |
|
807 |
//globalGroupMembership_ is filled by SimCreator |
808 |
for (int i = 0; i < nGlobalAtoms_; i++) { |
809 |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
810 |
} |
811 |
|
812 |
//calculate mass ratio of cutoff group |
813 |
std::vector<RealType> mfact; |
814 |
SimInfo::MoleculeIterator mi; |
815 |
Molecule* mol; |
816 |
Molecule::CutoffGroupIterator ci; |
817 |
CutoffGroup* cg; |
818 |
Molecule::AtomIterator ai; |
819 |
Atom* atom; |
820 |
RealType totalMass; |
821 |
|
822 |
//to avoid memory reallocation, reserve enough space for mfact |
823 |
mfact.reserve(getNCutoffGroups()); |
824 |
|
825 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
826 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
827 |
|
828 |
totalMass = cg->getMass(); |
829 |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
830 |
// Check for massless groups - set mfact to 1 if true |
831 |
if (totalMass != 0) |
832 |
mfact.push_back(atom->getMass()/totalMass); |
833 |
else |
834 |
mfact.push_back( 1.0 ); |
835 |
} |
836 |
|
837 |
} |
838 |
} |
839 |
|
840 |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
841 |
std::vector<int> identArray; |
842 |
|
843 |
//to avoid memory reallocation, reserve enough space identArray |
844 |
identArray.reserve(getNAtoms()); |
845 |
|
846 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
847 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
848 |
identArray.push_back(atom->getIdent()); |
849 |
} |
850 |
} |
851 |
|
852 |
//fill molMembershipArray |
853 |
//molMembershipArray is filled by SimCreator |
854 |
std::vector<int> molMembershipArray(nGlobalAtoms_); |
855 |
for (int i = 0; i < nGlobalAtoms_; i++) { |
856 |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
857 |
} |
858 |
|
859 |
//setup fortran simulation |
860 |
int nGlobalExcludes = 0; |
861 |
int* globalExcludes = NULL; |
862 |
int* excludeList = exclude_.getExcludeList(); |
863 |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList , |
864 |
&nGlobalExcludes, globalExcludes, &molMembershipArray[0], |
865 |
&mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError); |
866 |
|
867 |
if( isError ){ |
868 |
|
869 |
sprintf( painCave.errMsg, |
870 |
"There was an error setting the simulation information in fortran.\n" ); |
871 |
painCave.isFatal = 1; |
872 |
painCave.severity = OOPSE_ERROR; |
873 |
simError(); |
874 |
} |
875 |
|
876 |
#ifdef IS_MPI |
877 |
sprintf( checkPointMsg, |
878 |
"succesfully sent the simulation information to fortran.\n"); |
879 |
MPIcheckPoint(); |
880 |
#endif // is_mpi |
881 |
|
882 |
// Setup number of neighbors in neighbor list if present |
883 |
if (simParams_->haveNeighborListNeighbors()) { |
884 |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
885 |
setNeighbors(&nlistNeighbors); |
886 |
} |
887 |
|
888 |
|
889 |
} |
890 |
|
891 |
|
892 |
#ifdef IS_MPI |
893 |
void SimInfo::setupFortranParallel() { |
894 |
|
895 |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
896 |
std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
897 |
std::vector<int> localToGlobalCutoffGroupIndex; |
898 |
SimInfo::MoleculeIterator mi; |
899 |
Molecule::AtomIterator ai; |
900 |
Molecule::CutoffGroupIterator ci; |
901 |
Molecule* mol; |
902 |
Atom* atom; |
903 |
CutoffGroup* cg; |
904 |
mpiSimData parallelData; |
905 |
int isError; |
906 |
|
907 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
908 |
|
909 |
//local index(index in DataStorge) of atom is important |
910 |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
911 |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
912 |
} |
913 |
|
914 |
//local index of cutoff group is trivial, it only depends on the order of travesing |
915 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
