ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
Revision: 709
Committed: Wed Nov 2 20:36:15 2005 UTC (19 years, 6 months ago) by chrisfen
File size: 36710 byte(s)
Log Message:
again, changing how we deal with summation and screening methods

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 2
49 gezelter 246 #include <algorithm>
50     #include <set>
51 gezelter 2
52 tim 3 #include "brains/SimInfo.hpp"
53 gezelter 246 #include "math/Vector3.hpp"
54     #include "primitives/Molecule.hpp"
55 gezelter 586 #include "UseTheForce/fCutoffPolicy.h"
56 chrisfen 606 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 chrisfen 709 #include "UseTheForce/DarkSide/fScreeningMethod.h"
58 gezelter 246 #include "UseTheForce/doForces_interface.h"
59 chrisfen 610 #include "UseTheForce/DarkSide/electrostatic_interface.h"
60 gezelter 246 #include "UseTheForce/notifyCutoffs_interface.h"
61     #include "utils/MemoryUtils.hpp"
62 tim 3 #include "utils/simError.h"
63 tim 316 #include "selection/SelectionManager.hpp"
64 gezelter 2
65 gezelter 246 #ifdef IS_MPI
66     #include "UseTheForce/mpiComponentPlan.h"
67     #include "UseTheForce/DarkSide/simParallel_interface.h"
68     #endif
69 gezelter 2
70 gezelter 246 namespace oopse {
71 gezelter 2
72 gezelter 507 SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
73     ForceField* ff, Globals* simParams) :
74     stamps_(stamps), forceField_(ff), simParams_(simParams),
75     ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
76     nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
77     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
78     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
79     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
80     sman_(NULL), fortranInitialized_(false) {
81 gezelter 2
82 gezelter 246
83 gezelter 507 std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
84     MoleculeStamp* molStamp;
85     int nMolWithSameStamp;
86     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 chrisfen 645 int nGroups = 0; //total cutoff groups defined in meta-data file
88 gezelter 507 CutoffGroupStamp* cgStamp;
89     RigidBodyStamp* rbStamp;
90     int nRigidAtoms = 0;
91 gezelter 246
92 gezelter 507 for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
93 gezelter 246 molStamp = i->first;
94     nMolWithSameStamp = i->second;
95    
96     addMoleculeStamp(molStamp, nMolWithSameStamp);
97 gezelter 2
98 gezelter 246 //calculate atoms in molecules
99     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
100 gezelter 2
101    
102 gezelter 246 //calculate atoms in cutoff groups
103     int nAtomsInGroups = 0;
104     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
105    
106     for (int j=0; j < nCutoffGroupsInStamp; j++) {
107 gezelter 507 cgStamp = molStamp->getCutoffGroup(j);
108     nAtomsInGroups += cgStamp->getNMembers();
109 gezelter 246 }
110 gezelter 2
111 gezelter 246 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
112 chrisfen 645
113 gezelter 246 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
114 gezelter 2
115 gezelter 246 //calculate atoms in rigid bodies
116     int nAtomsInRigidBodies = 0;
117 tim 274 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
118 gezelter 246
119     for (int j=0; j < nRigidBodiesInStamp; j++) {
120 gezelter 507 rbStamp = molStamp->getRigidBody(j);
121     nAtomsInRigidBodies += rbStamp->getNMembers();
122 gezelter 246 }
123 gezelter 2
124 gezelter 246 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
125     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
126    
127 gezelter 507 }
128 chrisfen 143
129 chrisfen 645 //every free atom (atom does not belong to cutoff groups) is a cutoff
130     //group therefore the total number of cutoff groups in the system is
131     //equal to the total number of atoms minus number of atoms belong to
132     //cutoff group defined in meta-data file plus the number of cutoff
133     //groups defined in meta-data file
134 gezelter 507 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
135 gezelter 2
136 chrisfen 645 //every free atom (atom does not belong to rigid bodies) is an
137     //integrable object therefore the total number of integrable objects
138     //in the system is equal to the total number of atoms minus number of
139     //atoms belong to rigid body defined in meta-data file plus the number
140     //of rigid bodies defined in meta-data file
141     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142     + nGlobalRigidBodies_;
143    
144 gezelter 507 nGlobalMols_ = molStampIds_.size();
145 gezelter 2
146 gezelter 246 #ifdef IS_MPI
147 gezelter 507 molToProcMap_.resize(nGlobalMols_);
148 gezelter 246 #endif
149 tim 292
150 gezelter 507 }
151 gezelter 2
152 gezelter 507 SimInfo::~SimInfo() {
153 tim 398 std::map<int, Molecule*>::iterator i;
154     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
155 gezelter 507 delete i->second;
156 tim 398 }
157     molecules_.clear();
158 tim 490
159     delete stamps_;
160 gezelter 246 delete sman_;
161     delete simParams_;
162     delete forceField_;
163 gezelter 507 }
164 gezelter 2
165 gezelter 507 int SimInfo::getNGlobalConstraints() {
166 gezelter 246 int nGlobalConstraints;
167     #ifdef IS_MPI
168     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
169     MPI_COMM_WORLD);
170     #else
171     nGlobalConstraints = nConstraints_;
172     #endif
173     return nGlobalConstraints;
174 gezelter 507 }
175 gezelter 2
176 gezelter 507 bool SimInfo::addMolecule(Molecule* mol) {
177 gezelter 246 MoleculeIterator i;
178 gezelter 2
179 gezelter 246 i = molecules_.find(mol->getGlobalIndex());
180     if (i == molecules_.end() ) {
181 gezelter 2
182 gezelter 507 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
183 gezelter 246
184 gezelter 507 nAtoms_ += mol->getNAtoms();
185     nBonds_ += mol->getNBonds();
186     nBends_ += mol->getNBends();
187     nTorsions_ += mol->getNTorsions();
188     nRigidBodies_ += mol->getNRigidBodies();
189     nIntegrableObjects_ += mol->getNIntegrableObjects();
190     nCutoffGroups_ += mol->getNCutoffGroups();
191     nConstraints_ += mol->getNConstraintPairs();
192 gezelter 2
193 gezelter 507 addExcludePairs(mol);
194 gezelter 246
195 gezelter 507 return true;
196 gezelter 246 } else {
197 gezelter 507 return false;
198 gezelter 246 }
199 gezelter 507 }
200 gezelter 2
201 gezelter 507 bool SimInfo::removeMolecule(Molecule* mol) {
202 gezelter 246 MoleculeIterator i;
203     i = molecules_.find(mol->getGlobalIndex());
204 gezelter 2
205 gezelter 246 if (i != molecules_.end() ) {
206 gezelter 2
207 gezelter 507 assert(mol == i->second);
208 gezelter 246
209 gezelter 507 nAtoms_ -= mol->getNAtoms();
210     nBonds_ -= mol->getNBonds();
211     nBends_ -= mol->getNBends();
212     nTorsions_ -= mol->getNTorsions();
213     nRigidBodies_ -= mol->getNRigidBodies();
214     nIntegrableObjects_ -= mol->getNIntegrableObjects();
215     nCutoffGroups_ -= mol->getNCutoffGroups();
216     nConstraints_ -= mol->getNConstraintPairs();
217 gezelter 2
218 gezelter 507 removeExcludePairs(mol);
219     molecules_.erase(mol->getGlobalIndex());
220 gezelter 2
221 gezelter 507 delete mol;
222 gezelter 246
223 gezelter 507 return true;
224 gezelter 246 } else {
225 gezelter 507 return false;
226 gezelter 246 }
227    
228    
229 gezelter 507 }
230 gezelter 246
231    
232 gezelter 507 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
233 gezelter 246 i = molecules_.begin();
234     return i == molecules_.end() ? NULL : i->second;
235 gezelter 507 }
236 gezelter 246
237 gezelter 507 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
238 gezelter 246 ++i;
239     return i == molecules_.end() ? NULL : i->second;
240 gezelter 507 }
241 gezelter 2
242    
243 gezelter 507 void SimInfo::calcNdf() {
244 gezelter 246 int ndf_local;
245     MoleculeIterator i;
246     std::vector<StuntDouble*>::iterator j;
247     Molecule* mol;
248     StuntDouble* integrableObject;
249 gezelter 2
250 gezelter 246 ndf_local = 0;
251    
252     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
253 gezelter 507 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
254     integrableObject = mol->nextIntegrableObject(j)) {
255 gezelter 2
256 gezelter 507 ndf_local += 3;
257 gezelter 2
258 gezelter 507 if (integrableObject->isDirectional()) {
259     if (integrableObject->isLinear()) {
260     ndf_local += 2;
261     } else {
262     ndf_local += 3;
263     }
264     }
265 gezelter 246
266 gezelter 507 }//end for (integrableObject)
267 gezelter 246 }// end for (mol)
268    
269     // n_constraints is local, so subtract them on each processor
270     ndf_local -= nConstraints_;
271    
272     #ifdef IS_MPI
273     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
274     #else
275     ndf_ = ndf_local;
276     #endif
277    
278     // nZconstraints_ is global, as are the 3 COM translations for the
279     // entire system:
280     ndf_ = ndf_ - 3 - nZconstraint_;
281    
282 gezelter 507 }
283 gezelter 2
284 gezelter 507 void SimInfo::calcNdfRaw() {
285 gezelter 246 int ndfRaw_local;
286 gezelter 2
287 gezelter 246 MoleculeIterator i;
288     std::vector<StuntDouble*>::iterator j;
289     Molecule* mol;
290     StuntDouble* integrableObject;
291    
292     // Raw degrees of freedom that we have to set
293     ndfRaw_local = 0;
294    
295     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
296 gezelter 507 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
297     integrableObject = mol->nextIntegrableObject(j)) {
298 gezelter 246
299 gezelter 507 ndfRaw_local += 3;
300 gezelter 246
301 gezelter 507 if (integrableObject->isDirectional()) {
302     if (integrableObject->isLinear()) {
303     ndfRaw_local += 2;
304     } else {
305     ndfRaw_local += 3;
306     }
307     }
308 gezelter 246
309 gezelter 507 }
310 gezelter 246 }
311    
312     #ifdef IS_MPI
313     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
314     #else
315     ndfRaw_ = ndfRaw_local;
316     #endif
317 gezelter 507 }
318 gezelter 2
319 gezelter 507 void SimInfo::calcNdfTrans() {
320 gezelter 246 int ndfTrans_local;
321 gezelter 2
322 gezelter 246 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
323 gezelter 2
324    
325 gezelter 246 #ifdef IS_MPI
326     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
327     #else
328     ndfTrans_ = ndfTrans_local;
329     #endif
330 gezelter 2
331 gezelter 246 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