916 |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
917 |
} |
918 |
|
919 |
} |
920 |
|
921 |
//fill up mpiSimData struct |
922 |
parallelData.nMolGlobal = getNGlobalMolecules(); |
923 |
parallelData.nMolLocal = getNMolecules(); |
924 |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
925 |
parallelData.nAtomsLocal = getNAtoms(); |
926 |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
927 |
parallelData.nGroupsLocal = getNCutoffGroups(); |
928 |
parallelData.myNode = worldRank; |
929 |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
930 |
|
931 |
//pass mpiSimData struct and index arrays to fortran |
932 |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
933 |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
934 |
&localToGlobalCutoffGroupIndex[0], &isError); |
935 |
|
936 |
if (isError) { |
937 |
sprintf(painCave.errMsg, |
938 |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
939 |
painCave.isFatal = 1; |
940 |
simError(); |
941 |
} |
942 |
|
943 |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
944 |
MPIcheckPoint(); |
945 |
|
946 |
|
947 |
} |
948 |
|
949 |
#endif |
950 |
|
951 |
void SimInfo::setupCutoff() { |
952 |
|
953 |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
954 |
|
955 |
// Check the cutoff policy |
956 |
int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default |
957 |
|
958 |
std::string myPolicy; |
959 |
if (forceFieldOptions_.haveCutoffPolicy()){ |
960 |
myPolicy = forceFieldOptions_.getCutoffPolicy(); |
961 |
}else if (simParams_->haveCutoffPolicy()) { |
962 |
myPolicy = simParams_->getCutoffPolicy(); |
963 |
} |
964 |
|
965 |
if (!myPolicy.empty()){ |
966 |
toUpper(myPolicy); |
967 |
if (myPolicy == "MIX") { |
968 |
cp = MIX_CUTOFF_POLICY; |
969 |
} else { |
970 |
if (myPolicy == "MAX") { |
971 |
cp = MAX_CUTOFF_POLICY; |
972 |
} else { |
973 |
if (myPolicy == "TRADITIONAL") { |
974 |
cp = TRADITIONAL_CUTOFF_POLICY; |
975 |
} else { |
976 |
// throw error |
977 |
sprintf( painCave.errMsg, |
978 |
"SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
979 |
painCave.isFatal = 1; |
980 |
simError(); |
981 |
} |
982 |
} |
983 |
} |
984 |
} |
985 |
notifyFortranCutoffPolicy(&cp); |
986 |
|
987 |
// Check the Skin Thickness for neighborlists |
988 |
RealType skin; |
989 |
if (simParams_->haveSkinThickness()) { |
990 |
skin = simParams_->getSkinThickness(); |
991 |
notifyFortranSkinThickness(&skin); |
992 |
} |
993 |
|
994 |
// Check if the cutoff was set explicitly: |
995 |
if (simParams_->haveCutoffRadius()) { |
996 |
rcut_ = simParams_->getCutoffRadius(); |
997 |
if (simParams_->haveSwitchingRadius()) { |
998 |
rsw_ = simParams_->getSwitchingRadius(); |
999 |
} else { |
1000 |
if (fInfo_.SIM_uses_Charges | |
1001 |
fInfo_.SIM_uses_Dipoles | |
1002 |
fInfo_.SIM_uses_RF) { |
1003 |
|
1004 |
rsw_ = 0.85 * rcut_; |
1005 |
sprintf(painCave.errMsg, |
1006 |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1007 |
"\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n" |
1008 |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1009 |
painCave.isFatal = 0; |
1010 |
simError(); |
1011 |
} else { |
1012 |
rsw_ = rcut_; |
1013 |
sprintf(painCave.errMsg, |
1014 |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1015 |
"\tOOPSE will use the same value as the cutoffRadius.\n" |
1016 |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1017 |
painCave.isFatal = 0; |
1018 |
simError(); |
1019 |
} |
1020 |
} |
1021 |
|
1022 |
notifyFortranCutoffs(&rcut_, &rsw_); |
1023 |
|
1024 |
} else { |
1025 |
|
1026 |
// For electrostatic atoms, we'll assume a large safe value: |
1027 |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
1028 |
sprintf(painCave.errMsg, |