332    
333 gezelter 507 }
334 gezelter 2
335 gezelter 507 void SimInfo::addExcludePairs(Molecule* mol) {
336 gezelter 246 std::vector<Bond*>::iterator bondIter;
337     std::vector<Bend*>::iterator bendIter;
338     std::vector<Torsion*>::iterator torsionIter;
339     Bond* bond;
340     Bend* bend;
341     Torsion* torsion;
342     int a;
343     int b;
344     int c;
345     int d;
346    
347     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
348 gezelter 507 a = bond->getAtomA()->getGlobalIndex();
349     b = bond->getAtomB()->getGlobalIndex();
350     exclude_.addPair(a, b);
351 gezelter 246 }
352 gezelter 2
353 gezelter 246 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
354 gezelter 507 a = bend->getAtomA()->getGlobalIndex();
355     b = bend->getAtomB()->getGlobalIndex();
356     c = bend->getAtomC()->getGlobalIndex();
357 gezelter 2
358 gezelter 507 exclude_.addPair(a, b);
359     exclude_.addPair(a, c);
360     exclude_.addPair(b, c);
361 gezelter 246 }
362 gezelter 2
363 gezelter 246 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
364 gezelter 507 a = torsion->getAtomA()->getGlobalIndex();
365     b = torsion->getAtomB()->getGlobalIndex();
366     c = torsion->getAtomC()->getGlobalIndex();
367     d = torsion->getAtomD()->getGlobalIndex();
368 gezelter 2
369 gezelter 507 exclude_.addPair(a, b);
370     exclude_.addPair(a, c);
371     exclude_.addPair(a, d);
372     exclude_.addPair(b, c);
373     exclude_.addPair(b, d);
374     exclude_.addPair(c, d);
375 gezelter 2 }
376    
377 tim 430 Molecule::RigidBodyIterator rbIter;
378     RigidBody* rb;
379     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
380 gezelter 507 std::vector<Atom*> atoms = rb->getAtoms();
381     for (int i = 0; i < atoms.size() -1 ; ++i) {
382     for (int j = i + 1; j < atoms.size(); ++j) {
383     a = atoms[i]->getGlobalIndex();
384     b = atoms[j]->getGlobalIndex();
385     exclude_.addPair(a, b);
386     }
387     }
388 tim 430 }
389    
390 gezelter 507 }
391 gezelter 246
392 gezelter 507 void SimInfo::removeExcludePairs(Molecule* mol) {
393 gezelter 246 std::vector<Bond*>::iterator bondIter;
394     std::vector<Bend*>::iterator bendIter;
395     std::vector<Torsion*>::iterator torsionIter;
396     Bond* bond;
397     Bend* bend;
398     Torsion* torsion;
399     int a;
400     int b;
401     int c;
402     int d;
403    
404     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
405 gezelter 507 a = bond->getAtomA()->getGlobalIndex();
406     b = bond->getAtomB()->getGlobalIndex();
407     exclude_.removePair(a, b);
408 gezelter 2 }
409 gezelter 246
410     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
411 gezelter 507 a = bend->getAtomA()->getGlobalIndex();
412     b = bend->getAtomB()->getGlobalIndex();
413     c = bend->getAtomC()->getGlobalIndex();
414 gezelter 246
415 gezelter 507 exclude_.removePair(a, b);
416     exclude_.removePair(a, c);
417     exclude_.removePair(b, c);
418 gezelter 2 }
419 gezelter 246
420     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
421 gezelter 507 a = torsion->getAtomA()->getGlobalIndex();
422     b = torsion->getAtomB()->getGlobalIndex();
423     c = torsion->getAtomC()->getGlobalIndex();
424     d = torsion->getAtomD()->getGlobalIndex();
425 gezelter 246
426 gezelter 507 exclude_.removePair(a, b);
427     exclude_.removePair(a, c);
428     exclude_.removePair(a, d);
429     exclude_.removePair(b, c);
430     exclude_.removePair(b, d);
431     exclude_.removePair(c, d);
432 gezelter 246 }
433    
434 tim 430 Molecule::RigidBodyIterator rbIter;
435     RigidBody* rb;
436     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
437 gezelter 507 std::vector<Atom*> atoms = rb->getAtoms();
438     for (int i = 0; i < atoms.size() -1 ; ++i) {
439     for (int j = i + 1; j < atoms.size(); ++j) {
440     a = atoms[i]->getGlobalIndex();
441     b = atoms[j]->getGlobalIndex();
442     exclude_.removePair(a, b);
443     }
444     }
445 tim 430 }
446    
447 gezelter 507 }
448 gezelter 2
449    
450 gezelter 507 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
451 gezelter 246 int curStampId;
452 gezelter 2
453 gezelter 246 //index from 0
454     curStampId = moleculeStamps_.size();
455 gezelter 2
456 gezelter 246 moleculeStamps_.push_back(molStamp);
457     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
458 gezelter 507 }
459 gezelter 2
460 gezelter 507 void SimInfo::update() {
461 gezelter 2
462 gezelter 246 setupSimType();
463 gezelter 2
464 gezelter 246 #ifdef IS_MPI
465     setupFortranParallel();
466     #endif
467 gezelter 2
468 gezelter 246 setupFortranSim();
469 gezelter 2
470 gezelter 246 //setup fortran force field
471     /** @deprecate */
472     int isError = 0;
473 chrisfen 598
474 chrisfen 603 setupElectrostaticSummationMethod( isError );
475 chrisfen 598
476 gezelter 246 if(isError){
477 gezelter 507 sprintf( painCave.errMsg,
478     "ForceField error: There was an error initializing the forceField in fortran.\n" );
479     painCave.isFatal = 1;
480     simError();
481 gezelter 246 }
482 gezelter 2
483 gezelter 246
484     setupCutoff();
485 gezelter 2
486 gezelter 246 calcNdf();
487     calcNdfRaw();
488     calcNdfTrans();
489    
490     fortranInitialized_ = true;
491 gezelter 507 }
492 gezelter 2
493 gezelter 507 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
494 gezelter 246 SimInfo::MoleculeIterator mi;
495     Molecule* mol;
496     Molecule::AtomIterator ai;
497     Atom* atom;
498     std::set<AtomType*> atomTypes;
499 gezelter 2
500 gezelter 246 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
501 gezelter 2
502 gezelter 507 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
503     atomTypes.insert(atom->getAtomType());
504     }
505 gezelter 246
506     }
507 gezelter 2
508 gezelter 246 return atomTypes;
509 gezelter 507 }
510 gezelter 2
511 gezelter 507 void SimInfo::setupSimType() {
512 gezelter 246 std::set<AtomType*>::iterator i;
513     std::set<AtomType*> atomTypes;
514     atomTypes = getUniqueAtomTypes();
515 gezelter 2
516 gezelter 246 int useLennardJones = 0;
517     int useElectrostatic = 0;
518     int useEAM = 0;
519     int useCharge = 0;
520     int useDirectional = 0;
521     int useDipole = 0;
522     int useGayBerne = 0;
523     int useSticky = 0;
524 chrisfen 523 int useStickyPower = 0;
525 gezelter 246 int useShape = 0;
526     int useFLARB = 0; //it is not in AtomType yet
527     int useDirectionalAtom = 0;
528     int useElectrostatics = 0;
529     //usePBC and useRF are from simParams
530 tim 665 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
531 chrisfen 611 int useRF;
532 chrisfen 705 int useDW;
533 tim 665 std::string myMethod;
534 gezelter 2
535 chrisfen 611 // set the useRF logical
536 tim 665 useRF = 0;
537 chrisfen 705 useDW = 0;
538 chrisfen 691
539    
540 tim 665 if (simParams_->haveElectrostaticSummationMethod()) {
541 chrisfen 691 std::string myMethod = simParams_->getElectrostaticSummationMethod();
542     toUpper(myMethod);
543     if (myMethod == "REACTION_FIELD") {
544     useRF=1;
545 chrisfen 705 } else {
546 chrisfen 709 if (myMethod == "SHIFTED_POTENTIAL") {
547 chrisfen 705 useDW = 1;
548     }
549 chrisfen 691 }
550 tim 665 }
551 chrisfen 611
552 gezelter 246 //loop over all of the atom types
553     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
554 gezelter 507 useLennardJones |= (*i)->isLennardJones();
555     useElectrostatic |= (*i)->isElectrostatic();
556     useEAM |= (*i)->isEAM();
557     useCharge |= (*i)->isCharge();
558     useDirectional |= (*i)->isDirectional();
559     useDipole |= (*i)->isDipole();
560     useGayBerne |= (*i)->isGayBerne();
561     useSticky |= (*i)->isSticky();
562 chrisfen 523 useStickyPower |= (*i)->isStickyPower();
563 gezelter 507 useShape |= (*i)->isShape();
564 gezelter 246 }
565 gezelter 2
566 chrisfen 523 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
567 gezelter 507 useDirectionalAtom = 1;
568 gezelter 246 }
569 gezelter 2
570 gezelter 246 if (useCharge || useDipole) {
571 gezelter 507 useElectrostatics = 1;
572 gezelter 246 }
573 gezelter 2
574 gezelter 246 #ifdef IS_MPI
575     int temp;
576 gezelter 2
577 gezelter 246 temp = usePBC;
578     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
579 gezelter 2
580 gezelter 246 temp = useDirectionalAtom;
581     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
582 gezelter 2
583 gezelter 246 temp = useLennardJones;
584     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
585 gezelter 2
586 gezelter 246 temp = useElectrostatics;
587     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
588 gezelter 2
589 gezelter 246 temp = useCharge;
590     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
591 gezelter 2
592 gezelter 246 temp = useDipole;
593     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
594 gezelter 2
595 gezelter 246 temp = useSticky;
596     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
597 gezelter 2
598 chrisfen 523 temp = useStickyPower;
599     MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
600    
601 gezelter 246 temp = useGayBerne;
602     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
603 gezelter 2
604 gezelter 246 temp = useEAM;
605     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
606 gezelter 2
607 gezelter 246 temp = useShape;
608     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
609    
610     temp = useFLARB;
611     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
612    
613 chrisfen 611 temp = useRF;
614     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
615    
616 chrisfen 705 temp = useDW;
617     MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
618    
619 gezelter 2 #endif
620    
621 gezelter 246 fInfo_.SIM_uses_PBC = usePBC;
622     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
623     fInfo_.SIM_uses_LennardJones = useLennardJones;
624     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
625     fInfo_.SIM_uses_Charges = useCharge;
626     fInfo_.SIM_uses_Dipoles = useDipole;
627     fInfo_.SIM_uses_Sticky = useSticky;
628 chrisfen 523 fInfo_.SIM_uses_StickyPower = useStickyPower;
629 gezelter 246 fInfo_.SIM_uses_GayBerne = useGayBerne;
630     fInfo_.SIM_uses_EAM = useEAM;
631     fInfo_.SIM_uses_Shapes = useShape;
632     fInfo_.SIM_uses_FLARB = useFLARB;
633 chrisfen 611 fInfo_.SIM_uses_RF = useRF;
634 chrisfen 705 fInfo_.SIM_uses_DampedWolf = useDW;
635 gezelter 2