1029 |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
1030 |
"\tOOPSE will use a default value of 15.0 angstroms" |
1031 |
"\tfor the cutoffRadius.\n"); |
1032 |
painCave.isFatal = 0; |
1033 |
simError(); |
1034 |
rcut_ = 15.0; |
1035 |
|
1036 |
if (simParams_->haveElectrostaticSummationMethod()) { |
1037 |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1038 |
toUpper(myMethod); |
1039 |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1040 |
if (simParams_->haveSwitchingRadius()){ |
1041 |
sprintf(painCave.errMsg, |
1042 |
"SimInfo Warning: A value was set for the switchingRadius\n" |
1043 |
"\teven though the electrostaticSummationMethod was\n" |
1044 |
"\tset to %s\n", myMethod.c_str()); |
1045 |
painCave.isFatal = 1; |
1046 |
simError(); |
1047 |
} |
1048 |
} |
1049 |
} |
1050 |
|
1051 |
if (simParams_->haveSwitchingRadius()){ |
1052 |
rsw_ = simParams_->getSwitchingRadius(); |
1053 |
} else { |
1054 |
sprintf(painCave.errMsg, |
1055 |
"SimCreator Warning: No value was set for switchingRadius.\n" |
1056 |
"\tOOPSE will use a default value of\n" |
1057 |
"\t0.85 * cutoffRadius for the switchingRadius\n"); |
1058 |
painCave.isFatal = 0; |
1059 |
simError(); |
1060 |
rsw_ = 0.85 * rcut_; |
1061 |
} |
1062 |
notifyFortranCutoffs(&rcut_, &rsw_); |
1063 |
} else { |
1064 |
// We didn't set rcut explicitly, and we don't have electrostatic atoms, so |
1065 |
// We'll punt and let fortran figure out the cutoffs later. |
1066 |
|
1067 |
notifyFortranYouAreOnYourOwn(); |
1068 |
|
1069 |
} |
1070 |
} |
1071 |
} |
1072 |
|
1073 |
void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
1074 |
|
1075 |
int errorOut; |
1076 |
int esm = NONE; |
1077 |
int sm = UNDAMPED; |
1078 |
RealType alphaVal; |
1079 |
RealType dielectric; |
1080 |
|
1081 |
errorOut = isError; |
1082 |
|
1083 |
if (simParams_->haveElectrostaticSummationMethod()) { |
1084 |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1085 |
toUpper(myMethod); |
1086 |
if (myMethod == "NONE") { |
1087 |
esm = NONE; |
1088 |
} else { |
1089 |
if (myMethod == "SWITCHING_FUNCTION") { |
1090 |
esm = SWITCHING_FUNCTION; |
1091 |
} else { |
1092 |
if (myMethod == "SHIFTED_POTENTIAL") { |
1093 |
esm = SHIFTED_POTENTIAL; |
1094 |
} else { |
1095 |
if (myMethod == "SHIFTED_FORCE") { |
1096 |
esm = SHIFTED_FORCE; |
1097 |
} else { |
1098 |
if (myMethod == "REACTION_FIELD") { |
1099 |
esm = REACTION_FIELD; |
1100 |
dielectric = simParams_->getDielectric(); |
1101 |
if (!simParams_->haveDielectric()) { |
1102 |
// throw warning |
1103 |
sprintf( painCave.errMsg, |
1104 |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
1105 |
"\tA default value of %f will be used for the dielectric.\n", dielectric); |
1106 |
painCave.isFatal = 0; |
1107 |
simError(); |
1108 |
} |
1109 |
} else { |
1110 |
// throw error |
1111 |
sprintf( painCave.errMsg, |
1112 |
"SimInfo error: Unknown electrostaticSummationMethod.\n" |
1113 |
"\t(Input file specified %s .)\n" |
1114 |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
1115 |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
1116 |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
1117 |
painCave.isFatal = 1; |
1118 |
simError(); |
1119 |
} |
1120 |
} |
1121 |
} |
1122 |
} |
1123 |
} |
1124 |
} |
1125 |
|
1126 |
if (simParams_->haveElectrostaticScreeningMethod()) { |
1127 |
std::string myScreen = simParams_->getElectrostaticScreeningMethod(); |
1128 |
toUpper(myScreen); |
1129 |
if (myScreen == "UNDAMPED") { |
1130 |
sm = UNDAMPED; |
1131 |
} else { |
1132 |
if (myScreen == "DAMPED") { |
1133 |
sm = DAMPED; |
1134 |
if (!simParams_->haveDampingAlpha()) { |
1135 |
// first set a cutoff dependent alpha value |
1136 |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
1137 |