636 chrisfen 691 if( myMethod == "REACTION_FIELD") {
637    
638 gezelter 507 if (simParams_->haveDielectric()) {
639     fInfo_.dielect = simParams_->getDielectric();
640     } else {
641     sprintf(painCave.errMsg,
642     "SimSetup Error: No Dielectric constant was set.\n"
643     "\tYou are trying to use Reaction Field without"
644     "\tsetting a dielectric constant!\n");
645     painCave.isFatal = 1;
646     simError();
647 chrisfen 691 }
648 gezelter 246 }
649 chrisfen 705
650 gezelter 507 }
651 gezelter 2
652 gezelter 507 void SimInfo::setupFortranSim() {
653 gezelter 246 int isError;
654     int nExclude;
655     std::vector<int> fortranGlobalGroupMembership;
656    
657     nExclude = exclude_.getSize();
658     isError = 0;
659 gezelter 2
660 gezelter 246 //globalGroupMembership_ is filled by SimCreator
661     for (int i = 0; i < nGlobalAtoms_; i++) {
662 gezelter 507 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
663 gezelter 246 }
664 gezelter 2
665 gezelter 246 //calculate mass ratio of cutoff group
666     std::vector<double> mfact;
667     SimInfo::MoleculeIterator mi;
668     Molecule* mol;
669     Molecule::CutoffGroupIterator ci;
670     CutoffGroup* cg;
671     Molecule::AtomIterator ai;
672     Atom* atom;
673     double totalMass;
674    
675     //to avoid memory reallocation, reserve enough space for mfact
676     mfact.reserve(getNCutoffGroups());
677 gezelter 2
678 gezelter 246 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
679 gezelter 507 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
680 gezelter 2
681 gezelter 507 totalMass = cg->getMass();
682     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
683 chrisfen 645 // Check for massless groups - set mfact to 1 if true
684     if (totalMass != 0)
685     mfact.push_back(atom->getMass()/totalMass);
686     else
687     mfact.push_back( 1.0 );
688 gezelter 507 }
689 gezelter 2
690 gezelter 507 }
691 gezelter 246 }
692 gezelter 2
693 gezelter 246 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
694     std::vector<int> identArray;
695 gezelter 2
696 gezelter 246 //to avoid memory reallocation, reserve enough space identArray
697     identArray.reserve(getNAtoms());
698    
699     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
700 gezelter 507 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
701     identArray.push_back(atom->getIdent());
702     }
703 gezelter 246 }
704 gezelter 2
705 gezelter 246 //fill molMembershipArray
706     //molMembershipArray is filled by SimCreator
707     std::vector<int> molMembershipArray(nGlobalAtoms_);
708     for (int i = 0; i < nGlobalAtoms_; i++) {
709 gezelter 507 molMembershipArray[i] = globalMolMembership_[i] + 1;
710 gezelter 246 }
711    
712     //setup fortran simulation
713     int nGlobalExcludes = 0;
714     int* globalExcludes = NULL;
715     int* excludeList = exclude_.getExcludeList();
716     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
717 gezelter 507 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
718     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
719 gezelter 2
720 gezelter 246 if( isError ){
721 gezelter 2
722 gezelter 507 sprintf( painCave.errMsg,
723     "There was an error setting the simulation information in fortran.\n" );
724     painCave.isFatal = 1;
725     painCave.severity = OOPSE_ERROR;
726     simError();
727 gezelter 246 }
728    
729     #ifdef IS_MPI
730     sprintf( checkPointMsg,
731 gezelter 507 "succesfully sent the simulation information to fortran.\n");
732 gezelter 246 MPIcheckPoint();
733     #endif // is_mpi
734 gezelter 507 }
735 gezelter 2
736    
737 gezelter 246 #ifdef IS_MPI
738 gezelter 507 void SimInfo::setupFortranParallel() {
739 gezelter 246
740     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
741     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
742     std::vector<int> localToGlobalCutoffGroupIndex;
743     SimInfo::MoleculeIterator mi;
744     Molecule::AtomIterator ai;
745     Molecule::CutoffGroupIterator ci;
746     Molecule* mol;
747     Atom* atom;
748     CutoffGroup* cg;
749     mpiSimData parallelData;
750     int isError;
751 gezelter 2
752 gezelter 246 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
753 gezelter 2
754 gezelter 507 //local index(index in DataStorge) of atom is important
755     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
756     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
757     }
758 gezelter 2
759 gezelter 507 //local index of cutoff group is trivial, it only depends on the order of travesing
760     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
761     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
762     }
763 gezelter 246
764     }
765 gezelter 2
766 gezelter 246 //fill up mpiSimData struct
767     parallelData.nMolGlobal = getNGlobalMolecules();
768     parallelData.nMolLocal = getNMolecules();
769     parallelData.nAtomsGlobal = getNGlobalAtoms();
770     parallelData.nAtomsLocal = getNAtoms();
771     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
772     parallelData.nGroupsLocal = getNCutoffGroups();
773     parallelData.myNode = worldRank;
774     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
775 gezelter 2
776 gezelter 246 //pass mpiSimData struct and index arrays to fortran
777     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
778     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
779     &localToGlobalCutoffGroupIndex[0], &isError);
780 gezelter 2
781 gezelter 246 if (isError) {
782 gezelter 507 sprintf(painCave.errMsg,
783     "mpiRefresh errror: fortran didn't like something we gave it.\n");
784     painCave.isFatal = 1;
785     simError();
786 gezelter 246 }
787 gezelter 2
788 gezelter 246 sprintf(checkPointMsg, " mpiRefresh successful.\n");
789     MPIcheckPoint();
790 gezelter 2
791    
792 gezelter 507 }
793 chrisfen 143
794 gezelter 246 #endif
795 chrisfen 143
796 gezelter 507 double SimInfo::calcMaxCutoffRadius() {
797 chrisfen 143
798    
799 gezelter 246 std::set<AtomType*> atomTypes;
800     std::set<AtomType*>::iterator i;
801     std::vector<double> cutoffRadius;
802 gezelter 2
803 gezelter 246 //get the unique atom types
804     atomTypes = getUniqueAtomTypes();
805    
806     //query the max cutoff radius among these atom types
807     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
808 gezelter 507 cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
809 gezelter 246 }
810    
811     double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
812 gezelter 2 #ifdef IS_MPI
813 gezelter 246 //pick the max cutoff radius among the processors
814 gezelter 2 #endif
815    
816 gezelter 246 return maxCutoffRadius;
817 gezelter 507 }
818 gezelter 246
819 gezelter 507 void SimInfo::getCutoff(double& rcut, double& rsw) {
820 gezelter 2
821 gezelter 246 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
822    
823 tim 665 if (!simParams_->haveCutoffRadius()){
824 gezelter 507 sprintf(painCave.errMsg,
825 gezelter 246 "SimCreator Warning: No value was set for the cutoffRadius.\n"
826     "\tOOPSE will use a default value of 15.0 angstroms"
827     "\tfor the cutoffRadius.\n");
828 gezelter 507 painCave.isFatal = 0;
829     simError();
830     rcut = 15.0;
831     } else{
832 tim 665 rcut = simParams_->getCutoffRadius();
833 gezelter 507 }
834 gezelter 246
835 tim 665 if (!simParams_->haveSwitchingRadius()){
836 gezelter 507 sprintf(painCave.errMsg,
837 gezelter 246 "SimCreator Warning: No value was set for switchingRadius.\n"
838     "\tOOPSE will use a default value of\n"
839 chrisfen 701 "\t0.85 * cutoffRadius for the switchingRadius\n");
840 gezelter 507 painCave.isFatal = 0;
841     simError();
842 chrisfen 701 rsw = 0.85 * rcut;
843 gezelter 507 } else{
844 tim 665 rsw = simParams_->getSwitchingRadius();
845 gezelter 507 }
846 gezelter 246
847     } else {
848 gezelter 507 // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
849     //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
850 gezelter 246
851 tim 665 if (simParams_->haveCutoffRadius()) {
852     rcut = simParams_->getCutoffRadius();
853 gezelter 507 } else {
854     //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
855     rcut = calcMaxCutoffRadius();
856     }
857 gezelter 246
858 tim 665 if (simParams_->haveSwitchingRadius()) {
859     rsw = simParams_->getSwitchingRadius();
860 gezelter 507 } else {
861     rsw = rcut;
862     }
863 gezelter 246
864     }
865 gezelter 507 }
866 tim 326
867 gezelter 586 void SimInfo::setupCutoff() {
868 tim 326 getCutoff(rcut_, rsw_);
869 gezelter 246 double rnblist = rcut_ + 1; // skin of neighbor list
870    
871     //Pass these cutoff radius etc. to fortran. This function should be called once and only once
872 gezelter 586
873     int cp = TRADITIONAL_CUTOFF_POLICY;
874     if (simParams_->haveCutoffPolicy()) {
875     std::string myPolicy = simParams_->getCutoffPolicy();
876 tim 665 toUpper(myPolicy);
877 gezelter 586 if (myPolicy == "MIX") {
878     cp = MIX_CUTOFF_POLICY;
879     } else {
880     if (myPolicy == "MAX") {
881     cp = MAX_CUTOFF_POLICY;
882     } else {
883     if (myPolicy == "TRADITIONAL") {
884     cp = TRADITIONAL_CUTOFF_POLICY;
885     } else {
886     // throw error
887     sprintf( painCave.errMsg,
888     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
889     painCave.isFatal = 1;
890     simError();
891     }
892     }
893     }
894     }
895 chuckv 629
896    
897     if (simParams_->haveSkinThickness()) {
898     double skinThickness = simParams_->getSkinThickness();
899     }
900    
901 gezelter 586 notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
902 chrisfen 610 // also send cutoff notification to electrostatics
903 chrisfen 682 setElectrostaticCutoffRadius(&rcut_, &rsw_);
904 gezelter 507 }
905 gezelter 2
906 chrisfen 603 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
907 chrisfen 598
908     int errorOut;
909 chrisfen 603 int esm = NONE;
910 chrisfen 709 int sm = UNDAMPED;
911 chrisfen 598 double alphaVal;
912 chrisfen 610 double dielectric;
913 chrisfen 598
914     errorOut = isError;
915 chrisfen 610 alphaVal = simParams_->getDampingAlpha();
916     dielectric = simParams_->getDielectric();
917 chrisfen 598
918 chrisfen 603 if (simParams_->haveElectrostaticSummationMethod()) {
919 chrisfen 604 std::string myMethod = simParams_->getElectrostaticSummationMethod();
920 tim 665 toUpper(myMethod);
921 chrisfen 603 if (myMethod == "NONE") {
922     esm = NONE;
923 chrisfen 598 } else {