alphaVal = 0.5125 - rcut_* 0.025; |
1138 |
// for values rcut > 20.5, alpha is zero |
1139 |
if (alphaVal < 0) alphaVal = 0; |
1140 |
|
1141 |
// throw warning |
1142 |
sprintf( painCave.errMsg, |
1143 |
"SimInfo warning: dampingAlpha was not specified in the input file.\n" |
1144 |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_); |
1145 |
painCave.isFatal = 0; |
1146 |
simError(); |
1147 |
} else { |
1148 |
alphaVal = simParams_->getDampingAlpha(); |
1149 |
} |
1150 |
|
1151 |
} else { |
1152 |
// throw error |
1153 |
sprintf( painCave.errMsg, |
1154 |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
1155 |
"\t(Input file specified %s .)\n" |
1156 |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
1157 |
"or \"damped\".\n", myScreen.c_str() ); |
1158 |
painCave.isFatal = 1; |
1159 |
simError(); |
1160 |
} |
1161 |
} |
1162 |
} |
1163 |
|
1164 |
// let's pass some summation method variables to fortran |
1165 |
setElectrostaticSummationMethod( &esm ); |
1166 |
setFortranElectrostaticMethod( &esm ); |
1167 |
setScreeningMethod( &sm ); |
1168 |
setDampingAlpha( &alphaVal ); |
1169 |
setReactionFieldDielectric( &dielectric ); |
1170 |
initFortranFF( &errorOut ); |
1171 |
} |
1172 |
|
1173 |
void SimInfo::setupSwitchingFunction() { |
1174 |
int ft = CUBIC; |
1175 |
|
1176 |
if (simParams_->haveSwitchingFunctionType()) { |
1177 |
std::string funcType = simParams_->getSwitchingFunctionType(); |
1178 |
toUpper(funcType); |
1179 |
if (funcType == "CUBIC") { |
1180 |
ft = CUBIC; |
1181 |
} else { |
1182 |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1183 |
ft = FIFTH_ORDER_POLY; |
1184 |
} else { |
1185 |
// throw error |
1186 |
sprintf( painCave.errMsg, |
1187 |
"SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); |
1188 |
painCave.isFatal = 1; |
1189 |
simError(); |
1190 |
} |
1191 |
} |
1192 |
} |
1193 |
|
1194 |
// send switching function notification to switcheroo |
1195 |
setFunctionType(&ft); |
1196 |
|
1197 |
} |
1198 |
|
1199 |
void SimInfo::setupAccumulateBoxDipole() { |
1200 |
|
1201 |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1202 |
if ( simParams_->haveAccumulateBoxDipole() ) |
1203 |
if ( simParams_->getAccumulateBoxDipole() ) { |
1204 |
setAccumulateBoxDipole(); |
1205 |
calcBoxDipole_ = true; |
1206 |
} |
1207 |
|
1208 |
} |
1209 |
|
1210 |
void SimInfo::addProperty(GenericData* genData) { |
1211 |
properties_.addProperty(genData); |
1212 |
} |
1213 |
|
1214 |
void SimInfo::removeProperty(const std::string& propName) { |
1215 |
properties_.removeProperty(propName); |
1216 |
} |
1217 |
|
1218 |
void SimInfo::clearProperties() { |
1219 |
properties_.clearProperties(); |
1220 |
} |
1221 |
|
1222 |
std::vector<std::string> SimInfo::getPropertyNames() { |
1223 |
return properties_.getPropertyNames(); |
1224 |
} |
1225 |
|
1226 |
std::vector<GenericData*> SimInfo::getProperties() { |
1227 |
return properties_.getProperties(); |
1228 |
} |
1229 |
|
1230 |
GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
1231 |
return properties_.getPropertyByName(propName); |
1232 |
} |
1233 |
|
1234 |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
1235 |
if (sman_ == sman) { |
1236 |
return; |
1237 |
} |
1238 |
delete sman_; |
1239 |
sman_ = sman; |
1240 |
|
1241 |
Molecule* mol; |
1242 |
RigidBody* rb; |
1243 |
Atom* atom; |
1244 |
SimInfo::MoleculeIterator mi; |
1245 |
Molecule::RigidBodyIterator rbIter; |
1246 |
Molecule::AtomIterator atomIter;; |
1247 |
|
1248 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1249 |
|
1250 |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
1251 |
atom->setSnapshotManager(sman_); |
1252 |
} |
1253 |
|
1254 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
1255 |
rb->setSnapshotManager(sman_); |