924 chrisfen 709 if (myMethod == "SWITCHING_FUNCTION") {
925     esm = SWITCHING_FUNCTION;
926 chrisfen 598 } else {
927 chrisfen 709 if (myMethod == "SHIFTED_POTENTIAL") {
928     esm = SHIFTED_POTENTIAL;
929     } else {
930     if (myMethod == "SHIFTED_FORCE") {
931     esm = SHIFTED_FORCE;
932 chrisfen 598 } else {
933 chrisfen 709 if (myMethod == "REACTION_FIELD") {
934     esm = REACTION_FIELD;
935     } else {
936     // throw error
937     sprintf( painCave.errMsg,
938     "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
939     painCave.isFatal = 1;
940     simError();
941     }
942     }
943     }
944 chrisfen 598 }
945     }
946     }
947 chrisfen 709
948     if (simParams_->haveScreeningMethod()) {
949     std::string myScreen = simParams_->getScreeningMethod();
950     toUpper(myScreen);
951     if (myScreen == "UNDAMPED") {
952     sm = UNDAMPED;
953     } else {
954     if (myScreen == "DAMPED") {
955     sm = DAMPED;
956     if (!simParams_->haveDampingAlpha()) {
957     //throw error
958     sprintf( painCave.errMsg,
959     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
960     painCave.isFatal = 0;
961     simError();
962     } else {
963     // throw error
964     sprintf( painCave.errMsg,
965     "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
966     painCave.isFatal = 1;
967     simError();
968     }
969     }
970     }
971     }
972 chrisfen 610 // let's pass some summation method variables to fortran
973     setElectrostaticSummationMethod( &esm );
974 chrisfen 709 setScreeningMethod( &sm );
975     setDampingAlpha( &alphaVal );
976 chrisfen 610 setReactionFieldDielectric( &dielectric );
977     initFortranFF( &esm, &errorOut );
978 chrisfen 598 }
979    
980 gezelter 507 void SimInfo::addProperty(GenericData* genData) {
981 gezelter 246 properties_.addProperty(genData);
982 gezelter 507 }
983 gezelter 2
984 gezelter 507 void SimInfo::removeProperty(const std::string& propName) {
985 gezelter 246 properties_.removeProperty(propName);
986 gezelter 507 }
987 gezelter 2
988 gezelter 507 void SimInfo::clearProperties() {
989 gezelter 246 properties_.clearProperties();
990 gezelter 507 }
991 gezelter 2
992 gezelter 507 std::vector<std::string> SimInfo::getPropertyNames() {
993 gezelter 246 return properties_.getPropertyNames();
994 gezelter 507 }
995 gezelter 246
996 gezelter 507 std::vector<GenericData*> SimInfo::getProperties() {
997 gezelter 246 return properties_.getProperties();
998 gezelter 507 }
999 gezelter 2
1000 gezelter 507 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1001 gezelter 246 return properties_.getPropertyByName(propName);
1002 gezelter 507 }
1003 gezelter 2
1004 gezelter 507 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1005 tim 432 if (sman_ == sman) {
1006 gezelter 507 return;
1007 tim 432 }
1008     delete sman_;
1009 gezelter 246 sman_ = sman;
1010 gezelter 2
1011 gezelter 246 Molecule* mol;
1012     RigidBody* rb;
1013     Atom* atom;
1014     SimInfo::MoleculeIterator mi;
1015     Molecule::RigidBodyIterator rbIter;
1016     Molecule::AtomIterator atomIter;;
1017    
1018     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1019    
1020 gezelter 507 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1021     atom->setSnapshotManager(sman_);
1022     }
1023 gezelter 246
1024 gezelter 507 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1025     rb->setSnapshotManager(sman_);
1026     }
1027 gezelter 246 }
1028 gezelter 2
1029 gezelter 507 }
1030 gezelter 2
1031 gezelter 507 Vector3d SimInfo::getComVel(){
1032 gezelter 246 SimInfo::MoleculeIterator i;
1033     Molecule* mol;
1034 gezelter 2
1035 gezelter 246 Vector3d comVel(0.0);
1036     double totalMass = 0.0;
1037 gezelter 2
1038 gezelter 246
1039     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1040 gezelter 507 double mass = mol->getMass();
1041     totalMass += mass;
1042     comVel += mass * mol->getComVel();
1043 gezelter 246 }
1044 gezelter 2
1045 gezelter 246 #ifdef IS_MPI
1046     double tmpMass = totalMass;
1047     Vector3d tmpComVel(comVel);
1048     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1049     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1050     #endif
1051    
1052     comVel /= totalMass;
1053    
1054     return comVel;
1055 gezelter 507 }
1056 gezelter 2
1057 gezelter 507 Vector3d SimInfo::getCom(){
1058 gezelter 246 SimInfo::MoleculeIterator i;
1059     Molecule* mol;
1060 gezelter 2
1061 gezelter 246 Vector3d com(0.0);
1062     double totalMass = 0.0;
1063    
1064     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1065 gezelter 507 double mass = mol->getMass();
1066     totalMass += mass;
1067     com += mass * mol->getCom();
1068 gezelter 246 }
1069 gezelter 2
1070     #ifdef IS_MPI
1071 gezelter 246 double tmpMass = totalMass;
1072     Vector3d tmpCom(com);
1073     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1074     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1075 gezelter 2 #endif
1076    
1077 gezelter 246 com /= totalMass;
1078 gezelter 2
1079 gezelter 246 return com;
1080 gezelter 2
1081 gezelter 507 }
1082 gezelter 246
1083 gezelter 507 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1084 gezelter 246
1085     return o;
1086 gezelter 507 }
1087 chuckv 555
1088    
1089     /*
1090     Returns center of mass and center of mass velocity in one function call.
1091     */
1092    
1093     void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1094     SimInfo::MoleculeIterator i;
1095     Molecule* mol;
1096    
1097    
1098     double totalMass = 0.0;
1099    
1100 gezelter 246
1101 chuckv 555 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1102     double mass = mol->getMass();
1103     totalMass += mass;
1104     com += mass * mol->getCom();
1105     comVel += mass * mol->getComVel();
1106     }
1107    
1108     #ifdef IS_MPI
1109     double tmpMass = totalMass;
1110     Vector3d tmpCom(com);
1111     Vector3d tmpComVel(comVel);
1112     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1113     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1114     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1115     #endif
1116    
1117     com /= totalMass;
1118     comVel /= totalMass;
1119     }
1120    
1121     /*
1122     Return intertia tensor for entire system and angular momentum Vector.
1123 chuckv 557
1124    
1125     [ Ixx -Ixy -Ixz ]
1126     J =| -Iyx Iyy -Iyz |
1127     [ -Izx -Iyz Izz ]
1128 chuckv 555 */
1129    
1130     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1131    
1132    
1133     double xx = 0.0;
1134     double yy = 0.0;
1135     double zz = 0.0;
1136     double xy = 0.0;
1137     double xz = 0.0;
1138     double yz = 0.0;
1139     Vector3d com(0.0);
1140     Vector3d comVel(0.0);
1141    
1142     getComAll(com, comVel);
1143    
1144     SimInfo::MoleculeIterator i;
1145     Molecule* mol;
1146    
1147     Vector3d thisq(0.0);
1148     Vector3d thisv(0.0);
1149    
1150     double thisMass = 0.0;
1151    
1152    
1153    
1154    
1155     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1156    
1157     thisq = mol->getCom()-com;
1158     thisv = mol->getComVel()-comVel;
1159     thisMass = mol->getMass();
1160     // Compute moment of intertia coefficients.
1161     xx += thisq[0]*thisq[0]*thisMass;
1162     yy += thisq[1]*thisq[1]*thisMass;
1163     zz += thisq[2]*thisq[2]*thisMass;
1164    
1165     // compute products of intertia
1166     xy += thisq[0]*thisq[1]*thisMass;
1167     xz += thisq[0]*thisq[2]*thisMass;
1168     yz += thisq[1]*thisq[2]*thisMass;
1169    
1170     angularMomentum += cross( thisq, thisv ) * thisMass;
1171    
1172     }
1173    
1174    
1175     inertiaTensor(0,0) = yy + zz;
1176     inertiaTensor(0,1) = -xy;
1177     inertiaTensor(0,2) = -xz;
1178     inertiaTensor(1,0) = -xy;
1179 chuckv 557 inertiaTensor(1,1) = xx + zz;
1180 chuckv 555 inertiaTensor(1,2) = -yz;
1181     inertiaTensor(2,0) = -xz;
1182     inertiaTensor(2,1) = -yz;
1183     inertiaTensor(2,2) = xx + yy;
1184    
1185     #ifdef IS_MPI
1186     Mat3x3d tmpI(inertiaTensor);
1187     Vector3d tmpAngMom;
1188     MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1189     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1190     #endif
1191    
1192     return;
1193     }
1194    
1195     //Returns the angular momentum of the system
1196     Vector3d SimInfo::getAngularMomentum(){
1197    
1198     Vector3d com(0.0);
1199     Vector3d comVel(0.0);
1200     Vector3d angularMomentum(0.0);
1201    
1202     getComAll(com,comVel);
1203    
1204     SimInfo::MoleculeIterator i;
1205     Molecule* mol;
1206    
1207 chuckv 557 Vector3d thisr(0.0);
1208     Vector3d thisp(0.0);
1209 chuckv 555
1210 chuckv 557 double thisMass;
1211 chuckv 555
1212     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1213 chuckv 557 thisMass = mol->getMass();
1214     thisr = mol->getCom()-com;
1215     thisp = (mol->getComVel()-comVel)*thisMass;
1216 chuckv 555
1217 chuckv 557 angularMomentum += cross( thisr, thisp );
1218    
1219 chuckv 555 }
1220    
1221     #ifdef IS_MPI
1222     Vector3d tmpAngMom;
1223     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1224     #endif
1225    
1226     return angularMomentum;
1227     }
1228    
1229    
1230 gezelter 246 }//end namespace oopse
1231