1256 |
} |
1257 |
} |
1258 |
|
1259 |
} |
1260 |
|
1261 |
Vector3d SimInfo::getComVel(){ |
1262 |
SimInfo::MoleculeIterator i; |
1263 |
Molecule* mol; |
1264 |
|
1265 |
Vector3d comVel(0.0); |
1266 |
RealType totalMass = 0.0; |
1267 |
|
1268 |
|
1269 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1270 |
RealType mass = mol->getMass(); |
1271 |
totalMass += mass; |
1272 |
comVel += mass * mol->getComVel(); |
1273 |
} |
1274 |
|
1275 |
#ifdef IS_MPI |
1276 |
RealType tmpMass = totalMass; |
1277 |
Vector3d tmpComVel(comVel); |
1278 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1279 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1280 |
#endif |
1281 |
|
1282 |
comVel /= totalMass; |
1283 |
|
1284 |
return comVel; |
1285 |
} |
1286 |
|
1287 |
Vector3d SimInfo::getCom(){ |
1288 |
SimInfo::MoleculeIterator i; |
1289 |
Molecule* mol; |
1290 |
|
1291 |
Vector3d com(0.0); |
1292 |
RealType totalMass = 0.0; |
1293 |
|
1294 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1295 |
RealType mass = mol->getMass(); |
1296 |
totalMass += mass; |
1297 |
com += mass * mol->getCom(); |
1298 |
} |
1299 |
|
1300 |
#ifdef IS_MPI |
1301 |
RealType tmpMass = totalMass; |
1302 |
Vector3d tmpCom(com); |
1303 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1304 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1305 |
#endif |
1306 |
|
1307 |
com /= totalMass; |
1308 |
|
1309 |
return com; |
1310 |
|
1311 |
} |
1312 |
|
1313 |
std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
1314 |
|
1315 |
return o; |
1316 |
} |
1317 |
|
1318 |
|
1319 |
/* |
1320 |
Returns center of mass and center of mass velocity in one function call. |
1321 |
*/ |
1322 |
|
1323 |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1324 |
SimInfo::MoleculeIterator i; |
1325 |
Molecule* mol; |
1326 |
|
1327 |
|
1328 |
RealType totalMass = 0.0; |
1329 |
|
1330 |
|
1331 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1332 |
RealType mass = mol->getMass(); |
1333 |
totalMass += mass; |
1334 |
com += mass * mol->getCom(); |
1335 |
comVel += mass * mol->getComVel(); |
1336 |
} |
1337 |
|
1338 |
#ifdef IS_MPI |
1339 |
RealType tmpMass = totalMass; |
1340 |
Vector3d tmpCom(com); |
1341 |
Vector3d tmpComVel(comVel); |
1342 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1343 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1344 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1345 |
#endif |
1346 |
|
1347 |
com /= totalMass; |
1348 |
comVel /= totalMass; |
1349 |
} |
1350 |
|
1351 |
/* |
1352 |
Return intertia tensor for entire system and angular momentum Vector. |
1353 |
|
1354 |
|
1355 |
[ Ixx -Ixy -Ixz ] |
1356 |
J =| -Iyx Iyy -Iyz | |
1357 |
[ -Izx -Iyz Izz ] |
1358 |
*/ |
1359 |
|
1360 |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1361 |
|
1362 |
|
1363 |
RealType xx = 0.0; |
1364 |
RealType yy = 0.0; |
1365 |
RealType zz = 0.0; |
1366 |
RealType xy = 0.0; |
1367 |
RealType xz = 0.0; |
1368 |
RealType yz = 0.0; |
1369 |
Vector3d com(0.0); |
1370 |
Vector3d comVel(0.0); |
1371 |
|
1372 |
getComAll(com, comVel); |
1373 |
|
1374 |
SimInfo::MoleculeIterator i; |
1375 |
Molecule* mol; |
1376 |
|
1377 |
Vector3d thisq(0.0); |
1378 |
Vector3d thisv(0.0); |
1379 |
|
1380 |
RealType thisMass = 0.0; |
1381 |
|
1382 |
|
1383 |
|
1384 |
|
1385 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1386 |
|
1387 |
thisq = mol->getCom()-com; |
1388 |
thisv = mol->getComVel()-comVel; |
1389 |
thisMass = mol->getMass(); |
1390 |
// Compute moment of intertia coefficients. |
1391 |
xx += thisq[0]*thisq[0]*thisMass; |
1392 |
yy += thisq[1]*thisq[1]*thisMass; |
1393 |
zz += thisq[2]*thisq[2]*thisMass; |
1394 |
|
1395 |
// compute products of intertia |
1396 |
xy += thisq[0]*thisq[1]*thisMass; |
1397 |
xz += thisq[0]*thisq[2]*thisMass; |
1398 |
yz += thisq[1]*thisq[2]*thisMass; |
1399 |
|
1400 |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1401 |
|
1402 |
} |
1403 |
|
1404 |
|
1405 |
inertiaTensor(0,0) = yy + zz; |
1406 |
inertiaTensor(0,1) = -xy; |
1407 |
inertiaTensor(0,2) = -xz; |
1408 |
inertiaTensor(1,0) = -xy; |
1409 |
inertiaTensor(1,1) = xx + zz; |
1410 |
inertiaTensor(1,2) = -yz; |
1411 |
inertiaTensor(2,0) = -xz; |
1412 |
inertiaTensor(2,1) = -yz; |
1413 |
inertiaTensor(2,2) = xx + yy; |
1414 |
|
1415 |
#ifdef IS_MPI |
1416 |
Mat3x3d tmpI(inertiaTensor); |
1417 |
Vector3d tmpAngMom; |
1418 |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1419 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1420 |
#endif |
1421 |
|
1422 |
return; |
1423 |
} |
1424 |
|
1425 |
//Returns the angular momentum of the system |
1426 |
Vector3d SimInfo::getAngularMomentum(){ |
1427 |
|
1428 |
Vector3d com(0.0); |
1429 |
Vector3d comVel(0.0); |
1430 |
Vector3d angularMomentum(0.0); |
1431 |
|
1432 |
getComAll(com,comVel); |
1433 |
|
1434 |
SimInfo::MoleculeIterator i; |
1435 |
Molecule* mol; |
1436 |
|
1437 |
Vector3d thisr(0.0); |
1438 |
Vector3d thisp(0.0); |
1439 |
|
1440 |
RealType thisMass; |
1441 |
|
1442 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1443 |
thisMass = mol->getMass(); |
1444 |
thisr = mol->getCom()-com; |
1445 |
thisp = (mol->getComVel()-comVel)*thisMass; |
1446 |
|
1447 |
angularMomentum += cross( thisr, thisp ); |
1448 |
|
1449 |
} |
1450 |
|
1451 |
#ifdef IS_MPI |
1452 |
Vector3d tmpAngMom; |
1453 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1454 |
#endif |
1455 |
|
1456 |
return angularMomentum; |
1457 |
} |
1458 |
|
1459 |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1460 |
return IOIndexToIntegrableObject.at(index); |
1461 |
} |
1462 |
|
1463 |
void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { |
1464 |
IOIndexToIntegrableObject= v; |
1465 |
} |
1466 |
|
1467 |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1468 |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1469 |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1470 |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1471 |
*/ |
1472 |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1473 |
Mat3x3d intTensor; |
1474 |
RealType det; |
1475 |
Vector3d dummyAngMom; |
1476 |
RealType sysconstants; |
1477 |
RealType geomCnst; |
1478 |
|
1479 |
geomCnst = 3.0/2.0; |
1480 |
/* Get the inertial tensor and angular momentum for free*/ |
1481 |
getInertiaTensor(intTensor,dummyAngMom); |
1482 |
|
1483 |
det = intTensor.determinant(); |
1484 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1485 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1486 |
return; |
1487 |
} |
1488 |
|
1489 |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1490 |
Mat3x3d intTensor; |
1491 |
Vector3d dummyAngMom; |
1492 |
RealType sysconstants; |
1493 |
RealType geomCnst; |
1494 |
|
1495 |
geomCnst = 3.0/2.0; |
1496 |
/* Get the inertial tensor and angular momentum for free*/ |
1497 |
getInertiaTensor(intTensor,dummyAngMom); |
1498 |
|
1499 |
detI = intTensor.determinant(); |
1500 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1501 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1502 |
return; |
1503 |
} |
1504 |
/* |
1505 |
void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { |
1506 |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1507 |
sdByGlobalIndex_ = v; |
1508 |
} |
1509 |
|
1510 |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1511 |
//assert(index < nAtoms_ + nRigidBodies_); |
1512 |
return sdByGlobalIndex_.at(index); |
1513 |
} |
1514 |
*/ |
1515 |
}//end namespace oopse |
1516 |
|